(完整版)等差数列求和练习题

合集下载

等差数列求和计算题

等差数列求和计算题

等差数列求和计算题
"等差数列求和计算题"是指给定一个等差数列,并要求计算这个数列的前n项和的问题。

在等差数列中,相邻的两项之间的差值保持不变,这个差值称为公差。

求和计算题着重于找出数列的前n项和的数值。

可以使用等差数列求和公式来解决这类问题,这个公式是:Sn = (n/2) * (a1 + an)
其中Sn是数列的前n项和,n是项数,a1是数列的第一项,an 是数列的第n项。

通过将已知的数列信息代入这个公式,就可以得到所求的和的数值。

例:求等差数列1, 4, 7, 10, 13, ... 的前10项和。

首先求出公差d,第二项减去第一项为3,第三项减去第二项也为3,公差为3。

其次,代入公式。

n=10, a1=1, d=3。

Sn = (10/2) * (1 + (1+ (10-1)*3))
= 5 * (1+ 27)
= 140
因此,这个等差数列的前10项和为140。

初中等差数列求和及练习题

初中等差数列求和及练习题

初中等差数列求和及练习题概述等差数列是数学中的常见概念。

在初中数学中,我们研究了等差数列的定义、性质以及如何求解等差数列的和。

本文档将介绍初中等差数列求和的方法,并提供一些练题供学生练。

等差数列的定义等差数列是指数列中相邻两项之差保持恒定的数列。

通常用字母$a$表示首项,$d$表示公差。

等差数列的通项公式为:$$a_n = a + (n - 1) \cdot d$$其中,$a_n$表示第$n$项。

等差数列的求和公式对于等差数列 $a_1, a_2, a_3, ... , a_n$,我们可以使用求和公式来求解其和$S_n$:$$S_n = \frac{n}{2} \cdot (a_1 + a_n)$$示例假设有一个等差数列的首项$a = 3$,公差$d = 2$,求该数列的前6项及其和。

首先,根据通项公式计算出该数列的前6项:$$a_1 = 3\\a_2 = 3 + (2 - 1) \cdot 2 = 5\\a_3 = 3 + (3 - 1) \cdot 2 = 7\\a_4 = 3 + (4 - 1) \cdot 2 = 9\\a_5 = 3 + (5 - 1) \cdot 2 = 11\\a_6 = 3 + (6 - 1) \cdot 2 = 13\\$$然后,使用求和公式计算出该数列的和$S_6$:$$S_6 = \frac{6}{2} \cdot (3 + 13) = 9 \cdot 16 = 144$$所以,该等差数列的前6项分别为3, 5, 7, 9, 11, 13,和为144。

练题1. 已知某等差数列的首项$a = 2$,公差$d = 3$,求该数列的第8项$a_8$。

2. 求等差数列$4, 7, 10, 13, ...$的前10项和。

3. 若等差数列的首项$a = 1$,公差$d = 0$,求该数列的第20项$a_{20}$。

提示:使用等差数列的通项公式和求和公式来解答上述练题。

:使用等差数列的通项公式和求和公式来解答上述练习题。

(完整版)等差等比数列求和与差的练习题

(完整版)等差等比数列求和与差的练习题

(完整版)等差等比数列求和与差的练习题
题目一:等差数列求和
已知等差数列的首项为$a_1$,公差为$d$,求该等差数列的前$n$项和$S_n$。

解答步骤:
1. 根据公式$S_n = \frac{n}{2}(a_1 + a_n)$计算出结果。

题目二:等差数列差的问题
已知等差数列的首项为$a_1$,公差为$d$,依次计算以下问题:
1. $a_3 - a_2$;
2. $a_5 - a_3$;
3. $a_{10} - a_5$。

解答步骤:
1. 利用公式$a_n = a_1 + (n-1)d$计算出各项的值;
2. 按照题目给定的差问题计算出结果。

题目三:等比数列求和
已知等比数列的首项为$a_1$,公比为$r$,求该等比数列的前$n$项和$S_n$。

解答步骤:
1. 如果公比$r=1$,则$S_n = n \cdot a_1$,直接计算结果;
2. 如果公比$r \neq 1$,则$S_n = a_1 \cdot \frac{1 - r^n}{1 - r}$,按照公式计算结果。

题目四:等比数列差的问题
已知等比数列的首项为$a_1$,公比为$r$,依次计算以下问题:
1. $a_2 - a_1$;
2. $a_4 - a_2$;
3. $a_{10} - a_{5}$。

