整式的加减知识点梳理

合集下载

七年级数学整式的加减-知识点总结

七年级数学整式的加减-知识点总结

整式的加减---知识总结4.1整式 单项式定义:表示数或字母的积的代数式(单独的一个数或一个字母也是单项式) 系数:单项式中的数字因数(包括它前面的符号;单项式的系数是1或-1时,1通常不写;当单项式的系数是带分数时,通常写成假分数)次数:一个单项式中,所有字母的指数的和(单项式的系数只与字母有关,且是所有字母的指数之和,与系数无关)注意:(1)单项式中不含加减运算,只含字母与字母或数与字母的乘法(包括乘方)运算(2)分母中含有字母的式子不是单项式(3)n 是常数,在单项式中相当于数字因数(4)定义中的“数”可以是小数,也可以是分数或整数(5)常数没有系数,圆周率x 是常数,单项式中出现x 时,要将其看成系数(6)单独一个字母的次数是1,而不是0.如单项式b 的次数是1,而不是0判断一个式子是不是单项式,关键看两点:一是式子中是否只有乘法运算(包括乘方运算);二是式子的分母中是否只有数字.二者有一项不符合,则不为单项式.多项式定义:几个单项式的和项:多项式中的每个单项式常数项:多项式不含字母的项次数:多项式中次数最高的次数注意:1.一个式子是多项式需具备两个条件:(1)式子中含有运算符号“+”或“-”(2)分母中不含有字母2.识别多项式的各项时,应连同它们前面的符号一起进行识别,特别注意当项的符号为负号时,一定不要将其漏掉.3.多项式的次数不能看成是多项式中各项的次数的和4.一个多项式最高次项的次数是几次、含有几项就叫几次几项式.整式整式:单项式和多项式统称为整式注意:1.判断一个式子是否为整式,就是判断一个式子是否为单项式或多项式;2.单项式、多项式都是整式,所以整式可能是单项式,也可是多项式知识点1 知识点2 知识点34.2整式的加法与减法 同类项定义:所含字母相同,并且相同字母的指数也相同(几个常数项也是同类型)1.判断同类项时的“两相同,两无关”:(1)两相同:①所含字母相同;②相同字母的指数相同.(2)两无关:①与系数无关;②与字母的排列顺序无关.2.同类项不一定是两项,也可以是三项、四项等,但至少为两项合并同类项定义:把多项式中的同类项合并成一项.合并同类项后,所得项的系数是合并前各同类项的合并同类项的方法系数的和,字母连同它的指数不变.“一相加,两不变”,就是把同类项的系数相加,字母不变,字母的指数不变。

整式的加减知识点总结以及题型归纳

整式的加减知识点总结以及题型归纳

整式的加减知识点归纳一 用字母表示数1.字母和数一样可以参与运算2.在含有字母相乘的代数式子中,乘号可以写作“· ”或不写,并且数字写在字母前面。

3.数与字母或字母与字母相除时,应写为分数的形式。

4.如果字母前面的数字是带分数,要把它写成假分数。

5.实际问题中的和差形式且带单位时,应将和,差加括号。

二 单项式1.单项式定义:数字和字母的积的式子叫做单项式。

(单独的数字或字母也是单项式,π是数而不是字母)注:分子中含有字母,分母是数字的代数式也是单项式。

分母中含有字母的代数式叫分式,不是单项式。

2.单项式的系数与次数:单项式中的数字因数叫单项式的系数;单项式中所有字母指数的和,叫单项式的次数.三 多项式和整式1.多项式:几个单项式的和叫多项式.2.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:多项式的每一项包含它前面的符号。

3:常数项:多项式中不含字母的项3.整式:⎩⎨⎧多项式单项式整式 . 四 合并同类项与去括号1.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.2.合并同类项法则:系数相加,字母与字母的指数不变.注:若合并同类项后的系数和为1或-1,可以省略“1”,若合并同类项后的系数和为0,则同类项九尾0.3.去(添)括号法则:去(添)括号时,若括号前边是正因数,括号里的各项都不变号;若括号前边是负因数,括号里的各项都要变号。

(注:注意运用乘法分配律,不要漏乘项)9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.10.整式的加减的步骤:(1)去括号(2)合并同类项11. 列代数式列代数式首先要确定数量与数量的运算关系,其次应抓住题中的一些关键词语,如和、差、积、商、平方、倒数以及几分之几、几成、倍等等.抓住这些关键词语进行列式。

12.代数式的值根据问题的需要,用具体数值代替代数式中的字母,按照代数式中的运算关系计算,所得的结果是代数式的值.整式的加减题型一:用字母表示数题型1:题型2:某商店经销一批衬衣,每件进价为a 元,零售价比进价高m %,后因市场变化,该商店把零售价调整为原来零售价的n %出售,那么调整后每件衬衣的零售价是( ) A. a (1+m %)(1-n %)元B. am %(1-n %)元C. a (1+m %)n %元D. a (1+m %·n %)元 二:单项式题型1. 找出下列代数式中的单项式,并写出各单项式的系数和次数. x -7,13x ,23a ,8a 3x ,-1,x +13. 题型2下列代数式中:)(61b a +-,,21+m x ,2332c ab -,5,xy x 232-,12+a b ,y 1, 单项式有 ,多项式有 , 整式有题型3:题型4:三:多项式题型1:题型2:若多项式5)4(3-+--x x x a b 是关于x 、y 的二次三项式,则a= ,b= ;.题型3. 如果多项式x 4-(a -1)x 3+5x 2-(b +3)x -1不含x 3和x 项,求a 、b 的值.四:合并同类项及整式的加减题型1: 32m b a 2-与1n ab 5+-是同类项,则=m ___________,n=___________。

