(完整word版)三角形提高题 培优卷

合集下载

word完整版全等三角形培优含答案推荐文档

word完整版全等三角形培优含答案推荐文档

三角形培优练习题1已知:AB=4 , AC=2 , D是BC中点,AD是整数,求AD2 已知:BC=DE,/ B= / E,/ C= / D , F 是CD 中点,求证:A 3 已知:/ 1 = / 2, CD=DE , EF//AB,求证:EF=AC4 已知:AD 平分/ BAC , AC=AB+BD,求证:/ B=2 / C5 已知:AC 平分/ BAD , CE丄AB,/ B+ / D=180 °,求证:AE=AD+BE6如图,四边形ABCD中,AB // DC, BE、CE分别平分/ ABC、/ BCD ,且点E在AD上。

求证:BC=AB+DC。

7 已知:AB=CD,/ A= / D,求证:/ B= / C8.P 是/ BAC 平分线AD 上一点,AC>AB,求证:PC-PB<AC-AB9 已知,E 是AB 中点,AF=BD , BD=5 , AC=7,求DC10.如图,已知AD // BC ,Z PAB的平分线与/ CBA的平分线相交于E, CE的连线交AP 于D .求证:AD + BC=AB.11如图,△ ABC中,AD是/ CAB的平分线,且AB=AC+CD,求证:/ C=2/ B12 如图:AE BC交于点M F 点在AMk, BE// CF, BE=CF求证:人皿是厶ABC的中线。

E13已知:如图,AB=AC, BD AC, CE AB,垂足分别为D、E, BD、CE相交于点F。

求证:BE =CD.C14在厶ABC中,ACB 90 , AC BC,直线MN经过点C,且AD MN于D ,BE MN于E •⑴当直线MN绕点C旋转到图1的位置时,求证:① ADC也CEB :②DE AD BE ;(2)当直线MN绕点C旋转到图2的位置时,(1)中的结论还成立吗?若成立,15 如图所示,已知AE! AB, AF丄AC, AE=AB AF=AC 求证:(1) EC=BF ( 2) EC丄BF请给出证明;若不成立,说明理由B C16.如图,已知AC // BD , EA、EB分别平分/ CAB和/ DBA , CD过点E,贝U AB与AC+BD 相等吗?请说明理由17.如图9所示,△ ABC是等腰直角三角形,/ ACB = 90°, AD是BC边上的中线,过C 作AD的垂线,交AB于点E,交AD于点F,求证:/ ADC = Z BDE .图9全等三角形证明经典(答案)1. 延长AD 至U E,使DE=AD, 则三角形ADC 全等于三角形EBD即BE=AC=2 在三角形ABE 中,AB-BE<AE<AB+BE即:10-2<2AD<10+2 4<AD<6又AD 是整数,则AD=52 证明:连接BF 和EF。

新课标-最新浙教版八年级数学上学期《三角形的初步认识》培优提升卷及答案解析-精品试题

新课标-最新浙教版八年级数学上学期《三角形的初步认识》培优提升卷及答案解析-精品试题

第1章《三角形的初步认识》培优提升卷班级______ 姓名_______一、选择题(每题3分,共30分)1.现有四根木棒,长度分别为4cm ,6cm ,8cm ,10cm ,从中任取三根木棒,能组成三角形的个数为( )A .1个B .2个C .3个D .4个2.如图所示,一个60°角的三角形纸片,剪去这个60°角后,得到一个四边形,则∠+∠12 的度数为( )A.120°B. 180°C. 240°D. 300°第2题 第4题 第5题 3.根据下列已知条件,能惟一画出△ABC 的是( )A .AB =3,BC =4,CA =8 B .AB =4,BC =3,∠A =30° C .∠A =60°,∠B =45°,AB =4D .∠C =90°,AB =64.如图,A ,B ,C ,D ,E ,F 是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F 的度数是( )A. 180°B.360°C.540°D.720°2160°5.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°6.下列命题:(1)无限小数是无理数(2)绝对值等于它本身的数是非负数(3) 垂直于同一直线的两条直线互相平行(4) 有两边和其中一边的对角对应相等的两个三角形全等, (5)面积相等的两个三角形全等,是真命题的有()A.1个B.2个C.3个D.4个7.如图,在△ABC和△DEB中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠EB. BC=ECC. BC=DC,∠A=∠DD.∠B=∠E,∠A=∠D8.如图,在△ABC中,AD是角平分线,AE是高,已知∠BAC=2∠B,∠B=2∠DAE,那么∠ACB为()A. 80°B. 72°C. 48°D. 36°第7题第8题第10题9.若三角形的周长为18,且三边都是整数,则满足条件的三角形的个数有()A、4个B、5个C、6个D、7个10.如图所示,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE ≌△BCDB.△BGC ≌△AFCC.△DCG ≌△ECFD.△ADB ≌△CEA二、填空题(每题4分,共24分)11.已知三角形的三边长分别是3、x 、9,则化简135-+-x x = 12.如图,长方形ABCD 中(AD>AB),M 为CD 上一点,若沿着AM 折叠,点N 恰落在BC 上,则∠ANB+∠MNC=___________13.如图,在△ABC 中,∠B=47°,三角形的外角∠DAC 和∠ACF 的平分线交于点E ,则∠AEC=______°BFB第12题 第13题 第16题14.在△ABC 中,AB=8,AC=6,则BC 边上的中线AD 的取值范围是 15.已知三条不同的直线a ,b ,c 在同一平面内,下列四个命题:①如果a ∥b ,a ⊥c ,那么b ⊥c ;②如果b ∥a ,c ∥a ,那么b ∥c ;③如果b ⊥a ,c ⊥a ,那么b ⊥c ;④如果b ⊥a ,c ⊥a ,那么b ∥C .其中为真命题的是__________.(填写所有真命题的序号)16.在数学活动课上,小明提出这样一个问题:如图,∠B=∠C=900,E 是BC 的中点,DE 平分∠ADC ,∠CED=35°,,则∠EAB 是多少度?大家一起热烈地讨论交流,小英第一个得出正确答案,是______。

三角形培优训练100题集锦.docx

三角形培优训练100题集锦.docx

三角形培优训练专题【三角形辅助线做法】图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

【常见辅助线的作法有以下几种】1、遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折” 。

2、遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 。

3、遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折” ,所考知识点常常是角平分线的性质定理或逆定理。

4、过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠” 。

5、截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明。

这种作法,适合于证明线段的和、差、倍、分等类的题目。

6、已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连线,出一对全等三角形。

7、特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答。

1、已知,如图△ ABC 中, AB=5, AC=3,求中线 AD 的取值范围 .2、如图,△ ABC中, E、 F 分别在 AB、 AC 上, DE⊥ DF, D 是中点,试比较BE+CF与 EF的大小 .AEFB D C3、如图,△ ABC中, BD=DC=AC, E 是 DC 的中点,求证:AD 平分∠ BAE.AB D E C4 、以ABC 的两边AB、AC为腰分别向外作等腰Rt ABD 和等腰Rt ACE ,BAD CAE 90 ,连接 DE,M、N 分别是 BC、DE 的中点.探究: AM 与 DE 的位置关系及数量关系.( 1)如图①当ABC为直角三角形时,探究:AM与DE的位置关系和数量关系;( 2)将图①中的等腰Rt ABD 绕点A沿逆时针方向旋转(0<<90)后,如图②所示,( 1)问中得到的两个结论是否发生改变并说明理由.5、如图,ABC 中,AB=2AC,AD平分BAC ,且AD=BD,求证:CD⊥AC.ACBD6、如图, AD∥ BC, EA,EB分别平分∠ DAB,∠ CBA, CD 过点 E,求证 ;AB= AD+BC。

八年级数学全等三角形(培优篇)(Word版含解析)

八年级数学全等三角形(培优篇)(Word版含解析)

八年级数学全等三角形(培优篇)(Word版含解析)一、八年级数学轴对称三角形填空题(难)1.如图,在菱形ABCD中,ZABC=120° , AB=10cm,点P是这个菱形内部或边上的一点.若以P,B f C为顶点的三角形是等腰三角形,则P, A(P, A两点不重合)两点间的最短距离为____________ c m .【答案】1OJJ-1O【解析】解:连接3D,在菱形A3CD中,T Z ABC=120° , AB=BC=AD=CD=10 , :. Z A=Z C=60° ,二△ ABD , △ BCD都是等边三角形,分三种情况讨论:①若以边8C为底,则3C垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了"直线外一点与直线上所有点连线的线段中垂线段最短",即当点P与点D重合时,必最小,最小值^4=10 ;②若以边P3为底,ZPCB为顶角时,以点C为圆心,BC长为半径作圆,与AC相交于一点,则弧3D (除点8外)上的所有点都满足APBC是等腰三角形,当点P在AC上时,AP 最小,最小值为lOjJ-10 ;③若以边PC为底,ZPBC为顶角,以点3为圆心,BC为半径作圆,则弧AC上的点&与点D均满足APBC为等腰三角形,当点P与点A重合时,必最小,显然不满足题意,故此种情况不存在;综上所述,必的最小值为10>/3-10 (cm).故答案为:10x/I—10 .点睹:本题考查菱形的性质、等边三角形的性质,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.2.在等腰△遊中,肋丄肚交直线%于点以若妙丄万G则△磁的顶角的度数为【答案】30。

或150。

或90°【解析】试题分析:分两种情况:①3C为腰,②BC为底,根据直角三角形30。

角所对的直角边等于斜边的一半判断岀ZACD=3O°,然后分AD在^ABC内部和外部两种情况求解即可.解:①BC为腰,VAD丄 BC 于点D t AD= - BC f2:.ZACD二30。

(完整word版)第十一章 三角形综合测试题(培优)

(完整word版)第十一章 三角形综合测试题(培优)