解答步骤:
1. 利用公式$a_n = a_1 \cdot r^{(n-1)}$计算各项的值;
2. 按照题目给定的差问题计算出结果。

以上是关于等差数列求和与差的练题的完整版文档。

等差数列求和基础题

等差数列求和基础题

等差数列求和基础题一.选择题1. 等差数列{}n a 的前n 项和为n S ,若142,20,a S ==则6S = A.16 B.24 C.36 D.422. 设等差数列{}n a 的前n 项和为n S ,若111a =-,376a a +=-,则当n S 取最小值时,n 等于A.8B.7C.6D.93. 已知n S 是等差数列{}n a 的前n 项和,且63S =,1118S =,则9a 等于 A.3 B.5 C.8 D.154. 已知等差数列{a n }前n 项的和为S n , 233=a , S 3=9,则a 1= A.23 B.29C.-3D.6 5. 已知等差数列{}n a 中,256,15a a ==,若2n n b a =,则数列{}n b 的前5项和为 A. 90 B. 45 C. 30 D. 1866. 等差数列}{n a 的前n 项和为n S ,若119717,170a a a S ++=则的值为 A.10 B.20 C.25 D.307. 设等差数列{a n }前n 项和为S n . 若a 1= -11,a 4+a 6= -6 ,则当S n 取最小值时,n 等于 A.6 B. 7 C.8 D.98. 设等差数列{}n a 的前n 项和为n S ,246a a +=,则5S 等于 A.10 B.12 C.15 D.309. 已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S = A.138 B.135 C.95 D.2310. 记等差数列的前n 项和为n S ,若244,20S S ==,则该数列的公差d = A.2 B.3 C.6 D.711. 已知等差数列{}n a 中,26a =,515a =,若2n n b a =,则数列{}n b 的前5项和等于A.30B.45C.90D.18612. 设S n 是等差数列{a n }的前n 项和,若S 5 = S 9,则a 3:a 5 = A.5:9 B.9:5 C.3:5 D.5:3 13. 在等差数列}{n a 中,已知S 3=9,S 9=54,则}{n a 的通项n a 为 A.33-=n a n B.n a n 3= C.2+=n a n D.1+=n a n 14. 若等差数列}{n a 的前3项和93=S 且11=a ,则2a 等于 A.3 B.4 C.5 D.615. 等差数列{}n a 中,11a =,3514a a +=,其前n 项和100n S =,则n = A.9 B.10 C.11 D.1216. 等差数列{a n }的前n 项和为S n ,若等于则442,10,2S S S == A.12B.18C.24D.4217. 已知{}n a 是等差数列,1010a =,其前10项和1070S =,则其公差d = A.23-B.13- C.13 D.2318. 在等差数列{a n }中,若a 4+a 6 =12, S n 是数列{a n }的前n 项和,则S 9的值为 A.48 B.54 C.60 D.6619. 一个只有有限项的等差数列,它的前5项的和为34,最后5项和为146,所有项的和为234,则它的第七项等于 A.22 B.21 C.19 D.1820. 已知数列{a n }的通项公式是a n =2n –49 (n ∈N ),那么数列{a n }的前n 项和S n 达到最小值时的n 的值是 A.23 B.24 C.25 D.2621. 已知等差数列{a n }中,a 2+a 8=8,则该数列前9项和S 9等于 A.18 B.27 C.36 D.45 22. 设S n 是等差数列{a n }的前n 项和,若S 7=35,则a 4= A.8B.7C.6D.523. 等差数列{}n a 中,n S 是前n 项和,且38S S =,7k S S =,则k 的值为 A.4B.11C.2D.1224. 等差数列{a n }中,若a 1+a 4+a 7=39,a 3+a 6+a 9=27,则前9项的和S 9等于 A.66 B.99 C.144 D.297 25. 等差数列{a n }中,a 1+a 2+…+a 50=200,a 51+a 52+…+a 100=2700,则a 1等于 A.-1221B.-21.5C.-20.5D.-2026. 等差数列{a n }的前n 项和为S n ,若a 3+a 17=10,则S 19的值为 A.95 B.100 C.115 D.12527. 在等差数列}{n a 中,,,83125S S a =-=则前n 项和n s 的最小值为 A.80- B.76- C.75- D.74-28. 等差数列{a n }中,若a 3+ a 4+ a 5+ a 6+ a 7=450 则前9项和S 9=A.1620B.810C.900D.67529. 已知等差数列{}n a 的前n 项和为n S ,若5418a a =-,则8S 等于 A.144 B.72 C.54 D.36 30. 在等差数列{a n }中,前n 项和S n =36n -n 2,则S n 中最大的是 A.S 1 B.S 9 C.S 17 D.S 1831. 将含有k 项的等差数列插入4和67之间,结果仍成一新的等差数列,并且新的等差 数列所有项的和为781,则k 的值为A.20B.21C..22D.2432. 设数列{}n a 是等差数列,且n S a a ,6,682=-=是数列 {}n a 的前n 项和,则 A.S 4<S 3 B.S 4==S 2 C.S 6<S 3 D.S 6=S 333. 已知等差数列前n 项和为S n ,若S 15<0,S 14>0,则此数列中绝对值最小的项为 A.第6项 B.第7项 C.第8项 D.第9项 34. 设等差数列{}n a 的前n 项和为n S ,已知20092007120102010,2,20092007S S a S =--==则 A.2008- B.2008 C.2010- D.201035. 已知等差数列{}n a 中,10795=-+a a a ,记n n a a a S +++= 21,则13S 的值为 A.130 B.260 C.156 D.16836. 已知等差数列{}n a 的前n 项和为n S ,且424a a -=,39S =,则数列{}n a 的通项公 式为A.n a n =B.2n a n =+C.21n a n =-D.21n a n =+37. 等差数列{}n a 中,14739a a a ++=,36927a a a ++=,则数列{}n a 前9项和9S 等于 A.297 B.144 C.99D.6638. 等差数列{}n a 的前n 项和)3,2,1(⋅⋅⋅=n S n 当首项1a 和公差d 变化时,若1185a a a ++是一个定值,则下列各数中为定值的是A. 15SB. 16SC.17SD.18S39. 在公差为2的等差数列{}n a 中,如果前17项和为1734S =,那么12a 的值为 A. 2 B. 4 C. 6 D. 840. 已知等差数列30,240,18,}{49===-n n n n a S S S n a 若项和为的前,则n 的值为 A.18B.17C.16D.1541. 已知等差数列854,18,}{S a a S n a n n 则若项和为的前-== A.18 B.36 C.54 D.72 42. 设函数()f x =,类比课本推导等差数列的前n 项和公式的推导方法计算(4)(3)...(0)(1)...(4)(5)f f f f f f -+-++++++的值为A.2 B. 2 C.2 D. 243. 在等差数列{a n }中,,3321=++a a a 165302928=++a a a ,则此数列前30项和等于 A.810 B.840 C.870 D.90044. 设数列}{n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项为 A.1 B.2 C.4 D.645. 已知等差数列{}n a 的公差0<d ,若10,248264=+=⋅a a a a ,则该数列的前n 项和n S 的最大值为 A.50 B.45 C.40 D.3546. 等差数列{}n a 中,11a =,3514a a +=,其前n 项和100n S =,则n = A.9 B.10 C.11 D.1247. 若}{n a 是等差数列,首项01>a ,020082007>+a a ,020082007<⋅a a ,则使数列}{n a 的前n 项和n S 为正数的最大自然数n 是A.4013B. 4014C. 4015D. 401648. 设数列{n a }是等差数列,且n S a a ,6,682=-=是数列{n a }的前n 项和,则A.S 4<S 5B.S 4=S 5C.S 6<S 5D.S 6=S 549. 已知等差数列{}n a 的通项公式()211,2,3n a n n =-=,,记11T a =,1121122,,n n n n n n T a n T T a a n -+-++⎧⎪=⎨++⎪⎩为奇数,为偶数(2,3,n =),那么2n T =A.21n+ B.1162n - C.25 436n n n n ⎧⎨-+≠⎩,=1,,1D.232n n + 50. 已知数列2),1(2,}{a a S S n a n n n n 则且项和为的前-=等于A.4B.2C.1D.—251. 等差数列1062,}{a a a S n a n n ++若项和为的前为一个确定的常数,则下列各个和中,也为确定的常数的是A.S 6B.S 11C.S 12D.S 1352. 设n S 是等差数列{}n a 的前n 项和,若3163=S S 则=126S SA.310 B.13 C.81 D.9153. 已知等差数列{}n a 的前n 项和为n S ,若9S =18,n S =240,4n a -=30,则n 的值为 A.18 B.17 C.16 D.15 54. 若等差数列{}n a 的前5项和525S =,且23a =,则7a = A.12 B.13 C.14 D.1555. 已知{}n a 是等差数列,124a a +=,7828a a +=,则该数列前10项和10S 等于 A.64B.100C.110D.12056. 等差数列{a n }、{b n }的前n 项和分别为S n 、T n ,且3457-+=n n T S n n ,则使得nnb a 为整数的正整数n 的个数是 A.3 B.4 C.5 D.657. 数列{}n a 是公差为2-的等差数列,若509741=+++a a a ,则=++++99963a a a a A.-182 B.-82 C.-148 D.-7858. 设A .B .C 三点共线(该直线不过原点O ),数列{a n }是等差数列,S n 是该数列的前n 项和=a 1+a 200,则S 200=A.200B.100C.50D.30059. 一个等差数列共n 项,其和为90,这个数列的前10项的和为25,后10项的和为75,则项数n 为 A.14 B.16 C.18D.2060. 等差数列{a n }中,a 1>0,公差d <0, S n 为其前n 项和,对任意自然数n ,若点(n, S n )在以下4条曲线中的某一条上,则这条曲线应是61. 已知等差数列{a n }前n 项和S n 有最大值且11011-<a a ,当S n 是最小正数时,n = A.17 B.18 C.19 D.20 62. 记等差数列{}n a 的前n 项和为n S ,若112a =,420S =,则6S = A.16B.24C.36D.4863. 设|a n |是等差数列,若a 2=3,a 7=13,则数列{a n }前8项的和为 A.128 B.80 C.64 D.5664. 已知等差数列}{n a 的前n 项和为S n ,若OC a OA a OB 20043+=,且A 、B 、C 三点共线(该直线不过原点O ),则S 2006 =A.1003B. 1004C. 2006D.2007 65. 等差数列{}n a 的前n 项和为n S ,若1697=+a a ,77=S ,则12a 的值是 A.15 B.30 C.31 D.6466. 已知数列{a n }、{b n }都是公差为1的等差数列,其首项分别为a 1、b 1,且a 1+b 1=5,a 1、b 1∈N *,设C n =a b (n ∈N *),则数列{C n }前10项和等于A.55B.70C.85D.10067. 已知,)1()1()1(22102nn nx a x a x a a x x x ++++=++++++ 若 ++21a an a n -=+-291,那么自然数n 的值为A. 3B.4C.5D.668. 已知等差数列{a n }的前n 项和为S n ,若m >1,m ∈N*,且21121,38m m m m a a a S -+-+==,则m 等于A.11B.10C.9D.869. 已知等差数列{a n }中, S n 是它的前n 项和,若S 16>0, S 17<0, 则当S n 取最大值时,n 的值为 A.16 B.9 C.8 D.10 70. 已知两个等差数列{}n a 和{}n b 的前n 项和分别为A n 和n B ,且7453n n A n B n +=+,则使得n na b 为整数的正整数n 的个数是A.2B.3C.4D.571. 设数列}{n a 是等差数列,且n S a a ,6,673=-=是数列}{n a 的前n 项和,则 A.54S S =B.56S S =C.64S S >D.56S S <72. 已知数列{-2n+25},其前n 项和S n 达到最大值时,n 为A.10B.11C.12D.1373. 若n S 是等差数列{}n a 的前n 项和,其首项10a >,991000a a +>,991000a a ⋅<,则使0n S >成立的最大自然数n 是A.198B.199C.200D.20174. 设等差数列{}n a 满足81335a a =.且10a >.n S 为其前n 项之和.则n S 中最大的是 A.10S B.11S C.20S D.21S 75. 已知S n 是等差数列{a n }的前n 项和,且a 2+a 4+a 7+a 15=40,则S 13的值为 A.20 B.65C.130D.26076. 等差数列{}n a 的通项公式是12+=n a n ,其前n 项和为n S ,则数列⎭⎬⎫⎩⎨⎧n S n 的前10项和为A.75B.70C .120 D.10077. 在等差数列}{n a 中,若30,240,1849===-n n a S S ,则n 的值为 A.14B.15C.16D.1778. 在等差数列{}n a 中,若C a a a =++1383,则其前n 项和n S 的值等于5C 的是 A.15S B.17S C.8S D.7S79. 设{}n a 是等差数列,1359a a a ++=,69a =,则这个数列的前6项和等于 A.12B.24C.36D.4880. {}n a 是等差数列,10110,0S S ><,则使n a <0的最小的n 值是 A.5 B.6 C.7 D.881. 等差数列}{n a 的前n 项和为n S ,若10173=+a a ,则19S 的值是 A.55 B.95 C.100 D.不能确定 82. 在等差数列{a n }中,a 1>0,且3a 8=5a 13,则S n 中最大的是 A.S 21B.S 20C.S 11D.S 1083. 设S n 是等差数列前n 项的和,若9535=a a ,则59S S等于 A.1 B.-1 C.2D.2184. 已知等差数列{a n }的公差为正数,且a 3·a 7=-12,a 4+a 6=-4,则S 20为 A.180B.-180C.90D.-9085. 若{a n }是等差数列,首项a 1>0,a 2003+a 2004>0,a 2003·a 2004<0,则使前n 项和S n >0成立的最大自然数n 是 A.4005B.4006C.4007D.400886. 已知等差数列{}n a 中,247,15a a ==,则前10项的和10S = A.100 B.210 C.380 D.400 87. 设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12=A .310 B.13 C.18 D .1988. 设等差数列{a }的前n 项的和为S n ,若a 1>0,S 4=S 8,则当S n 取得最大值时,n 的值为 A.5 B.6 C.7 D.889. 已知等差数列{a n }的前n 项和为S n ,若1O a B =200OA a OC +,且A 、B 、C 三点共线(该直线不过原点O ),则S 200=A.100B. 101C.200D.201 90. 已知等差数列{a n }的前20项的和为100,那么a 7·a 14的最大值为 A.25 B.50 C.100 D.不存在91. 若某等差数列{a n }中,a 2+a 6+a 16为一个确定的常数,则其前n 项和S n 中也为确定的常数 的是 A.S 17 B.S 15 C.S 8 D.S 792. 在等差数列{a n }中,a 10<0,a 11>0,且a 11>|a 10|,则{a n }的前n 项和S n 中最大的负数为 A.S 17B.S 18C.S 19D.S 2093. 等差数列}{n a 的公差为d ,前n 项的和为S n ,当首项a 1和d 变化时,1182a a a ++是一个定值,则下列各数中也为定值的是 A.S 7B.S 8C.S 13D.S 1594. 在等差数列{ a n }中,S 4 =1, S 8 =4,则a 17 + a 18 + a 19+ a 20 的值是 A .7 B .8 C .9 D .1095. 设a 1, a 2, a 3,……和b 1, b 2, b 3,……都是等差数列,且a 1=25, b 1=75,a 100+b 100=100,则数列a 1+b 1, a 2+b 2,……的前100项的和是A.0B.100C.10000D.不确定96. 等差数列{a n }中,若前15项的和S 15=90,则a 8等于97. 已知S k 表示数列{a k }前k 项和,且S k + S k+1 = a k +1 (k ∈N*),那么此数列是 A .递增数列 B . 递减数列 C .常数列 D . 摆动数列 98. 设S n 是等差数列{a n }的前n 项和,若31a a =95,则59S S等于 A.-1 B.21C.1D.2 99. 等差数列{a n }中,a n -4=30,且前9项的和S 9=18,前n 项和为S n =240,则n 等于 A.15B.16C.17D.18100. 等差数列{a n }中,若a 10=10,a 19=100,前n 项和S n =0,则n 等于 A.7B.9C.17D.19参考答案(仅供参考) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 D C A B A D A C C B C B D A B 16 17 18 19 20 21 22 23 24 25 26 27 2829 30C D B D B C D A B C A C BB D3132 33 34 35 36 37 38 39 40 41 42 43 44 45 AB C C A C C A D D D B B B B 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 B B B D A B A D B B B B B C C 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 C D C A A C B B C D A C A C C 76 77 78 79 80 81 82 83 84 85 86 87 8889 90 A B A B B B B A A B B A BA A 919293949596979899100B C C C C A C C A C。

