光纤光栅温度传感器工作原理

合集下载

光纤光栅传感技术的基本原理及其优缺点

光纤光栅传感技术的基本原理及其优缺点

光纤光栅传感技术的基本原理及其优缺点基本原理光纤光栅是利用光纤材料的光敏性:即外界入射光子和纤芯相互作用而引起后者折射率的永久性变化,用紫外激光直接写入法在单模光纤的纤芯内形成的空间相位光栅,其实质是在纤芯内形成一个窄带的滤光器或反射镜。

常用的Bragg光纤光栅属于反射型工作器件,当光源发出的连续宽带光(下图中Ιi)通过传输光纤射入时,它与光场发生耦合作用,对该宽带光有选择地反射回相应的一个窄带光(下图中Ιr),并沿原传输光纤返回;其余宽带光(下图中Ιt)则直接透射过去,在下一个具有不同中心波长的光纤光栅处进行反射,多个光纤光栅阵列形成光纤光栅传感网络。

各光纤光栅反射光的中心波长λ为:(1)式中n为纤芯的有效折射率;Λ为纤芯折射率的调制周期。

目前,在结构变形和温度监测中,普遍采用周期Λ<1 μm的短周期光纤光栅传感器,其反射波长人称为Bragg波长。

根据式(1),解调出反射光波长即可以寻址到光纤光栅传感网络中每个传感器。

反射回来的窄带光的中心波长随着作用于光纤光栅的温度和应变成线性变化,中心波长的变化量为:(2)式中ε为应变量;Δt为温度变化量。

由式(2)可知,光纤光栅反射光中心波长同时受温度和应变的影响,比较成熟的方法是采用同种温度环境下的光纤光栅温度补偿传感器进行克服。

光纤光栅传感器可以用于应力、应变或温度等物理量的传感测量,具有较高的灵敏度和测量范围。

在光纤若干个部位写入不同栅距的光纤光栅,就可以同时测定若干部位相应物理量及其变化,实现准分布式光纤传感。

光纤光栅传感技术的优点在于:1)抗电磁干扰,传输距离远。

2)多个不同类型的传感器可以在一条光纤上串接复用,增加了系统容量。

3)以反射光的中心波长表征被测量,系统安装及长期使用过程中无需定标。

4)适合结构健康监测(SHM)系统中长距离动静态应变信号(电压信号微弱,易受干扰)的采集。

光纤光栅传感技术的缺点在于:1)光纤光栅直接反映应变和温度耦合的变化,在测量应变时,必须进行温度补偿。

光纤光栅的工作原理和应用

光纤光栅的工作原理和应用

光纤光栅的工作原理和应用1. 光纤光栅的简介光纤光栅是一种应用于光纤传感领域的重要器件,它利用光纤中特殊结构的光栅来实现对光信号的调制和传感。

光纤光栅通过改变光纤中的折射率或光栅的周期来实现对光信号的调制,从而实现光纤传感的功能。

光纤光栅具有体积小、可靠性高、抗干扰能力强等优点,在许多领域有着广泛的应用。

2. 光纤光栅的工作原理光纤光栅的工作原理基于光栅的衍射效应和光纤中的模式耦合效应。

2.1 光栅的衍射效应光纤光栅中的光栅是由周期性变化的折射率组成的。

当光信号经过光栅时,会发生衍射现象。

根据光栅的周期,光信号将按照一定的规律分散成多个衍射光束。

通过控制光栅的周期,可以实现对光信号的调制。

2.2 光纤中的模式耦合效应在光纤中,光信号可以以不同的模式传播,例如基模和高阶模。

当光信号经过光栅时,不同模式的光信号会发生模式耦合现象。

通过改变光栅的折射率或周期,可以实现对不同模式光信号的调制和耦合。

3. 光纤光栅的应用光纤光栅在光纤传感、光通信和光子器件等领域有着广泛的应用。

3.1 光纤传感光纤光栅作为一种重要的传感器器件,可以实现对温度、压力、应变等物理量的测量。

通过改变光栅的折射率或周期,可以实现对光信号的调制,从而实现对物理量的传感。

光纤光栅传感器具有高灵敏度、远程测量和抗干扰能力强等优点,在工程领域有着广泛的应用。

3.2 光通信光纤光栅在光通信领域有着重要的应用。