第十一章 三角形综合测试题一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是正确的)1.以下列各组线段为边,能组成三角形的是( )A. 8 cm ,6 cm ,4 cmB. 1cm ,2 cm ,4 cmC. 12 cm ,5 cm ,6 cmD. 2 cm ,3 cm ,6 cm2.已知△ABC 的一个内角是40°,∠A=∠B ,那么∠C 的外角的大小是( ) A.140° B.80°或100° C.80°或140° D.100°或140°3.一个三角形三个内角的度数之比为2:3:7,这个三角形一定是( ) A.直角三角形 B.钝角三角形 C.锐角三角形 D.等腰三角形4.下列命题中,结论正确的是( ) ①外角和大于内角和的多边形只有三角形②一个三角形的内角中,至少有一个不小于60° ③三角形的一个外角大于它的任何一个内角④多边形的边数增加时,其内角和随着增加,外角和不变A.①②③④B.①②④C.①③④D.①④ 5.如下图所示,∠1、∠2、∠3、∠4恒满足关系式是( )A.∠1+∠4=∠2-∠3B.∠1+∠2=∠4-∠3C.∠1+∠4=∠2+∠3D.∠1+∠2=∠3+∠46.小聪从点P 出发向前走20m ,接着向左转30°,然后他继续再向前走20m ,又向左转30°,他以同样的方法继续走下去,当他走回点P 时共走的路程是( ) A.120米 B.200米 C.240米 D.300米7.现有四种地面砖,它们的形状分别是:正三角形、正方形、正六边形、正八边形,且它们的边长都相等.同时选择其中两种地面砖密铺地面,选择的方式有( ) A.2种 B.3种 C.4种 D.5种8.如右图所示,已知矩形ABCD ,一条直线将该矩形ABCD 分割成两个多边形(含三角形),若这两个多边形的内角和分别为M 和N ,则M+N 不可能是( )A.360°B.540°C.720°D.630° 9.在△ABC 中,若AB=AC ,其周长为12,则AB 的取值范围是( ) A.AB > 6 B.AB < 3 C.3<AB<6 D .4<AB<710.如右图所示,一块均匀长草的凸四边形ABCD 草地上,恰好可放养90只兔子,若S △COD :S △AOD =1:2,S △COD =2,S △COB =4,则△AOB 内可放养( )只兔子.A.10B.20C.30D.40二、填空题(本大题共10小题,每小题2分,共20分)11.如果一个三角形两边为2cm ,7cm ,且三角形的第三边为偶数,则三角形的周长是 .12.已知等腰三角形的两边长是6cm 和10cm ,则它的周长为 . 13.要使五边形木架不变形,则至少要钉上 根木条.14.若一个多边形的每一个外角都等于60°,则这个多边形共有 条对角线. 15.将一副直角三角板如下左图所示放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则∠1的度数为 .16.如下中图所示,在△ABC 中,BP ,CP 分别平分∠ABC 和∠ACB ,且∠P=110°,则∠A= .17.已知:如下右图所示,在△ABC 中,BE 平分∠ABC 交AC 于E ,CD ⊥AC 交AB 于D ,∠BCD=∠A ,则∠BEA 的度数为 .PCBAECA18.如下左图所示图形,则∠A+∠B+∠C+∠D+∠E+∠F+∠G 的度数为 . 19.如下中图所示,设∠CGE= ,则∠A+∠B+∠C+∠D+∠E+∠F= . 20.如下右图所示,把一个三角形纸片ABC 顶角向内折叠3次之后,3个顶点不重合,那么图中∠1+∠2+∠3+∠4+∠5+∠6的度数和为 .GFEDCFECB AC'B'A'654321I FE DCA三、解答题(第21-23题每题6分,第24-27题每题8分)21.某中学要在一块三角形花圃里种植两种不同的花草,同时拟从A 点修建一条小路到边BC .(1)若要使修建小路所用的材料最少,请在图(a)上画出小路AD ;ODCC(2)若要使小路两侧种不同的花草面积相等,请在图(b)上画出小路AE ,其中E 点满足的条件是 ,并说明理由.22.一个多边形的每个外角都相等,如果它的外角与相邻内角的度数之比为1:3,求这个多边形的边数.23.已知:如右图所示,在△ABC 中,AB=AC ,D 是AB 边上一点.(1)通过度量AB 、CD 、DB 的长度,写出2AB 与(CD+DB)(2)试用你所学的知识来说明这个不等关系是成立的.24.一个零件的形状如右图所示,按规定∠A 应等于90°,∠B 、∠C 应分别是30°和20°,李叔叔量得∠BDC=142°,就判定这个零件不合格,你能说出其中的道理吗?试用三角形有关知识说明理由.25如下图所示,分别在三角形,四边形,五边形的广场各角修建半径为R 的扇形草坪(图中阴影部分)(1)图(a)所示中草坪的面积 . (2)图(b)所示中草坪的面积为 .(3)图(c)所示中草坪的面积为 .(4)如果多边形的边数为n ,其余条件不变,那么,你认为草坪的面积为 .b ()a ()C(c)b ()a ()B26.如图(a)所示,在∠A 内部有一点P ,连接BP 、CP ,请回答下列问题: (1)求证:∠P=∠1+∠A+∠2.(2)如图(b)所示,利用上面的结论,你能写出五角星五个”角”的和吗?(3)如图(c)所示,如果在∠BAC 间有两个向上突起的角,请你根据前面的结论猜想写出∠1、∠2、∠3、∠4、∠5、∠A 之间有什么等量关系.27,.如下图所示,△AOB 是含45°角的直角三角尺,即OA=OB ,且S △AOB =2 (1)求A 、B 两点的坐标(2)若M 是AB 的中点,C 是x 轴负半轴上的一点,问:是否存在点C ,使得S △ACM =S △AOB ?若存在,求出点C 的坐标;若不存在,请说明理由.(3)在(2)的条件下,设P 是OC 上的动点,过点P 作PD ⊥AB 于点D ,交y 轴于点Q ,当点P 在OC 上运动时,下列两个结论:①∠PQB+∠OAB 的值不变;②S △POQ +S △BDQ 的值不变,只有一个正确,请判断出正确结论并求其值.。

中考数学复习《三角形》专项提升训练(附答案)

中考数学复习《三角形》专项提升训练(附答案)

中考数学复习《三角形》专项提升训练(附答案) 学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列图形中,不具有稳定性的是()2.有5根小木棒,长度分别为2cm、3cm、4cm、5cm、6cm,任意取其中的3根小木棒首尾相接搭三角形,可搭出不同的三角形的个数为()A.5个 B.6个 C.7个 D.8个3.三条线段a,b,c长度均为整数且a=3,b=5.则以a,b,c为边的三角形共有( )A.4个B.5个C.6个D.7个4.画△ABC中AB边上的高,下列画法中正确的是()5.如图,AD是△ABC的中线,点E是AD的中点,连接BE、CE,若△ABC的面积是8 则阴影部分的面积为( )A.2B.4C.6D.86.在一个三角形中,一个外角是其相邻内角的3倍,那么这个外角是( )A.150°B.135°C.120°D.100°7.如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是( )A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°8.如图,在△ABC中,AD是角平分线,AE是高,已知∠BAC=2∠B,∠B=2∠DAE,那么∠ACB为( )A.80°B.72°C.48°D.36°9.如图,△ABC中,点D为BC上一点,且AB=AC=CD,则图中∠1和∠2关系是( )A.∠2=2∠1B.∠1+2∠2=90°C.3∠1+2∠2=180°D.2∠1+3∠2=180°10.如图,∠ABD,∠ACD的角平分线交于点P,若∠A=50°,∠D=10°,则∠P的度数为()A.15°B.20°C.25°D.30°二、填空题11.已知一个等腰三角形的两边长分别为2cm、5cm,则第三边长是 cm.12.任意一个三角形被一条中线分成两个三角形,则这两个三角形:①形状相同;②面积相等;③全等.上述说法中,正确的是.13.如图,已知△ABC的周长为27cm,AC=9cm,BC边上中线AD=6cm,△ABD周长为19cm,AB=________.14.如图,CD是Rt△ABC斜边上的高,则△ABC中BC边上的高是____;AC边上的高是____;这三条高交于点____.15.如图所示,D是△ABC的边BC上的一点,且∠1=∠2,∠3=∠4,∠BAC=63°,则∠DAC= .16.如图,已知△ABC的面积为1.第一次操作:分别延长AB,BC,CA至点A1,B1,C 1,使A1B=AB,B1C=BC,C1A=CA,顺次连结点A1,B1,C1,A1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C 1A1,顺次连结点A2,B2,C2,A2,得到△A2B2C2……按此规律,要使得到的三角形的面积超过2024,则最少经过次操作.三、解答题17.工艺店打算制作一批有两边长分别是7分米,3分米,第三边长为奇数(单位:分米)的不同规格的三角形木框.(1)要制作满足上述条件的三角形木框共有种.(2)若每种规格的三角形木框只制作一个,制作这种木框的木条的售价为8元╱分米,问至少需要多少钱购买材料?(忽略接头)18.如图,已知∠A=20°,∠B=27°,AC⊥DE,求∠1,∠D的度数.19.如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E.若∠B=35°,∠E=20°,求∠BAC的度数.20.如图,已知AC⊥BC,垂足为C,AC=4,BC=33,将线段AC绕点A按逆时针方向旋转60°,得到线段AD,连接DC、DB.(1)线段DC=________;(2)求线段DB的长度.21.已知a,b,c是三角形的三边长.(1)化简:|b+c-a|+|b-c-a|-|c-a-b|-|a-b+c|;(2)在(1)的条件下,若a,b,c满足a+b=11,b+c=9,a+c=10,求这个式子的值.22.如图1,在△OBC中,A是BO延长线上的一点.(1)∠B=32°,∠C=46°,则∠AOC= °,Q是BC边上一点,连接AQ交OC于点P,如图2,若∠A=18°,则∠OPQ= °,猜测:∠A+∠B+∠C与∠OPQ的大小关系是.(2)将图2中的CO延长到点D,AQ延长到点E,连接DE,得到图3,则∠AQB等于图中哪三个角的和?并说明理由.(3)求图3中∠A+∠D+∠B+∠E+∠C的度数.23.△ABC 中,AD、BE、CF是角平分线,交点是点 G,GH⊥BC。

(必修5)解三角形 综合提高训练题(含详细答案)Microsoft Word 文档 (3)

(必修5)解三角形 综合提高训练题(含详细答案)Microsoft Word 文档 (3)

(数学5必修)第一章:解三角形综合提高训练题一、选择题1.A 为△ABC 的内角,则A A cos sin +的取值范围是( )A .)2,2(B .)2,2(-C .]2,1(-D .]2,2[-2.在△ABC 中,若,900=C 则三边的比c b a +等于( ) A .2cos 2B A + B .2cos 2B A - C .2sin 2B A + D .2sin 2B A - 3.在△ABC 中,若8,3,7===c b a ,则其面积等于( )A .12B .221 C .28 D .364.在△ABC 中,090C ∠=,00450<<A ,则下列各式中正确的是( ) A .sin cos A A > B .sin cos B A >C .sin cos A B >D .sin cos B B >5.在△ABC 中,若)())((c b b c a c a +=-+,则A ∠=( )A .090B .060C .0120D .0150 6.在△ABC 中,若22tan tan ba B A =,则△ABC 的形状是( ) A .直角三角形 B .等腰或直角三角形C .不能确定D .等腰三角形二、填空题1.在△ABC 中,若,sin sin B A >则A 一定大于B ,对吗?填_________(对或错)2.在△ABC 中,若,1cos cos cos 222=++C B A 则△ABC 的形状是______________。

3.在△ABC 中,∠C 是钝角,设,cos cos ,sin sin ,sin B A z B A y C x +=+== 则z y x ,,的大小关系是___________________________。

4.在△ABC 中,若b c a 2=+,则=+-+C A C A C A sin sin 31cos cos cos cos ______。

中考数学总复习《三角形》专项提升练习题(附答案)

中考数学总复习《三角形》专项提升练习题(附答案)