整式的加减全章知识点总结

整式的加减全章知识点总结

整式的加减全章知识点总结第二章整式的加减知识点1:单项式的概念单项式是由数或字母的积组成的式子,其中只包含乘法运算,不能有加、减、除等运算符号。

单项式分为三种类型:数字与字母相乘组成的式子,如2ab;字母与字母组成的式子,如xy;单独的一个数或字母,如2,-a,m。

知识点2:单项式的系数单项式中的数字因数称为这个单项式的系数。

系数可以是整数、分数或小数,并且有正有负。

确定一个单项式的系数要注意包含在它前面的符号。

对于只含有字母因素的单项式,其系数是1或-1.表示圆周率的π在单项式中应作为系数的一部分。

知识点3:单项式的次数一个单项式中,所有字母的指数和称为这个单项式的次数。

计算单项式的次数时,应注意是所有字母的指数和,不要漏掉字母指数是1的情况。

单项式是一个单独字母时,它的指数是1.单项式的指数只和字母的指数有关,与系数的指数无关。

单项式通常根据指数进行命名。

知识点4:多项式的有关概念多项式是几个单项式的和,其中每个单项式称为多项式的项。

不含字母的项叫做常数项。

多项式里次数最高项的次数称为多项式的次数。

单项式与多项式统称整式。

B。

多项式是由单项式组成的,每一项都包含符号。

例如,多项式-2xy+6a-9由三个单项式-2xy、6a、-9组成,因此它是一个三项式。

多项式的次数是由组成它的单项式中次数最高的那个单项式的次数决定的。

例如,多项式-2xy+6a-9的次数是4,因为其中最高次项是-2xy,它的次数是4.这是一个四次三项式。

C。

在书写含乘法运算的式子时,需要注意以下几点:省略乘号时要小心,数字与字母相乘时数字必须写在字母前面,带分数要化成假分数。

在书写含除法运算的式子时,一般用分数线代替÷符号。

当书写含单位名称的式子时,遇到和差时要加括号,是积商时直接放。

D。

同类项指的是含有相同字母和相同指数的项。

同类项的系数和字母排列顺序不影响它们的同类性。

所有的常数项都是同类项,但单独的一项不能称为同类项,同类项至少要有两项。

整式的加减知识点总结

整式的加减知识点总结

整式的加减知识点总结整式的加减知识点总结一、引言整式是在代数学中常见的一种表达形式,也是解决各种代数问题的基础工具。

整式的加减运算是整式运算中最基础、最常见的操作之一,掌握整式的加减运算规则对于学习代数学非常重要。

本文将从整式的定义、整式的加减运算规则、练习题与解析等方面,对整式的加减运算知识点进行总结。

二、整式的定义整式是由字母、常数及其乘方以及它们的积与和组成的代数表达式。

整式的一般形式为:aₙxⁿ + aₙ₋₁xⁿ⁻¹ + … + a₁x + a₀其中,aₙ、aₙ₋₁…、a₁和a₀是常数系数,x是字母。

三、整式的加减运算规则1. 相同的字母幂相加减:当两个整式的相同字母幂相加减时,直接把系数相加减即可。

例如:3x² + 5x² = 8x²;6x³ - 2x³ = 4x³2. 不同的字母幂相加减:当两个整式中的字母幂不相同时,无法进行直接加减运算,需要按照字母幂的大小进行整理。

例如:4x³ - 2x² + 3x⁴ - 5 = 3x⁴ + 4x³ - 2x² - 53. 加减运算的性质:(1) 交换律:a + b = b + a,a - b ≠ b - a(2) 结合律:(a + b) + c = a + (b + c),(a - b) - c ≠a - (b - c)(3) 分配律:a(b + c) = ab + ac,a(b - c) = ab - ac针对整式的加减运算规则,需要注意运算符的使用和字母幂的整理。

四、练习题与解析1. 计算下列整式的和:2x² + 3 - 5x + 4x² + 7解析:同类项相加,得到:(2x² + 4x²) + (3 + 7) - 5x =6x² + 10 - 5x = 6x² - 5x + 102. 计算下列整式的差:6x³ - 4x² + 2x - 8 - 2x³ + 5x² - 7x + 6解析:同类项相加,得到:(6x³ - 2x³) + (-4x² + 5x²) + (2x - 7x) + (-8 + 6) = 4x³ + x² - 5x - 2五、总结整式的加减运算是代数学中重要的基础知识点,常见的代数问题中都需要用到整式的加减运算。