(完整版)等差数列的前n项和练习含答案

(完整版)等差数列的前n项和练习含答案

课时作业8 等差数列的前n 项和时间:45分钟 满分:100分课堂训练1.已知{a n }为等差数列,a 1=35,d =-2,S n =0,则n 等于( ) A .33 B .34 C .35 D .36【答案】 D【解析】 本题考查等差数列的前n 项和公式.由S n =na 1+n (n -1)2d =35n +n (n -1)2×(-2)=0,可以求出n =36.2.等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则数列前13项的和是( )A .13B .26C .52D .156 【答案】 B【解析】 3(a 3+a 5)+2(a 7+a 10+a 13)=24⇒6a 4+6a 10=24⇒a 4+a 10=4⇒S 13=13(a 1+a 13)2=13(a 4+a 10)2=13×42=26. 3.等差数列的前n 项和为S n ,S 10=20,S 20=50.则S 30=________. 【答案】 90【解析】 等差数列的片断数列和依次成等差数列. ∴S 10,S 20-S 10,S 30-S 20也成等差数列. ∴2(S 20-S 10)=(S 30-S 20)+S 10,解得S 30=90.4.等差数列{a n }的前n 项和为S n ,若S 12=84,S 20=460,求S 28. 【分析】 (1)应用基本量法列出关于a 1和d 的方程组,解出a 1和d ,进而求得S 28;(2)因为数列不是常数列,因此S n 是关于n 的一元二次函数且常数项为零.设S n =an 2+bn ,代入条件S 12=84,S 20=460,可得a 、b ,则可求S 28;(3)由S n =d 2n 2+n (a 1-d 2)得S n n =d 2n +(a 1-d2),故⎩⎨⎧⎭⎬⎫S n n 是一个等差数列,又2×20=12+28,∴2×S 2020=S 1212+S 2828,可求得S 28.【解析】 方法一:设{a n }的公差为d , 则S n =na 1+n (n -1)2d .由已知条件得:⎩⎨⎧12a 1+12×112d =84,20a 1+20×192d =460,整理得⎩⎨⎧2a 1+11d =14,2a 1+19d =46,解得⎩⎨⎧a 1=-15,d =4.所以S n =-15n +n (n -1)2×4=2n 2-17n , 所以S 28=2×282-17×28=1 092.方法二:设数列的前n 项和为S n ,则S n =an 2+bn . 因为S 12=84,S 20=460,所以⎩⎨⎧122a +12b =84,202a +20b =460,整理得⎩⎨⎧12a +b =7,20a +b =23.解之得a =2,b =-17, 所以S n =2n 2-17n ,S 28=1 092. 方法三:∵{a n }为等差数列, 所以S n =na 1+n (n -1)2d ,所以S n n =a 1-d 2+d2n ,所以⎩⎨⎧⎭⎬⎫S n n 是等差数列.因为12,20,28成等差数列, 所以S 1212,S 2020,S 2828成等差数列, 所以2×S 2020=S 1212+S 2828,解得S 28=1 092.【规律方法】 基本量法求出a 1和d 是解决此类问题的基本方法,应熟练掌握.根据等差数列的性质探寻其他解法,可以开阔思路,有时可以简化计算.课后作业一、选择题(每小题5分,共40分)1.已知等差数列{a n }中,a 2=7,a 4=15,则前10项的和S 10等于( )A .100B .210C .380D .400【答案】 B【解析】 d =a 4-a 24-2=15-72=4,则a 1=3,所以S 10=210.2.在等差数列{a n }中,a 2+a 5=19,S 5=40,则a 10=( ) A .27 B .24 C .29 D .48【答案】 C 【解析】由已知⎩⎨⎧2a 1+5d =19,5a 1+10d =40.解得⎩⎨⎧a 1=2,d =3.∴a 10=2+9×3=29.3.数列{a n }的前n 项和为S n =n 2+2n -1,则这个数列一定是( ) A .等差数列 B .非等差数列 C .常数列 D .等差数列或常数列 【答案】 B【解析】 当n ≥2时,a n =S n -S n -1=n 2+2n -1-[(n -1)2+2(n -1)-1]=2n +1,当n =1时a 1=S 1=2.∴a n =⎩⎨⎧2,n =1,2n +1,n ≥2,这不是等差数列.4.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )C .8D .9【答案】 A 【解析】⎩⎨⎧a 1=-11,a 4+a 6=-6,∴⎩⎨⎧a 1=-11,d =2,∴S n =na 1+n (n -1)2d =-11n +n 2-n =n 2-12n . =(n -6)2-36. 即n =6时,S n 最小.5.一个只有有限项的等差数列,它的前5项的和为34,最后5项的和为146,所有项的和为234,则它的第7项等于( )A .22B .21C .19D .18【答案】 D【解析】 ∵a 1+a 2+a 3+a 4+a 5=34, a n +a n -1+a n -2+a n -3+a n -4=146, ∴5(a 1+a n )=180,a 1+a n =36, S n =n (a 1+a n )2=n ×362=234. ∴n =13,S 13=13a 7=234.∴a 7=18.6.一个有11项的等差数列,奇数项之和为30,则它的中间项为( )A .8B .7【答案】 D【解析】 S 奇=6a 1+6×52×2d =30,a 1+5d =5,S 偶=5a 2+5×42×2d =5(a 1+5d )=25,a 中=S 奇-S 偶=30-25=5.7.若两个等差数列{a n }和{b n }的前n 项和分别是S n ,T n ,已知S n T n=7n n +3,则a 5b 5等于( ) A .7 B.23 C.278 D.214【答案】 D【解析】 a 5b 5=2a 52b 5=a 1+a 9b 1+b 9=92(a 1+a 9)92(b 1+b 9)=S 9T 9=214.8.已知数列{a n }中,a 1=-60,a n +1=a n +3,则|a 1|+|a 2|+|a 3|+…+|a 30|等于( )A .445B .765C .1 080D .1 305 【答案】 B【解析】 a n +1-a n =3,∴{a n }为等差数列. ∴a n =-60+(n -1)×3,即a n =3n -63.∴a n =0时,n =21,a n >0时,n >21,a n <0时,n <21. S ′30=|a 1|+|a 2|+|a 3|+…+|a 30|=-a 1-a 2-a 3-…-a 21+a 22+a 23+…+a 30 =-2(a 1+a 2+…+a 21)+S 30 =-2S 21+S 30 =765.二、填空题(每小题10分,共20分)9.设等差数列{a n }的前n 项和为S n ,若a 6=S 3=12,则数列的通项公式a n =________.【答案】 2n【解析】 设等差数列{a n }的公差d ,则⎩⎨⎧a 1+5d =12a 1+d =4,∴⎩⎨⎧a 1=2d =2,∴a n =2n .10.等差数列共有2n +1项,所有奇数项之和为132,所有偶数项之和为120,则n 等于________.【答案】 10【解析】 ∵等差数列共有2n +1项,∴S 奇-S 偶=a n +1=S 2n +12n +1.即132-120=132+1202n +1,求得n =10.【规律方法】 利用了等差数列前n 项和的性质,比较简捷. 三、解答题(每小题20分,共40分.解答应写出必要的文字说明、证明过程或演算步骤)11.在等差数列{a n }中,(1)已知a 6=10,S 5=5,求a 8和S 8; (2)若a 1=1,a n =-512,S n =-1 022,求d .【分析】 在等差数列中,五个重要的量,只要已知三个量,就可求出其他两个量,其中a 1和d 是两个最基本量,利用通项公式和前n 项和公式,先求出a 1和d ,然后再求前n 项和或特别的项.【解析】 (1)∵a 6=10,S 5=5,∴⎩⎨⎧a 1+5d =10,5a 1+10d =5.解方程组,得a 1=-5,d =3, ∴a 8=a 6+2d =10+2×3=16, S 8=8(a 1+a 8)2=44. (2)由S n =n (a 1+a n )2=n (-512+1)2=-1 022, 解得n =4.又由a n =a 1+(n -1)d , 即-512=1+(4-1)d , 解得d =-171.【规律方法】 一般地,等差数列的五个基本量a 1,a n ,d ,n ,S n ,知道其中任意三个量可建立方程组,求出另外两个量,即“知三求二”.我们求解这类问题的通性通法,是先列方程组求出基本量a 1和d ,然后再用公式求出其他的量.12.已知等差数列{a n },且满足a n =40-4n ,求前多少项的和最大,最大值为多少?【解析】 方法一:(二次函数法)∵a n =40-4n ,∴a 1=40-4=36, ∴S n =(a 1+a n )n 2=36+40-4n2·n =-2n 2+38n =-2[n 2-19n +(192)2]+1922=-2(n -192)2+1922.令n -192=0,则n =192=9.5,且n ∈N +, ∴当n =9或n =10时,S n 最大,∴S n 的最大值为S 9=S 10=-2(10-192)2+1922=180. 方法二:(图象法)∵a n =40-4n ,∴a 1=40-4=36, a 2=40-4×2=32,∴d =32-36=-4,S n =na 1+n (n -1)2d =36n +n (n -1)2·(-4)=-2n 2+38n , 点(n ,S n )在二次函数y =-2x 2+38x 的图象上,S n 有最大值,其对称轴为x =-382×(-2)=192=9.5,∴当n =10或9时,S n 最大.∴S n 的最大值为S 9=S 10=-2×102+38×10=180. 方法三:(通项法)∵a n =40-4n ,∴a 1=40-4=36,a 2=40-4×2=32,∴d =32-36=-4<0,数列{a n }为递减数列.令⎩⎨⎧a n ≥0,a n +1≤0,有⎩⎨⎧40-4n ≥0,40-4(n +1)≤0,∴⎩⎨⎧n ≤10,n ≥9,即9≤n ≤10.当n =9或n =10时,S n 最大.∴S n 的最大值为S 9=S 10=a 1+a 102×10=36+02×10=180. 【规律方法】 对于方法一,一定要强调n ∈N +,也就是说用函数式求最值,不能忽略定义域,另外,三种方法中都得出n =9或n =10,需注意a m =0时,S m -1=S m 同为S n 的最值.。

