方差、标准差、均方差、均方误差的区别及意义
初二数学知识点归纳:方差

初二数学知识点归纳:方差方差的计算、知识点归纳方差在考试中考察不是很难,记住基本公式往里带就能解答正确,但是方差的概念让不少同学为此很是头痛。
那方差到底是什么,怎样计算呢,下面小编就为大家整理一些题型和解题方法技巧。
一、概念和公式方差的概念与计算公式,例1两人的5次测验成绩如下:X:50,100,100,60,50E=72;y:73,70,75,72,70E=72。
平均成绩相同,但X不稳定,对平均值的偏离大。
方差描述随机变量对于数学期望的偏离程度。
单个偏离是消除符号影响方差即偏离平方的均值,记为D:直接计算公式分离散型和连续型,具体为:这里是一个数。
推导另一种计算公式得到:“方差等于平方的均值减去均值的平方”。
其中,分别为离散型和连续型计算公式。
称为标准差或均方差,方差描述波动程度。
基本定义:设X是一个随机变量,若E{[X-E]2}存在,则称E{[X-E]2}为X的方差,记为D,Var或DX。
即D=E{[X-E]2}称为方差,而σ=D0.5称为标准差。
即用来衡量一组数据的离散程度的统计量。
方差刻画了随机变量的取值对于其数学期望的离散程度。
若X的取值比较集中,则方差D较小,若X 的取值比较分散,则方差D较大。
因此,D是刻画X取值分散程度的一个量,它是衡量取值分散程度的一个尺度。
当数据分布比较分散时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。
因此方差越大,数据的波动越大;方差越小,数据的波动就越小二、计算方法和原理若x1,x2,x3......xn的平均数为m则方差方差公式方差公式例1两人的5次测验成绩如下:X:50,100,100,60,50E=72;y:73,70,75,72,70E=72。
平均成绩相同,但X不稳定,对平均值的偏离大。
方差描述随机变量对于数学期望的偏离程度。
单个偏离是消除符号影响方差即偏离平方的均值,记为D:直接计算公式分离散型和连续型,具体为:这里是一个数。
标准误差standarderror,均方根误差中误差RM

标准差(StandardDeviation),也称均方差(meansquareerror),是各数据偏离平均数的距离的平均数,它是离均差平方和平均后的方根,用°表示。
标准差是方差的算术平方根。
标准差能反映一个数据集的离散程度。
平均数相同的,标准差未必相同。
简介标准差也被称为标准偏差,或者实验标准差,公式如图。
简单来说,标准差是一组数据平均值分散程度的一种度量。
一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。
例如,两组数的集合{0,5,9,14}和{5,6,8,9)其平均值都是7,但第二个集合具有较小的标准差。
标准差可以当作不确定性的一种测量。
例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。
当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。
这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。
标准差应用于投资上,可作为量度回报稳定性的指标。
标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。
相反,标准差数值越细,代表回报较为稳定,风险亦较小。
例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。
这两组的平均数都是70,但A组的标准差为17.07分,B组的标准差为2.37分(此数据时在R统计软件中运行获得),说明A组学生之间的差距要比B组学生之间的差距大得多。
如是总体,标准差公式根号内除以n如是样本,标准差公式根号内除以(n-1)因为我们大量接触的是样本,所以普遍使用根号内除以(n-1)公式意义所有数减去其平均值的平方和,所得结果除以该组数之个数(或个数减一),再把所得值开根号,所得之数就是这组数据的标准差。
方差、标准差、均方差、均方误差的区别及意义

