(完整word版)三角形提高题 培优卷
word完整版全等三角形培优含答案推荐文档

三角形培优练习题1已知:AB=4 , AC=2 , D是BC中点,AD是整数,求AD2 已知:BC=DE,/ B= / E,/ C= / D , F 是CD 中点,求证:A 3 已知:/ 1 = / 2, CD=DE , EF//AB,求证:EF=AC4 已知:AD 平分/ BAC , AC=AB+BD,求证:/ B=2 / C5 已知:AC 平分/ BAD , CE丄AB,/ B+ / D=180 °,求证:AE=AD+BE6如图,四边形ABCD中,AB // DC, BE、CE分别平分/ ABC、/ BCD ,且点E在AD上。
求证:BC=AB+DC。
7 已知:AB=CD,/ A= / D,求证:/ B= / C8.P 是/ BAC 平分线AD 上一点,AC>AB,求证:PC-PB<AC-AB9 已知,E 是AB 中点,AF=BD , BD=5 , AC=7,求DC10.如图,已知AD // BC ,Z PAB的平分线与/ CBA的平分线相交于E, CE的连线交AP 于D .求证:AD + BC=AB.11如图,△ ABC中,AD是/ CAB的平分线,且AB=AC+CD,求证:/ C=2/ B12 如图:AE BC交于点M F 点在AMk, BE// CF, BE=CF求证:人皿是厶ABC的中线。
E13已知:如图,AB=AC, BD AC, CE AB,垂足分别为D、E, BD、CE相交于点F。
求证:BE =CD.C14在厶ABC中,ACB 90 , AC BC,直线MN经过点C,且AD MN于D ,BE MN于E •⑴当直线MN绕点C旋转到图1的位置时,求证:① ADC也CEB :②DE AD BE ;(2)当直线MN绕点C旋转到图2的位置时,(1)中的结论还成立吗?若成立,15 如图所示,已知AE! AB, AF丄AC, AE=AB AF=AC 求证:(1) EC=BF ( 2) EC丄BF请给出证明;若不成立,说明理由B C16.如图,已知AC // BD , EA、EB分别平分/ CAB和/ DBA , CD过点E,贝U AB与AC+BD 相等吗?请说明理由17.如图9所示,△ ABC是等腰直角三角形,/ ACB = 90°, AD是BC边上的中线,过C 作AD的垂线,交AB于点E,交AD于点F,求证:/ ADC = Z BDE .图9全等三角形证明经典(答案)1. 延长AD 至U E,使DE=AD, 则三角形ADC 全等于三角形EBD即BE=AC=2 在三角形ABE 中,AB-BE<AE<AB+BE即:10-2<2AD<10+2 4<AD<6又AD 是整数,则AD=52 证明:连接BF 和EF。
新课标-最新浙教版八年级数学上学期《三角形的初步认识》培优提升卷及答案解析-精品试题

第1章《三角形的初步认识》培优提升卷班级______ 姓名_______一、选择题(每题3分,共30分)1.现有四根木棒,长度分别为4cm ,6cm ,8cm ,10cm ,从中任取三根木棒,能组成三角形的个数为( )A .1个B .2个C .3个D .4个2.如图所示,一个60°角的三角形纸片,剪去这个60°角后,得到一个四边形,则∠+∠12 的度数为( )A.120°B. 180°C. 240°D. 300°第2题 第4题 第5题 3.根据下列已知条件,能惟一画出△ABC 的是( )A .AB =3,BC =4,CA =8 B .AB =4,BC =3,∠A =30° C .∠A =60°,∠B =45°,AB =4D .∠C =90°,AB =64.如图,A ,B ,C ,D ,E ,F 是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F 的度数是( )A. 180°B.360°C.540°D.720°2160°5.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°6.下列命题:(1)无限小数是无理数(2)绝对值等于它本身的数是非负数(3) 垂直于同一直线的两条直线互相平行(4) 有两边和其中一边的对角对应相等的两个三角形全等, (5)面积相等的两个三角形全等,是真命题的有()A.1个B.2个C.3个D.4个7.