高等数学典型例题

合集下载

高等数学同济版 第八章 习题

高等数学同济版 第八章 习题

z Fy . y Fz
19
(3)
F ( x, y,u,v) 0 G( x, y,u,v) 0
隐函数存在定理 3 设F ( x, y, u,v)、G( x, y, u,v) 在
点P( x0 , y0 , u0 ,v0 )的某一邻域内有对各个变量的连续 偏导数,且F ( x0 , y0 , u0 , v0 ) 0,G( x0 , y0 , u0 ,v0 )
1、区域
(1)邻域
设P0 ( x0 , y0 )是xoy 平面上的一个点, 是某 一正数,与点P0 ( x0 , y0 )距离小于 的点P( x, y) 的全体,称为点P0 的 邻域,记为U ( P0 , ) ,
U(P0, ) P | PP0 |
( x, y) | ( x x0 )2 ( y y0 )2 .
3
2、多元函数概念
定义 设D是平面上的一个点集,如果对于每个
点 P( x. y) D,变量 z按照一定的法则总有确定 的值和它对应,则称 z是变量 x, y的二元函数, 记为z f ( x, y)(或记为z f (P)).
类似地可定义三元及三元以上函数.
当n 2时,n 元函数统称为多元函数.
v v( x, y),它们满足条件u0 u( x0 , y0 ) ,v0 v
( x0 , y0 ),并有
Fx Fv
u 1 (F ,G) Gx Gv , x J ( x,v) Fu Fv
Gu Gv
21
v 1 (F ,G) Fu Fx Fu Fv x J (u, x) Gu Gx Gu Gv u 1 (F ,G) Fy Fv Fu Fv , y J ( y,v) Gy Gv Gu Gv v 1 (F ,G) Fu Fy Fu Fv . y J (u, y) Gu Gy Gu Gv

高等数学各章知识要点及典型例题与习题详细精解

高等数学各章知识要点及典型例题与习题详细精解

第一章 函数、极限、连续第1节 函数★基本内容学习一 基本概念和性质1函数的定义设有两个变量x 和y ,变量x 的变域为D ,如果对于D 中的每一个x 值,按照一定的法则,变量y 有一个确定的值与之对应,则称变量y 为变量x 的函数,记作:()y f x =。

2函数概念的两要素①定义域:自变量x 的变化范围②对应关系:给定x 值,求y 值的方法。

3函数的三种表示方法①显式:形如()y f x =的称作显式,它最直观,也是初等函数一般采用的形式。

②隐式:有时有些关系用显式无法完全表达,这时要用到隐式,形如(,)0F x y =,如椭圆函数22221x y a b+=。

③参数式:形如平抛运动的轨迹方程212x vt y gt =⎧⎪⎨=⎪⎩称作参数式。

参数式将两个变量的问题转化为一个变量的问题,从而使很多难以处理的问题简化。

4函数的四个基本性质①奇偶性:设函数()f x 在对称区间X 上有定义,如果对于x X ∀∈恒有()()f x f x =- (或)()()f x f x =--,则称()f x 为偶函数(或()f x 奇函数)。

注:偶函数()f x 图形关于y 轴对称,奇函数()f x 的图形关于坐标原点对称。

②有界性:设函数()f x 在区间X 上有定义,如果0M ∃>,使得对一切x X ∈,恒有:()f x M ≤,则称()f x 在区间X 上有界;若不存在这样的0M >,则称()f x 在区间X 上无界.注:函数()f x 有无界是相对于某个区间而言的。

③周期性:设函数()f x 在区间X 上有定义,若存在一个与x 无关的正数T ,使对任一x X ∈,恒有()()f x T f x += 则称()f x 是以T 为周期的周期函数,把满足上式的最小正数T 称为函数()f x 的周期。

④单调性:设函数()f x 在区间X 上有定义,如果对1212,,x x X x x ∀∈<,恒有:()()12f x f x ≤(或()()12f x f x ≥)则称()f x 在区间X上是单调增加(或单调减少)的;如果对于1212,,x x X x x ∀∈<,恒有:()()12f x f x < (或()()12f x f x >)则称()f x 在区间X上是严格单调增加(或严格单调减少)的。

(完整word版)高等数学经典方法与典型例题归纳

(完整word版)高等数学经典方法与典型例题归纳

2014年山东省普通高等教育专升本考试2014年山东专升本暑期精讲班核心讲义高职高专类高等数学经典方法及典型例题归纳—经管类专业:会计学、工商管理、国际经济与贸易、电子商务—理工类专业:电气工程及其自动化、电子信息工程、机械设计制造及其自动化、交通运输、计算机科学与技术、土木工程2013年5月17日星期五曲天尧编写一、求极限的各种方法1.约去零因子求极限例1:求极限11lim 41--→x x x【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。

【解】6)1)(1(lim 1)1)(1)(1(lim2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限例2:求极限13lim 323+-∞→x x x x【说明】∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。

【解】3131lim 13lim 311323=+-=+-∞→∞→x xx x x x x 【注】(1) 一般分子分母同除x 的最高次方;(2) ⎪⎪⎩⎪⎪⎨⎧=<∞>=++++++----∞→nm b a n m n m b x b x b a x a x a nnm m m m n n n n x 0lim 011011ΛΛ 3.分子(母)有理化求极限例3:求极限)13(lim 22+-++∞→x x x【说明】分子或分母有理化求极限,是通过有理化化去无理式。

【解】13)13)(13(lim)13(lim 22222222+++++++-+=+-++∞→+∞→x x x x x x x x x x0132lim22=+++=+∞→x x x例4:求极限3sin 1tan 1limx xx x +-+→【解】xx x xx x x x x x sin 1tan 1sin tan lim sin 1tan 1lim3030+-+-=+-+→→ 41sin tan lim 21sin tan limsin 1tan 11lim30300=-=-+++=→→→x x x x x x xx x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键 4.应用两个重要极限求极限两个重要极限是1sin lim 0=→xxx 和e x n x x x n n x x =+=+=+→∞→∞→10)1(lim )11(lim )11(lim ,第一个重要极限过于简单且可通过等价无穷小来实现。

高等数学 曲线积分与曲面积分习题课 非常有用

高等数学 曲线积分与曲面积分习题课 非常有用

+
∂Q ∂y
+
∂R ∂z
)dv
=
∫∫ Σ
Pdydz
+
Qdzdx
+
Rdxdy
高斯公式
4.曲面积分与曲线积分的联系
∫∫
Σ
∂R ( ∂y

∂Q )dydz
∂z
+
∂P (
∂z

∂R )dzdx
∂x
+
∂Q (
∂x

∂P ∂y
)dxdy
= ∫ Pdx + Qdy + Rdz Γ
斯托克斯公式
高等数学十
Green公式,Guass公式,Stokes公式之1144//228★8
f2 x
+
f
2 y
)dσ
D
∫+ f ( x, y)ds L
o
y
x
D L
高等数学十
2222//228★8
2
2
例 3 求柱面 x 3 + y 3 = 1在球面 x2 + y2 + z2 = 1内
的侧面积.
解 由对称性
∫ S = 8 zds L ∫= 1 − x2 − y2ds L
Q
2
L: x3 +
2
y3
系Σ
Σ

∫∫ f (x, y,z)ds
Σ
∫∫R(x, y,z)dxdy
Σ
= ∫∫ f[x, y,z(x, y)] 1+ zx2 + z2ydxdy = ±∫∫R[x, y,z(x, y)]dxdy
Dxy
Dxy
算 一代,二换,三投(与侧无关) 一代,二投,三定向 (与侧有关)

零点定理高等数学例题

零点定理高等数学例题

零点定理高等数学例题零点定理是高等数学中非常重要的一条定理,该定理有着广泛的应用。

这篇文章主要介绍关于零点定理高等数学例题的一些基本知识和应用。

首先,我们来了解一下零点定理的定义。

零点定理就是如果一个连续函数f(x)在区间[a,b]上取到两个不同的符号,那么在这个区间内至少有一个零点。

接下来我们结合一些例题来加深理解。

例题一:证明函数f(x)=x^3-5x^2+3x+15在区间[1,4]内有且仅有一个零点。

解:首先,我们需要判断f(x)在区间[1,4]的取值。

我们可以使用寻找函数极值点法:f'(x)=3x^2-10x+3f'(1)=-4<0,f'(2)>0,f'(4)<0由于导数在区间[1,2]上大于0,在区间[2,4]上小于0,所以f(x)在点x=2处取得极值。