一、百度百科上方差是这样定义的:(variance)是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。
概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。
统计中的方差(样本方差)是各个数据分别与其平均数之差的平方的和的平均数。
在许多实际问题中,研究方差即偏离程度有着重要意义。
看这么一段文字可能有些绕,那就先从公式入手,对于一组随机变量或者统计数据,其期望值我们由E(X)表示,即随机变量或统计数据的均值,然后对各个数据与均值的差的平方求和,最后对它们再求期望值就得到了方差公式。
这个公式描述了随机变量或统计数据与均值的偏离程度。
二、方差与标准差之间的关系就比较简单了根号里的内容就是我们刚提到的那么问题来了,既然有了方差来描述变量与均值的偏离程度,那又搞出来个标准差干什么呢发现没有,方差与我们要处理的数据的量纲是不一致的,虽然能很好的描述数据与均值的偏离程度,但是处理结果是不符合我们的直观思维的。
举个例子:一个班级里有60个学生,平均成绩是70分,标准差是9,方差是81,成绩服从正态分布,那么我们通过方差不能直观的确定班级学生与均值到底偏离了多少分,通过标准差我们就很直观的得到学生成绩分布在[61,79]范围的概率为,即约等于下图中的%*2三、均方差、均方误差又是什么标准差(Standard Deviation),中文环境中又常称均方差,但不同于均方误差(mean squared error,均方误差是各数据偏离真实值的距离平方和的平均数,也即误差平方和的平均数,计算公式形式上接近方差,它的开方叫均方根误差,均方根误差才和标准差形式上接近),标准差是离均差平方和平均后的方根,用σ表示。
标准差是方差的算术平方根。
从上面定义我们可以得到以下几点:1、均方差就是标准差,标准差就是均方差2、均方误差不同于均方误差3、均方误差是各数据偏离真实值的距离平方和的平均数举个例子:我们要测量房间里的温度,很遗憾我们的温度计精度不高,所以就需要测量5次,得到一组数据[x1,x2,x3,x4,x5],假设温度的真实值是x,数据与真实值的误差e=x-xi那么均方误差MSE=总的来说,均方差是数据序列与均值的关系,而均方误差是数据序列与真实值之间的关系,所以我们只需要搞清楚真实值和均值之间的关系就行了。
极差 方差 标准差

极差方差标准差极差是指一组测量值内最大值与最小值之差,又称范围误差或全距,以R表示。
它是标志值变动的最大范围,它是测定标志变动的最简单的指标。
极差没有充分利用数据的信息,但计算十分简单,仅适用样本容量较小(n<10)情况。
方差是各个数据与平均数之差的平方和的平均数。
在概率论和数理统计中,方差(英文Variance)用来度量随机变量和其数学期望(即均值)之间的偏离程度。
方差,通俗点讲,就是和中心偏离的程度!用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差。
在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定。
标准差(Standard Deviation),中文环境中又常称均方差,但不同于均方误差(mean squared error,是各数据偏离平均数的距离平方的平均数,也即误差平方和的平均数,计算公式形式上接近方差,它的开方叫均方根误差,均方根误差才和标准差形式上接近),标准差是离均差平方和平均后的方根,用σ表示。
标准差是方差的算术平方根。
标准差能反映一个数据集的离散程度。
平均数相同的,标准差未必相同。
简单来说,标准差是一组数据平均值分散程度的一种度量。
一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。
例如,两组数的集合{0,5,9,14} 和{5,6,8,9} 其平均值都是7 ,但第二个集合具有较小的标准差。
标准差可以当作不确定性的一种测量。
例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。
当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。
这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。
标准差应用于投资上,可作为量度回报稳定性的指标。
标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。
标准差与标准误的区别

标准差与标准误的区别一、标准差(standard deviation,缩写 SD或者S)在国家计量技术规范中,标准差的正式称是标准偏差,简称标准差,用符号σ表示。
标准差的名称有10 余种,如总体标准差、母体标准差、均方根误差、均方根偏差、均方误差、均方差、单次测量标准差和理论标准差等。
标准差的定义式为:如果用样本标准差s 的值作为总体标准差σ的估计值。
样本标准差的计算公式为:二、标准误(标准误差,standard error,缩写Sx 或S E ) )在抽样试验(或重复的等精度测量) 中, 常用到样本平均数的标准差,亦称样本平均数的标准误或简称标准误( standard error of mean) 。
因为样本标准差s 不能直接反映样本平均数 x 与总体平均数μ究竟误差多少, 所以, 平均数的误差实质上是样本平均数与总体平均数之间的相对误。
可推出样本平均数的标准误为,其估计值为,它反映了样本平均数的离散程度。
标准误越小, 说明样本平均数与总体平均数越接近,否则,表明样本平均数比较离散。
标准误,衡量的是我们在用样本统计量去推断相应的总体参数(常见如均值、方差等)的时候,一种估计的精度。
样本统计量本身就是随机变量,每一次抽样,都可以根据抽出的样本情况计算出一个不同的样本统计量值。
理论上来讲,从既定的总体中按照既定的样本规模n,穷尽所有可能抽出的样本(不妨假设为NN),根据这些样本可以计算出NN个样本统计量值,把这些统计量值分组绘成直方图(X轴为分组的统计量数值,Y轴为落在某一分组区间内的频率),则这个直方图就反应了样本统计量的分布情况(即抽样分布)。
既然是分布,当然就有均值和方差。
如果所有可能的样本统计量值的平均值就是总体均值,这就是无偏估计。
如果所有可能的样本统计量值的方差在所有用于估计总体参数的统计量里最小,这就是有效估计。
因此,抽样分布的标准差(也就是标准误)越小,则用样本统计量去估计总体参数时,精度就越高。
标准误差standard error,均方根误差中误差(RM.