如图,在△ABC和△DEB中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠EB. BC=ECC. BC=DC,∠A=∠DD.∠B=∠E,∠A=∠D8.如图,在△ABC中,AD是角平分线,AE是高,已知∠BAC=2∠B,∠B=2∠DAE,那么∠ACB为()A. 80°B. 72°C. 48°D. 36°第7题第8题第10题9.若三角形的周长为18,且三边都是整数,则满足条件的三角形的个数有()A、4个B、5个C、6个D、7个10.如图所示,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE ≌△BCDB.△BGC ≌△AFCC.△DCG ≌△ECFD.△ADB ≌△CEA二、填空题(每题4分,共24分)11.已知三角形的三边长分别是3、x 、9,则化简135-+-x x = 12.如图,长方形ABCD 中(AD>AB),M 为CD 上一点,若沿着AM 折叠,点N 恰落在BC 上,则∠ANB+∠MNC=___________13.如图,在△ABC 中,∠B=47°,三角形的外角∠DAC 和∠ACF 的平分线交于点E ,则∠AEC=______°BFB第12题 第13题 第16题14.在△ABC 中,AB=8,AC=6,则BC 边上的中线AD 的取值范围是 15.已知三条不同的直线a ,b ,c 在同一平面内,下列四个命题:①如果a ∥b ,a ⊥c ,那么b ⊥c ;②如果b ∥a ,c ∥a ,那么b ∥c ;③如果b ⊥a ,c ⊥a ,那么b ⊥c ;④如果b ⊥a ,c ⊥a ,那么b ∥C .其中为真命题的是__________.(填写所有真命题的序号)16.在数学活动课上,小明提出这样一个问题:如图,∠B=∠C=900,E 是BC 的中点,DE 平分∠ADC ,∠CED=35°,,则∠EAB 是多少度?大家一起热烈地讨论交流,小英第一个得出正确答案,是______。
三角形培优训练100题集锦.docx

三角形培优训练专题【三角形辅助线做法】图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
【常见辅助线的作法有以下几种】1、遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折” 。
2、遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 。
3、遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折” ,所考知识点常常是角平分线的性质定理或逆定理。
4、过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠” 。
5、截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明。
这种作法,适合于证明线段的和、差、倍、分等类的题目。
6、已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连线,出一对全等三角形。
7、特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答。
1、已知,如图△ ABC 中, AB=5, AC=3,求中线 AD 的取值范围 .2、如图,△ ABC中, E、 F 分别在 AB、 AC 上, DE⊥ DF, D 是中点,试比较BE+CF与 EF的大小 .AEFB D C3、如图,△ ABC中, BD=DC=AC, E 是 DC 的中点,求证:AD 平分∠ BAE.AB D E C4 、以ABC 的两边AB、AC为腰分别向外作等腰Rt ABD 和等腰Rt ACE ,BAD CAE 90 ,连接 DE,M、N 分别是 BC、DE 的中点.探究: AM 与 DE 的位置关系及数量关系.( 1)如图①当ABC为直角三角形时,探究:AM与DE的位置关系和数量关系;( 2)将图①中的等腰Rt ABD 绕点A沿逆时针方向旋转(0<<90)后,如图②所示,( 1)问中得到的两个结论是否发生改变并说明理由.5、如图,ABC 中,AB=2AC,AD平分BAC ,且AD=BD,求证:CD⊥AC.ACBD6、如图, AD∥ BC, EA,EB分别平分∠ DAB,∠ CBA, CD 过点 E,求证 ;AB= AD+BC。