设f(2)=k,则轮换成(x,0)、(2,-k)两个点,可以得出f(x)=(x-2)(x-a)(x-b)其中a、b均在[1,4]中,即f(x)在[1,4]中至少存在三个零点,与题目不符合。

因此,我们可以得出结论:函数f(x)=x^3-5x^2+3x+15在区间[1,4]内有且仅有一个零点。

例题二:证明函数f(x)=(x+1)(x+2)(x-3)在区间[0,2]和[-3,0]不存在零点。

解:由于f(x)是一个三次函数,因此存在三个零点。

我们可以用反证法来证明。

首先,我们假设f(x)在区间[0,2]存在至少一个零点,即存在一个x0∈[0,2],使得f(x0)=0。

由于f(x)是一个连续函数,而且区间[0,2]上f(x)的取值为正负负,所以根据零点定理,在区间[0,2]上f(x)至少存在一个零点,且零点个数为奇数,矛盾!因此,f(x)在区间[0,2]不存在零点。

同理,我们可以证明f(x)在区间[-3,0]也不存在零点。

综上所述,这两道例题都依据了零点定理,通过张贴轮换和反证法的方式来证明结论的正确性。

高等数学数列极限收敛60道典型例题分步骤详解

高等数学数列极限收敛60道典型例题分步骤详解

高等数学数列极限收敛60道典型例题分步骤详解数列收敛,换言之就是数列极限存在,此类问题历来都是高数考试的重点和难点,也是倍受命题老师青睐的“宠儿”。

数列收敛题型大致可分为两大类:第一类,数列的一般项(也称“通项”)已知;第二类,数列的一般项(通项)未知,尤其是由递推公式60道数列收敛典型例题,每道题都给出了详细的解题步骤。

网友们请注意,本文60个例题中如果用方括号标明年份的,均为当年考研真题。

第一类数列的一般项(通项)已知1.【2008真题】设解:原式. 具体求解过程如下(运用“两边夹”定理):2.✧解法(一)原式✧解法(二)原式=3.✧解法(一)分子有理化(分母视为“1”)原式✧解法(二)利用等价无穷小替换原式【注:】4.✧解法(一)✧解法(二)原式【注:, 】5.解:本题求极限,推荐“两边夹定理”。

解题过程如下:令显然可知,当因此,根据“两边夹定理”得到6.解:本题求极限推荐“两边夹定理”.令7.解原式=8.解原式=】9.解法(一)利用公式原式】==1✧.原式=】==110.解:原式。

正确的解法如下:原式==【注:】==11.✧解法(一)利用等价无穷小替换原式=】==✧解法(二)利用中值定理,注意求导公式原式【注:】=12.【2002真题】,✧解法(一)利用等无穷小替换✧原式===✧解法(二)利用“两边夹定理”,【注意:】原式=13.✧原式=【注:】=✧解法(二)利用等价无穷小替换原式=】14.解:此数列求极限推荐等价无穷小替换。

解法如下:原式==】=】15.✧解法(一)利用等价无穷小替换原式【注:】=【注:归结原则】✧【注:】16.解:本题求极限,“两边夹”定理、单调有界准则、定积分定义等方法似乎均不太“给力”,需将变量连续化,也就是将离散变量n替换为连续变量x,再运用包括洛必达法则在内的求解函数极限的方法.详细过程如下:17.✧解法(一)利用导数定义原式===【注:的指数部分,正是按定义所求的函数在处的导数.】【】=✧解法(二)拉格郎日中值定理,注意求导公式原式=====【注:=【注:本题推荐中值定理。

高等数学(2)第11章重积分典型例题解析

高等数学(2)第11章重积分典型例题解析

高等数学(2)第11章重积分典型例题解析例1 填空(1)根据二重积分的几何意义,⎰⎰--Dy x y x d d R222= 。

(其中{}222),(Ry x y x D ≤+=)(2)累次积分⎰⎰x xy y x f x d ),(d 10交换积分次序后,得到的积分为 。

(3)已知积分区域D x y x y =≤+≤{(,),}111,二重积分f x y x y D(,)d d ⎰⎰在直角坐标系下化为累次积分的结果是 。

解(1)由二重积分的几何意义,⎰⎰--Dy x y x d d R222表示球心在圆点,半径为R 的上半球体的体积,故为332R π。

应该填写:332R π。

(2)由已知的累次积分,得积分区域为⎩⎨⎧≤≤≤≤xy x x 10,若变换积分次序,即先积x 后积y ,则积分变量y 的上、下限必须是常量,而积分变量x 的积分上、下限必须是常量或是y 的函数,因此积分区域应表为⎩⎨⎧≤≤≤≤102y y x y ,于是交换后的积分为⎰⎰yyx y x f y 2d ),(d 10。

应该填写:⎰⎰y yx y x f y 2d ),(d 10。

(3)由已知的积分区域为D x y x y =≤+≤{(,),}111可知区域D 满足联立不等式组⎩⎨⎧≤+≤-≤≤-11111y x ,即而解得⎩⎨⎧≤≤-≤≤-0211y x ,因为两个积分变量的上、下限都是常量,所以可随意选择积分的顺序,若先积x 后积y ,则应填⎰⎰--0211d ),(d x y x f y ,反之应填d d x f x y y (,)--⎰⎰2011。

应该填写:d d x f x y y (,)--⎰⎰2011或⎰⎰--0211d ),(d x y x f y例2 单项选择 (1)二重积分xx y x y 2d d 1422≤+≤⎰⎰可表达为累次积分( )。

A. d d θθπr r 321202cos ⎰⎰; B.r r 321202d d cos θθπ⎰⎰;C.d d 2x x y xx ----⎰⎰442222; D.d d 2y x x yy ----⎰⎰111122(2)由曲面z x y =--422和z =0及柱面x y221+=所围的体积是( )。

高等数学第一章-习题

高等数学第一章-习题

x x0
x
无穷大: 绝对值无限增大的变量称为无穷大.
记作 lim f ( x) (或 lim f ( x) ).
x x0
x
无穷小与无穷大的关系
在同一过程中,无穷大的倒数为无穷小;恒不为 零的无穷小的倒数为无穷大.
无穷小的运算性质
定理1 在同一过程中,有限个无穷小的代数和 仍是无穷小. 定理2 有界函数与无穷小的乘积是无穷小. 推论1 在同一过程中,有极限的变量与无穷小的 乘积是无穷小. 推论2 常数与无穷小的乘积是无穷小. 推论3 有限个无穷小的乘积也是无穷小.

原式
lim[1
tan
x
sin
x
1
]x3
x0
1 sin x
lim x0
tan x sin 1 sin x
x
1 x3
sin x(1 cos x) lim x0 (1 sin x)cos x
1 x3
lim
x0
sin x
x
1
cos x2
x
1
(1 sin x)cos
x
1 2
1
原式 e2 .
例3
(2)可去间断点 如果f ( x)在点x0处的极限存在,
但 lim x x0
f (x)
A
f ( x0 ),或f ( x)在点x0处无定
义则称点x0为函数f ( x)的可去间断点.
跳跃间断点与可去间断点统称为第一类间断点. 特点: 函数在点x0处的左, 右极限都存在.

y
y

可去型
跳跃型




0 x0
9、闭区间上连续函数的性质

大一高数求极限的例题

大一高数求极限的例题

大一高数求极限的例题一、引言极限是大学高等数学中的重要概念,它是分析数学和微积分的基础。

在大一的高数课程中,学生常常会遇到求取极限的例题。

通过解答这些例题,不仅可以帮助学生理解极限的概念和性质,还可以提升他们的计算能力和思维逻辑能力。

本文将给出一些典型的大一高数求取极限的例题,以帮助读者更好地理解和掌握这一知识点。

二、例题一:求极限$\\lim_{x \\rightarrow 0}\\frac{\\sin{2x}}{x}$解析:我们可以利用极限的基本性质来求解该例题。

首先,我们注意到当$x$接近于0时,$\\sin{2x}$也随之接近于0,而分母$x$始终不会取0。

因此,我们可以将该极限转换为另一个形式:$\\lim_{x \\rightarrow 0} \\frac{2\\sin{x}\\cos{x}}{x}$。

接下来,我们可以继续变形,使用三角恒等式$\\sin{2x} =2\\sin{x}\\cos{x}$,将分子中的$\\sin{2x}$化简为$2\\sin{x}\\cos{x}$。