中考数学总复习《三角形》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列图形中,不具有稳定性的是()2.现有两根木棒,它们的长分别为40 cm和50 cm,若要钉成一个三角形木架,则在下列四根木棒中应选取( )A.10 cm的木棒B.50 cm的木棒C.100 cm的木棒D.110 cm的木棒3.如图,在△ABC中有四条线段DE,BE,EG,FG,其中有一条线段是△ABC的中线,则该线段是( )A.线段DEB.线段BEC.线段EGD.线段FG4.已知△ABC,利用尺规作图,作BC边上的高AD,正确的是( )A. B. C. D.5.下面有3个判断:①一个三角形的3个内角中最多有1个直角;②一个三角形的3个内角中至少有两个锐角;③一个三角形的3个内角中至少有1个钝角.其中正确的有 ( )A.0个B.1个C.2个D.3个6.满足下列条件的△ABC中,不是直角三角形的是( )A.∠B+∠A=∠CB.∠A:∠B:∠C=2:3:5C.∠A=2∠B=3∠CD.一个外角等于和它相邻的一个内角7.如图,∠ABC=31°,又∠BAC的平分线与∠FCB的平分线CE相交于E点,则∠AEC 为( )A.14.5°B.15.5°C.16.5°D.20°8.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是( )A.45° B.60° C.75° D.85°9.如图,∠1,∠2,∠3,∠4的数量关系为( )A.∠1+∠2=∠4-∠3B.∠1+∠2=∠3+∠4C.∠1-∠2=∠4-∠3D.∠1-∠2=∠3-∠410.如图,∠ABD,∠ACD的角平分线交于点P,若∠A=50°,∠D=10°,则∠P的度数为()A.15°B.20°C.25°D.30°二、填空题11.要使五边形木架(用5根木条钉成)不变形,至少要钉上_________根木条.12.若一个三角形三个内角的度数之比为1:2:3,则这个三角形中的最大的角度是 .13.三角形的三边长分别为5,1+2x ,8,则x 的取值范围是 . 14.三角形中至少有______个锐角;在一个多边形中,最多只有_____个锐角。

(完整word版)八上等腰三角形精品提高题系列

(完整word版)八上等腰三角形精品提高题系列

1.如图①,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角两边分别交AB,AC边于M,N两点,连接MN.( I)探究:线段BM,MN,NC之间的关系,并加以证明.(Ⅱ)若点M是AB的延长线上的一点,N是CA的延长线上的点,其它条件不变,请你再探线段BM,MN,NC之间的关系,在图②中画出图形,并说明理由.2.如图,点P为△ABC内部一点,使得∠PBC=30°,∠PBA=8°,且∠PAB=∠PAC=22°,求∠APC的度数.3.如图,已知P是△ABC边BC上一点,且PC=2PB,若∠ABC=45°,∠APC=60°,求∠ACB的大小.5.在△ABC中,BD平分∠ABC(∠ABC<60°)(1)如图1,当点D在AC边上时,若∠ABC=42°,∠ACB=32°,直接写出AB,DC和BC之间的数量关系.(2)如图2,当点D在△ABC内部,且∠ACD=30°时,①若∠BDC=150°,直接写出AB,AD和BC之间的数量关系,并写出结论成立的思路.②若∠ABC=2α,∠ACB=60°-α,请直接写出∠ADB的度数(用含α的式子表示).6.如图,已知△ABC中,AB=AC,D是△ABC外一点且∠ABD=60°,求证:AC=BD+CD.在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于E.(1)如图1,连接CE,求证:△BCE是等边三角形;(2)如图2,点M为CE上一点,连结BM,作等边△BMN,连接EN,求证:EN∥BC;(3)如图3,点P为线段AD上一点,连结BP,作∠BPQ=60°,PQ交DE延长线于Q,探究线段PD,DQ与AD之间的数量关系,并证明.如图,过△ABC的边BC的中点M作直线垂直于∠A的平分线AA′,且分别交直线AB,AC于点E,F,已知:如图在△ABC中,BD,CE为两条高线,F为BD上一点,G为CE延长线上一点,BF=AC,CG=AB.(1)请你判断△AFG的形状并证明.(2)当F为BD反向延长线上一点,G为CE反向延线上一点,其它条件不变,(1)中的结论是否仍然成立?请你画出图形,并证明你的结论.如图,在Rt△ABC中,∠ACB=90°,AC=BC,点E,F为线段BC上的两点,且CE=BF,连接AF,过点C 作CD⊥AF于点G,交AB于点D,连接DE,交AF于点M.(1)求证:∠ACD=∠AFC;(2)求证:ME=MF在△ABC中,BD为∠ABC的平分线.(1)如图1,∠C=2∠DBC,∠A=60°,求证:△ABC为等边三角形;(2)如图2,若∠A=2∠C,BC=8,AB=4.8,求AD的长度;(3)如图3,若∠ABC=2∠ACB,∠ACB的平分线OC与BD相交于点O,且OC=AB,求∠A的度数.1.如图,已知AM∥BN,AC平分∠MAB,BC平分∠NBA.(1)过点C作直线DE,分别交AM、BN于点D、E,则AB、AD、BE三条线的长度之间存在何种等量关系?请直接写出关系式_______(2)如图,若将直线DE绕点C转动,使DE与AM交于点D,与NB的延长线交于点E,则AB、AD、BE三条线的长度之间存在何种等量关系?请你给出结论并加以证明.2.如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B 同时出发,且它们的速度都为1cm/s,(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)何时△PBQ是直角三角形?(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数.3.已知△ABC,∠BAC=45°,以AB、AC为边在△ABC外作等腰△ABD和△ACE,AD=AB、AE=AC,且∠BAD=∠CAE,连CD、BE交于F,连AF.(1)①如图1,若∠BAD=60°,则∠AFE=_______度;②如图2,若∠BAD=90°,则∠AFE=_______度;(2)如图3,若∠BAD=a°,猜想∠AFE的度数(用a表示),并予以证明.4.如图,等腰直角三角形ABC中,∠BAC=90°,D、E分别为AB、AC边上的点,AD=AE,AF⊥BE交BC 于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M.(1)求证:△ADC≌△AEB;(2)判断△EGM是什么三角形,并证明你的结论;(3)判断线段BG、AF与FG的数量关系并证明你的结论1.如图,点D是△ABC三条角平分线的交点,∠ABC=68°(1)求证:∠ADC=124°;(2)若AB+BD=AC,求∠ACB的度数2.已知:在△ABC中,AB=3AC,AD平分∠BAC,BE⊥AD交AD的延长线于点E.设△ACD的面积是S.(1)求△ABD的面积;(2)求证:AD=DE;(3)探究BE-AC和BD-CD之间的大小关系并证明你的结论3.在△ABC中,∠BAC=90°,射线AM∥BC,点D在射线AM上(不与点A重合),连接BD,过点D作BD的垂线交CA的延长线于点P(1)如图①,若∠C=30°,且AB=DB,求∠APD的度数;(2)如图②,若∠C=45°,当点D在射线AM上运动时,PD与BD之间有怎样的数量关系?请写出你的结论,并加以证明;(3)如图③,在(2)的条件下,连接BP,设BP与射线AM的交点为Q,∠AQP=α,∠APD=β,当点D在射线AM上运动时,α与β之间有怎样的数量关系?请写出你的结论,并加以证明.4.已知等边△ABC的边长为4cm,点P,Q分别从B,C两点同时出发,其中点P沿BC向终点C运动,速度为1cm/s;点Q沿CA,AB向终点B运动,速度为2cm/s,设它们运动的时间为x(s),(1)如图(1),当x为何值时,PQ∥AB;(2)如图(2),若PQ⊥AC,求x;(3)如图(3),当点Q在AB上运动时,PQ与△ABC的高AD交于点O,OQ与OP是否总是相等?请说明理由.1.在锐角三角形ABC中,AF是BC边上的高,分别以AB、AC为一边,向外作△ABD和△ACE,使得AB=AD,AC=AE,∠BAD=∠CAE=90°,连接BE、DE、DC,DE与FA的延长线交于点G,下列结论:①BE=DC;②BE⊥DC;③AG是△ADE的中线;④∠DAG=∠ABC.其中正确的结论有哪些?2.在△ABC中,AB≠AC,分别以AB,AC为边作等腰△ABD和△ACE,AD=AB,AC=AE,且∠ACB=∠BAD=∠CAE=α,连接DE,交CA延长线于点M,求证:M为DE中点3.如图,已知△ABC,分别以AB、AC为边作△ABD和△ACE,且AD=AB,AC=AE,∠DAB=∠CAE,连接DC与BE.G、F分别是DC与BE的中点.(1)求证:DC=BE;(2)当∠DAB=80°,求∠AFG的度数;(3)若∠DAB=α,求∠AFG与α的数量关系.4.如图,△ABC中,AB=AC,∠BAC=90°,点D在CB上,连接AD,EA⊥AD,∠ACE=∠ABD.(1)求证:AD=AE;(2)若点F为CD中点,AF交BE于点G,求∠AGE的度数.1.如图△ABD和△ACE是△ABC外两个等腰直角三角形,∠BAD=∠CAE=90°.(1)判断CD与BE有怎样的数量关系;(2)探索DC与BE的夹角的大小;(3)求证:FA平分∠DFE;(4)取BC的中点M,连MA,探讨MA与DE的数量关系和位置关系2.如图1,已知△ABC,分别以AB、AC为边作△ABD和△ACE,且AD=AB,AC=AE,∠DAB=∠CAE,连接DC与BE.(1)求证:△DAC≌△BAE;(2)F、H分别是BE与DC的中点;①如图2.当∠DAB=∠CAE=90°时,求∠AFH的度数;②请探究当∠DAB等于多少度时,AF=FH?请说明理由.3.如图,△ABC向外侧作等腰Rt△ABD与Rt△ACE,∠BAD=∠CAE=90°,F为BC的中点,连接F、A并延长交DE于G点,请问:AF与DE之间存在怎样的数量关系和位置关系?4.已知△ABC,分别以AB、AC为边作△ABD和△ACE,且AD=AB,AC=AE,∠DAB=∠CAE,连接DC与BE,G、F分别是DC与BE的中点.(1)如图1,若∠DAB=60°,则∠AFG=_______;如图2,若∠DAB=90°,则∠AFG=_______.(2)如图3,若∠DAB=α,试探究∠AFG与α的数量关系,并给予证明;(3)如果∠ACB为锐角,AB≠AC,∠BAC≠90°,点M在线段BC上运动,连接AM,以AM为一边以点A为直角顶点,且在AM的右侧作等腰直角△AMN,连接NC;试探究:若NC⊥BC(点C、M重合除外),则∠ACB等于多少度?画出相应图形,并说明理由.(画图不写作法)5.在等腰△ABC中,∠BAC=90°,AB=AC,直线MN过点A且MN∥BC,过B点作∠BDE=90°,且点D 在直线MN上(不与点A重合).(1)如图①,当DE与AC交于P时,求证:BD=DP;(2)如图②,当DE与AC的延长线交于点P时,(1)中的结论还成立吗?请说明理由.(3)如图③,当DE与CA的延长线交于点P时,请直接写出DB与PD的数量关系,此时过D作DF⊥AB于F,求证:AP+AB=2AF.6.在等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN过点A且MN∥BC,过点B为一锐角顶点作Rt△BDE,∠BDE=90°,且点D在直线MN上(不与点A重合),如图1,DE与AC交于点P,易证:BD=DP.(无需写证明过程)(1)在图2中,DE与CA延长线交于点P,BD=DP是否成立?如果成立,请给予证明;如果不成立,请说明理由;(2)在图3中,DE与AC延长线交于点P,BD与DP是否相等?请直接写出你的结论,无需证明.1.已知:在△ABC中,AC=BC,∠ACB=90°,过点C作CD⊥AB于点D,点E是AB边上一动点(不含端点A、B),连接CE,过点B作CE的垂线交直线CE于点F,交直线CD于点G(如图①).(1)求证:AE=CG;(2)若点E运动到线段BD上时(如图②),试猜想AE、CG的数量关系是否发生变化,请直接写出你的结论;(3)过点A作AH垂直于直线CE,垂足为点H,并交CD的延长线于点M(如图③),找出图中与BE 相等的线段,并证明.2.如图,已知在△ABC中,AB=AC,P是BC边上的-点,过点P引直线分别交AB于点M,交AC的延长线于点N,且PM=PN.(1)写出图中除AB和AC,PM和PN外的其他相等的线段.(2)证明你的结论3.在Rt△ABC中,∠BAC=90°,AB=AC,D,E为边AC上的两动点,以相同的速度D从A向C,E从C 向A运动,AM⊥BD交BC于N,连NE并延长交BD延长线于F.①说明∠ABD=∠NAC②当D,E运动到如图2所示的位置时,试作出图形,并判断FD与FE的数量关系,请写出你的结论.(不要求证明)③对图1证明△FED为等腰三角形.4.已知:△ABC和△ADE是两个不全等的等腰直角三角形,其中BA=BC,DA=DE,连接EC,取EC的中点M,连接BM和DM.(1)如图1,如果点D、E分别在边AC、AB上,那么BM、DM的数量关系与位置关系是_______(2)将图1中的△ADE绕点A旋转到图2的位置时,判断(1)中的结论是否仍然成立,并说明理由.5.如图,△ABD与△ACE中,AB=AC,∠ACE+∠ABD=180°,BD=CE,BC延长线交ED于F.(1)求证:∠DBF=∠ECF;(2)图中是否存在与DF相等的线段?若存在,请找出,并加以证明;若不存在,说明理由6.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)DG=CF;(3)直接写出CF与DE的数量关系.1.已知等腰直角△ABC和等腰直角△CDE中,AB=BC,CD=DE,∠ABC=90°,∠CDE=90°,CD>BC,取线段AE的中点M,连结BM、DM、BD.(1)如图1,当BC⊥CE时,连接AE,试猜想BM与MD的数量关系和位置关系,请直接写出答案;(2)如图2,当点A、C、E三点在同一条直线上时,其他条件不变,试探究BM与MD的数量关系和位置关系,请说明理由.2.如图1,△ABC中,AB=AC,连B,C分别作BD⊥AB,CD⊥AC,BD、CD相交于D点,P为BC上一点,过P的直线交AB于E,AC延长线于F,且满足PE=PF,连结DP.(1)求证:DP⊥EF;(2)如图2,若P为BC延长线上,其它条件不变,(1)中结论是否成立?3.(1)如图①,已知:△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥m于D,CE⊥m于E,求证:DE=BD+CE;(2)拓展:如图②,将(1)中的条件改为:△ABC中,AB=AC,D、A、E三点都在直线m上,并且∠BDA=∠AEC=∠BAC=α,α为任意锐角或钝角,请问结论DE=BD+CE是否成立?如成立,请证明;若不成立,请说明理由;(3)应用:如图③,在△ABC中,∠BAC是钝角,AB=AC,∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,直线m与BC的延长线交于点F,若BC=2CF,△ABC的面积是12,求△ABD与△CEF的面积之和.4.如图,D是Rt△ABC斜边AB上一点,且BD=BC=AC=1,P为CD上任意一点,PF⊥BC于点F,PE⊥AB于点E,则PE+PF的值是()A.B.C.D.5.如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H(1)求∠APB度数;(2)求证:△ABP≌△FBP;(3)求证:AH+BD=AB6.已知:在△ABC中,AB=AC,∠BAC=90°,点D是BC的中点,点P是BC边上的一个动点,连接AP.直线BE垂直于直线AP,交AP于点E,直线CF垂直于直线AP,交AP于点F.(1)当点P在BD上时(如图①),求证:CF=BE+EF;(2)当点P在DC上时(如图②),CF=BE+EF还成立吗?若不成立,请画出图形,并直接写出CF、BE、EF之间的关系(不需要证明).(3)若直线BE的延长线交直线AD于点M(如图③),找出图中与CP相等的线段,并加以证明.8.如图,等腰直角三角形ABC中,∠BAC=90°,D、E分别为AB、AC边上的点,AD=AE,AF⊥BE交BC 于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M.(1)求证:△EGM为等腰三角形;(2)判断线段BG、AF与FG的数量关系并证明你的结论.9.在△ABC中,AB=AC,D在AC上,AE=AC交BD的延长线于点E,AF平分∠CAE交BE于F. (1)如图1,连CF,求证:∠ABE=∠ACF;(2)如图2,当∠ABC=60°时,且BD平分∠ABC,请写出AF、EF、BF的数量关系,不需证明;(3)如图3,若∠BAC=90°,且BD平分∠ABC,求证:BD=2EF.1.在△ABC中,∠ACB=90°,AC=BC,点D为线段AC上的一点(不和点A、C重合),点E在线段BD 的延长线上,点F在线段BD上,连接CE、CF、AE,且∠ECF=90°,CE=CF,过点F作FG⊥BD分别交线段BC、线段AC的延长线于点P、G.(1)如图l,求证:AC=CG;(2)如图2,延长线段GF交线段AB于点H,连接DH,当AH=BH时,求证:∠BHG=∠AHD.2.如图,在△ABC中,AB=AC,BC=6,点P从点B出发沿线段BA移动,同时,点Q从点C出发沿线段AC的延长线移动,当点P运动到A时,点P、Q随即停止运动,若点P、Q移动的速度相同,PQ与直线BC相交于点D.(1)如图①,当点P自点B出发在线段BA上运动是,过点P作AC的平行交BC于点F,连接PC、FQ,判断四边形PFQC的形状,并证明你的结论.(2)如图②,过点P作PE⊥BC,垂足为E,请说明在点P、Q在移动的过程中,DE长度保持不变.4.如图,等腰三角形ABC中,∠AC=90°,D,E分别为AB,AC边上的点,AD=AE,AF⊥BE交BC于点F,过点F作FG⊥CD,交BE于点G,交AC于点M.(1)求证:GM=GE;(2)求证:BG=AF+FG.1.在Rt△ABC中,∠ACB=90°,AC=BC,D为直线AC上一点,直线AE⊥直线BD,垂足为E,直线AE 和直线BC交于点H,过点C作AB的平行线,交直线AE于F,连DF.(1)若D在线段AC上(如图1),求证:∠CDB=∠CDF;(2)若D在AC延长线上(如图2),求证:∠CDB+∠CDF=180°.2.已知:如图,△ABC中,AB=AC,占M在线段AC上(不与C重合),BM延长线与过点C的直线交于D,连接AD,∠MAD=∠DBC,AE⊥BM于E,当M在线段AC上时,求证:BD-CD=2DE3.已知△ABC,∠BAC=90°,等腰直角△BDE,∠BDE=90°,BD=DE,点D在线段AC上.(1)如图1,当∠ACB=30°,点E在BC上时,试判断AD与CE的数量关系,并加以证明;(2)如图2,当∠ACB=45°,点E在BC外时,连结EC、BD并延长交于点F,设ED与BC交于点N,(完整word版)八上等腰三角形精品提高题系列图中是否存在与BN相等的线段?若存在.请加以证明.若不存在,请说明理由.。