八年级数学全等三角形(培优篇)(Word版含解析)

八年级数学全等三角形(培优篇)(Word版含解析)一、八年级数学轴对称三角形填空题(难)1.如图,在菱形ABCD中,ZABC=120° , AB=10cm,点P是这个菱形内部或边上的一点.若以P,B f C为顶点的三角形是等腰三角形,则P, A(P, A两点不重合)两点间的最短距离为____________ c m .【答案】1OJJ-1O【解析】解:连接3D,在菱形A3CD中,T Z ABC=120° , AB=BC=AD=CD=10 , :. Z A=Z C=60° ,二△ ABD , △ BCD都是等边三角形,分三种情况讨论:①若以边8C为底,则3C垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了"直线外一点与直线上所有点连线的线段中垂线段最短",即当点P与点D重合时,必最小,最小值^4=10 ;②若以边P3为底,ZPCB为顶角时,以点C为圆心,BC长为半径作圆,与AC相交于一点,则弧3D (除点8外)上的所有点都满足APBC是等腰三角形,当点P在AC上时,AP 最小,最小值为lOjJ-10 ;③若以边PC为底,ZPBC为顶角,以点3为圆心,BC为半径作圆,则弧AC上的点&与点D均满足APBC为等腰三角形,当点P与点A重合时,必最小,显然不满足题意,故此种情况不存在;综上所述,必的最小值为10>/3-10 (cm).故答案为:10x/I—10 .点睹:本题考查菱形的性质、等边三角形的性质,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.2.在等腰△遊中,肋丄肚交直线%于点以若妙丄万G则△磁的顶角的度数为【答案】30。
或150。
或90°【解析】试题分析:分两种情况:①3C为腰,②BC为底,根据直角三角形30。
角所对的直角边等于斜边的一半判断岀ZACD=3O°,然后分AD在^ABC内部和外部两种情况求解即可.解:①BC为腰,VAD丄 BC 于点D t AD= - BC f2:.ZACD二30。
(完整word版)第十一章 三角形综合测试题(培优)

第十一章 三角形综合测试题一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是正确的)1.以下列各组线段为边,能组成三角形的是( )A. 8 cm ,6 cm ,4 cmB. 1cm ,2 cm ,4 cmC. 12 cm ,5 cm ,6 cmD. 2 cm ,3 cm ,6 cm2.已知△ABC 的一个内角是40°,∠A=∠B ,那么∠C 的外角的大小是( ) A.140° B.80°或100° C.80°或140° D.100°或140°3.一个三角形三个内角的度数之比为2:3:7,这个三角形一定是( ) A.直角三角形 B.钝角三角形 C.锐角三角形 D.等腰三角形4.下列命题中,结论正确的是( ) ①外角和大于内角和的多边形只有三角形②一个三角形的内角中,至少有一个不小于60° ③三角形的一个外角大于它的任何一个内角④多边形的边数增加时,其内角和随着增加,外角和不变A.①②③④B.①②④C.①③④D.①④ 5.如下图所示,∠1、∠2、∠3、∠4恒满足关系式是( )A.∠1+∠4=∠2-∠3B.∠1+∠2=∠4-∠3C.∠1+∠4=∠2+∠3D.∠1+∠2=∠3+∠46.小聪从点P 出发向前走20m ,接着向左转30°,然后他继续再向前走20m ,又向左转30°,他以同样的方法继续走下去,当他走回点P 时共走的路程是( ) A.120米 B.200米 C.240米 D.300米7.现有四种地面砖,它们的形状分别是:正三角形、正方形、正六边形、正八边形,且它们的边长都相等.同时选择其中两种地面砖密铺地面,选择的方式有( ) A.2种 B.3种 C.4种 D.5种8.