然后,我们可以进一步将极限变为$\\lim_{x \\rightarrow 0} \\frac{2\\sin{x}\\cos{x}}{x} = 2\\lim_{x\\rightarrow 0} \\frac{\\sin{x}}{x}\\lim_{x \\rightarrow0}\\cos{x}$。

其中,$\\lim_{x \\rightarrow 0}\\cos{x}$显然等于1。

而$\\lim_{x \\rightarrow 0} \\frac{\\sin{x}}{x}$则是一个常数,它的数值为1。

因此,最终的结果为$2 \\times 1 \\times 1 = 2$。

即$\\lim_{x \\rightarrow 0} \\frac{\\sin{2x}}{x} = 2$。

三、例题二:求极限$\\lim_{x \\rightarrow +\\infty} \\left(1 +\\frac{a}{x}\\right)^x$解析:为了求解该例题,我们可以利用极限的定义和性质。

高等数学第一章函数例题及答案

高等数学第一章函数例题及答案

高等数学第一章 函数、极限、连续§1.1 函数一.求函数的定义域例1.求函数()2100ln ln ln x x x f -+=的定义域 例2.求5ln 1-+-=x x x y 的定义域例3.设()x f 的定义域为[]()0,>-a a a ,求()12-x f 的定义域 例4.设()⎩⎨⎧≤≤<≤=42 ,220 ,1x x x g 求()()()12-+=x g x g x f 的定义域,并求⎪⎭⎫ ⎝⎛23f 。

二.求函数的值域 例1.求3311-=x ey 的值域例2.求()()⎪⎩⎪⎨⎧>--≤≤---<-==2,2122,52,323x x x x x x x f y 的值域,并求它的反函数 三.求复合函数有关表达式 1.已知()x f 和()x g ,求()[]x g f 例1.已知()1-=x xx f ,求()⎥⎦⎤⎢⎣⎡-11x f f 例2.设()21x x x f +=,求()()[]()重复合n x f x f f f n =例3.设()⎩⎨⎧>≤-=2,02,42x x x x f ,求()[]x f f 2.已知()x g 和()[]x g f ,求()x f 例1.设()x e e e f x xx++=+21,求()x f例2.已知()xxxee f -=',且()01=f ,求()x f例3.设()x x fsin =,求()x f '例4.已知()x x f 2cos 3sin -=,求证()x x f 2cos 3cos += 3.已知()x f 和()[]x g f ,求()x g例.已知()()x x f +=1ln ,()[]x x g f =,求()x g 解:()[]x fx g 1-=实际上为求反函数问题()[]()[]x x g x g f =+=1ln ,()x e x g =+1 ()1-=x e x g 4.有关复合函数方程 例.设()x x f x x f 2311-=⎪⎭⎫⎝⎛-+,求()x f 四.有关四种性质例1.设()()x f x F =',则下列结论正确的是[ ](A )若()x f 为奇函数,则()x F 为偶函数。