八年级数学全等三角形(培优篇)(Word版 含解析)

八年级数学全等三角形(培优篇)(Word版 含解析)

八年级数学全等三角形(培优篇)(Word版含解析)一、八年级数学轴对称三角形填空题(难)1.如图,在菱形ABCD中,∠ABC=120°,AB=10cm,点P是这个菱形内部或边上的一点.若以P,B,C为顶点的三角形是等腰三角形,则P,A(P,A两点不重合)两点间的最短距离为______cm.-【答案】10310【解析】解:连接BD,在菱形ABCD中,∵∠ABC=120°,AB=BC=AD=CD=10,∴∠A=∠C=60°,∴△ABD,△BCD都是等边三角形,分三种情况讨论:①若以边BC为底,则BC垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短”,即当点P与点D重合时,PA最小,最小值PA=10;②若以边PB为底,∠PCB为顶角时,以点C为圆心,BC长为半径作圆,与AC相交于一点,则弧BD(除点B外)上的所有点都满足△PBC是等腰三角形,当点P在AC上时,AP-;最小,最小值为10310③若以边PC为底,∠PBC为顶角,以点B为圆心,BC为半径作圆,则弧AC上的点A与点D均满足△PBC为等腰三角形,当点P与点A重合时,PA最小,显然不满足题意,故此种情况不存在;-(cm).综上所述,PA的最小值为10310-.故答案为:10310点睛:本题考查菱形的性质、等边三角形的性质,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.2.如图,在锐角△ABC中,AB=5,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD,AB上的动点,则BM+MN的最小值是______.【答案】5【解析】【分析】作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN为所求的最小值,再根据AD是∠BAC的平分线可知MH=MN,再由等腰直角三角形的性质即可得出结论.【详解】如图,作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN 为所求的最小值.∵AD是∠BAC的平分线,∴MH=MN,∴BH是点B到直线AC的最短距离(垂线段最短).∵AB=5,∠BAC=45°,∴BH==5.∵BM+MN的最小值是BM+MN=BM+MH=BH=5.故答案为5.【点睛】本题考查了轴对称﹣最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.3.如图,已知正六边形 ABCDEF 的边长是 5,点 P 是 AD 上的一动点,则 PE+PF 的最小值是_____.【答案】10【解析】利用正多边形的性质,可得点B 关于AD 对称的点为点E ,连接BE 交AD 于P 点,那么有PB=PF ,PE+PF=BE 最小,根据正六边形的性质可知三角形APB 是等边三角形,因此可知BE 的长为10,即PE+PF 的最小值为10.故答案为10.4.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.【答案】(-4,2)或(-4,3)【解析】【分析】【详解】把点C 向下平移1个单位得到点D (4,2),这时△ABD 与△ABC 全等,分别作点C ,D 关于y 轴的对称点(-4,3)和(-4,2),所得到的△ABD 与△ABC 全等.故答案为(-4,2)或(-4,3).5.如图,ABC 中,ABC=45∠︒,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E ,与CD 相交于点F ,H 是BC 边的中点,连接DH 与BE 相交于点G ,下列结论:BF=AC ①;A=67.5∠︒②;DG=DF ③;ADGE GHCE S S =四边形四边形④,其中正确的有__________(填序号).【答案】①②③【解析】【分析】只要证明△BDF ≌△CDA ,△BAC 是等腰三角形,∠DGF=∠DFG=67.5°,即可判断①②③正确,作GM ⊥BD 于M ,只要证明GH <DG 即可判断④错误.【详解】解:∵CD ⊥AB ,BE ⊥AC ,∴∠BDC=∠ADC=∠AEB=90°,∴∠A +∠ABE=90°,∠ABE +∠DFB=90°,∴∠A=∠DFB ,∵∠ABC=45°,∠BDC=90°,∴∠DCB=90°−45°=45°=∠DBC ,∴BD=DC ,在△BDF 和△CDA 中,∠BDF=∠CDA ,∠A=∠DFB ,BD=CD ,∴△BDF ≌△CDA (AAS ),∴BF=AC ,故①正确.∵∠ABE=∠EBC=22.5°,BE ⊥AC ,∴∠A=∠BCA=67.5°,故②正确,∵BE 平分∠ABC ,∠ABC=45°,∴∠ABE=∠CBE=22.5°,∵∠BDF=∠BHG=90°,∴∠BGH=∠BFD=67.5°,∴∠DGF=∠DFG=67.5°,∴DG=DF ,故③正确.作GM ⊥AB 于M .如图所示:∵∠GBM=∠GBH ,GH ⊥BC ,∴GH=GM <DG ,∴S △DGB >S △GHB ,∵S △ABE =S △BCE ,∴S 四边形ADGE <S 四边形GHCE .故④错误,故答案为:①②③.【点睛】此题是三角形综合题,考查了等腰三角形的性质,直角三角形的性质,全等三角形的性质和判定,三角形的面积等知识点的综合运用,第五个问题难度比较大,添加辅助线是解题关键,属于中考选择题中的压轴题.6.如图,己知30MON ∠=︒,点1A ,2A ,3A ,…在射线ON 上,点1B ,2B ,3B ,…在射线OM 上,112A B A ∆,223A B A ∆,334A B A ∆,…均为等边三角形,若12OA =,则556A B A ∆的边长为________.【答案】32【解析】【分析】根据底边三角形的性质求出130∠=︒以及平行线的性质得出112233////A B A B A B ,以及22122A B B A =,得出332212244A B A B B A ===,441288A B B A ==,551216A B B A =⋯进而得出答案.【详解】解:△112A B A 是等边三角形,1121A B A B ∴=,341260∠=∠=∠=︒,2120∴∠=︒,30MON ∠=︒,11801203030∴∠=︒-︒-︒=︒,又360∠=︒,5180603090∴∠=︒-︒-︒=︒,130MON ∠=∠=︒,1112OA A B ∴==,212A B ∴=,△223A B A 、△334A B A 是等边三角形,111060∴∠=∠=︒,1360∠=︒,41260∠=∠=︒,112233////A B A B A B ∴,1223//B A B A ,16730∴∠=∠=∠=︒,5890∠=∠=︒,22122242A B B A =∴==,33232B A B A =,33312428A B B A ∴===,同理可得:444128216A B B A ===,⋯∴△1n n n A B A +的边长为2n ,∴△556A B A 的边长为5232=.故答案为:32.【点睛】本题考查了等边三角形的性质以及30°直角三角形的性质,根据已知得出33124A B B A =,44128A B B A =,551216A B B A =进而发现规律是解题关键.7.如图,在直角坐标系中,点()8,8B -,点()2,0C -,若动点P 从坐标原点出发,沿y 轴正方向匀速运动,运动速度为1/cm s ,设点P 运动时间为t 秒,当BCP ∆是以BC 为腰的等腰三角形时,直接写出t 的所有值__________________.【答案】2秒或46秒或14秒【解析】【分析】分两种情况:PC 为腰或BP 为腰.分别作出符合条件的图形,计算出OP 的长度,即可求出t 的值.【详解】解:如图所示,过点B 作BD ⊥x 轴于点D ,作BE ⊥y 轴于点E ,分别以点B 和点C 为圆心,以BC 长为半径画弧交y 轴正半轴于点F ,点H 和点G∵点B (-8,8),点C (-2,0),∴DC=6cm ,BD=8cm ,由勾股定理得:BC=10cm∴在直角三角形COG中,OC=2cm,CG=BC=10cm,∴OP=OG= 22-=,10246(cm)当点P运动到点F或点H时,BE=8cm,BH=BF=10cm,∴EF=EH=6cm∴OP=OF=8-6=2(cm)或OP=OH=8+6=14(cm),故答案为:2秒,46秒或14秒.【点睛】本题综合考查了勾股定理和等腰三角形在平面直角坐标系中的应用,通过作图找出要求的点的位置,利用勾股定理来求解是本题的关键.8.如图,已知每个小方格的边长为1,A、B两点都在小方格的格点(顶点)上,请在图中找一个格点C,使△ABC是等腰三角形,这样的格点C有________个。

上海市光学校数学三角形解答题(提升篇)(Word版 含解析)

上海市光学校数学三角形解答题(提升篇)(Word版 含解析)