标准差(Standard Deviation),也称均方差(mean square error),是各数据偏离平均数的距离的平均数,它是离均差平方和平均后的方根,用σ表示。
标准差是方差的算术平方根。
标准差能反映一个数据集的离散程度。
平均数相同的,标准差未必相同。
简介标准差也被称为标准偏差,或者实验标准差,公式如图。
简单来说,标准差是一组数据平均值分散程度的一种度量。
一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。
例如,两组数的集合{0, 5, 9, 14} 和{5, 6, 8, 9} 其平均值都是7 ,但第二个集合具有较小的标准差。
标准差可以当作不确定性的一种测量。
例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。
当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。
这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。
标准差应用于投资上,可作为量度回报稳定性的指标。
标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。
相反,标准差数值越细,代表回报较为稳定,风险亦较小。
例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。
这两组的平均数都是70,但A组的标准差为17.07分,B组的标准差为2.37分(此数据时在R统计软件中运行获得),说明A组学生之间的差距要比B组学生之间的差距大得多。
如是总体,标准差公式根号内除以n如是样本,标准差公式根号内除以(n-1)因为我们大量接触的是样本,所以普遍使用根号内除以(n-1)公式意义所有数减去其平均值的平方和,所得结果除以该组数之个数(或个数减一),再把所得值开根号,所得之数就是这组数据的标准差。
概率分布(数学期望,平均值,方差,标准差)2018

概率分布(数学期望,平均值,方差,标准差)2018展开全文我们已经了解概率的基础,概率中通常将试验的结果称为随机变量。
随机变量将每一个可能出现的试验结果赋予了一个数值,包含离散型随机变量和连续型随机变量。
掷硬币就是一个典型的离散型随机变量,离散随机变量可以取无限个但可数的数值。
而连续变量相反,它在某一个区间内能取任意的数值。
时间就是一个典型的连续变量,1.25分钟、1.251分钟,1.2512分钟,它能无限分割。
既然随机变量可以取不同的值,统计学家就用概率分布描述随机变量取不同值的概率。
相对应的,有离散型概率分布和连续型概率分布。
对于离散型随机变量x,定义一个概率函数叫f(x),它给出了随机变量取每一个值的概率。
拿出一个骰子,掷到6的概率是f(6) = 1/6,掷到1和6的概率则是f(1)+f(6) = 1/3。
数学期望(均值)理解一:在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和。
是最基本的数学特征之一。
它反映随机变量平均取值的大小。
其公式如下:xk :表示观察到随机变量X的样本的值。
pk : 表示xk发生的概率。
数学期望反映的是平均水平。
通过它,我们能够了解一个群体的平均水平(比如说,一个班平均成绩80)。
但另外一个方面,它所包含的信息也是十分有限的,首先是个体信息被压缩了,其次如果单纯看期望的话,是看不出样本的数量。
(平均成绩为80,在1人班和100人班的含义是不一样的)通过这个问题想说明,在刻画群体特征的时候,多个数字特征配合才能达到效果。
(上面的例子:可以是期望 + 数量)理解二:在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和严格的定义如下:2.数学期望的含义这个很重要,我们一定要明白概念的含义,联系到实际的应用场景中表达的真正意义,数学期望的存在是为了表达什么?答:反映随机变量平均取值的大小3.数学期望(均值)和算术平均值(平均数)的关系(期望和平均数的关系)谈谈我对于这两个概念的理解(1)平均数是根据实际结果统计得到的随机变量样本计算出来的算术平均值,和实验本身有关,而数学期望是完全由随机变量的概率分布所确定的,和实验本身无关。
标准方差的意义