如右图所示,已知矩形ABCD ,一条直线将该矩形ABCD 分割成两个多边形(含三角形),若这两个多边形的内角和分别为M 和N ,则M+N 不可能是( )A.360°B.540°C.720°D.630° 9.在△ABC 中,若AB=AC ,其周长为12,则AB 的取值范围是( ) A.AB > 6 B.AB < 3 C.3<AB<6 D .4<AB<710.如右图所示,一块均匀长草的凸四边形ABCD 草地上,恰好可放养90只兔子,若S △COD :S △AOD =1:2,S △COD =2,S △COB =4,则△AOB 内可放养( )只兔子.A.10B.20C.30D.40二、填空题(本大题共10小题,每小题2分,共20分)11.如果一个三角形两边为2cm ,7cm ,且三角形的第三边为偶数,则三角形的周长是 .12.已知等腰三角形的两边长是6cm 和10cm ,则它的周长为 . 13.要使五边形木架不变形,则至少要钉上 根木条.14.若一个多边形的每一个外角都等于60°,则这个多边形共有 条对角线. 15.将一副直角三角板如下左图所示放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则∠1的度数为 .16.如下中图所示,在△ABC 中,BP ,CP 分别平分∠ABC 和∠ACB ,且∠P=110°,则∠A= .17.已知:如下右图所示,在△ABC 中,BE 平分∠ABC 交AC 于E ,CD ⊥AC 交AB 于D ,∠BCD=∠A ,则∠BEA 的度数为 .PCBAECA18.如下左图所示图形,则∠A+∠B+∠C+∠D+∠E+∠F+∠G 的度数为 . 19.如下中图所示,设∠CGE= ,则∠A+∠B+∠C+∠D+∠E+∠F= . 20.如下右图所示,把一个三角形纸片ABC 顶角向内折叠3次之后,3个顶点不重合,那么图中∠1+∠2+∠3+∠4+∠5+∠6的度数和为 .GFEDCFECB AC'B'A'654321I FE DCA三、解答题(第21-23题每题6分,第24-27题每题8分)21.某中学要在一块三角形花圃里种植两种不同的花草,同时拟从A 点修建一条小路到边BC .(1)若要使修建小路所用的材料最少,请在图(a)上画出小路AD ;ODCC(2)若要使小路两侧种不同的花草面积相等,请在图(b)上画出小路AE ,其中E 点满足的条件是 ,并说明理由.22.一个多边形的每个外角都相等,如果它的外角与相邻内角的度数之比为1:3,求这个多边形的边数.23.已知:如右图所示,在△ABC 中,AB=AC ,D 是AB 边上一点.(1)通过度量AB 、CD 、DB 的长度,写出2AB 与(CD+DB)(2)试用你所学的知识来说明这个不等关系是成立的.24.一个零件的形状如右图所示,按规定∠A 应等于90°,∠B 、∠C 应分别是30°和20°,李叔叔量得∠BDC=142°,就判定这个零件不合格,你能说出其中的道理吗?试用三角形有关知识说明理由.25如下图所示,分别在三角形,四边形,五边形的广场各角修建半径为R 的扇形草坪(图中阴影部分)(1)图(a)所示中草坪的面积 . (2)图(b)所示中草坪的面积为 .(3)图(c)所示中草坪的面积为 .(4)如果多边形的边数为n ,其余条件不变,那么,你认为草坪的面积为 .b ()a ()C(c)b ()a ()B26.如图(a)所示,在∠A 内部有一点P ,连接BP 、CP ,请回答下列问题: (1)求证:∠P=∠1+∠A+∠2.(2)如图(b)所示,利用上面的结论,你能写出五角星五个”角”的和吗?(3)如图(c)所示,如果在∠BAC 间有两个向上突起的角,请你根据前面的结论猜想写出∠1、∠2、∠3、∠4、∠5、∠A 之间有什么等量关系.27,.如下图所示,△AOB 是含45°角的直角三角尺,即OA=OB ,且S △AOB =2 (1)求A 、B 两点的坐标(2)若M 是AB 的中点,C 是x 轴负半轴上的一点,问:是否存在点C ,使得S △ACM =S △AOB ?若存在,求出点C 的坐标;若不存在,请说明理由.(3)在(2)的条件下,设P 是OC 上的动点,过点P 作PD ⊥AB 于点D ,交y 轴于点Q ,当点P 在OC 上运动时,下列两个结论:①∠PQB+∠OAB 的值不变;②S △POQ +S △BDQ 的值不变,只有一个正确,请判断出正确结论并求其值.。