(完整word)高等数学:常微分方程的基础知识和典型例题

(完整word)高等数学:常微分方程的基础知识和典型例题

常微分方程1 .( 05,4 分)微分方程xy 2yxln x 满足y(1)22x y)= x ln x.2 .( 06,4 分) 微分方程 y= y(1 x)的通解为 ———— x分析:这是可变量分离的一阶方程,分离变量得dy( 11)dx.积分得 ln y ln x x C 1,即 y e C1xe x yxy Cxe x, 其中C 为任意常数 .(二)奇次方程与伯努利方程1 .( 97,2,5 分) 求微分方程 (3x2 2xy y 2)dx (x 22xy)dy 0的通解解:所给方程是奇次方程 . 令 y=xu, 则 dy=xdu+udx. 代入原方程得 3 ( 1+u- u 2) dx+x(1-2 u) du=0. 分离变量得1-2u2 du 3dx, 1uu x积分得 ln 1 u u 2 3ln x C 1,即 1 u u 2=Cx 3. 以 u y代入得通解 x 2xy y 2.xx( y x 2y 2)dx xdy 0(x 0),2 .(99,2,7 分 ) 求初值问题 的解 .y x1 0分析:这是一阶线性微分方程原方程变形为 . dy +2y dx x 2 dx lnx, 两边乘 e x=x 得积分得y(1)x 2y=C+ x 2 ln xdx C 1 ln xdx 3 3 1 11 得 C 0 y xln x x.9 39 C 1 x 3 ln x 3 13 x. 9 1 的解解:所给方程是齐次方程 (因 dx, dy 的系数 (y+ x 2 y 2)与 (-x)都是一次齐次函数)令 dy xdu udx,带入得x(u 1 u 2dx x( xdu udx) 0, 化简得 12u 2dx xdu 0.分离变量得dx- du=0. x 1 u 2积分得 ln x ln(u 1 u 2) C 1,即 u 1 u 2Cx. 以 u y代入原方程通解为y+ x 2 y 2 Cx 2.x 再代入初始条件 y x 1 0,得 C=1.故所求解为 y+x 2y2x 2,或写成y 12 (x 2 1).(三)全微分方程 练习题(94,1,9 分)设 f ( x)具有二阶连续导数, f (0) 0, f (0) 1,且 [xy(x+y)- f(x)y]dx+[ f (x)+x 2y]dy=0为一全微分方程,求 f(x)以及全微分方程的通解先用凑微分法求左端微分式的原函数:122 122( y dx x dy ) 2( ydx xdy ) yd (2sin x cos x) (2sin x cos x)dy 0, 22 122d [ x y 2xy y (cos x 2sin x)] 0. 2其通解为 1x 2y 2 2xy y (cos x 2sin x) C.4.( 98,3分) 已知函数y y(x)在任意点x 处的增量 y= y2 x ,当 x0时 ,1x是 x 的高阶无穷小,y(0)= ,则 y(1)等于 ( )解:由全微分方程的条件,有 即 x22xy f (x) f (x)y因而 f (x)是初值问题y x 2[xy(x y) f(x)y] y 2xy, 亦即 f (x) f (x) x 2.2yx的解,从而解得0, y x 0 12.22[ f (x) xy], x 2sin x cosx)dy 0.(A)2 .(B) .(C)e 4 .(D) e 4 .分析:由可微定义,得微分方程 y y. 分离变量得21x1y dx2,两边同时积分得 ln y arctan x C ,即 y Ce arctanx.y1x代入初始条件y(0) ,得 C= ,于是 y(x) earctanx,由此, y(1) e 4.应选 ( D)二、二阶微分方程的可降阶类型5( . 00,3分) 微分方程 x y 3y 0的通解为分析:这是二阶微分方程的一个可降阶类型,令 y =P( x),则 y =P ,方程可化为一阶线性方程xP 3P 0,标准形式为 P+3P=0,两边乘 x 3得 (Px 3) =0. 通解为 y P C 30 .xx再积分得所求通解为 y C 22C 1.x216 .( 02,3分)微分方程 yy y 2=0满足初始条件y x 01, y x 0 2的特解是分析:这是二阶的可降阶微分方程 .令 y P(y)(以 y 为自变量 ),则 y dy dP P dP.dx dx dy代入方程得 yP dP +P 2=0,即 y dP+P=0(或 P=0, ,但其不满足初始条件y x 0 1)dy dy2分离变量得 dP dy 0,PyC积分得 ln P +ln y =C ,即 P= 1(P=0对应 C 1=0); y11由 x 0时 y 1, P=y , 得 C 1 ,于是221 y P ,2 ydy dx, 积分得 y x C 2 2y .又由 y x 0 1 得 C 2. 1,所求特解为 y 1 x.三、二阶线性微分方程(一)二阶线性微分方程解的性质与通解结构7 .( 01,3分)设 y e x(C 1sin xC 2cosx)(C 1,C 2为任意常数 )为某二阶常系数线性齐次微分方程的通解,则该方程为 ___ .r1,r2 1 i,从而得知特征方程为分析一:由通解的形式可得特征方程的两个根是22(r r1 )(r r2) r (r1 r2 )r r1r2 r 2r 2 0.由此,所求微分方程为y 2y 2y 0.分析二:根本不去管它所求的微分方程是什么类型(只要是二阶),由通解y e x(C1sinx C2 cosx)求得y e x[( C1 C2 )sin x (C1 C2)cos x], y e x( 2C2 sin x 2C1 cos x),从这三个式子消去C1与C2,得y 2y 2y 0.(二)求解二阶线性常系数非齐次方程9.( 07,4分) 二阶常系数非齐次线性微分方程y 4y 3y 2e2x的通解为y=分析:特征方程24 3 ( 1)( 3) 0的根为1, 3.非齐次项 e x, 2不是特征根,非齐次方程有特解y Ae2x.代入方程得(4A 8A 3A)e2x2e2x A 2.因此,通解为y C1e x C2e3x2e2x..10.(10,10分 )求微分方程y 3y 2y 2xe x的通解.分析:这是求二阶线性常系数非齐次方程的通解.1由相应的特征方程2 3 2 0, 得特征根 1 1, 2 2 相应的齐次方程的通解为y C1e x C2e2x.2非齐次项 f ( x) 2xe x , 1是单特征根,故设原方程的特解xy x(ax b)e .代入原方程得ax2 (4a b)x 2a 2b 3[ax2 (2a b)x b] 2(ax2 bx) 2x,即 2ax 2a b 2x, a 1,b 2.3原方程的通解为y C1e x C2e2x x(x 2)e x,其中 C1,C2为两个任意常数.04, 2, 4分)微分方程y y x2 1 sin x的特解形式可设为( )22(A)y ax bx c x(Asin x B cosx).(B)y x(ax bx c Asin x B cos x).22(C)y ax bx c Asin x.(D )y ax bx c Acosx.分析:相应的二阶线性齐次方程的特征方程是2 1 0,特征根为i .y y x2 1L()与 1 y y sin xL( 2)方程 (1) 有特解 y ax2 bx c,方程(2)的非齐次项 f (x) e x sin x sin x( 0, 1,i 是特征根), 它有特解y x(Asin x B cosx).y ax2 bx c x(Asin x Bbcosx).应选 (A).(四)二阶线性变系数方程与欧拉方程12.(04, 4分 )欧拉方程x2 d2y 4x dy 2y 0(x 0)的通解为dx dx分析:建立 y 对 t 的导数与y 对 x 的导数之间的关系 .222dy dy dx dyd y d y 2 dy 2 d y dy( sin x), 2 2 sin t cost (1 x ) 2 x .dt dx dt dx dt dx dx dx dxd 2y于是原方程化为 2 y 0,其通解为 y C 1 cost C 2sint.dt 2 回到 x 为自变量得 y C 1x C 2 1 x 2.x由 y (0) C 2 1 C 2 1.y(0) C 1x 02 C 1 2.1 x 2因此 特解为 y 2x 1 x 2 .四、高于二阶的线性常系数齐次方程13.( 08, 4分)在下列微分方程中,以 y C 1e xC 2cos2x C 3 sin 2x(C 1, C 2, C 3为任意常数)为通 解的是()(A)y y 4y 4y 0.(B)y y 4y 4y 0. (C)y y 4y 4y 0.(D ) y y 4y 4y 0.分析:从通解的结构知,三阶线性常系数齐次方程相应的三个特征根是: 1, 2i(i 1),对 应的特征方程是 ( 1)( 2i)( 2i) ( 1)( 24) 3244 0,因此所求的微分方程是 y y 4y 4y 0,选(D).(00,2,3分 ) 具有特解 y 1 e x , y 2 2xe x ,y 3 3e x的三阶常系数齐次线性微分方程是( )(A)y y y y 0.(B)y y y y 0. (C)y 6y 11y 6y 0.(D)y2y y 2y 0.分析:首先,由已知的三个特解可知特征方程的三个根为 r 1 r 21,r 3 1,从而特征方程为(1)求导数 f (x); (2)证明:当 x 0时 ,成立不等式 e分析:求解欧拉方程的方法是:作自变量22d y dy d y dy 2 (4 1) 2y 0,即 2 3 2y xe t(t l n x),将它化成常系数的情形: 0.1, 2 2, 通解为 yC 1e t C 2e 2t. y C 1 x C 22,其中C 1,C 2为任意常数(05,2,12分 )用变量代换 xcost (0 t)化简微分方程 (1 x 2)y xy y 0,并求其(r 1)2(r 1) 0,即r3r 2r 1 0,由此,微分方程为y y y y 0.应选(D).五、求解含变限积分的方程00, 2,8分) 函数y=f(x)在0, 上可导,f (0) 1,且满足等式1xf (x) f (x) 1 f (t)dt 0,x10f(x) 1.求解与证明()首先对恒等式变形后两边求导以便消去积分: 1x(x 1)f (x) (x 1)f(x) 0f (t)dt 0,(x 1)f (x)(x 2)f (x)0.在原方程中令变限 x 0得 f (0) f (0) 0,由 f (0) 1,得 f (0) 1.现降阶:令 u f (x),则有 u x 2u 0,解此一阶线性方程得x1x e f (x) u C eu 0x1 x e 由 f (0) 1,得 C 1,于是 f (x) e. x1xe (2)方法 1 用单调性 . 由f (x) e0(x 0), f (x)单调减 , f(x) f(0) 1(x );x1x 又设 (x) f (x) e x ,则 (x) f (x) e x x e x0(x 0), (x)单调增,因此 (x)x1 (0) 0(x 0),即 f(x) e x(x 0) . 综上所述,当 x 0时 ,e x f (x) 1.方法 2 用积分比较定理 . 由 牛顿 -莱布尼茨公式,有六、应用问题 (一)按导数的几何应用列方程 练习题 1 .( 96,1,7分)设对任意 x 0,曲线 y f(x)上点 (x, f(x))处的切线在 y 轴上的截距等于1 xf (t)dt,求 f ( x)的一般表达式 . x 0解:曲线 y f (x)上点 (x, f ( x))处的切线方程为 Y f ( x) f ( x)( X x).令 X 0得 y 轴上的截距 Y f(x) xf (x).由题意 1x1f(t)dt f(x) xf (x) x 0x, 得x 2f(t)dt xf (x) x 2f (x)( ) 恒等式两边求导,得 f (x) f (x) xf (x) 2xf (x) x 2f ( x),即 xf (x) f (x) 0 在 ( )式中令 x 0得 0 0,自然成立 . 故不必再加附加条件. 就是说f (x)是微分方程 xy y 0的通解 . 令 y P(x),则 y P ,解 xP P 0,得 y P C 1.xf ( x) f (0) x0 f (t)dt, f(x) t 由于 0 e t1从而有 e x e t (t 0),有 0 f (x) 1. 0t e t d t 1 dt . 1 x t e t dt x e (x再积分得 y f ( x) C1 ln x C2.12( . 98,2,8分) 设 y y(x)是一向上凸的连续曲线 ,其上任意一点 (x, y)处的曲率为 1,1 y 2y P tan( x).(二 )按定积分几何应用列方程3.(97,2,8分 )设曲线 L 的极坐标方程为 r r( ), M (r, )为 L 上任一点 ,M 0(2,0)为 L 上一定点 ,若极径 OM 0,OM 与曲线 L 所围成的曲边扇形面积值等于 L 上 M 0、 M 两点间弧长值的一半, 求曲线L 的方程 .且此曲线上点 (0,1)处的切线方程为 y x 1, 求该曲线的方程,并求函数 y y( x)的极值 .解:由题设和曲率公式有y( x)向上凸 , y 0, y令 y P(x),则 y P ,方程化为 y) ,化简得 y 12. yP1 P 21, dP 分离变量得 2 dx,积分得C 1.y (0) 1即 P(0) 1,代入可得 C 1,故再积分得 y ln cos( x) C 2 又由题设可知y(0)1,代入确定 C 2 11ln 2,1y ln cos( x) 1 ln 2x , 即当 4 2,3时 ,cos( x) 0, 而3 或 时, 44cos( x)y ln cos( 40,ln cos( x)1 x) 12 ln2( 4 x34 )显然,当 x 时 ,ln cos( x) 4410, y 取最大值 1 1ln 2,显然 y 在 (3),没有极小值解:由已知条件得r 2d r 2 r 2d , 2020 两边对 求导 ,,得 r 2 r 2 r (隐式微分方程)2 ,解出 r r r 2 1,从而, L 的直角坐标方程为 x m 3y 2.1 arccos r 分离变量,得 dr r r 2 dr r r 2 1 d 1 1 d( )1 r (r 1)2 arccos 1 , 或 r dr r r 2 1d tarccos 1(r sect ) 两边积分,得 代入初始条件 r(0) 2,得 1arccos 2 1arccos r3L 的极坐标方程为 1 r cos( ) 31 co s 3si。