整式的加减知识点归纳

整式的加减知识点归纳

整式的加减知识点归纳整式的加减知识点归纳1.单项式:在代数式中,若只含有乘法(包括乘方)运算。

或虽含有除法运算,但除式中不含字母的一类代数式叫单项式;数字或字母的乘积叫单项式(单独的一个数字或字母也是单项式)。

2.系数:单项式中的数字因数叫做这个单项式的系数。

所有字母的指数之和叫做这个单项式的次数。

任何一个非零数的零次方等于1.3.多项式:几个单项式的和叫多项式。

4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。

5.常数项:不含字母的项叫做常数项。

6.多项式的排列(1)把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。

(2)把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。

7.多项式的排列时注意:(1)由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。

(2)有两个或两个以上字母的多项式,排列时,要注意:a.先确认按照哪个字母的指数来排列。

b.确定按这个字母向里排列,还是向外排列。

(3)整式:单项式和多项式统称为整式。

8. 多项式的加法:多项式的加法,是指多项式的同类项的系数相加(即合并同类项)。

9.同类项:所含字母相同,并且相同字母的次数也分别相同的项叫做同类项。

10.合并同类项:多项式中的同类项可以合并,叫做合并同类项,合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母与字母的指数不变。

11.掌握同类项的概念时注意:(1)判断几个单项式或项,是否是同类项,就要掌握两个条件:①所含字母相同。

②相同字母的次数也相同。

(2)同类项与系数无关,与字母排列的顺序也无关。

(3)所有常数项都是同类项。

12.合并同类项步骤:(1)准确的找出同类项;(2)逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变;(3)写出合并后的结果。

整式的加减法总结

整式的加减法总结

整式的加减法一、整式的有关概念回顾(1)单项式: 表示数与字母的乘积的代数式, 叫做单项式, 单独的一个数或一个字母也是单项式, 如、2πr 、a , 0 ……都是单项式。

1.都是数字与字母的乘积的代数式叫做单项式。

2.单项式的数字因数叫做单项式的系数。

3.单项式中所有字母的指数和叫做单项式的次数。

4.单独一个数或一个字母也是单项式。

5.只含有字母因式的单项式的系数是1或―1。

6、单独的一个数字是单项式, 它的系数是它本身。

7、单独的一个非零常数的次数是0。

8、单项式中只能含有乘法或乘方运算, 而不能含有加、减等其他运算。

9、单项式的系数包括它前面的符号。

10、单项式的系数是带分数时, 应化成假分数。

11、单项式的系数是1或―1时, 通常省略数字“1”。

12.单项式的次数仅与字母有关, 与单项式的系数无关。

(2)多项式: 几个单项式的和叫做多项式1.几个单项式的和叫做多项式。

2.多项式中的每一个单项式叫做多项式的项。

3.多项式中不含字母的项叫做常数项。

4.一个多项式有几项, 就叫做几项式。

5.多项式的每一项都包括项前面的符号。

6、多项式没有系数的概念, 但有次数的概念。

7、多项式中次数最高的项的次数, 叫做这个多项式的次数。

(3)整式:单项式和多项式统称为整式, 如:-, ……是整式1.单项式和多项式统称为整式。

2.单项式或多项式都是整式。

3.整式不一定是单项式。

4.整式不一定是多项式。

5.分母中含有字母的代数式不是整式;而是今后将要学习的分式。

(4)升幂排列与降幂排列:例如:把多项式5x2+3x-2x3-1按x的指数从大到小的顺序排列, 可以写成-2x3+5x2+3x-1, 这叫做这个多项式按字母x的降幂排列。

若按x的指数从小到大的顺序排列, 则写成-1+3x+5x2-2x3, 这叫做这个多项式按字母x的升幂排列。

这两种排列有一个共同点, 那就是x的指数是逐渐变小(或变大)的。

我们把这种排列叫做升幂排列与降幂排列。

初一数学整式的加减的知识点_知识点总结

初一数学整式的加减的知识点_知识点总结

初一数学整式的加减的知识点_知识点总结初一数学整式的加减的知识点 - 知识点总结在初一数学学习中,整式的加减是一个重要的知识点。

掌握了整式的加减运算规则,将有助于我们解决各种复杂的数学问题。

本文将对初一数学整式的加减的知识点进行总结和归纳。

一、整式的基本概念整式是指由数字、字母及其乘积按照代数运算法则相加减构成的代数式。

整式的加减运算是指按照相同变量的幂次相同的原则进行合并和化简。

二、整式的加法1. 同类项合并在整式的加法中,首先需要将同类项进行合并。

所谓同类项,是指它们具有相同的字母或常数因子。

例如:2x + 3x - 5x + 4y - 2y,将变量x和y的系数相同的项合并,得到:2x - 5x - 2y。

2. 合并同类项后的化简合并同类项后,我们可以对整式进行进一步的化简。

将同类项相加减得到一个系数,并保留原有的字母部分。

例如:2x - 5x - 2y 可进一步化简为 -3x - 2y。

三、整式的减法整式的减法也是按照相同变量的幂次相同的原则进行合并和化简,与加法类似。

例如:(2x + 3y) - (x - y),将括号内的加法运算符变为减法运算符,然后进行同类项合并,得到:2x + 4y。

四、整式加减混合运算整式的加减运算可以与其他运算符混合进行运算。

具体的计算顺序是按照数学运算的规则进行,先进行括号内的计算,然后按照乘方、乘法、除法、加法、减法的顺序进行计算。

例如:(2x^2 + 3xy) - (x^2 - 2xy) + 4y^2,首先进行括号内的运算,得到:2x^2 + 3xy - x^2 + 2xy + 4y^2,然后进行同类项合并,得到:x^2 + 5xy + 4y^2。