中考数学复习《三角形》专项提升训练(附答案)

中考数学复习《三角形》专项提升训练(附答案) 学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列图形中,不具有稳定性的是()2.有5根小木棒,长度分别为2cm、3cm、4cm、5cm、6cm,任意取其中的3根小木棒首尾相接搭三角形,可搭出不同的三角形的个数为()A.5个 B.6个 C.7个 D.8个3.三条线段a,b,c长度均为整数且a=3,b=5.则以a,b,c为边的三角形共有( )A.4个B.5个C.6个D.7个4.画△ABC中AB边上的高,下列画法中正确的是()5.如图,AD是△ABC的中线,点E是AD的中点,连接BE、CE,若△ABC的面积是8 则阴影部分的面积为( )A.2B.4C.6D.86.在一个三角形中,一个外角是其相邻内角的3倍,那么这个外角是( )A.150°B.135°C.120°D.100°7.如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是( )A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°8.如图,在△ABC中,AD是角平分线,AE是高,已知∠BAC=2∠B,∠B=2∠DAE,那么∠ACB为( )A.80°B.72°C.48°D.36°9.如图,△ABC中,点D为BC上一点,且AB=AC=CD,则图中∠1和∠2关系是( )A.∠2=2∠1B.∠1+2∠2=90°C.3∠1+2∠2=180°D.2∠1+3∠2=180°10.如图,∠ABD,∠ACD的角平分线交于点P,若∠A=50°,∠D=10°,则∠P的度数为()A.15°B.20°C.25°D.30°二、填空题11.已知一个等腰三角形的两边长分别为2cm、5cm,则第三边长是 cm.12.任意一个三角形被一条中线分成两个三角形,则这两个三角形:①形状相同;②面积相等;③全等.上述说法中,正确的是.13.如图,已知△ABC的周长为27cm,AC=9cm,BC边上中线AD=6cm,△ABD周长为19cm,AB=________.14.如图,CD是Rt△ABC斜边上的高,则△ABC中BC边上的高是____;AC边上的高是____;这三条高交于点____.15.如图所示,D是△ABC的边BC上的一点,且∠1=∠2,∠3=∠4,∠BAC=63°,则∠DAC= .16.如图,已知△ABC的面积为1.第一次操作:分别延长AB,BC,CA至点A1,B1,C 1,使A1B=AB,B1C=BC,C1A=CA,顺次连结点A1,B1,C1,A1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C 1A1,顺次连结点A2,B2,C2,A2,得到△A2B2C2……按此规律,要使得到的三角形的面积超过2024,则最少经过次操作.三、解答题17.工艺店打算制作一批有两边长分别是7分米,3分米,第三边长为奇数(单位:分米)的不同规格的三角形木框.(1)要制作满足上述条件的三角形木框共有种.(2)若每种规格的三角形木框只制作一个,制作这种木框的木条的售价为8元╱分米,问至少需要多少钱购买材料?(忽略接头)18.如图,已知∠A=20°,∠B=27°,AC⊥DE,求∠1,∠D的度数.19.如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E.若∠B=35°,∠E=20°,求∠BAC的度数.20.如图,已知AC⊥BC,垂足为C,AC=4,BC=33,将线段AC绕点A按逆时针方向旋转60°,得到线段AD,连接DC、DB.(1)线段DC=________;(2)求线段DB的长度.21.已知a,b,c是三角形的三边长.(1)化简:|b+c-a|+|b-c-a|-|c-a-b|-|a-b+c|;(2)在(1)的条件下,若a,b,c满足a+b=11,b+c=9,a+c=10,求这个式子的值.22.如图1,在△OBC中,A是BO延长线上的一点.(1)∠B=32°,∠C=46°,则∠AOC= °,Q是BC边上一点,连接AQ交OC于点P,如图2,若∠A=18°,则∠OPQ= °,猜测:∠A+∠B+∠C与∠OPQ的大小关系是.(2)将图2中的CO延长到点D,AQ延长到点E,连接DE,得到图3,则∠AQB等于图中哪三个角的和?并说明理由.(3)求图3中∠A+∠D+∠B+∠E+∠C的度数.23.△ABC 中,AD、BE、CF是角平分线,交点是点 G,GH⊥BC。