高等数学典型例题与解法(一)01-第38讲 曲率与曲率半径_38

高等数学典型例题与解法(一)01-第38讲 曲率与曲率半径_38

d 些= 亜
fcsc2t —2sint
孜=无=克赢=一乎毗
d%2 dx
dt
dt
____________
从而,曲率K= 伊〃 I g— 10 g_
3, 10
5 4sin3t"
(1 _|_ y,2)a (4sin2t + 25cos2*)2 (4 + 21cos^)2
当cost = 0即% = 0时曲率最大,当cost = ±1即工=±2时曲率最小.
K="
3,
(1+門2
NATIONAL UNIVERSITY OF DEFENSE TECHNOLOGY'
r
国防科学技术大学
第38讲曲率与曲率半径
(3)曲率半径与曲率中心
____
过曲线上。上点M作一个与其相切的圆(即它在
点M处与曲线有公共 切线),使该圆与曲线。 线在在点点MM处处有的相曲同率的圆凹,向其和圆曲心率和,半称径这分个别圆称为曲 为曲线C在点M处的曲率中心和曲率半径.
N«3I Mvtniey of Maw
高等数学典型例题与解法(一)
第38讲曲率与曲率半径
理学院李建平教授
主要内容
第38讲曲率与曲率半径
i弧微分平面光滑曲线的弧长微分(弧微分)在几何上是用切线长 作为曲线长的一种局部线性近似.
⑴平面光滑曲线C\y = y(x)的弧微分
ds = 1 + y,2dx.
国防科学技术大学
第38讲曲率与曲率半径
2、曲率曲率是曲线的切线的转角关于弧长的变化率.
(1)曲率定义 设M是光滑曲线Gy = y(x)上一定点,N是。上
异于M的任意一点.设弧段标力的长度为4s , 设 点M处的切线转动到点N处的切线位置时, 切线 转过的角度为,如果极限

高等数学典型例题与应用实例(重积分B部分)

高等数学典型例题与应用实例(重积分B部分)

例 利用二重积分的性质,估计积分2222(2)d Dx y x y σ+-⎰⎰ 的值,其中D 为半圆形区域224,0x y y +≤≥.解 我们先求函数2222(,)2f x y x y x y =+-在区域22{(,)4,0}D x y x y y =+≤≥上的最大值和最小值.由22220,420,x yf x xy f y x y '⎧=-=⎪⎨'=-=⎪⎩解得D 内驻点为(2,1)±,(2,1)2f ±=. 在边界1:0L y =(22)x -≤≤上,2()(,0)g x f x x ==在1L 上(,)f x y 的最大值为4,最小值为0.在边界222:4L x y +=(0)y ≥上,242()(,4)58(22)h x f x x x x x =-=-+-≤≤由3()4100h x x x '=-=得驻点123550,,22x x x ==-=,(0)(0,2)8h f ==. 5537()(,)2224h f ±=±=. 综上,(,)f x y 在D 上的最大值为8,最小值为0.又D 的面积为2π,所以由二重积分的估值性质知222202(2)d 82Dx y x y πσπ⋅≤+-≤⋅⎰⎰,即22220(2)d 16Dx y x y σπ≤+-≤⎰⎰.例 设D 为xoy 平面上以(1,1),(1,1),(1,1)---为顶点的三角形区域,1D 为D 在第一象限的部分,则(cos sin )()Dxy x y dxdy +=⎰⎰.(A )12cos sin D x y dxdy ⎰⎰ (B )12D xy dxdy ⎰⎰(C )14(cos sin )D xy x y dxdy +⎰⎰ (D )0解 区域D 如图所示,并记0D 为以(1,1),(1,1),(0,0)-为顶点的三角形区域,则0D 关于y 轴对称,且1D 为0D 在y 轴右侧的部分区域,区域0D D -关于x 轴对称.又xy 关于x 和y 均为奇函数;而cos sin x y 关于x 为偶函数.关于y 为奇函数,由二重积分的奇偶对称性得0,0D D D xy dxdy xy dxdy -==⎰⎰⎰⎰,故0Dxy dxdy =⎰⎰;1cos sin 2cos sin ,cos sin 0D D D D x ydxdy x y dxdy x y dxdy -==⎰⎰⎰⎰⎰⎰,故1cos sin 2cos sin DD x y dxdy x y dxdy =⎰⎰⎰⎰.所以1(cos sin )cos sin 2cos sin DDDD xy x y dxdy xy dxdy x y dxdy x y dxdy +=+=⎰⎰⎰⎰⎰⎰⎰⎰.因此我们选(A ).例 设区域}0,0,4),{(22≥≥≤+=y x y x y x D ,()f x 为D 上的正值连续函数,,a b 为常数,则Dσ= .解 由题意知,D 关于直线y x =对称,由二重积分轮换对称性得DσDσ=12D d σ=⎰⎰ 211()π2π22242D D a b a b a b a b d d σσ+++=+==⋅⋅=⎰⎰⎰⎰. 因此,我们应填“π2a b+.”例 计算二次积分220sin xydx dy yππ⎰⎰解 积分区域如图,则 原式20sin yydy dx yπ=⎰⎰2200sin sin sin y dy ydy ydy ππππ==+-⎰⎰⎰4=;例设D为椭圆区域22(1)(2)149x y--+≤,计算二重积分()Dx y dxdy+⎰⎰.解令12cos,23sin,x ry r=+⎧⎨=+⎩θθ则D的极坐标表示为01,02r≤≤≤≤θπ,且(,)6(,)x yrrθ∂=∂.由式(10.2.8),可得2100()6(32cos3sin)Dx y dxdy d r r rdr+=++⎰⎰⎰⎰πθθθ2326(cos sin)1823d=++=⎰πθθθπ.例计算二重积分⎰⎰+Dyxyx dd)(,其中D为.122++≤+yxyx解解法1 D的边界曲线为,2/3212122=⎪⎭⎫⎝⎛-+⎪⎭⎫⎝⎛-yx这是一个以⎪⎭⎫⎝⎛21,21为圆心,23为半径的圆域,采用一般的变量代换,令⎪⎪⎩⎪⎪⎨⎧-=-=,21,21yvxu即作变换⎪⎪⎩⎪⎪⎨⎧+=+=,21,21vyux于是D变为.2/3:22≤+'vuD.111),(),(==∂∂=vuyxJ所以,()d d(1)1d dD Dx y x y u v u v'+=++⋅⋅⎰⎰⎰⎰(再用极坐标).23023d d )cos (sin d d d )1sin cos (d 222/30202/3020ππθθθθθθθππ=+⎪⎪⎭⎫ ⎝⎛⋅=++=++=⎰⎰⎰⎰⎰⎰r r r r rr r r D解法2 由于积分区域D :23212122≤⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-y x 关于21=x (即)021=-x 对称,故⎰⎰=⎪⎭⎫ ⎝⎛-D y x x .0d d 21 类似地,由于D 关于⎪⎭⎫⎝⎛=-=02121y y 即对称,故 ⎰⎰=⎪⎭⎫ ⎝⎛-D y x y .0d d 21 从而.2323d d d d 1d d 21d d 21d d )(2ππ=⎪⎪⎭⎫ ⎝⎛⋅===⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰面积D y x y x y x y y x x y x y x D D D DD例 计算y x e I Dy xd d },max{22⎰⎰=,其中,}10,10|),{(≤≤≤≤=y x y x D解 D 由x y =分为D 2,D 2两部分,如图.⎪⎩⎪⎨⎧≤≤≤≤≤≤≤≤=1,10:,0,10:,21},max{2222y x x D e x y x D e e y x y x x e y y e x y x e y x e I yy xx D y D x d d d d d d d d 01010222212⎰⎰⎰⎰⎰⎰⎰⎰+=+=21110d d 2d d 2222x e x xe y e x x x xx ⎰⎰⎰⎰===.1102-==e e x例 利用二重积分计算定积分1(,0)ln b ax x I dx a b x-=>⎰解 因为1ln ln bb a btt aa x x x dt x x x-==⎰所以 ⎰⎰⎰⎰⎰⎪⎭⎫⎝⎛++=+=+===bab aba batta b t dt t dx x dt dx dt x I 11ln )1ln(11)(11例 ],[)(b a x f 为上的连续函数,且0)(>x f ,试利用二重积分证明.)()(1d )(2a b x f x x f baba-≥⎰⎰证 因为x x f y y f x x f x x f b a b a babad )(1d )(d )(1d )(⎰⎰⎰⎰=,d d )()(d d )()(y x y f x f y x x f y f DD⎰⎰⎰⎰≥= 其中 所以},,|),{(b y a b x a y x D ≤≤≤≤=⎰⎰⎰⎰⎰⎰+=DD bab ay x y f x f y x x f y f x x f x x f d d )()(d d )()(d )(1d )(2 y x y f x f y f x f y x y f x f x f y f DDd d )()()()(d d )()()()(22⎰⎰⎰⎰≥+=,)(2d d 22a b y x D-==⎰⎰亦即.)(d )(1d )(2a b x x f x x f baba-≥⎰⎰例 计算⎰1d )(x x xf ,其中⎰=21d int)(x t tS x f 解 当10,102≤≤≤≤x x 时⎰⎰⎰-===111222,d sin d sin d sin )(x x x y yy y y y t t tx f从而x y y y x x x xf x d d sin d )(101102⎰⎰⎰⎥⎦⎤⎢⎣⎡-= 图y x y yx y y y x x xDd d sin d sin d 1102⎰⎰⎰⎰-=⋅-=,其中D 曲线1,2==y x y ,和0=x 所围成,如图10-8。