五、整式加减的注意事项1. 不同变量之间的项不能合并。

例如:2x + 3y - x,2x和-x是同类项,可以合并为x,但是3y是与其他项不同类的项,不能与其它项合并。

所以最终结果为:x + 3y。

2. 注意减法的特殊处理。

整式其加减知识点总结

整式其加减知识点总结

整式其加减知识点总结一、整式的基本概念1. 整式:由正整数幂、变量和它们的积(包括系数)以及它们的和或差组成的式子称为整式。

2. 字母的幂:整式中的变量乘方。

3. 项:整式中的单个元素,可以是常数、变量或者它们的乘积。

4. 系数:整式中变量的乘方的系数,可以是数字或者其他变量的多项式。

5. 次数:整式中变量的幂次的最高指数。

二、整式的加法1. 整式的加法公式:将同类项相加,即将具有相同字母幂的项相加,并将结果写成一个整式。

2. 同类项:具有相同字母幂的项即为同类项。

3. 加法运算规则:将同类项的系数相加,并将相同的字母幂保持不变。

三、整式的减法1. 整式的减法公式:与整式的加法类似,只是将同类项相减,并将结果写成一个整式。

2. 减法运算规则:将同类项的系数相减,并将相同的字母幂保持不变。

四、整式的加减混合运算1. 整式的加减混合运算:将整式的加法和减法相结合,首先将同类项相加或相减,然后将结果写成一个整式。

2. 加减混合运算规则:先将同类项相加或相减,然后将结果整理成一个整式。

3. 注意事项:注意符号的加减变换,并且要注意合并同类项时系数的变化。

五、整式加减的化简1. 整式加减的化简:将整式中的同类项相加或相减,然后将结果整理成一个简化的整式。

2. 通常包括的步骤:合并同类项、整理系数、整理变量。

六、整式加减的应用1. 代数方程式的整理:将代数方程式中的整式进行加减混合运算,将同类项进行合并后化简方程式。

2. 代数方程式的解:通过整式的加减混合运算,可以更方便地求解代数方程式,从而得到方程的解。

七、整式加减的补充1. 整式的系数:整式中变量的乘方的系数可以是数字,也可以是其他变量的多项式。

2. 多项式的次数:整式中变量的幂次的最高指数即为整式的次数。

3. 整式的导数:整式的导数表示对整式中的变量求导数。

4. 整式的积分:整式的积分表示对整式中的变量求不定积分。

综上所述,整式的加减是代数中的基础运算,需要掌握多项式的各种形式以及相关运算规则。

第二、十四章 整式的加减 知识梳理

第二、十四章    整式的加减   知识梳理

《整式》知识点总结1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。

如:bc a 22-的 系数为2-,次数为4,单独的一个非零数的次数是0。

2、多项式:几个单项式的和叫做多项式。

多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。

如:122++-x ab a ,项有2a 、ab 2-、x 、1,二次项为2a 、ab 2-,一次项为x ,常数项为1,各项次数分别为2,2,1,0,系数分别为1,-2,1,1,叫二次四项式。

3、整式:单项式和多项式统称整式。

注意:凡分母含有字母代数式都不是整式。

也不是单项式和多项式。

4.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.5.合并同类项法则:系数相加,字母与字母的指数不变.6.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.7.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.8.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.整 式 的 乘 除 及 因 式 分 解知识点归纳:1、同底数幂的乘法法则:n m n m a a a +=•(n m ,都是正整数)同底数幂相乘,底数不变,指数相加。

注意底数可以是多项式或单项式。

如:________3=⋅a a ;________32=⋅⋅a a a532)()()(b a b a b a +=+•+,逆运算为:2、幂的乘方法则:mn n m a a =)((n m ,都是正整数)幂的乘方,底数不变,指数相乘。

如:10253)3(=-幂的乘方法则可以逆用:即m n n m mn a a a )()(==如:23326)4()4(4==例如:_________)(32=a ;_________)(25=x ;()334)()(a a =3、积的乘方法则:n n n b a ab =)((n 是正整数)积的乘方,等于各因数乘方的积。