等差数列求和练习题以及答案解析

等差数列求和练习题以及答案解析

等差数列求和练习题以及答案解析练题1已知等差数列的首项为5,公差为3,请求前10项的和。

解析根据等差数列求和公式:其中:a 是首项,d 是公差,n 是项数。

代入已知条件,得到:所以,前10项的和为245。

练题2一等差数列的首项为7,公差为2,已知前6项的和为90,请求这个等差数列的第7项。

解析可利用等差数列求和公式和已知条件来解答该问题。

根据等差数列求和公式:已知前6项的和为90,代入公式得到:90 = (6/2)(2a + (6-1)d)其中,a 是首项,d 是公差。

将已知条件代入方程中,得到:90 = 3(2a + 5d)进一步整理得到:2a + 5d = 30由已知条件可得到方程组:{a = 72a + 5d = 30}解方程组可得到 a = 7,d = 4。

根据等差数列的通项公式:其中,a 是首项,d 是公差,n 是项数。

代入已知条件,得到:an = a + (n-1)da7 = 7 + (7-1)4a7 = 7 + 6*4a7 = 7 + 24a7 = 31所以,该等差数列的第7项为31。

练题3已知等差数列的前15项的和为135,公差为1,请求该等差数列的首项。

解析可利用等差数列求和公式和已知条件来解答该问题。

根据等差数列求和公式:已知前15项的和为135,代入公式得到:135 = (15/2)(2a + (15-1)1)整理得到:270 = 15(2a + 14)进一步整理得到:2a + 14 = 18解方程可得到 a = 2。

所以,该等差数列的首项为2。

练题4一等差数列的首项为3,公差为4,已知该等差数列的前n项和为49n,请问 n 的值是多少?解析可利用等差数列的前n项和公式来解答该问题。

根据等差数列的前n项和公式:已知该等差数列的前n项和为49n,代入公式得到:49n = (n/2)(2a + (n-1)d)其中,a 是首项,d 是公差。

代入已知条件,得到:49n = (n/2)(2*3 + (n-1)*4)整理得到:49n = n(6 + 4n - 4)进一步整理得到:49n = n(4n + 2)解方程可得到 n = 7。

等差数列求和及练习题(整理).doc

等差数列求和及练习题(整理).doc

等差数列求和引例:计算 1+2+3+4++97+98+99+100一、有关概念 :像1、2、3、4、5、6、7、8、9、这样连起来的一串数称为数列;数列中每一个数叫这个数列的一项,排在第一个位置的叫首项,第二个叫第二项,第三个叫第三项,,最后一项又叫末项;共有多少个数又叫项数;如果一个数列,从第二项开始,每一项与前一项之差都等于一个固定的数,我们就叫做等差数列。

这个固定的数就叫做“公差”。

二、有关公式:和 =(首项 +末项)×项数÷ 2末项 =首项 +公差×(项数 -1)公差 =(末项 -首项)÷(项数 -1)项数 =(末项 -首项)÷公差 +1三、典型例题:例 1、聪明脑筋转转转:判断下列数列是否是等差数列?是的请打“√”,并把等差数列的首项,末项、公差及项数写出来,如果不是请打“×”。

判断首项末项公差项数(1) 1、2、4、8、16、 32.()()()()()(2)42、49、56、63、70、77. ()()()()()(3)5、1、4、1、3、1、2、1. ()()()()()(4)44、55、66、77、88、99、110()()()()()练习1、填空:数列首项末项公差项数2、5、8、 11、140、4、8、 12、163、15、27、39、511、2、3、 4、5、、 48、49、 502、4、6、 8、、 96、 98、100例 2、已知等差数列 1,8,15, , 78.共 12 项,和是多少?(博易 P27例 2)(看 ppt,推出公式)例 3、计算 1+3+5+7++35+37+39练习 2:计算下列各题(1)6+10+14+18+22+26+30 (3)1+3+5+7++95+97+99(2)3+15+27+39+51+63(4)2+4+6+8++96+98+100(3)已知一列数 4,6,8,10 ,,64,共有 31 个数,这个数列的和是多少?例 5、有一堆圆木堆成一堆,从上到下,上面一层有 10 根,每向下一层增加一根,共堆了 10 层。

(完整)三年级奥数等差数列求和习题及答案

(完整)三年级奥数等差数列求和习题及答案

计算(三)等差数列求和知识精讲一、定义:一个数列的前n 项的和为这个数列的和。

二、表达方式:常用n S 来表示 。

三:求和公式:和=(首项+末项)⨯项数2÷,1()2n n s a a n =+⨯÷。

对于这个公式的得到可以从两个方面入手:(思路1)1239899100++++++11002993985051=++++++++共50个101()()()() 101505050=⨯= (思路2)这道题目,还可以这样理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即,和 (1001)100 2 10150 5050=+⨯÷=⨯=。

四、中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数。

譬如:① 48123236436922091800+++++=+⨯÷=⨯=(),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯; ② 65636153116533233331089++++++=+⨯÷=⨯=(),题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯。

例题精讲:例1:求和:(1)1+2+3+4+5+6 = (2)1+4+7+11+13=(3)1+4+7+11+13+ (85)分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。

例如(3)式项数=(85-1)÷3+1=29和=(1+85)×29÷2=1247答案:(1)21 (2)36 (3)1247例2:求下列各等差数列的和。

(1)1+2+3+4+…+199(2)2+4+6+…+78(3)3+7+11+15+…+207分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。