通过改变光栅的折射率或周期,可以实现对光信号的调制和耦合。

利用光纤光栅可以实现光信号的分波、波长选择、增益均衡等功能,从而提高光通信系统的性能和可靠性。

3.3 光子器件光纤光栅作为一种重要的光子器件,可以实现对光信号的调制和控制。

通过改变光栅的折射率或周期,可以实现对光信号的调制和滤波功能。

光纤光栅滤波器、光纤光栅耦合器等器件在光子器件领域有着广泛的应用。

4. 总结光纤光栅作为一种重要的光纤传感器器件,具有体积小、可靠性高、抗干扰能力强等优点,在光纤传感、光通信和光子器件等领域有着广泛的应用。

FBG温度传感器(简单设计)

FBG温度传感器(简单设计)

FBG温度传感器——波长调制
1、基本原理
短周期光纤光栅又称为光纤布拉格光栅(FBG)是一种典型的波长调制型光纤传感器这种传感器能根据环境温度以及/或者应变的变化来改变其反射的光波的波长。

其结构如图所示
基于光纤光栅传感器的传感过程是通过外界参量对布拉格中心波长λB的调制来获取传感
信号,其数学表达式为错误!未找到引用源。

=2n eff A
错误!未找到引用源。

为Bragg波长,A为光栅周期,n为光纤模式的有效折射率。

引起光栅布拉格波长飘移的外界因素如温度、应力等会引起光栅周期A 和纤芯有效折射率的改变。

其中光纤布拉格光栅反射波长随应变和温度的变化可以近似地用方程
其中Δλ是反射波长的变化而λo 为初始的反射波长。

2、传感器结构设计
FBG温度传感器的基本构造如下图所示
光纤温度监测系统主要由光纤光栅传感器、传输信号用的光纤和光纤光栅解调器组成。

光纤光栅解调器用于对光纤光栅传感器的信号检测和数据处理,以获得测量结果,传输光纤用于传输光信号,光纤光栅传感器则主要用于反射随温度变化中心波长的窄带光,光纤光栅反射波长的移动与温度的变化成线性关系,通过解调器测量光纤光栅反射波长的移动,便可确定环境温度T。

由于光纤布拉格光栅周期和纤芯的有效折射率会同时受到应变和温度变化的影响。

当进行温度测量的时候,光纤布拉格光栅必须保持在完全不受应变影响的条件下。

即需要对光纤光栅传感部分进行封装,保证传感部分不受到外界应力的影响。

几种常见光纤光栅传感器工作原理

几种常见光纤光栅传感器工作原理

常见光纤光栅传感器工作原理光纤光栅传感器的工作原理光栅的Bragg波长λB由下式决定:λB=2nΛ (1)式中,n为芯模有效折射率,Λ为光栅周期。

当光纤光栅所处环境的温度、应力、应变或其它物理量发生变化时,光栅的周期或纤芯折射率将发生变化,从而使反射光的波长发生变化,通过测量物理量变化前后反射光波长的变化,就可以获得待测物理量的变化情况。

如利用磁场诱导的左右旋极化波的折射率变化不同,可实现对磁场的直接测量。

此外,通过特定的技术,可实现对应力和温度的分别测量,也可同时测量。

通过在光栅上涂敷特定的功能材料(如压电材料),还可实现对电场等物理量的间接测量。

1、啁啾光纤光栅传感器的工作原理上面介绍的光栅传感器系统,光栅的几何结构是均匀的,对单参数的定点测量很有效,但在需要同时测量应变和温度或者测量应变或温度沿光栅长度的分布时,就显得力不从心。

一种较好的方法就是采用啁啾光纤光栅传感器。

啁啾光纤光栅由于其优异的色散补偿能力而应用在高比特远程通信系统中。

与光纤Bragg光栅传感器的工作原理基本相同,在外界物理量的作用下啁啾光纤光栅除了△λB的变化外,还会引起光谱的展宽。

这种传感器在应变和温度均存在的场合是非常有用的,啁啾光纤光栅由于应变的影响导致了反射信号的拓宽和峰值波长的位移,而温度的变化则由于折射率的温度依赖性(dn/dT),仅影响重心的位置。