上海市光学校数学三角形解答题(提升篇)(Word 版 含解析)一、八年级数学三角形解答题压轴题(难) 1.(问题探究)将三角形ABC 纸片沿DE 折叠,使点A 落在点A '处.(1)如图,当点A 落在四边形BCDE 的边CD 上时,直接写出A ∠与1∠之间的数量关系;(2)如图,当点A 落在四边形BCDE 的内部时,求证:122A ∠+∠=∠;(3)如图,当点A 落在四边形BCDE 的外部时,探索1∠,2∠,A ∠之间的数量关系,并加以证明;(拓展延伸)(4)如图,若把四边形ABCD 纸片沿EF 折叠,使点A 、D 落在四边形BCFE 的内部点A '、D 的位置,请你探索此时1∠,2∠,A ∠,D ∠之间的数量关系,写出你发现的结论,并说明理由.【答案】【问题探究】(1)∠1=2∠A ;(2)证明见详解;(3)∠1=2∠A+∠2;【拓展延伸】(4)()212360A D ∠+∠=∠+∠+︒.【解析】 【分析】(1)运用折叠原理及三角形的外角性质即可解决问题, (2)运用折叠原理及四边形的内角和定理即可解决问题, (3)运用三角形的外角性质即可解决问题,(4)先根据翻折的性质求出∠AEF、∠EFD,再根据四边形的内角和定理列式整理即可得解. 【详解】解:(1)如图,∠1=2∠A .理由如下:由折叠知识可得:∠EA′D=∠A ; ∵∠1=∠A+∠EA′D ,∴∠1=2∠A .(2)∵∠1+∠A′EA+∠2+∠A′DA=360°,由四边形的内角和定理可知:∠A+∠A′+∠A′EA+∠A′DA=360°, ∴∠A′+∠A=∠1+∠2, 由折叠知识可得∠A=∠A′, ∴2∠A=∠1+∠2.(3)如图,∠1=2∠A+∠2理由如下:∵∠1=∠EFA+∠A ,∠EFA=∠A′+∠2, ∴∠1=∠A+∠A′+∠2=2∠A+∠2,(4)如图,根据翻折的性质,()3181201∠=-∠,()4181202∠=-∠, ∵34360A D ∠+∠+∠+∠=︒,∴()()180118023601122A D ∠+∠+-∠+-∠=︒, 整理得,()212360A D ∠+∠=∠+∠+︒. 【点睛】本题考查了折叠的性质,三角形外角性质,三角形内角和定理及四边形内角和的应用,主要考查学生运用定理进行推理和计算的能力.2.(1)如图1.在△ABC 中,∠B =60°,∠DAC 和∠ACE 的角平分线交于点O ,则∠O = °,(2)如图2,若∠B =α,其他条件与(1)相同,请用含α的代数式表示∠O 的大小; (3)如图3,若∠B =α,11,PAC DAC PCA E n nAC ∠=∠∠=∠,则∠P = (用含α的代数式表示).【答案】(1)∠O =60°;(2)90°-12α;(3)11(1)180P n nα∠=-⨯- 【解析】 【分析】(1)由题意利用角平分线的性质和三角形内角和为180°进行分析求解;(2)根据题意设∠BAC=β,∠ACB=γ,则α+β+γ=180°,利用角平分线性质和外角定义找等量关系,用含α的代数式表示∠O 的大小;(3)利用(2)的条件可知n=2时,∠P=111-18022α︒⨯-(),再将2替换成n 即可分析求解. 【详解】解:(1)因为∠DAC 和∠ACE 的角平分线交于点O ,且∠B=60°, 所以18060120OAC OCA οοο∠+∠=-=, 有∠O=180120οο-=60°.(2)设∠BAC=β,∠ACB=γ,则α+β+γ=180° ∵∠ACE 是△ABC 的外角, ∴∠ACE=∠B+∠BAC=α+β ∵CO 平分∠ACE11()22ACO ACE αβ∴∠=∠=+ 同理可得:1()2CAO αγ∠=+ ∵∠O+∠ACO+∠CAO=180°,∴11180180()()22O ACO CAO αβαγ︒︒∠=-∠-∠=-+-+ 1180()2αβαγ︒=-+++111180()1809090222αβααα︒︒︒︒=-++=--=-;(3)∵∠B=α,11,PAC DAC PCA E n nAC ∠=∠∠=∠, 由(2)可知n=2时,有∠P=1180902α︒︒--=111-18022α︒⨯-(),将2替换成n 即可, ∴11(1)180P n nα∠=-⨯-. 【点睛】本题考查用代数式表示角,熟练掌握并综合利用角平分线定义和三角形内角和为180°以及等量替换技巧与数形结合思维分析是解题的关键.3.如图, A 为x 轴负半轴上一点, B 为x 轴正半轴上一点, C(0,-2),D(-3,-2). (1)求△BCD 的面积;(2)若AC ⊥BC,作∠CBA 的平分线交CO 于P ,交CA 于Q,判断∠CPQ 与∠CQP 的大小关系, 并证明你的结论.【答案】(1)3;(2)∠CPQ =∠CQP ,理由见解析; 【解析】 【分析】(1)求出CD 的长度,再根据三角形的面积公式列式计算即可得解;(2)根据角平分线的定义可得∠ABQ=∠CBQ ,然后根据等角的余角相等解答; 【详解】解:(1)∵点C (0,-2),D (-3,-2), ∴CD=3,且CD//x 轴 ∴△BCD 面积=12×3×2=3;(2)∠CPQ=∠CQP,∵AC⊥BC,∴∠ACO+∠BCO=90°,又∠ACO+∠OAC=90°∴∠OAC=∠BCO,又BQ平分∠CBA,∴∠ABQ=∠CBQ,∵∠CQP=∠OAC+∠ABQ∠CPQ=∠CBQ+∠BCO,∴∠CQP=∠CPQ(2)∠CPQ=∠CQP,∵AC⊥BC,∴∠ACO+∠BCO=90°,又∠ACO+∠OAC=90°∴∠OAC=∠BCO,又BQ平分∠CBA,∴∠ABQ=∠CBQ,∵∠CQP=∠OAC+∠ABQ∠CPQ=∠CBQ+∠BCO,∴∠CQP=∠CPQ【点睛】本题考查了坐标与图形性质,三角形的角平分线,三角形的面积,三角形的内角和定理,三角形的外角性质,综合题,熟记性质并准确识图是解题的关键.4.探究:(1)如图1,在△ABC中,BP平分∠ABC,CP平分∠ACB.求证:∠P=90°+12∠A.(2)如图2,在△ABC中,BP平分∠ABC,CP平分外角∠ACE.猜想∠P和∠A有何数量关系,并证明你的结论.(3)如图3,BP平分∠CBF,CP平分∠BCE.猜想∠P和∠A有何数量关系,请直接写出结论.【答案】(1)见解析;(2)12∠A=∠P,理由见解析;(3)∠P=90°﹣12∠A,理由见解析【解析】【分析】(1)根据三角形内角和定理以及角平分线的性质进行解答即可:(2)根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠A的度数,根据补角的定义求出∠ACB的度数,根据三角形的内角和即可求出∠P的度数,即可求出结果,(3)根据三角形的外角性质、内角和定理、角平分线的定义探求并证明.【详解】证明:(1)∵△ABC中,∠ABC+∠ACB=180°﹣∠A.又∵BP平分∠ABC,CP平分∠ACB,∴∠PBC=12∠ABC,∠PCB=12∠ACB,∴∠PBC+∠PCB=12(180°﹣∠A),根据三角形内角和定理可知∠BPC=180°﹣12(180°﹣∠A)=90°+12∠A;(2)12∠A=∠P,理由如下:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠PBC=12∠ABC,∠PCE=12∠ACE.∵∠ACE是△ABC的外角,∠PCE是△BPC的外角,∴∠ACE=∠ABC+∠A,∠PCE=∠PBC+∠P,∴12∠ACP=12∠ABC+12∠A,∴12∠ABC+12∠A=∠PBC+∠P,∴12∠A=∠P.(3)∠P=90°﹣12∠A,理由如下:∵P点是外角∠CBF和∠BCE的平分线的交点,∠P+∠PBC+∠PCB=180°∴∠P=180°﹣(∠PBC+∠PCB)=180°﹣12(∠FBC+∠ECB)=180°﹣12(∠A+∠ACB+∠A+∠ABC)=180°﹣12(∠A+180°)=90°﹣12∠A . 【点睛】本题考查了角平分线的定义,一个三角形的外角等于与它不相邻的两个内角和以及补角的定义以及三角形的内角和为180°,此类题解题的关键是找出角平分线平分的两个角的和的度数,从而利用三角形内角和定理求解.5.(1)在ABC ∆中,AD BC ⊥,BE AC ⊥,CF AB ⊥,16BC =,3AD =,4BE =,6CF =,则ABC ∆的周长为______.(2)如图①,在ABC ∆中,已知点D ,E ,F 分别为边BC ,BD ,CD 的中点,且4ABC S ∆=2cm ,则AEF S ∆等于______2cm .① ②(3)如②图,三角形ABC 的面积为1,点E 是AC 的中点,点O 是BE 的中点,连接AO 并延长交BC 于点D ,连接CO 并延长交AB 于点F ,则四边形BDOF 的面积为______.【答案】(1)36(2)2(3)16【解析】 【分析】(1)利用三角形面积公式,求出AB 、AC 的长,再计算三角形的周长即可; (2)设ABC ∆在BC 边上的高为h ,则12ABC S BC h ∆=⋅,根据线段中点的定义以及线段的和差得出12EF BC =,继而再根据三角形面积公式进行求解即可; (3)设BOF S x ∆=,BOD S y ∆=,根据三角形中线将三角形分成两个面积相等的三角形可得14AOE COE AOB COB S S S S ∆∆∆∆====,从而得14AOF S x ∆=-,34ACF S x ∆=-,14BCF S x ∆=+,14COD S y ∆=-,34ACD S y ∆=-,14ABD S y ∆=+,利用等高的两三角形面积之比等于底边之比分别列出关于x 、y 的方程,求出x 、y 的值即可求得答案. 【详解】(1)111222ABC S BC AD AC BE AB CF ∆=⋅=⋅=⋅, ∴BC AD AC BE AB CF ⋅=⋅=⋅,即16346AC AB ⨯=⋅=⋅, ∴12AC =,8AB =, ∴△ABC 的周长=AB+BC+AC=36; (2)设ABC ∆在BC 边上的高为h , 则12ABC S BC h ∆=⋅, ∵E 为BD 中点,∴12ED BD =, ∵F 为DC 中点,∴12DF DC =, ∴111222EF BD DC BC =+=, ∴211112cm 2222AEF ABC S EF h BC h S ∆∆=⋅=⋅⋅==; (3)设BOF S x ∆=,BOD S y ∆=,∵点E ,O 分别是AC ,BE 的中点,1ABC S ∆=, ∴14AOE COE AOB COB S S S S ∆∆∆∆====, ∴14AOF S x ∆=-,34ACF S x ∆=-,14BCF S x ∆=+, ∴134414x xx x --=+,即2213164x x x -=-, 解得112x =,又14COD S y ∆=-,34ACD S y ∆=-,14ABD S y ∆=+,∴141344yy y y +=--,得112y =, 故11112126BDOF S x y =+=+=四边形. 