有关数列极限的几个典型例题

有关数列极限的几个典型例题

l —=- n! 二! = f+1 一 l l i— l — + . l n + : m a r i (— a r 1 【+ …— = 1 1一 i ,~ — 一 m
n— + ∞
例2: l x= H. > ( l23…) tr . i  ̄ m A, X 0n , , ,] 弋 : = ,  ̄l i a
21 g 0 考 试 周 u 0 - a 1 7i  ̄  ̄ 千
有 关 数 列 极 限 的 几 个 典 型 例 题
岳 静
( 迁 高 等 师 范 学校 , 苏 宿 迁 宿 江
摘 要 : 者 通 过 实例 分 析 了数 列 收 敛 和 发 散 时通 项 的 作 些 特 点 , 讨 论 数 列 不 满 足 单 调 有界 定 理 、 敛 定理 、 西 并 迫 柯 收 敛 准 则 和 两 个 重要 极 限的 条 件 时 的 收 敛性 问题 . 关 键 词 : 列 极 限 单调 有 界 定 理 迫 敛 定理 柯 西 收 数
( + : I ) I +
数 列 收敛 性 问 题 在 高 等 数 学 教 学 中 既是 难 点 又 是 重 点 ,
数 列 收敛 问题 的判 别 方 法 通 常 有 以下 几 种 : 调 有 界 定 理 、 单 迫 敛 定 理 、 西 收敛 准则 和 两 个 重 要 极 限 等 . 决 问 题 的关 键 是 柯 解 如 何 正 确 理 解 并 选 择 合 适 的方 法 . 文 通 过 一 些 典 型 例 题 来 本 讨 论 数 列 的收 敛 性 问 题 . 例1 .若 l A, 其 中 A是 有 限 数 、 o或 一 。 i = mx +。 。,则 有 l i m
= A
于是l 弋×2 x=m “ i /x l e m l… i

求极限lim的典型例题及答案

求极限lim的典型例题及答案

求极限lim的典型例题及答案极限(Limits)是大学数学中一个重要的概念,它是定义函数的核心理论。

对于函数$f(x)$,极限lim$_{xto a}f(x)$表示$x$在$a$附近时函数$f(x)$的值的收敛的极限,也可以理解为趋于某一数(可以是无穷大)或某一函数。

要求函数的极限,除了具有通用法则之外,也有一些典型的例题,在某些情况下,可以采用简便的方法求取函数的极限。

下面我们介绍几种这样的例题,以及其答案:(1)求$lim_{xto 0} (1+x)^{frac{1}{x}}$:答:$lim_{xto 0} (1+x)^{frac{1}{x}}=lim_{xto0}frac{1}{sqrt[x]{1+x}}=e$由于$(1+x)^{frac{1}{x}}$在$x=0$处不可导,所以不能直接使用极限的通用公式求解,比较容易想到的是$(1+x)^{frac{1}{x}}$对$x=0$取极限,因此将函数化简为$frac{1}{sqrt[x]{1+x}}$,只要知道$sqrt[x]{1+x}$在$x=0$处取极限为$e$,就可以推出本题的答案:$lim_{xto 0} (1+x)^{frac{1}{x}}=e$。

(2)求$lim_{xto infty }frac{1}{x^2+2x+2}$:答: $lim_{xto infty }frac{1}{x^2+2x+2}=0$由于分子分母同时是无限大,且分母中最高次项比分子大,所以本题的答案显然为0:$lim_{xto infty }frac{1}{x^2+2x+2}=0$。

(3)求$lim_{xto 0} frac{sin x}{x}$:答: $lim_{xto 0} frac{sin x}{x}=1$由于本题中分母为常数,可以采用$lim_{xto 0} frac{sinx}{x}=lim_{xto 0} sin x=0$的极限公式求解,即$lim_{xto 0} frac{sin x}{x}=1$。

高等数学各章知识要点及典型例题与习题详细精解

高等数学各章知识要点及典型例题与习题详细精解

第一章 函数、极限、连续第1节 函数★基本内容学习一 基本概念和性质1函数的定义设有两个变量x 和y ,变量x 的变域为D ,如果对于D 中的每一个x 值,按照一定的法则,变量y 有一个确定的值与之对应,则称变量y 为变量x 的函数,记作:()y f x =。

2函数概念的两要素①定义域:自变量x 的变化范围②对应关系:给定x 值,求y 值的方法。

3函数的三种表示方法①显式:形如()y f x =的称作显式,它最直观,也是初等函数一般采用的形式。

②隐式:有时有些关系用显式无法完全表达,这时要用到隐式,形如(,)0F x y =,如椭圆函数22221x y a b+=。

③参数式:形如平抛运动的轨迹方程212x vt y gt =⎧⎪⎨=⎪⎩称作参数式。

参数式将两个变量的问题转化为一个变量的问题,从而使很多难以处理的问题简化。

4函数的四个基本性质①奇偶性:设函数()f x 在对称区间X 上有定义,如果对于x X ∀∈恒有()()f x f x =- (或)()()f x f x =--,则称()f x 为偶函数(或()f x 奇函数)。

注:偶函数()f x 图形关于y 轴对称,奇函数()f x 的图形关于坐标原点对称。

②有界性:设函数()f x 在区间X 上有定义,如果0M ∃>,使得对一切x X ∈,恒有:()f x M ≤,则称()f x 在区间X 上有界;若不存在这样的0M >,则称()f x 在区间X 上无界.注:函数()f x 有无界是相对于某个区间而言的。

③周期性:设函数()f x 在区间X 上有定义,若存在一个与x 无关的正数T ,使对任一x X ∈,恒有()()f x T f x += 则称()f x 是以T 为周期的周期函数,把满足上式的最小正数T 称为函数()f x 的周期。

④单调性:设函数()f x 在区间X 上有定义,如果对1212,,x x X x x ∀∈<,恒有:()()12f x f x ≤(或()()12f x f x ≥)则称()f x 在区间X上是单调增加(或单调减少)的;如果对于1212,,x x X x x ∀∈<,恒有:()()12f x f x < (或()()12f x f x >)则称()f x 在区间X上是严格单调增加(或严格单调减少)的。