整式的加减知识点总结

整式的加减知识点总结

整式的加减知识点总结整式的加减知识点总结一、整式的加法整式是指由常数、变量和它们的乘积及乘方组成的代数式。

整式的加法是指将同类项相加的运算。

1. 同类项同类项是指具有相同字母和相同指数的项。

例如,a^2b和2a^2b是同类项,但a^2b和ab^2不是同类项。

2. 加法法则将同类项的系数相加,字母和指数保持不变。

例如,将3ab+2ab相加时,可将系数相加得到5ab,字母和指数保持不变。

3. 零多项式零多项式是指系数为0的整式。

将零多项式与任何整式相加的结果都是原来的整式。

例如,将3ab+(-3ab)相加,结果为0。

二、整式的减法整式的减法是指将两个整式相减的运算。

1. 减法法则将减数改变符号后,再按照加法法则进行运算。

例如,将3ab-2ab相减,可将减数改变符号得到-2ab,然后按照加法法则将同类项相减得到ab。

2. 减法的特例减法的特例是指减数和被减数相等的情况,结果为零多项式。

例如,a^2b-a^2b的结果为0。

三、整式的加减混合运算整式的加减混合运算是指包含加法和减法的整式运算。

1. 先化简同类项在进行加减混合运算时,首先将同类项按照加法法则化简。

例如,将3ab-2ab+5ab-4ab化简为(3-2+5-4)ab。

2. 再合并同类项化简后,将同类项的系数相加,字母和指数保持不变。

例如,将(3-2+5-4)ab合并为2ab。

3. 注意符号在进行加减混合运算时,注意同类项前的正负号。

对于同类项之间的减法,可以看作是将减数改变符号后与被减数进行加法运算。

例如,将3ab+(-2ab)相加,得到ab。

四、实例分析下面通过一些实例来对整式的加减进行更详细的说明。

例1:将4a^2b-3ab+2b^2-5a^2b化简为最简整式。

解:首先化简同类项,得到(4-5)a^2b+(-3)b^2。

然后合并同类项,得到(-1)a^2b+(-3)b^2。

最终结果为-a^2b-3b^2。

例2:将a^3+2a^2-3ab+4b^2-5a^3+6ab-7b^2化简为最简整式。

整式的加减(学)

整式的加减(学)

知识点五、整式的加减运算法则一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.)整式加减的一般步骤是:①先去括号;②再合并同类项. (a b +添括号去括号(a b -添括号去括号4.按要求把多项式添上括号:(1)把含a 、b 的项放到前面带有“+”号的括号里,不含a 、b 的项放到前面带有“”号的括号里; (2)把项的符号为正的放到前面带有“+”号的括号里,项的符号为负的放到前面带有“”号的括号里.类型四、整式的加减1.设A ,B ,C 均为多项式,小方同学在计算“A ﹣B”时,误将符号抄错而计算成了“A+B”,得到结果是C ,其中A=x 2+x ﹣1,C=x 2+2x ,那么A ﹣B=( ) A .x 2﹣2x B .x 2+2x C .﹣2 D .﹣2x2. . 3.计算:(1)25a -[222(52)2(3)a a a a a +---]; (2)22(521)4(382)a a a a +---+.类型五、化简求值1. 当2,1p q ==时,分别求出下列各式的值. (1)221()2()()3()3p q p q q p p q -+-----; (2)2283569p q q p -+--321a b c -+-3243245348x x x x x x -+--+-一个多项式加上得,求这个多项式2. 化简求值:(1)当时,求多项式的值. (2)若,求多项式的值.3.先合并同类项,再求值.(1)222243245x y xy x y ++--,其中2x =,1y =-. (2)22289726x x x x -+-+-,其中1x =-.4. 先化简,再求各式的值:5. 已知,,求整式的值.6.先化简,再求值:3x 2y ﹣[2x 2﹣(xy 2﹣3x 2y )﹣4xy 2],其中|x|=2,y=,且xy <0.1,2a b ==-3232399111552424ab a b ab a b ab a b --+---243(32)0a b b +++=222(23)3(23)8(23)7(23)a b a b a b a b +-+++-+22131222,2,;22333x x y x y x y ⎛⎫⎛⎫+-+--=-= ⎪ ⎪⎝⎭⎝⎭其中2xy =-3x y +=(310)[5(223)]xy y x xy y x ++-+-3. 如果关于x 的多项式的值与x 无关.你知道a 应该取什么值吗?试试看.4.数学课上,老师出示了这样一道题目:“当1,22a b ==-时,求多项式3233233733631061a a b a a b a b a a b +++----的值”.解完这道题后,张恒同学指出:“1,22a b ==-是多余的条件”师生讨论后,一致认为这种说法是正确的,老师及时给予表扬,同学们对张恒同学敢于提出自己的见解投去了赞赏的目光. (1)请你说明正确的理由;(2)受此启发,老师又出示了一道题目,“无论x 取任何值,多项式2233x mx nx x -++-+的值都不变,求系数m 、n 的值”.请你解决这个问题.类型七、整式加减运算的应用1.有一种石棉瓦(如图所示),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米, 那么n(n 为正整数)块石棉瓦覆盖的宽度为 ( ) .A .60n 厘米B .50n 厘米C .(50n+10)厘米D .(60n10)厘米 22(8614)(865)x ax x x ++-++2.小明家住房户型呈长方形,平面图如下(单位:米).现准备铺设整个长方形地面,其中三间卧室铺设木地板,其它区域铺设地砖.(房间内隔墙宽度忽略不计)(1)求a的值;(2)请用含x的代数式分别表示铺设地面需要木地板和地砖各多少平方米;(3)按市场价格,木地板单价为300元/平方米,地砖单价为100元/平方米.装修公司有A,B两种活动方案,如表:已知卧室2的面积为21平方米,则小方家应选择哪种活动,使铺设地面总费用(含材料费及安装费)更低?8.小李家住房结构如图所示,小李打算把卧室和客厅铺上木地板.(1)请问他至少需要买多少平方米的木地板?(用字母表示)(2)若3x =米,2y =米时,并且每平方米木地板的价格是150元,则他至少需要准备多少元钱?9.合并同类项:(1)5237x y x y +-- (2) 22335237a ab a ab ---++10.合并同类项:(1)2x 2﹣3x +4x 2﹣6x ﹣5 (2)2222523m n mn m n mn mn +---11.化简:(1)()()22224232a b abab a b ---; (2)2237(43)2x x x x ⎡⎤----⎣⎦.12.已知:2232A x y xy =+-,2222B xy x y =++.(1)求3A B -;(2)若1x =,12y.求(42)(3)A B A B +-+的值.13.(1)化简求值: 2(x 2y +xy )-3(x 2y -xy )-4x 2y ,其中x =1,y =12. (2)解答:老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:+(-3x 2+5x -7)=-2x 2+3x -6.求所捂的多项式.14.已知A=2xy ﹣2y 2+8x 2, B=9x 2+3xy ﹣5y 2.求:(1)A ﹣B ;(2)﹣3A+2B15.若2225a b +=,求多项式()()22223223a ab ba ab b -+---的值.16.已知2235A a b ab =+-,22234B ab b a =-+,先求2B A -+,并求当12a =-,2b =时,2B A -+的值.17.若关于x 的多项式2x 2+mx+nx 2+5x1的值与x 的值无关,求(xm)2+n 的最小值.18、.19.当时,多项式的值是0,则多项式.20.如图,有四个相同的小长方形和两个相同的大长方形按如图位置摆放,按照图中所示尺寸,则小长方形的长与宽的差是( )A .2m n + B .23m n - C .2m n - D .23m n -21.已知多项式A 、B ,其中 A =x 2+2x −1,某同学在计算A +B 时,由于粗心把A +B 看成了AB 求得结果为−3x 2+2x −1,请你算出A +B 的正确结果。