通过同时测量光谱位移和展宽,就可以同时测量应变和温度。

2、长周期光纤光栅(LPG)传感器的工作原理长周期光纤光栅(LPG)的周期一般认为有数百微米,LPG在特定的波长上把纤芯的光耦合进包层:λi=(n0-niclad)。

Λ。

式中,n0为纤芯的折射率,niclad为i阶轴对称包层模的有效折射率。

光在包层中将由于包层/空气界面的损耗而迅速衰减,留下一串损耗带。

一个独立的LPG可能在一个很宽的波长范围上有许多的共振,LPG共振的中心波长主要取决于芯和包层的折射率差,由应变、温度或外部折射率变化而产生的任何变化都能在共振中产生大的波长位移,通过检测△λi,就可获得外界物理量变化的信息。

光纤光栅传感器

光纤光栅传感器

光纤光栅监测报警系统结构示意图
使

FBG探头
连接光缆


光连接器
控 显示仪表 制 室 内
计算机
调制解调器
传输光缆
3 、光纤布喇格光栅解调原理
光纤布喇格光栅的解调有多种方法,下面介绍匹 配光纤光栅解调法。匹配光纤光栅检测信号的 基本原理如下图所示,其中左图为传感光栅与 解调光栅的配置,右图为两光栅的反射谱及检 测到的信号.
当两光栅反射谱重叠面积较大时,探测器探测到 的光信号较大,反之则较小,即检测器检测到 的光强是检测光纤光栅 FBG1和匹配光纤光栅 FBG2两个光谱函数的卷积。随着 FBG1上的微 扰,在 FBG2的反射谱中可检测到相对应的一定 光强度的光信号。
F-P腔波长滤波解调原理
法布里—珀罗腔(F-P腔)的光学原理是多光束干
* 光纤光栅传感器
• 光纤光栅传感器(FBG)是利用 Bragg波长 对温度、应力的敏感特性而制成的一种 新型的光纤传感器。
光纤光栅工作原理
感光折射率 n 包层折射率 n2
包层
芯层折射率 n1
λ1 λ2 …λn
λ2 …λn
Λ
λ1
芯层
相位掩模板
紫外掩模写入法
+1级
-1级
包层 芯层
1 、光纤布喇格光栅原理
对包含有φ(z)的非正弦分布也进行了类似于周期 函数的傅里叶展开可以得到光栅区的实际折射 率分布为
该式即为光纤布喇格光栅的折射率调制函数,它 给出了光纤光栅的理论模型,是分析光纤光栅 特性的基础。
2 、光纤布喇格光栅传感原理 光纤光栅纤芯中的折射率调制周期由下式
给出:
这里λUV是紫外光源波长, θ是两相干光束之间的 夹角。

光纤光栅温度传感技术与喇曼散射温度传感技术.

光纤光栅温度传感技术与喇曼散射温度传感技术.