(完整版)三年级奥数等差数列求和习题及答案

(完整版)三年级奥数等差数列求和习题及答案

计算(三)等差数列求和知识精讲一、定义:一个数列的前n 项的和为这个数列的和。

二、表达方式:常用n S 来表示 。

三:求和公式:和=(首项+末项)⨯项数2÷,1()2n n s a a n =+⨯÷。

对于这个公式的得到可以从两个方面入手:(思路1)1239899100++++++L11002993985051=++++++++L 1444444442444444443共50个101()()()() 101505050=⨯= (思路2)这道题目,还可以这样理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++L L L 和=1+和倍和即,和 (1001)100 2 10150 5050=+⨯÷=⨯=。

四、中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数。

譬如:① 48123236436922091800+++++=+⨯÷=⨯=L (),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯; ② 65636153116533233331089++++++=+⨯÷=⨯=L (),题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯。

例题精讲:例1:求和:(1)1+2+3+4+5+6 = (2)1+4+7+11+13=(3)1+4+7+11+13+ (85)分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。

例如(3)式项数=(85-1)÷3+1=29和=(1+85)×29÷2=1247答案:(1)21 (2)36 (3)1247例2:求下列各等差数列的和。

(1)1+2+3+4+…+199(2)2+4+6+…+78(3)3+7+11+15+…+207分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。

利用等差数列求和公式求解问题的练习

利用等差数列求和公式求解问题的练习

利用等差数列求和公式求解问题的练习等差数列是指一个数列,从第二项开始,每一项与它前面的项之差都相等。

而等差数列求和公式则是用来求等差数列前n项和的公式。

本文将通过一些具体问题案例来练习利用等差数列求和公式解决问题。

问题一:某班级共有30名学生,学生的身高从140cm开始,每个学生的身高相差5cm,问这个班级的学生身高总和是多少?解答一:这是一个等差数列,第一项a1=140cm,公差d=5cm,共有n=30个学生。

根据等差数列求和公式,等差数列的前n项和Sn可以表示为:Sn = n/2 * (2a1 + (n-1)d)代入已知数据,得到Sn = 30/2 * (2*140 + (30-1)*5) = 30/2 * (280 + 145) = 30/2 * 425 = 15 * 425 = 6375所以,这个班级的学生身高总和是6375cm。

问题二:一个等差数列的首项是3,公差是2,求该数列的前100项和。

解答二:这仍然是一个等差数列,第一项a1=3,公差d=2,共有n=100项。

根据等差数列求和公式,等差数列的前n项和Sn可以表示为:Sn = n/2 * (2a1 + (n-1)d)代入已知数据,得到Sn = 100/2 * (2*3 + (100-1)*2) = 100/2 * (6 + 199*2) = 100/2 * (6 + 398) = 100/2 * 404 = 50 * 404 = 20200所以,这个等差数列的前100项和是20200。

问题三:一个等差数列的前五项的和是30,公差是3,求该数列的前十项和。

解答三:我们已知等差数列的前五项和Sn1=30,公差d=3,要求等差数列的前十项和Sn2。

根据等差数列的性质,前十项和可以表示为前五项和与后五项和之和。

即,Sn2 = Sn1 + Sn3其中,Sn1 = 30,Sn3可以用等差数列求和公式表示:Sn3 = n/2 * (2a6 + (n-1)d) = 5/2 * (2a1 + (5-1)d) = 5/2 * (2a1 + 4d) =5/2 * (2a1 + 4*3) = 5/2 * (2a1 + 12)根据等差数列的性质,a1与a6的差值等于d,即a1 + 5d = a6 = a1 + 6d,代入可得:Sn3 = 5/2 * (a1 + 5d + 12) = 5/2 * (a1 + 6d) = 5/2 * (a6) = 5/2 * (a1 + 5d) = 5 * Sn1所以,Sn2 = Sn1 + Sn3 = 30 + 5 * 30 = 30 + 150 = 180所以,该等差数列的前十项和是180。

等差数列求和练习题

等差数列求和练习题

等差数列求和练习题介绍本文档提供一些等差数列求和的练题,旨在帮助读者巩固和提升对等差数列求和的理解和运用。

练题练题1已知等差数列的公差为2,首项为1,求前10项的和。

解答:我们可以使用等差数列求和公式来解答这个问题。

等差数列求和公式如下:S = (n/2)(a + l)其中,S表示前n项和,n表示项数,a表示首项,l表示末项。

代入已知条件,我们有:S = (10/2)(1 + (1 + (10 - 1) * 2))= 5(1 + 19)= 5 * 20= 100所以,前10项的和为100。

练题2已知等差数列的公差为3,首项为4,求前12项的和。

解答:使用等差数列求和公式,代入已知条件:S = (12/2)(4 + (4 + (12 - 1) * 3))= 6(4 + 37)= 6 * 41= 246所以,前12项的和为246。

练题3已知等差数列的公差为-1,首项为10,求前15项的和。

解答:使用等差数列求和公式,代入已知条件:S = (15/2)(10 + (10 + (15 - 1) * -1))= 7.5(10 + -4)= 7.5 * 6= 45所以,前15项的和为45。

总结通过以上练题,我们可以巩固等差数列求和的方法和公式。

只需要知道等差数列的公差和首项,我们就能轻松求得前n项的和。

等差数列求和的公式为:S = (n/2)(a + l),其中S为前n项的和,n 为项数,a为首项,l为末项。

以上是关于等差数列求和练习题的文档,希望能帮助您更好地理解和运用等差数列求和的方法和公式。

等差数列求和

等差数列求和

1.计算:13+17+21+25+29+33+37+41=__________.来源:2014·乐乐课堂·练习难度:简单类型:填空题答案:2162.计算:32+34+36+38+40+42+44+46+48+50=__________.来源:2014·乐乐课堂·练习难度:简单类型:填空题答案:4103.计算:21+24+27+30+33+36+39+42+45=__________.来源:2014·乐乐课堂·练习难度:简单类型:填空题答案:2974.3+7+11+15+……,等差数列共12项,那么这12项的和是__________.来源:2014·乐乐课堂·练习难度:简单类型:填空题答案:3005.4+7+10+13+……,等差数列共20项,那么这20项的和是__________.来源:2014·乐乐课堂·练习难度:中等类型:填空题答案:6506.94+88+82+……,等差数列共14项,那么这14项的和是__________.来源:2014·乐乐课堂·练习难度:中等类型:填空题答案:7707.计算:5+7+9+……+53+55=__________.来源:2014·乐乐课堂·练习难度:中等类型:填空题答案:7808.计算:13+19+25+……+67+73=__________.来源:2014·乐乐课堂·练习难度:中等类型:填空题答案:4739.计算:90+83+76+……+34+27=__________.来源:2014·乐乐课堂·练习难度:简单答案:58510.文雯为了增肥,计划每天吃包子,第一天她吃了5个包子,以后每天都比前一天多吃3个包子,最后一天吃了32个包子.那么文雯一共吃了________天包子,共吃了________个包子.来源:2014·乐乐课堂·练习难度:简单类型:填空题答案:10185首页上一页123下一页尾页11.雁雁为了减肥,计划每天做仰卧起坐,第一天她做了5个,以后每一天都比前一天多做2个,最后一天做了95个.那么雁雁一共做了________天的仰卧起坐,共做了________个仰卧起坐.来源:2014·乐乐课堂·练习难度:简单类型:填空题答案:46230012.旦旦练习跳绳,第一天跳绳3次,以后每一天都比前一天多跳4次,最后一天跳绳39次.那么旦旦跳绳跳了________天,共跳绳________次.来源:2014·乐乐课堂·练习难度:简单答案:1021013.一个等差数列共15项,那么这个等差数列的中间数是第__________项.来源:2014·乐乐课堂·练习难度:简单类型:填空题答案:814.一个等差数列共9项,那么这个等差数列的中间数是第__________项.来源:2014·乐乐课堂·练习难度:简单类型:填空题答案:515.一个等差数列共13项,那么这个等差数列的中间数是第__________项.来源:2014·乐乐课堂·练习难度:简单类型:填空题答案:716.馋嘴猴特别爱吃香蕉,它每周吃的香蕉数量成等差数列,已知它第5周吃了20根香蕉.馋嘴猴前9周一共吃了__________根香蕉.来源:2014·乐乐课堂·练习难度:简单类型:填空题17.旦旦很喜欢吃包子,她每天吃的包子数成等差数列,已知她第6天吃了30个包子,那么旦旦前11天一共吃了__________个包子.来源:2014·乐乐课堂·练习难度:简单类型:填空题答案:33018.雁雁很喜欢吃鸡蛋,她每天吃的鸡蛋数成等差数列,已知她第4天吃了10个鸡蛋,那么雁雁前7天共吃了__________个鸡蛋.来源:2014·乐乐课堂·练习难度:简单类型:填空题答案:7019.一个等差数列共9项,和等于180,那么这个等差数列的中间项是第________项,这个数是________.来源:2014·乐乐课堂·练习难度:简单类型:填空题答案:52020.一个等差数列共7项,和等于210,那么这个等差数列的中间项是第________项,这个数是________.来源:2014·乐乐课堂·练习类型:填空题答案:430首页上一页123下一页尾页21.一个等差数列共5项,和等于100,那么这个等差数列的中间项是第________项,这个数是________.来源:2014·乐乐课堂·练习难度:简单类型:填空题答案:32022.已知一个等差数列的下列条件:①第1项是8;②第5项是20;③第6项是23;④第11项是38;⑤公差是3;⑥共11项.以下选项中不能求出这个等差数列和的是__________.A.①、④和⑥B.①、⑤和⑥C.②和⑥D.③和⑥来源:2014·乐乐课堂·练习难度:中等类型:选择题答案:C23.已知一个等差数列的下列条件:①第1项是7;②第7项是25;③第8项是28;④第13项是43;⑤公差是3;⑥共13项.以下选项中不能求出这个等差数列和的是__________.A.①、④和⑥B.③、⑤和⑥C.②和⑥D.③和⑥来源:2014·乐乐课堂·练习类型:选择题答案:D24.已知一个等差数列的下列条件:①第1项是9;②第4项是21;③第5项是25;④第9项是41;⑤公差是4;⑥共9项.以下选项中不能求出这个等差数列和的是__________.A.④和⑥B.③和⑥C.①、④和⑥D.①、⑤和⑥来源:2014·乐乐课堂·练习难度:中等类型:选择题答案:A首页上一页123下一页尾页。