【点睛】本题考查了三角形面积的应用,三角形的周长,解题关键在于找出等高的两三角形面积与底边的对应关系.6.(1)如图1,有一块直角三角板XYZ (其中∠X=90°)放置在△ABC 上,恰好三角板XYZ 的两条直角边XY ,XZ 分别经过B ,C 两点,且直角顶点X 在△ABC 内部.①若∠A=40°,∠ABC+∠ACB= °;∠XBC+∠XCB= °;②试判断∠A与∠XBA+∠XCA之间存在怎样数量关系?并写出证明过程.(2)如图2,如果直角顶点X在△ABC外部,试判断∠A、∠XBA、∠XCA之间又存在怎样的数量关系?(只写出答案,无需证明).【答案】(1)①140,90;②∠A+∠XBA+∠XCA=90°,证明见解析;(2)∠A+(∠XBA-∠XCA)=90°【解析】试题分析:(1)①根据三角形内角和定理可得∠ABC+∠ACB=180°﹣∠A=140°,∠XBC+∠XCB=180°﹣∠XBC=90°,进而可求出∠ABX+∠ACX 的度数;②根据三角形内角和定义有90°+(∠ABX+∠ACX)+∠A=180°,则可得出结论.(2)由②的解题思路可得:∠A+(∠XBA-∠XCA)=90°.(1)①若∠A=40°,∠ABC+∠ACB= 140 °;∠XBC+∠XCB= 90 °;②∠A+∠XBA+∠XCA=90°(或等式的变形也可以)证明:∵∠X=90°∴∠XBC+∠XCB=180°-∠X=90°∵∠A+∠ABC+∠ACB=180°,∴∠A+(∠XBA+∠XCA)+(∠XBC+∠XCB)=180°,∴∠A+(∠XBA+∠XCA)=180°-90°=90°,∴∠A=90°-(∠XBA+∠XCA)(2)∠A+(∠XBA-∠XCA) =90°.点睛:本题考查三角形外角的性质及三角形的内角和定理,解答的关键是熟练掌握三角形的内角和为180°以及沟通外角和内角的关系.7.(1)如图①,你知道∠BOC=∠B+∠C+∠A的奥秘吗?请用你学过的知识予以证明;(2)如图②,设x=∠A+∠B+∠C+∠D+∠E,运用(1)中的结论填空.x=____________°;x=____________°;x=____________°;(3)如图③,一个六角星,其中∠BOD=70°,则∠A+∠B+∠C+∠D+∠E+∠F=________°.【答案】(1)证明见解析. (2)180;180;180;(3)140【解析】【分析】(1)首先延长BO交AC于点D,可得BOC=∠BDC+∠C,然后根据∠BDC=∠A+∠B,判断出∠BOC=∠B+∠C+∠A即可.(2)a、首先根据外角的性质,可得∠1=∠A+∠B,∠2=∠C+∠D,然后根据∠1+∠2+∠E=180°,可得x=∠A+∠B+∠C+∠D+∠E=180,据此解答即可.b、首先根据外角的性质,可得∠1=∠A+∠B,∠2=∠C+∠D,然后根据∠1+∠2+∠E=180°,可得x=∠A+∠B+∠C+∠D+∠E=180,据此解答即可.c、首先延长EA交CD于点F,EA和BC交于点G,然后根据外角的性质,可得∠GFC=∠D+∠E,∠FGC=∠A+∠B,再根据∠GFC+∠FGC+∠C=180°,可得x=∠A+∠B+∠C+∠D+∠E=180°,据此解答即可.(3)根据∠BOD=70°,可得∠A+∠C+∠E=70°,∠B+∠D+∠F=70°,据此求出∠A+∠B+∠C+∠D+∠E+∠F的度数是多少即可.【详解】(1)证明:如图,延长BO交AC于点D,则∠BOC=∠BDC+∠C,又∵∠BDC=∠A+∠B,∴∠BOC=∠B+∠C+∠A.(2)180;180;180(3)140【点睛】(1)此题主要考查了三角形的内角和定理,要熟练掌握,解答此题的关键是要明确:三角形的内角和是180°.(2)此题还考查了三角形的外角的性质和应用,要熟练掌握,解答此题的关键是要明确:①三角形的外角和为360°.②三角形的一个外角等于和它不相邻的两个内角的和.③三角形的一个外角大于和它不相邻的任何一个内角.8.在△ABC中,点D、E分别在边AC、BC上(不与点A、B、C重合),点P是直线AB上的任意一点(不与点A、B重合).设∠PDA=x,∠PEB=y,∠DPE=m,∠C=n.(1)如图,当点P在线段AB上运动,且n=90°时①若PD∥BC,PE∥AC,则m=_____;②若m=50°,求x+y的值.(2)当点P在直线AB上运动时,直接写出x、y、m、n之间的数量关系.【答案】(1)①90°,②140°;(2)详见解析.【解析】分析:(1)①证明四边形DPEC为平行四边形可得结论;②根据四边形内角和为360°,列等式求出x+y的值;(2)根据P、D、E位置的不同,分五种情况:①y-x=m+n,如图2,点P在BA的延长线上时,根据三角形的内角和与外角定理列等式,化简后得出结论;②x-y=m-n,如图3,点P在BA的延长线上时,根据三角形的内角和与外角定理列等式,化简后得出结论;③x+y=m+n,如图4,点P在线段BA上时,根据四边形的内角和为360°列等式,化简后得出结论;④x-y=m+n,如图5,同理得出结论;⑤y-x=m-n,如图6,同理得出结论.详解:(1)①如图1,∵PD∥BC,PE∥AC,∴四边形DPEC为平行四边形,∴∠DPE=∠C,∵∠DPE=m,∠C=n=90°,∴m=90°;②∵∠ADP=x,∠PEB=y,∴∠CDP=180°-x,∠CEP=180°-y,∵∠C+∠CDP+∠DPE+∠CEP=360°,∠C=90°,∠DPE=50°,∴90°+180°-x+50°+180°-y=360°,∴x+y=140°;(2)分五种情况:①y﹣x=m+n,如图2,理由是:∵∠DFP=n+∠FEC,∠FEC=180°﹣y,∴∠DFP=n+180°﹣y,∵x+m+∠DFP=180°,∴x+m+n+180°﹣y=180°,∴y﹣x=m+n;②x﹣y=m﹣n,如图3,理由是:同理得:m+180°﹣x=n+180°﹣y,∴x﹣y=m﹣n;③x+y=m+n,如图4,理由是:由四边形内角和为360°得:180°﹣x+m+180°﹣y+n=360°,∴x+y=m+n;④x﹣y=m+n,如图5,理由是:同理得:180°=m+n+y+180°﹣x,∴x﹣y=m+n;⑤y﹣x=m﹣n,如图6,理由是:同理得:n+180°﹣x=m+180°﹣y,∴y﹣x=m﹣n.点睛:本题考查了三角形综合、平行四边形的判定.9.(问题背景)(1)如图1的图形我们把它称为“8字形”,请说明∠A+∠B=∠C+∠D;(简单应用)(2)如图2,AP、CP分别平分∠BAD.∠BCD,若∠ABC=36°,∠ADC=16°,求∠P的度数;(问题探究)(3)如图3,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,请猜想∠P的度数,并说明理由.(拓展延伸)(4)在图4中,若设∠C=α,∠B=β,∠CAP=13∠CAB,∠CDP=13∠CDB,试问∠P与∠C、∠B之间的数量关系为: ______ (用α、β表示∠P,不必证明)【答案】(1)证明见解析;(2)26°;(3)26°;(4)∠P=23α+13β.【解析】【分析】(1)根据三角形内角和定理即可证明.(2)根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据(1)的结论列出整理即可得解;(3)表示出∠PAD和∠PCD,再根据(1)的结论列出等式并整理即可得解;(4)列出方程组即可解决问题.【详解】(1)证明:在△AOB中,∠A+∠B+∠AOB=180°,在△COD中,∠C+∠D+∠COD=180°,∵∠AOB=∠COD,∴∠A+∠B=∠C+∠D;(2) 如图2,∵AP、CP分别平分∠BAD、∠BCD,∴∠1=∠2,∠3=∠4,∵∠2+∠B=∠3+∠P,∠1+∠P=∠4+∠D,∴2∠P=∠B+∠D,∴∠P=12(∠B+∠D)=12×(36°+16°)=26°;(3)如图3,∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∴∠PAD=180°-∠2,∠PCD=180°-∠3,∵∠P+(180°-∠1)=∠D+(180°-∠3),∠P+∠1=∠B+∠4,∴2∠P=∠B+∠D,∴∠P=12(∠B+∠D)=12×(36°+16°)=26°;(4)∠P=23α+13β.10.动手操作,探究:探究一:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系.已知:如图(1),在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.并说明理由.探究二:若将△ADC改为任意四边形ABCD呢?已知:如图(2),在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,请你利用上述结论探究∠P与∠A+∠B的数量关系,并说明理由.探究三:若将上题中的四边形ABCD改为六边形ABCDEF如图(3)所示,请你直接写出∠P 与∠A+∠B+∠E+∠F的数量关系.【答案】探究一: 90°+12∠A;探究二:12(∠A+∠B);探究三:∠P=12(∠A+∠B+∠E+∠F)﹣180°.【解析】试题分析:探究一:根据角平分线的定义可得∠PDC=12∠ADC,∠PCD=12∠ACD,然后根据三角形内角和定理列式整理即可得解.探究二:根据四边形的内角和定理表示出∠ADC+∠BCD,然后同理探究一解答即可.探究三:根据六边形的内角和公式表示出∠EDC+∠BCD,然后同理探究一解答即可.试题解析:探究一:∵DP、CP分别平分∠AD C和∠ACD,∴∠PDC=12∠ADC,∠PCD=12∠ACD,∴∠DPC=180°-∠PDC-∠PCD,=180°-12∠ADC-12∠ACD,= 180°-12(∠ADC+∠ACD),=180°-12(180°-∠A),=90°+12∠A;探究二:∵DP、CP分别平分∠ADC和∠BCD,∴∠PDC=12∠ADC,∠PCD=12∠BCD,∴∠DPC=180°-∠PDC-∠PCD,=180°-12∠ADC-12∠BCD,=180°-12(∠ADC+∠BCD),=180°-12(360°-∠A-∠B),=12(∠A+∠B);探究三:六边形ABCDEF的内角和为:(6-2)×180°=720°,∵DP、CP分别平分∠EDC和∠BCD,∴∠PDC=12∠EDC,∠PCD=12∠BCD,∴∠P=180°-∠PDC-∠PCD,=180°-12∠EDC-12∠BCD,=180°-12(∠EDC+∠BCD),=180°-12(720°-∠A-∠B-∠E-∠F),=12(∠A+∠B+∠E+∠F)-180°,即∠P=12(∠A+∠B+∠E+∠F)-180°.点睛:本题考查了三角形的外角性质,三角形的内角和定理,多边形的内角和公式,在此类题目中根据同一个解答思路求解是解题的关键.。