标准方差的意义标准方差是统计学中常用的一个概念,它是用来衡量一组数据的离散程度的。
在实际应用中,标准方差有着非常重要的意义,它能够帮助我们更好地理解数据的分布规律,从而进行更准确的分析和预测。
本文将从标准方差的计算方法、意义和应用等方面进行阐述,希望能够帮助读者更好地理解标准方差的重要性。
首先,我们来了解一下标准方差的计算方法。
标准方差的计算方法比较简单,它是指一组数据与其平均值的偏差的平方和的平均值的平方根。
具体而言,对于一组数据 x1, x2, ..., xn,其标准方差的计算公式为:σ = √[Σ(xi μ)² / n]其中,σ表示标准方差,Σ表示求和,xi表示第i个数据,μ表示数据的平均值,n表示数据的个数。
通过这个公式,我们可以得到一组数据的标准方差,从而了解这组数据的离散程度。
标准方差的意义非常重要。
首先,它可以帮助我们衡量数据的离散程度。
当标准方差较大时,说明数据的离散程度较高,反之则说明数据的离散程度较低。
通过标准方差,我们可以直观地了解数据的分布规律,从而进行更准确的分析和预测。
其次,标准方差还可以用来比较不同数据集之间的离散程度。
通过比较不同数据集的标准方差,我们可以找出其中离散程度较大的数据集,从而进行重点关注和分析。
因此,标准方差在统计学中有着非常重要的意义。
标准方差在实际应用中有着广泛的应用。
首先,在自然科学和社会科学领域,标准方差常常被用来衡量数据的离散程度,从而进行数据分析和预测。
其次,在工程技术领域,标准方差也被广泛应用于质量控制和过程改进中,通过对数据的离散程度进行分析,找出其中的问题和改进方向。
此外,在金融和经济领域,标准方差也被用来衡量资产的风险程度,从而进行投资和风险管理。
可以说,标准方差在各个领域都有着重要的应用价值。
综上所述,标准方差是统计学中一个非常重要的概念,它能够帮助我们更好地理解数据的离散程度,从而进行更准确的分析和预测。
通过对标准方差的计算方法、意义和应用进行了解,我们可以更好地应用它于实际工作中,取得更好的效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方差、标准差、均方差、均方误差的区别及意义
百度百科上的方差定义如下:
(方差)是用概率论和统计方差来度量随机变量或一组数据的离散程度概率论中的方差用来衡量随机变量与其数学期望(即平均值)之间的偏离程度统计学中的方差(样本方差)是每个数据与其平均值之差的平方和的平均值在许多实际问题中,研究方差,即偏离的程度具有重要意义。
如果
看这样一段文字,可能会有点费解。
首先,从公式开始。
对于一组随机变量或统计数据,
的期望值用E(X)表示,即随机变量或统计数据的平均值,
,然后在找到期望值之前将每个数据与平均值之间服从正态分布。
那么我们就不能通过方差直接确定学生偏离平均值多少分。
通过标准差,我们可以直观地得到学生分数分布在0.6826范围内的概率,大约等于34.2%*2
3,均方差是多少?
标准偏差,在中国环境中通常也称为均方误差,不同于均方误差(均方误差
是距离每个数据真实值的平方的平均值,即误差平方的平均值)。
计算公式在形式上接近方差。
它的根叫做均方根误差,在形式上接近标准偏差)。
标准偏差是偏离平均值的平方的平均值后的平方根,用σ
表示标准差是方差的算术平方根
从上面的定义,我们可以得到以下几点:1 .均方偏差是标准偏差,标准偏差是标准偏差2,均方误差不同于均方误差
3,均方误差是距离每个数据真实值的平方和的平均值。
例如,我们想测量房间的温度,不幸的是我们的温度计不够精确。
因此,有必要测量5次以获得一组数据[x1,x2,x3,x4,x5]。
假设温度的实际值是x,数据和实际值之间的误差e是x-Xi
,那么均方误差MSE=
一般来说,均方误差是数据序列和平均值之间的关系,而均方误差是数据序列和实际值之间的关系,所以我们只需要了解实际值和平均值之间的关系。