整式加减知识点归纳总结

整式加减知识点归纳总结

整式加减知识点归纳总结一、整式的定义整式是由字母和常数以及它们的积和商经过有限次加法运算得到的代数式。

整式是代数式中的一种,代数式是由字母和常数以及它们的积和商经过有限次加法、减法、乘法和乘方运算得到的式子。

整式的定义中包含了常数项、单项式和多项式三种形式。

其中,常数项是只有常数的代数式,如3、5、-2等;单项式是只有一个字母或字母的积的代数式,如2x、-3y、4a²等;多项式是由多个单项式经过有限次加法或减法组成的代数式,如3x²+2x-1、-4y²+3y-2等。

整式包括加减运算和乘除运算,整式加减是代数式中的基本运算之一,下面将对整式加减的运算规则和技巧进行详细介绍。

二、整式加减的运算规则1. 加减法法则(1)同类项的加减法同类项是指字母部分相同,并且相同字母的指数也相同的代数式。

例如2x²、3x²是同类项,但2x²和3y²不是同类项。

同类项的加减法则是合并同类项,即将同类项的系数相加或相减,字母部分保持不变。

比如2x²+3x²=5x²,4y-2y=2y。

(2)非同类项的加减法非同类项指字母部分不同或者字母部分相同但指数不同的代数式。

非同类项无法直接相加或相减,需要先化为同类项再进行加减。

2. 加减法技巧(1)合并同类项在进行整式加减法运算时,首先需要将同类项合并,即将相同字母部分的系数相加或相减,字母部分保持不变。

(2)去括号如果整式中有括号,需要先去括号再进行合并同类项的操作,去括号时需要注意符号的变化。

(3)整理式子在进行整式加减运算时,需要将结果整理成标准形式,即系数按照大小顺序排列,常数项放在最后。

三、整式加减的应用技巧1. 掌握整式的基本形式学习整式加减前,首先需要掌握整式的基本形式,包括常数项、单项式和多项式的定义和特点。

这样能够帮助学生准确区分不同类型的整式,从而更好地进行加减运算。

初一数学——整式的加减知识点

初一数学——整式的加减知识点

初一数学——整式的加减知识点2、单项式或多项式都是整式。

一、代数式与有理式3、整式不一定是单项式。

1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

单独的一个数或4、整式不一定是多项式。

字母也是代数式。

5、分母中含有字母的代数式不是整式;而是今后将要研究的分式。

2、整式和分式统称为有理式。

3、含有加、减、乘、除、乘方运算的代数式叫做有理式。

四、整式的加减二、整式和分式1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

1、没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。

去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里2、有除法运算并且除式中含有字母的有理式叫做分式。

各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里三、单项式与多项式各项都改动标记。

1、没有加减运算的整式叫做单项式。

(数字与字母的积---包孕零丁的一个数或字母)2、几个单项式的和,叫做多项式。

个中每一个单项式叫做多项式的项,不含字母的项2、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

叫做常数项。

合并同类项:说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算。

1).合并同类项的概念:把单项式、多项式区分开。

②进行代数式分类时,是以所给的代数式为对象,而非以把多项式中的同类项归并成一项叫做归并同类项。

变形后的代数式为对象。

划分代数式类别时,是从形状来看。

2).合并同类项的法则:单项式同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

1、都是数字与字母的乘积的代数式叫做单项式。

3).合并同类项步骤:2、单项式的数字因数叫做单项式的系数。

a.准确的找出同类项。

3、单项式中所有字母的指数和叫做单项式的次数。

b.逆用分配律,把同类项的系数加在一同(用小括号),字母和字母的指数不变。

4、零丁一个数或一个字母也是单项式。

《整式的加减》知识点

《整式的加减》知识点
②几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离.
③绝对值的非负性: 0
④非负数的重要性质:几个非负数的和为0,这几个非负数都等于0.
5.有理数大小的比较:
①利用数轴比较大小:
②利用法则比较大小;比较法则:
③利用求差法比较大小:若a-b>0,则ab;
若a-b=0,则ab;
若a-b<0,则ab;反之,也成立。
第三章 整式的加减
1、单项式:
单项式的
多项式的项:,
多项式的次数:。
3、整式:。
4、降幂排列:。
升幂排列:。
5、同类项:。
6、合并同类项的法则:。
6.有理数的混合运算:
①有理数加法法则:。