人教版高二数学解三角形测试卷培优提高题(含答案解析)

人教版高二数学解三角形测试卷培优提高题(含答案解析)
6.已知 中, , , ,那么角 等于
A. B. C. D. 或
7.在△ABC中, , ,且△ABC的面积 ,则边BC的长为()
A. B.3C. D.7
8.已知△ 中, ,则△ABC一定是
A、等边三角形B、等腰三角形C、直角三角形D、等腰直角三角形
9.在△ 中,角 的对边分别为 ,若 ,则 的值为()
试题解析:(Ⅰ)在 中,∵ ,
由正弦定理,得 .(3分)
.(5分)
∵ ,∴ ,∴ .(6分)
∵ ,∴ .(7分)
(Ⅱ)由(Ⅰ)得 且 ,(8分)
.(11分)
, .(12分)
的取值范围是 .(13分)
考点:1、三角恒等变换;2、正弦定理;3、三角函数的性质.
18.(1) (2)见解析.
【解析】
(1)由余弦定理,
因为 是三角形内角, 又
是锐角,所以 又
所以
故选A
4.B
【解析】主要考查正弦定理的应用。
解:利用三角形中大角对大边,大边对大角定理判定解的个数可知选B。
5.B
【解析】
试题分析:由题意可得,AB=10000,A=30°,C=45°,
△ABC中由正弦定理可得, ,
,故选B。
考点:正弦定理在实际问题中的应用。
所以tanC= .因为0<C<π,
所以C= 。
考点:本题主要考查余弦定理、三角形面积公式。
点评:简单题,思路明确,利用余弦定理进一步确定焦点函数值。
15. .
【解析】
试题分析:根据题意在 中,由余弦定理得 ,即 .
考点:余弦定理.
16.
【解析】略
17.(I) ;(II)取值范围是 .
【解析】

三角形提高培优练习

三角形提高培优练习

三角形提高练习一.选择题(共10小题)1.(2015•黄冈校级自主招生)如图,在△ABC中,AB=AC,∠ABC=40°,BD是∠ABC的平分线,延长BD至E,使DE=AD,则∠ECA的度数为()A.30° B. 35°C.40°D.45°2.(2015•蓬安县校级自主招生)已知直角三角形的周长为14,斜边上的中线长为3.则直角三角形的面积为()A.5B. 6 C. 7D.83.(2015•日照模拟)如图,在Rt△ABC中,∠C=90°,AC=4,BC=2,分别以AC、BC为直径画半圆,则图中阴影部分的面积为()A.﹣4 B.10π﹣4 C. 10π﹣8 D.﹣84.(2015•郑州模拟)如图,△ABC中,BO,CO分别是∠ABC,∠ACB的平分线,∠A=50°,则∠BOC等于()A. 110°B.115°C.120°D.130°5.(2015•深圳模拟)根据下列图形提供的信息,一定能得到∠1>∠2的是()A. B. C. D.6.(2015•启东市模拟)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组7.(2015•深圳模拟)如图,过边长为3的等边△ABC的边AB上一点P,作PE⊥AC于E,Q 为BC延长线上一点,当PA=CQ时,连接PQ交边AC于点D,则DE的长为()A.B.C.D.不能确定8.(2015•扬州模拟)如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上一个动点,若PA=3,则PQ的最小值为( )A. B. 2 C. 3D.29.(2015•河北模拟)如图,在四边形ABCD中,∠A=58°,∠C=100°,连接BD,E是AD 上一点,连接BE,∠EBD=36°.若点A,C分别在线段BE,BD的中垂线上,则∠ADC的度数为()A. 75°B. 65°C.63°D.61°10.(2015•武汉模拟)如图,AB=AC=AD,若∠BAD=80°,则∠BCD=()A.80°B.100°C.140°D.160°二.填空题(共10小题)11.(2015•盐亭县模拟)如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE 的度数是度.12.(2015•剑川县三模)如图在中,AB=AC,∠A=40°,AB的垂直平分线MN交AC于D,则∠DBC=度.13.(2015•黄冈模拟)在平面直角坐标系xOy中,已知点P(2,2),点Q在坐标轴上,△PQO 是等腰三角形,则满足条件的点Q共有个.14.(2015•泰安一模)如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,…如此继续下去,结果如下表,则an=(用含n的代数式表示).所剪次数 1 234…n正三角形个数4710 13…an15.(2015•广东模拟)如图,已知:∠MON=30°,点A1、A2、A3在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为.16.(2015春•陕西校级月考)如图AD⊥CD,AB=13,BC=12,CD=4,AD=3,则四边形ABCD的面积是.17.(2014•抚顺)将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=32°,那么∠1+∠2= 度.18.(2014•广州)△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是°.19.(2014•重庆)如图,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E 在CD上,且DE=2CE,过点C作CF⊥BE,垂足为F,连接OF,则OF的长为.20.(2014•泰州)如图,正方形ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于cm.三.解答题(共6小题)21.(2015•蓬安县校级自主招生)已知△ABC的两边AB、AC的长是关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0的两个实数根,第三边BC=5.(1)k为何值时,△ABC是以BC为斜边的直角三角形?(2)k为何值时,△ABC是等腰三角形?并求此时△ABC的周长.22.(2015•黄冈模拟)已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.求证:(1)△BAD≌△CAE;(2)试猜想BD、CE有何特殊位置关系,并证明.23.(2015•深圳一模)已知:如图,在△ABC中,AD⊥BC,垂足为点D,BE⊥AC,垂足为点E,M为AB边的中点,连接ME、MD、ED.(1)求证:△MED为等腰三角形;(2)求证:∠EMD=2∠DAC.24.(2014秋•黔东南州期末)已知:如图,△ABC和△DBE均为等腰直角三角形.(1)求证:AD=CE;(2)求证:AD和CE垂直.25.(2014秋•西城区校级期中)细心观察图,认真分析各式,然后解答问题:+1==2,S1=;+1==3,S2=;+1==4,S3=;…(1)请用含n(n为正整数)的等式表示上述变化规律;(2)观察总结得出结论:三角形两条直角边与斜边的关系,用一句话概括为:;(3)利用上面的结论及规律,请在数轴上作出到原点的距离等于的点;(4)你能计算出+++…的值吗?26.(2015春•东台市校级月考)如图,在△ABC中,AD是高,AE是角平分线,∠B=20°,∠C=60°.(1)求∠CAD、∠AEC和∠EAD的度数.(2)若图形发生了变化,已知的两个角度数改为:当∠B=30°,∠C=60°则∠EAD= °;当∠B=50°,∠C=60°时,则∠EAD= °;当∠B=60°,∠C=60°时,则∠EAD=°;当∠B=70°,∠C=60°时,则∠EAD =°.(3)若∠B和∠C的度数改为用字母α和β来表示,你能找到∠EAD与α和β之间的关系吗?请直接写出你发现的结论.ﻬ2015年04月15日wenhao的初中数学组卷参考答案一.选择题(共10小题)1.Cﻩ2.C3.Aﻩ4.B 5.Cﻩ6.Cﻩ7.B 8.Cﻩ9.B 10.C二.填空题(共10小题)11.60 12.30 13.8ﻩ14.3n+115.32 16.36ﻩ17.70 18.14019.20.1或2三.解答题(共6小题)21. 22.23ﻩ. 24.25ﻩ.三角形的两直角边的平方和等于斜边的平方ﻩ26.15505。