(必修5)解三角形 综合提高训练题(含详细答案)Microsoft Word 文档 (3)

(数学5必修)第一章:解三角形综合提高训练题一、选择题1.A 为△ABC 的内角,则A A cos sin +的取值范围是( )A .)2,2(B .)2,2(-C .]2,1(-D .]2,2[-2.在△ABC 中,若,900=C 则三边的比c b a +等于( ) A .2cos 2B A + B .2cos 2B A - C .2sin 2B A + D .2sin 2B A - 3.在△ABC 中,若8,3,7===c b a ,则其面积等于( )A .12B .221 C .28 D .364.在△ABC 中,090C ∠=,00450<<A ,则下列各式中正确的是( ) A .sin cos A A > B .sin cos B A >C .sin cos A B >D .sin cos B B >5.在△ABC 中,若)())((c b b c a c a +=-+,则A ∠=( )A .090B .060C .0120D .0150 6.在△ABC 中,若22tan tan ba B A =,则△ABC 的形状是( ) A .直角三角形 B .等腰或直角三角形C .不能确定D .等腰三角形二、填空题1.在△ABC 中,若,sin sin B A >则A 一定大于B ,对吗?填_________(对或错)2.在△ABC 中,若,1cos cos cos 222=++C B A 则△ABC 的形状是______________。
3.在△ABC 中,∠C 是钝角,设,cos cos ,sin sin ,sin B A z B A y C x +=+== 则z y x ,,的大小关系是___________________________。
4.在△ABC 中,若b c a 2=+,则=+-+C A C A C A sin sin 31cos cos cos cos ______。
中考数学总复习《三角形》专项提升练习题(附答案)

中考数学总复习《三角形》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列图形中,不具有稳定性的是()2.现有两根木棒,它们的长分别为40 cm和50 cm,若要钉成一个三角形木架,则在下列四根木棒中应选取( )A.10 cm的木棒B.50 cm的木棒C.100 cm的木棒D.110 cm的木棒3.如图,在△ABC中有四条线段DE,BE,EG,FG,其中有一条线段是△ABC的中线,则该线段是( )A.线段DEB.线段BEC.线段EGD.线段FG4.已知△ABC,利用尺规作图,作BC边上的高AD,正确的是( )A. B. C. D.5.下面有3个判断:①一个三角形的3个内角中最多有1个直角;②一个三角形的3个内角中至少有两个锐角;③一个三角形的3个内角中至少有1个钝角.其中正确的有 ( )A.0个B.1个C.2个D.3个6.满足下列条件的△ABC中,不是直角三角形的是( )A.∠B+∠A=∠CB.∠A:∠B:∠C=2:3:5C.∠A=2∠B=3∠CD.一个外角等于和它相邻的一个内角7.如图,∠ABC=31°,又∠BAC的平分线与∠FCB的平分线CE相交于E点,则∠AEC 为( )A.14.5°B.15.5°C.16.5°D.20°8.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是( )A.45° B.60° C.75° D.85°9.如图,∠1,∠2,∠3,∠4的数量关系为( )A.∠1+∠2=∠4-∠3B.∠1+∠2=∠3+∠4C.∠1-∠2=∠4-∠3D.∠1-∠2=∠3-∠410.如图,∠ABD,∠ACD的角平分线交于点P,若∠A=50°,∠D=10°,则∠P的度数为()A.15°B.20°C.25°D.30°二、填空题11.要使五边形木架(用5根木条钉成)不变形,至少要钉上_________根木条.12.若一个三角形三个内角的度数之比为1:2:3,则这个三角形中的最大的角度是 .13.三角形的三边长分别为5,1+2x ,8,则x 的取值范围是 . 14.三角形中至少有______个锐角;在一个多边形中,最多只有_____个锐角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