高等数学典型例题与解法(二)02-第86讲 曲线积分与路径无关_115

高等数学典型例题与解法(二)02-第86讲 曲线积分与路径无关_115

第86讲曲线积分与路径无关主要内容1、保守场设有平面向量场 为场中任意两点,和为场中任意两条同时以为起点、为终点的光滑或分段光滑曲线,若则称为保守场.2、曲线积分与路径无关定理设为平面上的单连通区域,函数在内有连续的一阶偏导数,则下面的四种说法等价:(1)•在区域内存在可微函数,使得(2)•在区域内成立(3)•对于任何一条完全落在区域内的光滑或分段光滑的闭曲线,有2、曲线积分与路径无关定理设为平面上的单连通区域,函数在内有连续的一阶偏导数,则下面的四种说法等价:(4)•对于区域内的任何两点,积分⌢的值只与两点的位置有关,而与在区域内的路径无关.注:此定理可用来判断曲线积分是否与路径无关,是否为保守场,是否为全微分,是否存在原函数或势函数.3、原函数对于单连通区域上的微分式,若存在上的可微函数使得,或者 ,则称函数为微分式的原函数(或势函数).•y,y,yx x x0 O4、全微分方程若存在函数使得,则称方程为全微分方程.方程的通解为,其中为任意常数.若函数在单连通区域上有一阶连续偏导数,则方程在区域上为全微分方程,当且仅当在内成立例86.1计算对坐标的曲线积分,其中为以为起点、为终点的半圆 .【解】令 L由于所以积分与路径无关,取有向线段作为积分路径,则有A⋅例86.2设质点受力场作用,将其沿曲线由点移动到,•求力场对质点所做的功,其中.y【解】力场对质点所做的功A令则有Lo xB于是,在不含原点的单连通区域内积分与路径无关.例86.2设质点在力场作用下沿曲线由点运动到,求力场对质点所做的功,其中.y 【续解】取圆弧 A有⌢Lo xB例86.3已知 求.•【解】 等价于所以,,例86.4验证为保守力场,并计算沿以为起点、为终点的路径所做的功.【解】(方法一)令 ,由于所以,为保守力场.沿所做的功为,,,,例86.4验证为保守场,并计算沿以为起点、为终点的路径所作的功.【解】(方法二),,,,,,,,,,,,例86.5求下列微分方程的通解:(1)•,(2)•【解】(1)•设,因为所以,方程为全微分方程.(方法一)因此,原方程的通解为例86.5求下列微分方程的通解:(1)•,(2)•【续解】(方法二)将方程适当分组,使得每一组恰好是某个函数的全微分,得到如下形式即d所以,原方程的通解为例86.5求下列微分方程的通解:(2)•【续解】(2)•此方程不是全微分方程.分项组合得,即选择积分因子同乘方程两边得即有因此方程通解为:•即因也是方程的解,所以为任意常数.再见。

第 讲 用数列极限定义证题

第 讲 用数列极限定义证题

高等数学典型例题与解法(一)第4讲用数列极限定义证题理学院李建平教授内容提要典型例题解析主要内容【注】用这个定义证题的关键是通过解不等式找出合适的.→是指:当无限增大时,无限接近于常数.其严格的形式化定义为:,当时,恒有.数列极限的定义例4.1 试用数列极限定义证明【分析】 →这里加1是为了保证是正整数,对于任意给定的正数,要找到正整数,使得当时,只要取定一个满足不等式取可大不可小因为如果,如例4.1 试用数列极限定义证明【证】所以,→当时,恒有→例4.2试用数列极限定义证明【分析】 →解不等式如果取那么当时,,所以,为保证为正整数,可以取例4.2试用数列极限定义证明【证1】→当时,恒有所以,→【注】取亦可.例4.2试用数列极限定义证明【证2】→当时,恒有所以,→考虑则且【注】引入较小的 保证了为正整数。

可小不可大例4.2试用数列极限定义证明 →【证3】所以,→不妨设,【注】数列极限的语言中:“可小不可大,可大不可小”.当时,恒有例4.3试用数列极限定义证明→【分析】解不等式适当放大不易求解容易求解例4.3试用数列极限定义证明 →【证】当时,恒有所以,→那也必须要求要多么小就多么小.【注】“适当放大”包含两层意思:第一,是放大.要保持不等式的方向,就是将误差量放大到一个合适的水平,即,使得容易求解不等式得出一个简洁的第二,是适当.要保持任意小的性质,即本意要求要多么小就多么小,例4.4试用数列极限定义证明【证1】当时,恒有所以, →于是,取要使,因为,只要,即,亦即→例4.4试用数列极限定义证明【证2】当时,恒有所以, →→则记因为,则,于是有适当放大例4.5若→,【证】并举例说明其反之不真.证明→.但→ 不存在若→,则 ,当时,恒有,从而当时,由三角不等式,有所以→反之不真事实上,取 ,则→ ,例4.5若→,并举例说明其反之不真.证明→.如果学习了连续函数和极限的复合运算,【思考】如果,那么上述结论就成立了请证明:→的充要条件是→然后,对照其证明过程,体会两者的差别正确性作出解释请重新对题中结论的例4.6 设数列 有界,【证】证明→(2) 如果学习了无穷小的性质,请思考这些结论如何解释?因数列有界,则存在正数,使得当时,恒有所以,→【思考】(1) 拓展:设数列有界, →,证明→再见!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章函数及其图形例1:().A. {x | x>3}B. {x | x<-2}C. {x |-2< x ≤1}D. {x | x≤1}注意,单选题的解答,有其技巧和方法,可参考本课件“应试指南”中的文章《高等数学(一)单项选择题的解题策略与技巧》,这里为说明解题相关的知识点,都采用直接法。

例2:函数的定义域为().解:由于对数函数lnx的定义域为x>0,同时由分母不能为零知lnx≠0,即x≠1。

由根式要非负可知即要有x>0、x≠1与同时成立,从而其定义域为,即应选C。

例3:下列各组函数中,表示相同函数的是()解:A中的两个函数是不同的,因为两函数的对应关系不同,当|x|>1时,两函数取得不同的值。

B中的函数是相同的。

因为对一切实数x都成立,故应选B。

C中的两个函数是不同的。

因为的定义域为x≠-1,而y=x的定义域为(-∞,+∞)。

D中的两个函数也是不同的,因为它们的定义域依次为(-∞,0)∪(0,+∞)和(0,+∞)。

例4:设解:在令t=cosx-1,得又因为-1≤cosx≤1,所以有-2≤cosx-1≤0,即-2≤t≤0,从而有。

例5:f(2)没有定义。

注意,求分段函数的函数值,要把自变量代到相应区间的表达式中。

例6:函数是()。

A.偶函数 B.有界函数 C.单调函数 D.周期函数解:由于,可知函数为一个奇函数而不是偶函数,即(A)不正确。

由函数在x=0,1,2点处的值分别为0,1,4/5,可知函数也不是单调函数;该函数显然也不是一个周期函数,因此,只能考虑该函数为有界函数。

事实上,对任意的x,由,可得,从而有。

可见,对于任意的x,有。

因此,所给函数是有界的,即应选择B。

例7:若函数f(x)满足f(x+y)=f(x)+f(y),则f(x)是()。

A.奇函数 B.偶函数 C.非奇非偶函数D.奇偶性不确定解:因为f(x+y)=f(x)+f(y),故f(0)= f(0+0)=f(0)+f(0)=2f(0),可知f(0)=0。

在f(x+y)=f(x)+f(y)中令y = -x,得0 = f(0) = f(x-x) = f[ x+(-x) ] = f(x)+f(-x)所以有f(-x) = - f(x),即f(x)为奇函数,故应选 A 。

例 8:函数的反函数是()。

A. B.C. D.解:于是,是所给函数的反函数,即应选C。

例 9:下列函数能复合成一个函数的是()。

A.B.C.D.解:在(A)、(B)中,均有u=g(x)≤0,不在f (u)的定义域,不能复合。

在(D)中,u=g(x)=3也不满足f(u)的定义域,也不能复合。

只有(C)中的定义域,可以复合成一个函数,故应选C。

例 10:函数可以看成哪些简单函数复合而成:解:,三个简单函数复合而成。

第二章极限与连续例1:下列数列中,收敛的数列是()A. B. C. D.解:(A)中数列为0,1,0,1,……其下标为奇数的项均为0,而下标为偶数的项均为1,即奇偶数项分别趋于不同的常数值,从而可知该数列没有极限,是发散的。