(完整版)数列求和经典例题

(完整版)数列求和经典例题

数列通项的方法⑴利用观察法求数列的通项.⑵利用公式法求数列的通项:①⎩⎨⎧≥-==-)2()111n S S n S a n nn (;②{}n a 等差、等比数列{}n a 公式。

⑶应用迭加(迭乘、迭代)法求数列的通项:①)(1n f a a n n +=+;②).(1n f a a n n =+ ⑶构造等差、等比数列求通项:① q pa a n n +=+1;②n n n q pa a +=+1;③)(1n f pa a n n +=+;④n n n a q a p a ⋅+⋅=++12.[示例]已知下列各数列}{n a 的前n 项和n S 的公式为()*223N n n n S n ∈-=,求}{n a 的通项公式。

题型一 利用公式法求通项[例]数列{a n }的前n 项和记为S n ,a 1=1,a n +1=2S n +1(n ≥1). (1)求{a n }的通项公式;(2)等差数列{b n }的各项为正数,前n 项和为T n ,且T 3=15,又a 1+b 1,a 2+b 2,a 3+b 3成等比数列,求T n 。

[练3]数列{a n }是公差大于零的等差数列,2a ,5a 是方程2x 02712=+-x 的两根.数列{}n b 的前n 项和为n T ,且n T 211-=n b ()*∈N n ,求数列{}n a ,{}n b 的通项公式。

[例]已知}{n a 的首项11=a ,)(2*1N n n a a n n ∈+=+,,求}{n a 的通项公式,并求100a 的值.题型二 应用迭加(迭乘、迭代)法求通项[练1]数列{}n a 中,)(,111n n n a a n a a -==+,则数列{}n a 的通项=n a ( ).A 12-n .B 2n .C 1)1(-+n nn .D n[练2]已知n S 为数列{}n a 的前n 项和,11=a ,n n a n S ⋅=2,求数列{}n a 的通项公式。