(完整word)人教版八年级上册三角形培优卷.doc

(完整word)人教版八年级上册三角形培优卷.doc

三角形单元测试题一、(每空 3 分,共 30 分)1、如果三角形的两分 3 和 5,那么个三角形的周可能是()A. 15 B .16C.8 D .72、下列法中,正确的个数()①三角形的三条高都在三角形内,且都相交于一点.②三角形的中都是三角形的某一个点,且平分的直.③在△ ABC中,若∠ A=∠B=∠ C,△ABC是直角三角形.④一个三角形的两分是8 和 10,那么它的最短的取范是2<b<18.A. 1 个 B .2 个 C .3 个 D .4 个3、三角形的三条高所在的直相交于一点,个交点的位置()A.在三角形外 B .在三角形内C.在三角形上D.要根据三角形的形状才能定4、有五条段,度分 1、4、5、6、8,从中任取 3 条,一定能构成三角形的可能性是()A. 20% B . 30% C .40%D. 50%5、如,将矩形 ABCD片沿角 BD折叠,使点 C 落在 C’ ,BC’交 AD于 E,若∠ DBC=22.5°,在不添加任何助的情况下,中45°的角(虚也角的)有()A. 6 个 B . 5 个C.4 个D.3 个6、在△ ABC中, AB=6,AC=3,∠ B 的最大()A. 30° B . 45°C. 60°D.90°7、希腊人常用小石子在沙上成各种形状来研究数,例如:他研究 1 中的 1,3,6,10,⋯,由于些数能表示成三角形,将其称三角形数 ; 似地,称 2 中的 1,4,9,16⋯的数成正方形数。

下列数中既是三角形数又是正方形数的是()A.289B.1024C.1225D.13788、①是一 1,周 P1的正三角形板,沿①的底剪去一的正三角形板后得到②,然后沿同一底依次剪去一更小的正三角形板(即其前一被剪如掉正三角形板的)后,得③,④,⋯,第 n(n ≥3) 板的周 P, P -Pn-1 的()n nA. B .C. D .9、如,已知△ ABC是等腰直角三角形,∠A=90°,BD是∠ ABC的平分,DE⊥BC于 E,若 BC=10cm,△ DEC的周()A.8cm B .10cm C .12cm D .14cm10、如,在 4 的等三角形ABC中, AD是 BC上的高,点 E、 F是 AD上的两点,中阴影部分的面是()A.4B.3C.2D.二、填空(每空 3 分,共 18 分)11、如,三角形片 ABC中,∠ A=65°,∠ B=75°,将片的一角折叠,使点 C落在△ ABC 内,若∠1= 20°,∠ 2=___ ___ 。

初二数学上册三角形 培优提升题

初二数学上册三角形   培优提升题

9.15 三角形取特殊三角形之阳早格格创做1.2.如图AD∥BC,∠1=∠2,∠3=∠4,曲线DC过面E接AD于D,接BC于面C. 供证:AD+BC=AB.3.如图,已知△ABC中,AB=AC=10cm,BC=8cm,面D为AB的中面.(1)①如果面P正在线段BC上以3厘米\秒的速度由B面背C面疏通,共时,面Q正在线段CA上有C面背A面疏通.若面Q的疏通速度取面P的疏通速度相等,通过1秒后,△BPD取△CQP是可齐等,请证明缘由;②若面Q的疏通速度取面P的疏通速度没有相等,当面Q的疏通速度为几时,不妨使△BPD取△CQP齐等?(2)若面Q以②中的疏通速度从面C 出收,面P以本去的疏通速度从面B共时出收,皆顺时针沿△ABC三边疏通,供通过多万古间面P取面Q第一次正在△ABC的哪条边上相逢?4,如图,AD是△ABC的角仄分线,DE⊥AC,垂脚为面E,BF∥AC,若BC恰佳仄分∠ABF,AE=2BF,给出下列四个论断:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中精确的论断公有( )图4图5图65.如图,正在中,面D、E、F分别为BC、AD、CE的中面.若,则______.6.如图,将△ABC沿它的中位线MN合叠后,面A降正在面A′处,若∠A′=28∘,∠B=120∘,则∠A′NC等于_____________.7.如图,正在圆格纸中,以AB为一边做△ABP,使之取△ABC齐等,从P1、P2、P3、P4四个面中找出切合条件的面P,则面P有_______个.8.如图,∠B=36∘,∠D=50∘,AM,CM分别仄分∠BAD战∠BCD,AM接BC于面R,CM接AD于面Q,BC取AD接于面P,供∠M的度数.9.如图,△ABC≌△ADE,且∠CAD=10∘,∠B=∠D=25∘,∠EAB=120∘,供∠DFB战∠DGB的度数.10.如图,△ABC中,∠ACB=90°,AC=6,BC=8.面P从A面出收沿A→C→B 路径背末面疏通,末面为B面;面Q从B面出收沿B→C→A路径背末面疏通,末面为A面.面P战Q分别以1战3的疏通速度共时启初疏通,二面皆要到相映的末面时才搞停行疏通,正在某时刻,分别过P战Q做PE⊥l于面E,QF⊥l于面F.问:面P疏通几时间时,△PEC取QFC齐等?请证明缘由. 11.如图所示,△ABE战△ADC是△ABC分别沿着AB,AC边翻合180∘产生的,若∠1:∠2:∠3=28:5:3,供∠α的度数.12.如图,正在△ABC中,∠A=52∘,∠ABC取∠ACB的角仄分线接于面D1,∠ABD1取∠ACD1的角仄分线接于面D2,依此类推,∠ABD4取∠ACD4的角仄分线接于面D5,则∠BD5C的度数是___.∠BDnC的度数是___.图12 图13 图14图1513.将一副三角尺按如图所示的办法叠搁正在所有,则∠α的度数是__________.14.已知:如图所示,正在△ABC中,面D,E,F分别为BC,AD,CE的中面,且S△ABC=4cm²,则阳影部分的里积为______cm²15.如图,等边三角形ABC的边少为3cm,D、E分别是AB、AC上的面,将△ADE沿曲线DE合叠,面A降正在面A'处,且面A'正在△ABC中部,则阳影部分图形的周少为________cm.16.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若那二个三角形齐等,则x+y=______.17.如图,A. B. C三面正在共一条曲线上,AB=2BC,分别以AB,BC为边搞正圆形ABEF战正圆形BCMN对接FN,EC. 供证:FN=EC.18.如图,BE、CF是△ABC的二条下,它们相接于面Q,CQ=AB,连结AQ,延少BE到P,使BP=AC.(1)预测AQ取PA的大小闭系,并证明缘由;(2)按三角形内角推断△QAP的典型,并证明缘由.19.如图,____.图19 图20 图2120.如图,BA1战CA1分别是△ABC的内角仄分线战中角仄分线,BA2是∠A1BD的仄分线,CA2是∠A1CD的仄分线,BA3是∠A2BD的仄分线,CA3是∠A2CD的仄分线,依此类推,若∠A=α,则∠A2017为______________.21.如图,已知少圆形ABCD的边少AB=20cm,BC=16cm,面E正在边AB 上,AE=6cm,如果面P从面B出收正在线段BC上以2cm/s的速度背面C 背疏通,共时,面Q正在线段CD上从面C到面D疏通.则当△BPE取△CQP 齐等时,时间t为___ s.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
、如图,三角形ABC 内任一点P ,连接PA 、PB 、PC , 求证:1/2(AB+BC+AC )<AP+BP+CP<AB+AC+BC
2、已知三角形ABC 中,∠A=52◦,三条高所在直线的交点为H ,求∠BCH 的度数。

3、如图,已知三角形ABC 的三个内角平分线交于点I ,IH ⊥BC 于H ,求证∠CIH>∠CAD
4、1}一个等腰三角形的一个外角等于110˚,则这个三角形的三个角应该为 。

2}在⊿ABC 中,AB = AC ,周长为20cm ,D 是AC 上一点,⊿ABD 与⊿BCD 面积相等且周长差为3cm ,⊿ABC 各边的长为 。

5、如图,已知△ABC 中,∠C=90°,AC=1.5BC ,在AC 上取点D ,使得AD=0.5BC ,量得BD=1cm ,求△ABD 的面积。

6、如图,在七星形ABCDEFG 中,求∠A+∠B+∠C+∠D+∠E+∠F+∠G 的度数。

7、如图,△ABC 中,∠C >∠B ,AE 为角平分线,AD ⊥BC 于D 。

(1)求证:∠EAD =2
1(∠C -∠B) ; (2)当垂足D 点在直线BC 上运动时(不与点E 重全),垂线交直线AE 于A ’,其它条件不变,画出相应的图形,并指出与(1)相应的结论是
什么?是否仍成立?
A B C P B E C A D
8、如图,△ABC 中,AD 是高,AE ,BF 是角平分线,它们相交于点O ,∠CAB =50°,∠
C =60°,求∠DAC 及∠BOA .
9.观察并探求下列各问题,写出你所观察得到的结论,并说明理由。

(1)如图①,△ABC 中,P 为边BC 上一点,试观察比较BP + PC 与AB + AC 的大小,并
说明理由。

C B A
P
图①
(2)将(1)中点P 移至△ABC 内,得图②,试观察比较△BPC 的周长与△ABC 的周长的大小,并说明理由。

C B A
P
图②
(3)将(2)中点P 变为两个点P 1、P 2得图③,试观察比较四边形BP 1P 2C 的周长与△ABC 的周长的大小,并说明理由。

C B
A
P 1P 2
图③
(4)将(3)中的点P 1、P 2移至△ABC 外,并使点P 1、P 2与点A 在边BC 的异侧,且∠P 1BC <∠ABC ,∠P 2CB <∠ACB ,得图④,试观察比较四边形BP 1P 2C 的周长与△ABC 的周长的大小,并说明理由。

图④
C B A
P 1P 2
(5)若将(3)中的四边形BP 1P 2C 的顶点B 、C 移至△ABC 内,得四边形B 1P 1P 2C 1,如图⑤,试观察比较四边形B 1P 1P 2C 1的周长与△ABC 的周长的大小,并说明理由。

C B A
P 1
P 2B 1C 1图⑤
10.如图1、2,AB ∥CD ,直线a 分别交AB 、CD 于点E 、F ,点M 在EF
上,P 是直线CD 上的一个动点,(点P 不与F 重合)
①在图1中,若∠1=50°,∠3=30°,求∠2的度数
②在图1中,当点P 在射线FC 上移动时,∠2+∠3=∠1成立吗?请
说明理由;
③在图2中,当点P 在射线FD 上移动时,∠4+∠5与∠1有什么关系?
说明理由
11
、四边形是大家最熟悉的图形之一,我们已经发现了它的许多性质.只要善于观察、乐于探索,我们还会发现更多的结论.
(1)四边形一条对角线上任意一点与另外两个顶点的连线,将四边形分成四个三角形(如图①),其中相对的两对三角形的面积之积相等.你能证明这个结论吗?试试看. 已知:在四边形ABCD 中,O 是对角线BD 上任意一点.(如图①)
求证:S △OBC •S △OAD =S △OAB •S △OCD ;
(2)在三角形中(如图②),你能否归纳出类似的结论?若能,写出你猜想的结论,并证明:若不能,说明理由.。

相关文档
最新文档