光纤光栅温度传感技术与喇曼散射温度传感技术1.光纤光栅温度传感技术的原理光纤Bragg光栅是近些年来出现的一种新型传感元件。

自从1978年含锗光纤光敏性被发现以及1987年紫外写入技术发明以来,光纤光栅受到了世界各国研究机构的广泛重视。

通讯方面的应用极大地推动了光纤光栅技术的成熟。

作为传感用的光纤光栅最初是应用于航空、航天等军事领域。

它能测量很多物理量,如应变、应力、温度、振动、压力等。

1992年,Rutger大学的Prohaska等人首次将光纤光栅埋入到混凝土结构中测量应变,将之应用于土木工程中。

同传统的传感器相比较,光纤Bragg光栅有许多显著的特点,如寿命长、抗电磁干扰、便于构成准分布光纤传感网络、体积小、重量轻、结构简单等。

光纤布喇格光栅的基本结构为沿纤芯折射率周期性的调制(如图1所示),所谓调制就是本来沿光纤轴线均匀分布的折射率产生大小起伏的变化。

图1 光纤布喇格光栅结构示意图光纤的材料为石英,由芯层和包层组成。

通过对芯层掺杂(通常是掺锗),使芯层折射率n 1比包层折射率n 2大,形成波导,光就可以在芯层中传播。

当芯层折射率受到周期性调制后,即成为布喇格光栅。

布喇格光栅会对入射的宽带光进行选择性反射,反射一个中心波长与芯层折射率调制相位相匹配的窄带光(带宽通常约为0.1~0.5nm )。

此中心波长称之为布喇格波长。

所谓相位相匹配是指布喇格波长决定于折射率调制的空间周期Λ和调制的幅度大小,它们满足模式耦合理论的一级近似相位匹配条件,用数学公式表示如下:Λ=eff B n 2λB λ为光栅的布喇格波长,eff n 为光栅的有效折射率(折射率调制幅度大小的平均芯层包层光波效应),Λ为光栅条纹周期(折射率调制的空间周期)。

显然当光栅常数发生变化时,光栅所选择反射窄带光的中心波长也发生变化,即:)(2ef eff B n n Λ∆+∆Λ=∆λ光栅的温度发生变化时,由于热胀冷缩效应,光栅的条纹周期会发生变化;由于热光效应,光栅的有效折射率也会发生变化。

光纤传感技术课件:光纤光栅传感器

光纤传感技术课件:光纤光栅传感器
22
光纤光栅传感器
直接测量掺锗光纤紫外吸收谱相对较为困难, 尤其是测 量244 nm处的吸收谱。 一般测量光纤的吸收谱是采用反逆技 术, 在被测光纤的光注入端和输出端都放上单色仪, 测量其 频谱。 用这种方法可以测得掺锗3%(摩尔分数)的玻璃在 325 nm处的吸收峰约为17 dB/m。 考虑到244 nm带的吸收率 是325 nm带的1000倍, 可以认为在244 nm处的衰减约为 17 000 dB/m。 故被测光纤的长度不能大于1 cm, 否则难以用 反逆技术测量。
8
光纤光栅传感器
随着光纤布拉格光栅(FBG)制作工艺的不断提高, 特 别是FBG自动化生产平台的建立, 制作出高性能、 低成本的 可靠FBG已成为可能。 同时, 近几年对波长解调技术的深入 研究和不断成熟, 已经扩大了光纤布拉格光栅传感器的应用, 并为只能传感这一新思路创造了一个新的机遇。 智能结构监 测, 智能油井和管道, 智能土木工程建筑, 以及智能航天、 航海传感都需要高质量、 低成本、 稳定性好、 传感特性精密 的光学传感器, FBG传感器阵列由于其波长编码、 可同时测 量多个物理量(温度、 压力、 应力等)以及一路光纤上应用 波分复用技术等自身的优点, 在上述领域已经得到了广泛关 注。
14
光纤光栅传感器
8.2
所谓的光敏性, 就是指当材料被外部光照射时, 引起 该材料物理或化学性的暂时或永久性变化的一种效应。 光纤 的光敏性通常是指光纤纤芯折射率在外部光源照射时发生改变 的特性。 在一定条件下, 变化的大小与光强成线性关系, 并 可保存下来。
15
光纤光栅传感器
光纤的光敏性首先于1978年通过在掺锗光纤内形成驻波观 察到。 在那个实验中, 发现了两束波长相同但反向传输的氩 离子激光(488 nm或514.5 nm)在掺锗光纤纤芯中激起了周期 性的折射率变化。 此后, 做了许多工作确定这一激光折射率 变化的原因。 Yuen的实验指出, 光纤中的光敏现象与双光子 吸收过程有联系, 确定掺锗光纤对蓝绿光的光敏性与244 nm 处吸收响应的双光子吸收作用有关。