②有理数减法法则:。
③有理数乘法法则:两数相乘,同号得,异号得,并把
几个不为零的数相乘,积的符号由负因数的个数决定,当负因数的个数为时,积为正,
当负因数的个数为时,积为负。
④有理数除法法则:。
⑤有理数乘方法则:
(一个数的偶次幂是非负数)。
7.科学记数法:
第2章有理数
1.数轴:。
2.相反数:。
①a的相反数记为;
②若a与b互为相反数,则有a+b=,反之亦然;
③几何意义:在数轴上,表示相反数的两个点位于两侧,并且到原点的距离。 3.倒数:若两个数的积等于1,则这两个数互为倒数。(0没有倒数)
4.绝对值:a的绝对值记为;
①代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;

整式的加减 知识点总结

整式的加减 知识点总结
(3)合并同类项时要注意以下三点:
①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数;
②明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;
③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.
(2)单项式的系数、次数
单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.
在判别单项式的系数时,要注意包括数字前面的符号,而形如a或-a这样的式子的系数是1或-1,不能误以为没有系数,一个单项式的次数是几,通常称这个单项式为几次单项式.
多项式
(1)几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.
(2)整式的加减实质上就是合并同类项.
(3)整式加减的应用:
①认真审题,弄清已知和未知的关系;
②根据题意列出算式;
③计算结果,根据结果解答实际问题.
整式的加减----化简求值
给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.
②对于“数”或“形”的排列规律问题,用先从开始的几个简单特例入手,对比、分析其中保持不变的部分及发展变化的部分,以及变化的规律,尤其变化时与序数几的关系,归纳出一般性的结论.
单项式
(1)单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.
用字母表示的数,同一个字母在不同的式子中可以有不同的含义,相同的字母在同一个式子中表示相同的含义.

整式加减运算知识点总结

整式加减运算知识点总结

整式加减运算知识点总结一、基本概念1. 整式:由字母和数字以及加减乘除运算符号组成的代数表达式。

2. 同类项:指整式中具有相同字母和相同指数的项,可以进行合并或者加减运算。

3. 合并同类项:将整式中的同类项合并在一起,相同字母和相同指数的项相加或相减合并成一个项。

4. 去括号:整式中的加减运算可以通过去括号的方法进行简化。

5. 加减运算法则:整式的加减运算要遵循加减法法则,即同类项之间可以相互加减,非同类项不能相加减。

6. 幂的加减法则:指出两个同底数的幂相加减时,将底数不变,指数加减。

二、加减整式的步骤加减整式的步骤主要分为以下几个:1. 去括号:首先将整式中的括号去掉,展开整式。

2. 合并同类项:将整式中的同类项合并在一起。

3. 化简:对合并后的整式进行简化,得到最简形式。

4. 检查:最后检查整式是否还有合并的同类项,如果有则继续合并直至无法合并。

例题一:(3x+5y)-(2x-3y)解:1. 去括号,展开整式,得到3x+5y-2x+3y。

2. 合并同类项,得到3x-2x+5y+3y。

3. 化简,得到x+8y。

4. 检查,已经没有同类项可以合并,所以最终结果为x+8y。

例题二:(6m^2-4n^2)+(5m^2-3n^2)-(2m^2+7n^2)解:1. 去括号,展开整式,得到6m^2-4n^2+5m^2-3n^2-2m^2-7n^2。

2. 合并同类项,得到6m^2+5m^2-2m^2-4n^2-3n^2-7n^2。

3. 化简,得到9m^2-14n^2。

4. 检查,已经没有同类项可以合并,所以最终结果为9m^2-14n^2。

三、应用题在实际问题中, 我们经常会遇到需要用整式进行加减运算的情况。

例题三:假设甲、乙两人相约齐合作种树,甲种了a棵树,乙种了b棵树,现在想统一收拾,问他们共种了多少棵树?解:这个问题可以用整式来表示和解决。

甲、乙两人共种的树的数量可以表示为a+b。

这是一个整式的加法运算。

整式的加减知识点

整式的加减知识点

第二章 整式的加减 知识点归纳2.1.1 单项式由 与 的积组成的式子叫做单项式。

单独一个数字或字母.......也是单项式,如5-,y 等。

(注意:分母中出现字母的,就不再是单项式。

如:x1) 系数:单项式中的 因数叫做这个单项式的系数。

(★:π属于数字,不是字母)次数:单项式所有字母的 之和叫做这个单项式的次数。

注意:①数字次数是0;②系数和次数是1时,1通常省略不写;③若单项式中出现“-”号,则“-”号是系数的性质符号。

例:指出下列各单项式的系数和次数:(1)xy 5, (2)a 21-, (3)5a , (4)42bc a , (5)732y x π【练习】下列式子中,哪些是单项式?指出这些单项式的系数和次数。