、如图,三角形ABC 内任一点P ,连接PA 、PB 、PC , 求证:1/2(AB+BC+AC )<AP+BP+CP<AB+AC+BC
2、已知三角形ABC 中,∠A=52◦,三条高所在直线的交点为H ,求∠BCH 的度数。
3、如图,已知三角形ABC 的三个内角平分线交于点I ,IH ⊥BC 于H ,求证∠CIH>∠CAD
4、1}一个等腰三角形的一个外角等于110˚,则这个三角形的三个角应该为 。
2}在⊿ABC 中,AB = AC ,周长为20cm ,D 是AC 上一点,⊿ABD 与⊿BCD 面积相等且周长差为3cm ,⊿ABC 各边的长为 。
5、如图,已知△ABC 中,∠C=90°,AC=1.5BC ,在AC 上取点D ,使得AD=0.5BC ,量得BD=1cm ,求△ABD 的面积。
6、如图,在七星形ABCDEFG 中,求∠A+∠B+∠C+∠D+∠E+∠F+∠G 的度数。
7、如图,△ABC 中,∠C >∠B ,AE 为角平分线,AD ⊥BC 于D 。
(1)求证:∠EAD =2
1(∠C -∠B) ; (2)当垂足D 点在直线BC 上运动时(不与点E 重全),垂线交直线AE 于A ’,其它条件不变,画出相应的图形,并指出与(1)相应的结论是
什么?是否仍成立?
A B C P B E C A D
8、如图,△ABC 中,AD 是高,AE ,BF 是角平分线,它们相交于点O ,∠CAB =50°,∠
C =60°,求∠DAC 及∠BOA .
9.观察并探求下列各问题,写出你所观察得到的结论,并说明理由。
(1)如图①,△ABC 中,P 为边BC 上一点,试观察比较BP + PC 与AB + AC 的大小,并
说明理由。
C B A
P
图①
(2)将(1)中点P 移至△ABC 内,得图②,试观察比较△BPC 的周长与△ABC 的周长的大小,并说明理由。
C B A
P
图②
(3)将(2)中点P 变为两个点P 1、P 2得图③,试观察比较四边形BP 1P 2C 的周长与△ABC 的周长的大小,并说明理由。
C B
A
P 1P 2
图③
(4)将(3)中的点P 1、P 2移至△ABC 外,并使点P 1、P 2与点A 在边BC 的异侧,且∠P 1BC <∠ABC ,∠P 2CB <∠ACB ,得图④,试观察比较四边形BP 1P 2C 的周长与△ABC 的周长的大小,并说明理由。
图④
C B A
P 1P 2
(5)若将(3)中的四边形BP 1P 2C 的顶点B 、C 移至△ABC 内,得四边形B 1P 1P 2C 1,如图⑤,试观察比较四边形B 1P 1P 2C 1的周长与△ABC 的周长的大小,并说明理由。
C B A
P 1
P 2B 1C 1图⑤
10.如图1、2,AB ∥CD ,直线a 分别交AB 、CD 于点E 、F ,点M 在EF
上,P 是直线CD 上的一个动点,(点P 不与F 重合)
①在图1中,若∠1=50°,∠3=30°,求∠2的度数
②在图1中,当点P 在射线FC 上移动时,∠2+∠3=∠1成立吗?请
说明理由;
③在图2中,当点P 在射线FD 上移动时,∠4+∠5与∠1有什么关系?
说明理由
11
、四边形是大家最熟悉的图形之一,我们已经发现了它的许多性质.只要善于观察、乐于探索,我们还会发现更多的结论.
(1)四边形一条对角线上任意一点与另外两个顶点的连线,将四边形分成四个三角形(如图①),其中相对的两对三角形的面积之积相等.你能证明这个结论吗?试试看. 已知:在四边形ABCD 中,O 是对角线BD 上任意一点.(如图①)
求证:S △OBC •S △OAD =S △OAB •S △OCD ;
(2)在三角形中(如图②),你能否归纳出类似的结论?若能,写出你猜想的结论,并证明:若不能,说明理由.。