等差数列求和基础题

等差数列求和基础题

等差数列求和基础题一.选择题1. 等差数列{}n a 的前n 项和为n S ,若142,20,a S ==则6S =A.16B.24C.36D.422. 设等差数列{}n a 的前n 项和为n S ,若111a =-,376a a +=-,则当n S 取最小值时, n 等于A.8B.7C.6D.93. 已知n S 是等差数列{}n a 的前n 项和,且63S =,1118S =,则9a 等于A.3B.5C.8D.154. 已知等差数列{a n }前n 项的和为S n , 233=a , S 3=9,则a 1= A.23 B.29 C.-3 D.6 5. 已知等差数列{}n a 中,256,15a a ==,若2n n b a =,则数列{}n b 的前5项和为A. 90B. 45C. 30D. 1866. 等差数列}{n a 的前n 项和为n S ,若119717,170a a a S ++=则的值为A.10B.20C.25D.307. 设等差数列{a n }前n 项和为S n . 若a 1= -11,a 4+a 6= -6 ,则当S n 取最小值时,n 等于A.6B. 7C.8D.98. 设等差数列{}n a 的前n 项和为n S ,246a a +=,则5S 等于A.10B.12C.15D.309. 已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =A.138B.135C.95D.2310. 记等差数列的前n 项和为n S ,若244,20S S ==,则该数列的公差d =A.2B.3C.6D.711. 已知等差数列{}n a 中,26a =,515a =,若2n n b a =,则数列{}n b 的前5项和等于A.30B.45C.90D.18612. 设S n 是等差数列{a n }的前n 项和,若S 5 = S 9,则a 3:a 5 =A.5:9B.9:5C.3:5D.5:313. 在等差数列}{n a 中,已知S 3=9,S 9=54,则}{n a 的通项n a 为A.33-=n a nB.n a n 3=C.2+=n a nD.1+=n a n14. 若等差数列}{n a 的前3项和93=S 且11=a ,则2a 等于A.3B.4C.5D.615. 等差数列{}n a 中,11a =,3514a a +=,其前n 项和100n S =,则n =A.9B.10C.11D.1216. 等差数列{a n }的前n 项和为S n ,若等于则442,10,2S S S ==A.12B.18C.24D.4217. 已知{}n a 是等差数列,1010a =,其前10项和1070S =,则其公差d =A.23- B.13- C.13 D.2318. 在等差数列{a n }中,若a 4+a 6 =12, S n 是数列{a n }的前n 项和,则S 9的值为A.48B.54C.60D.6619. 一个只有有限项的等差数列,它的前5项的和为34,最后5项和为146,所有项的和为234,则它的第七项等于A.22B.21C.19D.1820. 已知数列{a n }的通项公式是a n =2n –49 (n ∈N ),那么数列{a n }的前n 项和S n 达到最小值时的n 的值是A.23B.24C.25D.2621. 已知等差数列{a n }中,a 2+a 8=8,则该数列前9项和S 9等于A.18B.27C.36D.4522. 设S n 是等差数列{a n }的前n 项和,若S 7=35,则a 4=A.8B.7C.6D.523. 等差数列{}n a 中,n S 是前n 项和,且38S S =,7k S S =,则k 的值为A.4B.11C.2D.1224. 等差数列{a n }中,若a 1+a 4+a 7=39,a 3+a 6+a 9=27,则前9项的和S 9等于A.66B.99C.144D.29725. 等差数列{a n }中,a 1+a 2+…+a 50=200,a 51+a 52+…+a 100=2700,则a 1等于A.-1221B.-21.5C.-20.5D.-2026. 等差数列{a n }的前n 项和为S n ,若a 3+a 17=10,则S 19的值为A.95B.100C.115D.12527. 在等差数列}{n a 中,,,83125S S a =-=则前n 项和n s 的最小值为 txjyA.80-B.76-C.75-D.74-28. 等差数列{a n }中,若a 3+ a 4+ a 5+ a 6+ a 7=450 则前9项和S 9=A.1620B.810C.900D.67529. 已知等差数列{}n a 的前n 项和为n S ,若5418a a =-,则8S 等于A.144B.72C.54D.3630. 在等差数列{a n }中,前n 项和S n =36n -n 2,则S n 中最大的是A.S 1B.S 9C.S 17D.S 1831. 将含有k 项的等差数列插入4和67之间,结果仍成一新的等差数列,并且新的等差数列所有项的和为781,则k 的值为A.20B.21C..22D.2432. 设数列{}n a 是等差数列,且n S a a ,6,682=-=是数列 {}n a 的前n 项和,则A.S 4<S 3B.S 4==S 2C.S 6<S 3D.S 6=S 333. 已知等差数列前n 项和为S n ,若S 15<0,S 14>0,则此数列中绝对值最小的项为A.第6项B.第7项C.第8项D.第9项34. 设等差数列{}n a 的前n 项和为n S ,已知20092007120102010,2,20092007S S a S =--==则 A.2008- B.2008 C.2010- D.201035. 已知等差数列{}n a 中,10795=-+a a a ,记n n a a a S +++= 21,则13S 的值为A.130B.260C.156D.16836. 已知等差数列{}n a 的前n 项和为n S ,且424a a -=,39S =,则数列{}n a 的通项公 式为A.n a n =B.2n a n =+C.21n a n =-D.21n a n =+37. 等差数列{}n a 中,14739a a a ++=,36927a a a ++=,则数列{}n a 前9项和9S 等于A.297B.144C.99D.6638. 等差数列{}n a 的前n 项和)3,2,1(⋅⋅⋅=n S n 当首项1a 和公差d 变化时,若1185a a a ++是一个定值,则下列各数中为定值的是A. 15SB. 16SC.17SD.18S39. 在公差为2的等差数列{}n a 中,如果前17项和为1734S =,那么12a 的值为A. 2B. 4C. 6D. 840. 已知等差数列30,240,18,}{49===-n n n n a S S S n a 若项和为的前,则n 的值为A.18B.17C.16D.1541. 已知等差数列854,18,}{S a a S n a n n 则若项和为的前-==A.18B.36C.54D.7242. 设函数()f x =,类比课本推导等差数列的前n 项和公式的推导方法计算(4)(3)...(0)(1)...(4)(5)f f f f f f -+-++++++的值为A.2B. 2C.2D. 243. 在等差数列{a n }中,,3321=++a a a 165302928=++a a a ,则此数列前30项和等于A.810B.840C.870D.90044. 设数列}{n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项为A.1B.2C.4D.645. 已知等差数列{}n a 的公差0<d ,若10,248264=+=⋅a a a a ,则该数列的前n 项和n S 的最大值为A.50B.45C.40D.3546. 等差数列{}n a 中,11a =,3514a a +=,其前n 项和100n S =,则n =A.9B.10C.11D.1247. 若}{n a 是等差数列,首项01>a ,020082007>+a a ,020082007<⋅a a ,则使数列}{n a 的前n 项和n S 为正数的最大自然数n 是A.4013B. 4014C. 4015D. 401648. 设数列{n a }是等差数列,且n S a a ,6,682=-=是数列{n a }的前n 项和,则A.S 4<S 5B.S 4=S 5C.S 6<S 5D.S 6=S 549. 已知等差数列{}n a 的通项公式()211,2,3n a n n =-=,,记11T a =,1121122,,n n n n n n T a n T T a a n -+-++⎧⎪=⎨++⎪⎩为奇数,为偶数(2,3,n =),那么2n T = A.21n + B.1162n - C.25 436n n n n ⎧⎨-+≠⎩,=1,,1D.232n n + 50. 已知数列2),1(2,}{a a S S n a n n n n 则且项和为的前-=等于A.4B.2C.1D.—2 51. 等差数列1062,}{a a a S n a n n ++若项和为的前为一个确定的常数,则下列各个和中,也为确定的常数的是A.S 6B.S 11C.S 12D.S 1352. 设n S 是等差数列{}n a 的前n 项和,若3163=S S 则=126S S A.310 B.13 C.81 D.91 53. 已知等差数列{}n a 的前n 项和为n S ,若9S =18,n S =240,4n a -=30,则n 的值为A.18B.17C.16D.1554. 若等差数列{}n a 的前5项和525S =,且23a =,则7a =A.12B.13C.14D.1555. 已知{}n a 是等差数列,124a a +=,7828a a +=,则该数列前10项和10S 等于A.64B.100C.110D.12056. 等差数列{a n }、{b n }的前n 项和分别为S n 、T n ,且3457-+=n n T S n n ,则使得nn b a 为整数的正整数n 的个数是A.3B.4C.5D.657. 数列{}n a 是公差为2-的等差数列,若509741=+++a a a ,则=++++99963a a a a A.-182 B.-82 C.-148 D.-7858. 设A .B .C 三点共线(该直线不过原点O ),数列{a n }是等差数列,S n 是该数列的前n 项和 =a 1+a 200,则S 200=A.200B.100C.50D.30059. 一个等差数列共n 项,其和为90,这个数列的前10项的和为25,后10项的和为75,则项数n 为A.14B.16C.18D.2060. 等差数列{a n }中,a 1>0,公差d <0, S n 为其前n 项和,对任意自然数n ,若点(n, S n )在以下4条曲线中的某一条上,则这条曲线应是61. 已知等差数列{a n }前n 项和S n 有最大值且11011-<a a ,当S n 是最小正数时,n = A.17 B.18 C.19 D.2062. 记等差数列{}n a 的前n 项和为n S ,若112a =,420S =,则6S = A.16 B.24 C.36 D.4863. 设|a n |是等差数列,若a 2=3,a 7=13,则数列{a n }前8项的和为A.128B.80C.64D.5664. 已知等差数列}{n a 的前n 项和为S n ,若OC a OA a OB 20043+=,且A 、B 、C 三点共线(该直线不过原点O ),则S 2006 =A.1003B. 1004C. 2006D.200765. 等差数列{}n a 的前n 项和为n S ,若1697=+a a ,77=S ,则12a 的值是A.15B.30C.31D.6466. 已知数列{a n }、{b n }都是公差为1的等差数列,其首项分别为a 1、b 1,且a 1+b 1=5,a 1、b 1∈N *,设C n =a b (n ∈N *),则数列{C n }前10项和等于A.55B.70C.85D.10067. 已知,)1()1()1(22102nn n x a x a x a a x x x ++++=++++++ 若 ++21a a n a n -=+-291,那么自然数n 的值为A. 3B.4C.5D.668. 已知等差数列{a n }的前n 项和为S n ,若m >1,m ∈N*,且21121,38m m m m a a a S -+-+==,则m 等于A.11B.10C.9D.869. 已知等差数列{a n }中, S n 是它的前n 项和,若S 16>0, S 17<0, 则当S n 取最大值时,n 的值为 A.16 B.9 C.8 D.1070. 已知两个等差数列{}n a 和{}n b 的前n 项和分别为A n 和n B ,且7453n n A n B n +=+,则使得n na b 为整数的正整数n 的个数是 A.2 B.3 C.4 D.571. 设数列}{n a 是等差数列,且n S a a ,6,673=-=是数列}{n a 的前n 项和,则A.54S S =B.56S S =C.64S S >D.56S S <72. 已知数列{-2n+25},其前n 项和S n 达到最大值时,n 为A.10B.11C.12D.13 73. 若n S 是等差数列{}n a 的前n 项和,其首项10a >,991000a a +>,991000a a ⋅<,则使0n S >成立的最大自然数n 是A.198B.199C.200D.20174. 设等差数列{}n a 满足81335a a =.且10a >.n S 为其前n 项之和.则n S 中最大的是A.10SB.11SC.20SD.21S75. 已知S n 是等差数列{a n }的前n 项和,且a 2+a 4+a 7+a 15=40,则S 13的值为A.20B.65C.130D.26076. 等差数列{}n a 的通项公式是12+=n a n ,其前n 项和为n S ,则数列⎭⎬⎫⎩⎨⎧n S n 的前10项和为A.75B.70C.120D.10077. 在等差数列}{n a 中,若30,240,1849===-n n a S S ,则n 的值为A.14B.15C.16D.1778. 在等差数列{}n a 中,若C a a a =++1383,则其前n 项和n S 的值等于5C 的是A.15SB.17SC.8SD.7S79. 设{}n a 是等差数列,1359a a a ++=,69a =,则这个数列的前6项和等于 A.12 B.24 C.36 D.4880. {}n a 是等差数列,10110,0S S ><,则使n a <0的最小的n 值是A.5B.6C.7D.881. 等差数列}{n a 的前n 项和为n S ,若10173=+a a ,则19S 的值是A.55B.95C.100D.不能确定82. 在等差数列{a n }中,a 1>0,且3a 8=5a 13,则S n 中最大的是A.S 21B.S 20C.S 11D.S 10 83. 设S n 是等差数列前n 项的和,若9535=a a ,则59S S 等于 A.1 B.-1 C.2 D.21 84. 已知等差数列{a n }的公差为正数,且a 3·a 7=-12,a 4+a 6=-4,则S 20为A.180B.-180C.90D.-9085. 若{a n }是等差数列,首项a 1>0,a 2003+a 2004>0,a 2003·a 2004<0,则使前n 项和S n >0成立的最大自然数n 是A.4005B.4006C.4007D.400886. 已知等差数列{}n a 中,247,15a a ==,则前10项的和10S =A.100B.210C.380D.40087. 设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12= A .310 B.13 C.18 D .1988. 设等差数列{a }的前n 项的和为S n ,若a 1>0,S 4=S 8,则当S n 取得最大值时,n 的值为A.5B.6C.7D.889. 已知等差数列{a n }的前n 项和为S n ,若1O a B =200OA a OC +,且A 、B 、C 三点共线(该直线不过原点O ),则S 200=A.100B. 101C.200D.20190. 已知等差数列{a n }的前20项的和为100,那么a 7·a 14的最大值为A.25B.50C.100D.不存在91. 若某等差数列{a n }中,a 2+a 6+a 16为一个确定的常数,则其前n 项和S n 中也为确定的常数 的是A.S 17B.S 15C.S 8D.S 792. 在等差数列{a n }中,a 10<0,a 11>0,且a 11>|a 10|,则{a n }的前n 项和S n 中最大的负数为A.S 17B.S 18C.S 19D.S 2093. 等差数列}{n a 的公差为d ,前n 项的和为S n ,当首项a 1和d 变化时,1182a a a ++是一个定值,则下列各数中也为定值的是A.S 7B.S 8C.S 13D.S 1594. 在等差数列{ a n }中,S 4 =1, S 8 =4,则a 17 + a 18 + a 19+ a 20 的值是A .7B .8C .9D .1095. 设a 1, a 2, a 3,……和b 1, b 2, b 3,……都是等差数列,且a 1=25, b 1=75, a 100+b 100=100,则数列a 1+b 1, a 2+b 2,……的前100项的和是A.0B.100C.10000D.不确定96. 等差数列{a n }中,若前15项的和S 15=90,则a 8等于245D. C.12 445B. 6.A 97. 已知S k 表示数列{a k }前k 项和,且S k + S k+1 = a k +1 (k ∈N*),那么此数列是A .递增数列B . 递减数列C .常数列D . 摆动数列98. 设S n 是等差数列{a n }的前n 项和,若31a a =95,则59S S 等于txjy A.-1 B. 21 C.1 D.2 99. 等差数列{a n }中,a n -4=30,且前9项的和S 9=18,前n 项和为S n =240,则n 等于A.15B.16C.17D.18100. 等差数列{a n }中,若a 10=10,a 19=100,前n 项和S n =0,则n 等于A.7B.9C.17D.19参考答案(仅供参考)1 2 3 4 5 6 7 8 9 10 11 12 13 14 15D C A B A D A C C B C B D A B16 17 18 19 20 21 22 23 24 25 26 27 28 29 30C D B D B C D A B C A C B B D31 32 33 34 35 36 37 38 39 40 41 42 43 44 45A B C C A C C A D D D B B B B46 47 48 49 50 51 52 53 54 55 56 57 58 59 60B B B D A B A D B B B B BC C61 62 63 64 65 66 67 68 69 70 71 72 73 74 75C D C A A C B B C D A C A C C76 77 78 79 80 81 82 83 84 85 86 87 88 89 90A B A B B B B A A B B A B A A91 92 93 94 95 96 97 98 99 100B C C C C A C C A C欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。