x ,ab 21-,x 1,b a +2,y x 25-,20-,2mn -2.1.2 多项式多项式:几个 的和.叫做多项式。

(注意:分母中出现字母的,就不是多项式。

如:a x +1) 多项式的项:多项式中的每个单项式,叫做多项式的 。

如b a +2中,a 2,b 都是项。

多项式的次数:多项式中,次数最高的项的 ,叫做这个多项式的次数。

(★最高次项是指多项式中次数最高的项,如:122+-a a 中最高次项是:2a )常数项:多项式中,不含 的项称为常数项。

例1:多项式232+-+-y x xy xπ的项分别是 ,次数是 ;最高次项是 ;常数项是 。

多项式的命名:多项式可以由项数及次数确定为 次 项式。

如:122+-a a ,共 项,次数为 ,故称为 次 项式。

例2:给下列多项式命名。

①6524252--+y y y : 次 项式②345567x x x +-: 次 项式多项式的排序:多项式可以按各项次数的高低进行排列,若从低到高为升幂排列;若从高到低,则为降幂排列。

如:122+-a a 为 排列;221a a +-为 排列。

例3:按x 的降幂给下列多项式排序:①275567x x x +-:②9232--x x :【练习】1、代数式25,x ,xy -,x 21-,n m +,b a 212- 中,单项式是 ,其中次数是1的是 ;多项式是 ,其中 的次数是2。

初中数学整式的加减知识点

初中数学整式的加减知识点

初中数学整式的加减知识点一、整式的相关概念。

1. 单项式。

- 定义:由数与字母的乘积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式。

例如,3x,-5,a都是单项式。

- 系数:单项式中的数字因数叫做这个单项式的系数。

如在单项式3x中,系数是3;在单项式-5中,系数就是-5。

- 次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。

例如,单项式3x^2的次数是2,单项式-2xy的次数是2(x的次数1加上y的次数1)。

2. 多项式。

- 定义:几个单项式的和叫做多项式。

例如,2x + 3y,x^2 - 2x+1都是多项式。

- 项:在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。

在多项式x^2 - 2x + 1中,x^2、-2x、1都是它的项,1是常数项。

- 次数:多项式里次数最高项的次数,叫做这个多项式的次数。

如多项式x^2 - 2x+1的次数是2,因为次数最高的项x^2的次数是2。

3. 整式。

- 定义:单项式与多项式统称为整式。

二、整式的加减。

1. 同类项。

- 定义:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

几个常数项也是同类项。

例如,3x与5x是同类项,2ab^2与-3ab^2是同类项,4和-7是同类项。

2. 合并同类项。

- 法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

例如,3x+5x=(3 + 5)x=8x,2ab^2-3ab^2=(2 - 3)ab^2=-ab^2。

3. 去括号法则。

- 如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。

例如,a+(b - c)=a + b-c。

- 如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

例如,a-(b - c)=a - b + c。

4. 整式的加减运算步骤。

- 去括号。

- 合并同类项。

例如,计算(2x^2+3x - 1)-(3x^2 - 2x+5),先去括号得2x^2+3x - 1-3x^2 + 2x-5,然后合并同类项(2x^2-3x^2)+(3x + 2x)+(-1 - 5)=-x^2+5x - 6。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式的加减
代数式与有理式
1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

单独的一个数或字母也是代数式。

2、整式和分式统称为有理式。

3、含有加、减、乘、除、乘方运算的代数式叫做有理式。

整式和分式
1、没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。

2、有除法运算并且除式中含有字母的有理式叫做分式。

单项式与多项式
1、没有加减运算的整式叫做单项式。

(数字与字母的积---包括单独的一个数或字母)
2、几个单项式的和,叫做多项式。

其中每个单项式叫做多项式的项,不含字母的项叫做常数项。

说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。

②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。

划分代数式类别时,是从外形来看。

单项式
1、都是数字与字母的乘积的代数式叫做单项式。

2、单项式的数字因数叫做单项式的系数。

3、单项式中所有字母的指数和叫做单项式的次数。

4、单独一个数或一个字母也是单项式。

5、只含有字母因式的单项式的系数是1或―1。

6、单独的一个数字是单项式,它的系数是它本身。

7、单独的一个非零常数的次数是0。

8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

9、单项式的系数包括它前面的符号。

10、单项式的系数是带分数时,应化成假分数。

11、单项式的系数是1或―1时,通常省略数字“1”。

12、单项式的次数仅与字母有关,与单项式的系数无关。

多项式
1、几个单项式的和叫做多项式。

2、多项式中的每一个单项式叫做多项式的项。

3、多项式中不含字母的项叫做常数项。

4、一个多项式有几项,就叫做几项式。

5、多项式的每一项都包括项前面的符号。

6、多项式没有系数的概念,但有次数的概念。

7、多项式中次数最高的项的次数,叫做这个多项式的次数。

整式
1、单项式和多项式统称为整式。

2、单项式或多项式都是整式。

3、整式不一定是单项式。

4、整式不一定是多项式。

5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。

整式的加减
1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括
号里各项都改变符号。

2、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

合并同类项:
1).合并同类项的概念:
把多项式中的同类项合并成一项叫做合并同类项。

2).合并同类项的法则:
同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

3).合并同类项步骤:
a.准确的找出同类项。

b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。

c.写出合并后的结果。

4).在掌握合并同类项时注意:
a.如果两个同类项的系数互为相反数,合并同类项后,结果为0
b.不要漏掉不能合并的项。

c.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。

说明:合并同类项的关键是正确判断同类项。

相关文档
最新文档