方差、标准差、均方差、均方误差的区别及意义
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方差、标准差、均方差、均方误差的区别及意义
百度百科上的方差定义如下:
(方差)是用概率论和统计方差来度量随机变量或一组数据的离散程度概率论中的方差用来衡量随机变量与其数学期望(即平均值)之间的偏离程度统计学中的方差(样本方差)是每个数据与其平均值之差的平方和的平均值在许多实际问题中,研究方差,即偏离的程度具有重要意义。如果
看这样一段文字,可能会有点费解。首先,从公式开始。对于一组随机变量或统计数据,
的期望值用E(X)表示,即随机变量或统计数据的平均值,
,然后在找到期望值之前将每个数据与平均值之间服从正态分布。那么我们就不能通过方差直接确定学生偏离平均值多少分。通过标准差,我们可以直观地得到学生分数分布在0.6826范围内的概率,大约等于34.2%*2
3,均方差是多少?
标准偏差,在中国环境中通常也称为均方误差,不同于均方误差(均方误差
是距离每个数据真实值的平方的平均值,即误差平方的平均值)。计算公式在形式上接近方差。它的根叫做均方根误差,在形式上接近标准偏差)。标准偏差是偏离平均值的平方的平均值后的平方根,用σ
表示标准差是方差的算术平方根
从上面的定义,我们可以得到以下几点:1 .均方偏差是标准偏差,标准偏差是标准偏差2,均方误差不同于均方误差
3,均方误差是距离每个数据真实值的平方和的平均值
。例如,我们想测量房间的温度,不幸的是我们的温度计不够精确。因此,有必要测量5次以获得一组数据[x1,x2,x3,x4,x5]。假设温度的实际值是x,数据和实际值之间的误差e是x-Xi
,那么均方误差MSE=
一般来说,均方误差是数据序列和平均值之间的关系,而均方误差是数据序列和实际值之间的关系,所以我们只需要了解实际值和平均值之间的关系