由于,故(B)中数列发散。

由于正弦函数是一个周期为的周期函数,当时,并不能无限趋近于一个确定的值,因而(C)中数列也发散。

由于,故(D)中数列收敛。

例2:设,则a=( )A.0B.1C.3D.1/3解:假设=0,则所给极限为,其分子趋于∞,而分母趋于有限值3,所以极限为∞,不是1/5,因而≠0。

当≠0时,所给极限为,故应选C。

一般地,如果有理函数,其中、分别为n的k次、l次多项式,那么,当时,当k=l时,f (n)的极限为、的最高次项的系数之比;当k<l时,f (n)的极限为零;当k>l时,f (n)的极限为∞。

对于当x→∞(或+∞,-∞)时x的有理分式函数的极限,也有类似的结果。

例3.A. 0B. 1C. πD. n解利用重要极限,故应选C。

注:第一重要极限的本质是,这里的可以想象为一个空的筐子,里面可以填入任意以零为极限的表达式(三个填入的容要相同)。

类似地,第二重要极限可以看作是,其中可以同时填入相同的任意趋于无穷大的表达式。

例4.求解法 1解法 2解法 3例5.A. 0B. 1C. 1/2D. 1/4解:由于,故应选D。

例6.解:注意本题属于“∞-∞”型,是个未定式,不能简单地认为它等于0或认为是∞,对于此类问题一般需要将函数进行通分,然后设法进行化简,进而求出其极限值。

例7. 当x→0时,的()。

A. 同阶无穷小量B. 高阶无穷小量C. 低价无穷小量D. 较低阶的无穷小量解:由于可知是x的同阶无穷小量,所以应选A。

例8. 当等价的无穷小量是( )A. B. C. D.解:由于可知的高阶无穷小量,同时等价的无穷小量,所以选D。

例9. 下列变量在给定的变化过程中是无穷大量的是( )A. B.C. D.解:由于所以应选A.例10.要使函数在x=0处连续,f(0)应该补充定义的数值是( ) A.1/2 B.2 C.1 D.0解:要使函数f(x)在x=0处连续,必须有因此要令f(0)=1.故应选C。

例11.设求k,使f(x)连续。

解:由于函数f(x)在(-∞,0)和(0,+∞)两区间均由初等函数表示,而且在这两个区间均有定义,因此在这两个区间是连续的。

函数是否连续取决于它在x=0处是否连续。

要让f(x)在x=0处连续,必须由于=又由可知例12.证明方程在区间(1,2)必有一根。

证:令,由于f(x)是初等函数,它在区间(-∞,+∞)上连续,另外f(1)=-1<1 ,f(2)=13>0, f(x)在[1,2]上连续,故由零点存在定理知,存在在区间(1,2)必有一个根.第三章导数和微分例1:讨论函数例2:例3:分段函数处是否连续?是否可导?为什么?例4:例5:例6:例7:例8:例9:例10:例11:证明曲线xy=1 (x>0,y>0)上任一点处的切线与两坐标轴所围成的三角形的面积是一个常数.例12:例13:第四章中值定理与导数应用例1:下列各函数中,在区间[-1,1]上满足罗尔定理所有条件的是( )例2:例3:例4:例5:例6:下列极限中能用罗必达法则的有( )例7:例8:列表即(-∞,-2)及(0,+∞)为递增区间,(-2,-1)及(-1,0)为递减区间;当x=-2时取极大值f(-2)=-4,当x=0时取极小值f(0)=0例9:讨论曲线 y=x4-2x3+1的凹向与拐点解:yˊ=4x3-6x2y″=12x2-12x=12x(x-1)当x=0,x=1时 y″=0x=0与x=1把定义域(-∞,+∞)分成三个区间,列表即(-∞,0)及(1,+∞)上凹;(0,1)下凹,两个拐点(0,1)和(1,0)例10:例11:例12:例13:某种商品需求函数为,求当P=4时的需求弹性。

例14:第五章积分例1:若h(x)是g(x)的一个原函数,则下列表达式中正确的一个是()。

解:因为各备选答案中的右端均含有积分常数C,故只须验证各备选答案中右端的导数是否等于其左端积分的被积函数。

事实上,由于g(x)未必可导,故可知(A)、(D)不正确;由题意h(x)是g(x)的一个原函数,即h'(x)=g(x),故(B)正确而(C)不正确,因此,应选(B)。

例2:例3:例4:例5:例6:例7:例8:例9:例10:例11:(图8-1) 例12:例13:例14:例15:例16:例17:例18:例19:例20:例21:例22:试判断下列广义积分的敛散性。

例23:试判断下列广义积分的敛散性。

例24:例25:例26:例27:例28:第六章无穷级数例1:例2:例3:例4:例5:例6:根据极限形式的比较审敛法,可知(B)中级数是收敛的;例7:例8:第一步,根据级数收敛必要性粗略观察是否有若有,则得出级数发散结论,否则进行下一步。

例9:判断交错级数的敛散性,若收敛,指出是条件收敛还是绝对收敛。

例10:例11:例12:例13:例14:第七章多元函数微积分例1.下列平面方程中,过点(1,1,-1)的方程是()(A) x+y+Z=0 (B)x+y+Z=1 (C)x+y-Z=1 (D)x+y-Z=0解:判断一个点是否在平面上,只需将点的坐标代入,看看是否满足相应的平面方程即可。

易见应选(B)。

例2.指出下列平面的特殊位置(1)x+2z=1;(2)x-2y=0;(3)x-2y+3z=0;(4)z-5=0.解:设平面方程为 Ax+By+Cz+D=0(1)方程中y的系数为B=0,故该平面平行于oy轴(垂直于zox平面);(2)方程中z的系数C=0且D=0,故平面过oz轴;(3)方程中常数D=0,故该平面过原点;(4)方程中x的系数A=0 且y的系数B=0,故该平面垂直于oz轴(平行于xoy平面)。

例3.求过点(3,2,1)且平行于yoz平面的平面方程。

解:平行于yoz平面即垂直于ox轴,故可设所求平面方程为Ax+D=0,将已知点(3,2,1)的坐标代入上式,得D=-3A,从而所求方程为x-3=0。

注意:在求平面方程时,Ax+By+Cz+D=0中的四个待定常数不是完全独立的,计算时可用其中的一个表示其余的三个,然后通过化简得出所求结果。

例4.求点M(2,-3,1)分别关于xOy平面、Oy轴和原点的对称点。

解:点M关于xOy平面的对称点是第三个分量变号,即(2,-3,-1),关于Oy轴的对称点是第一,第三分量变号,即(-2,-3,-1),关于原点的对称点是三个分量都变号即(-2,3,-1)。

例5.求平面3x+2y-z-6=0分别在三条坐标轴上的截距。

解:将平面方程化为截距式方程,得因此该平面在Ox轴、Oy轴和Oz轴上的截距依次为2、3、和-6。

例6.求球面的球心坐标和半径。

解:对方程进行配方,化为一般形式的球面方程从而球心坐标为(3,-1,0),半径为。

例7.下列方程在空间直角坐标系中,表示施转抛物面的方程是()(A)(B)(C)(D)解:只能x=y=z=0,它表示空间直角坐标系中的原点。

是一次方程,D=0表示过原点的一个平面。

即表示绕z轴旋转口朝z轴负方向的旋转抛物面。

表示双曲抛物面(马鞍面)故应选(C)例8.函数的定义域是()。

(A)(B)(C)(D)解:由函数的表达式知函数的定义域为即,故应选(C)。

例9.设(A)(B)(C)(D)解:由题设,故应选(A)。

例10.设在点处偏导数存在,则(A)(B)(C)(D)解:根据偏导数的定义,有故应选(C)。

例11.设证明证明:于是左注意,本例还可以利用二元函数隐函数来解偏导数:两边取对数代入左端即可得结论。

例12.设其中f为可微函数,则(A)(B) (C) (D)故应选(D)。

例13.设因此,例14.设例15.设z=z(x,y)是由方程确定的函数,求注意:在求隐函数的偏导数时,其结果中可以有变量度z的出现,结果表达式也常常不是惟一的,如本例用代入两个偏导还可以表示成例16.设(A)(B)(C)(D)解1:变量之间的关系图为故应选(A)注意:这里解法2经过代入后变成了一个一元函数求导问题,简洁明了。

相关文档
最新文档