等差数列求和练习题

等差数列求和练习题

等差数列求和练习题一、基础练习题1. 求和公式:已知等差数列的首项为a₁,公差为d,项数为n,求前n项和Sₙ。

解答:Sn = n/2 * (a₁ + an) = n/2 * (a₁ + a₁ + (n-1)d) = n/2 * (2a₁ + (n-1)d)2. 求和公式:已知等差数列的首项为a₁,公差为d,项数为n,求前n项和Sₙ。

解答:Sn = n/2 * (a₁ + an) = n/2 * (a₁ + a₁ + (n-1)d) = n/2 * (2a₁ + (n-1)d)二、练习题1. 求解下列等差数列的前n项和:(1)首项a₁ = 3,公差d = 2,项数n = 5解答:代入求和公式得:S₅ = 5/2 * (3 + 3 + (5-1)*2) = 5/2 * (6 + 8) = 5/2 * 14 = 35(2)首项a₁ = -2,公差d = 3,项数n = 8解答:代入求和公式得:S₈ = 8/2 * (-2 + (-2) + (8-1)*3) = 8/2 * (-4 + 21) = 8/2 * 17 = 68(3)首项a₁ = 1,公差d = 0,项数n = 10解答:代入求和公式得:S₁₀ = 10/2 * (1 + 1 + (10-1)*0) = 10/2 * (2 + 0) = 10/2 * 2 = 102. 求解下列等差数列的前n项和:(1)首项a₁ = 2,公差d = 4,项数n = 6解答:代入求和公式得:S₆ = 6/2 * (2 + 2 + (6-1)*4) = 6/2 * (4 + 20) = 6/2 * 24 = 72(2)首项a₁ = 0,公差d = -3,项数n = 7解答:代入求和公式得:S₇ = 7/2 * (0 + 0 + (7-1)*(-3)) = 7/2 * (0 - 18) = 7/2 * (-18) = -63(3)首项a₁ = 1,公差d = 1,项数n = 100解答:代入求和公式得:S₁₀₀ = 100/2 * (1 + 1 + (100-1)*1) = 100/2 * (2 + 99) = 100/2 * 101 = 5050三、进阶练习题1. 求解下列等差数列的前n项和:(1)首项a₁ = 3,公差d = 2,项数n为首项的二倍解答:由题可知n = a₁ * 2 = 3 * 2 = 6,代入求和公式得:S₆ = 6/2 * (3 + 3 + (6-1)*2) = 6/2 * (6 + 10) = 6/2 * 16 = 48(2)首项a₁ = -2,公差d = 3,项数n为首项的三倍解答:由题可知n = a₁ * 3 = -2 * 3 = -6,代入求和公式得:S₋₆ = -6/2 * (-2 + (-2) + (-6-1)*3) = -6/2 * (-4 + (-21)) = -6/2 * (-25) = 752. 求解下列等差数列的前n项和:(1)首项a₁ = 2,项数n为公差的四倍,公差d = 3解答:由题可知n = d * 4 = 3 * 4 = 12,代入求和公式得:S₁₂ = 12/2 * (2 + 2 + (12-1)*3) = 12/2 * (4 + 33) = 12/2 * 37 = 222(2)首项a₁ = 0,项数n为公差的五倍,公差d = -2解答:由题可知n = d * 5 = -2 * 5 = -10,代入求和公式得:S₋₁₀ = -10/2 * (0 + 0 + (-10-1)*(-2)) = -10/2 * (0 - 18) = -10/2 * (-18) = 90综上所述,通过练习题的求解,我们熟悉了等差数列的求和公式,并能够灵活运用求和公式解决不同条件下的等差数列求和问题。

(完整版)等差数列求和及练习题(整理)

(完整版)等差数列求和及练习题(整理)

等差数列求和引例:计算1+2+3+4+••…+97+98+99+100一、有关概念:像1、2、3、4、5、6、7、8、9、……这样连起来的一串数称为数列;数列中每一个数叫这个数列的一项,排在第一个位置的叫首项,第二个叫第二项,第三个叫第三项,……,最后一项又叫末项;共有多少个数又叫项数;如果一个数列,从第二项开始,每一项与前一项之差都等于一个固定的数,我们就叫做等差数列。

这个固定的数就叫做公差”。

二、有关公式:和=(首项+末项)x项数* 2末项二首项+公差x(项数-1)公差=(末项-首项)—(项数-1)项数=(末项-首项)—公差+1三、典型例题:例1、聪明脑筋转转转:判断下列数列是否是等差数列?是的请打“"”,并把等差数列的首项,末项、公差及项数写出来,如果不是请打“X”。

判断首项末项公差项数(1) 1、2、4、&16、32.( ) ( ) ( )( ) ( )(2) 42、49、56、63、70、77.( ) ( ) ( ) ( ) ( )(3) 5、1、4、1、3、1、2、1.( ) ( ) ( ) ( ) ( )(4) 44、55、66、77、88、99、110 ( ) ( ) ( ) ( ) ( )练习1、填空:数列首项末项公差项数2、5、8、11、140、4、8、12、163、15、27、39、511、2、3、4、5、……、48、49、50例2、已知等差数列1,8,15,…,78.共12项,和是多少?(博易P 27例2)(看 ppt, 推出公式)例 3、计算 1+3+5+7+ +35+37+39练习 2:计算下列各题( 1 ) 6+10+14+18+22+26+30(4) 2+4+6+8+••…+96+98+1003)已知一列数 4,6,8,10 ,… , 64,共有 31 个数,这个数列的和是多少?例 5、有一堆圆木堆成一堆,从上到下,上面一层有 10 根,每向下一层增加一根, 共堆了 10层。

初一等差数列求和及练习题

初一等差数列求和及练习题

初一等差数列求和及练习题
简介
初一等差数列是数学中的基本概念之一。

它是一系列数字按照固定的差值递增或递减而形成的数列。

本文档将介绍初一等差数列的求和方法,并提供一些练题供学生练。

等差数列求和公式
初一等差数列的求和可以使用以下公式:
练题
1. 求一个等差数列的前 n 项和,其中数列的第一项为 3,公差为 2,总项数为 5。

2. 某等差数列的前 n 项和为 50,公差为 3,总项数为 10,求该等差数列的第一项。

3. 若一个等差数列的第一项为 2,公差为 4,前 n 项和为 90,求该等差数列的总项数 n。

请尝试解答以上练题,并核对你的答案。

解答
1. 使用等差数列的求和公式:
所以,该等差数列的前五项和为 45。

2. 使用等差数列的求和公式解方程:
所以,该等差数列的第一项为 1.3。

3. 使用等差数列的求和公式解方程:
使用求根公式解得:
取正根:
所以,该等差数列的总项数 n 约为 5.7,取整得 6。

结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

入门题:
1、有一个数列,4、10、16、22 …… 52,这个数列有多少项?
2、一个等差数列,首项是3,公差是2,项数是10。

它的末项是多少?
3、求等差数列1、
4、7、10 ……,这个等差数列的第30项是多少?
4、6+7+8+9+……+74+75=()
5、2+6+10+14+……+122+126=()
6、已知数列2、5、8、11、14 ……,47应该是其中的第几项?
7、有一个数列:6、10、14、18、22 ……,这个数列前100项的和是多少?
练习题:
1、3个连续整数的和是120,求这3个数。

2、4个连续整数的和是94,求这4个数。

3、在6个连续偶数中,第一个数和最后一个数的和是78,求这6个连续偶数各是多少?
4、丽丽学英语单词,第一天学会了6个,以后每天都比前一天多学会1个,最后一天学会了16个。

丽丽在这些天中共学会了多少个单词?
5、有80把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?
6、某班有51个同学,毕业时每人都要和其他同学握一次手,那么这个班共握了多少次手?。

相关文档
最新文档