(完整版)光纤光栅温度传感器

(完整版)光纤光栅温度传感器
探测系统 ❖ 中石化茂名石化分公司油罐消防监测 ❖ 中石化青岛炼油厂 ❖ 首都钢铁股份有限公司焦化变电站温度监测系统
应用前景
光纤光栅具有耐腐蚀、防水、抗电磁干扰、集传感与传输 于一体、易 于埋到材料内部;
具有波长分离能力强、长期稳定性好、传感准确度和灵敏度极高;
可实现远距离和分布式传感,易于集成分布传感网络系统;
可广泛应用于航空航天、土木工程、复合材料、石油化工等领域;
对工程结构的应力、应变、温度,以及结构蠕变、裂缝、整体性等结构 参数的实时在线监测,实现对结构内多目标信息的监控和提取;
依据安装环境定制各种不同用途的传感器,实现多参量多、远距离、同
一仪器监测的“物联网”技术。
传感器出厂时对应唯T0 一的温度系数 T ;传感器安装后记录环境初始温度
和传感T0 器初始波长值 ,并将T0该温度值及初始波长值记录于解调仪作为起 始值。今后传感器每一个波长值对应环境一个温度值。
温度传感器技术数据
温度监测:
光纤光栅温度传感器置于被测环境中,监测环境 温度的变化,并对预设温度极限进行报警。
❖ 电力方面 电力电缆的表面温度检测监控、事故点定位 电缆隧道、夹层的火情监测 发电厂和变电站的温度监测、故障点的检测和火灾报警 (原理:高压线等腐蚀点、接触不良故障点由于电阻偏大,温度异常)
❖ 水利土木方面 大坝、河堤的渗漏(渗漏点温度异常) 大坝、河堤、桥梁的混凝土凝固与养护温度
工程案例
❖ 国家游泳中心—水立方 ❖ 胜利油田CB32A海洋平台 ❖ 秦皇岛热电厂开关柜温度监测 ❖ 安钢动力厂电缆温度监测系统 ❖ 中石油新疆独山子/塔里木石化油罐群感温火灾
温度/℃
温度曲线
100
y = 26.847x - 41204

光纤光栅温度传感器原理及应用

光纤光栅温度传感器原理及应用

光纤光栅温度传感器原理及应用嘿,朋友们!今天咱来聊聊光纤光栅温度传感器,这玩意儿可神奇啦!你看啊,这光纤光栅温度传感器就像是一个超级敏感的小侦探。

它是咋工作的呢?简单来说,就是利用了光纤光栅对温度变化特别敏感的特性。

就好比人对自己喜欢的东西特别在意一样,温度一变,它立马就能察觉到。

想象一下,在一些高温或者低温的环境里,普通的传感器可能就有点扛不住啦,但光纤光栅温度传感器可不一样,它就像个顽强的小强,啥恶劣环境都能应对自如。

它能在各种复杂的场景中准确地测量温度,是不是很厉害?那它都能用在啥地方呢?这可多了去了!比如说在工业领域,那些大型的机器设备运行的时候,温度可是个关键指标啊,有了它就能随时监控温度,确保设备正常运行,这就像给机器请了个专门的健康顾问。

还有啊,在一些科研实验中,要求温度测量得特别精确,这时候光纤光栅温度传感器就派上大用场了,它能提供超级准确的数据,帮助科学家们取得更好的研究成果,那可真是功不可没呀!在日常生活中,它也能发挥作用呢。

比如说在一些特殊的场合,像博物馆啊,对温度要求很高,它就能帮忙把温度控制得恰到好处,保护那些珍贵的文物。

它就像是一个默默守护的卫士,不声不响地做着重要的工作。

而且啊,它还有个很大的优点,就是不容易受到干扰。

不像有些传感器,稍微有点干扰就不准确了。

它可稳定啦,就像一座稳稳的山。

咱再来说说它的安装和使用。

其实也不难啦,只要按照说明书一步一步来,一般人也能搞定。

不过可得细心点哦,毕竟这是个高科技的玩意儿。

总之呢,光纤光栅温度传感器真的是个很了不起的发明。

它让我们对温度的测量和控制变得更加容易和准确。

有了它,我们的生活和工作都变得更加安全和可靠啦!它就像一把神奇的钥匙,打开了温度测量的新世界大门,让我们能更好地了解和掌控周围的世界。

难道不是吗?。

光纤光栅传感器原理及应用

光纤光栅传感器原理及应用

光纤光栅传感器原理及应用
光纤光栅传感器是一种新型的光学传感器,它利用光纤及特殊的反射镜栅,使多普勒散射层间隙和入射光束经过一定角度反射多次,使两个层间隙形成阻断环境;从而将频率对变化的入射光束有效地分解,通过层间隙效应耦合实现被测物体表面形变量的信号传输,从而实现被测物体表面形变量的无接触检测。

由于光纤光栅传感器的特点,它在某些特定领域有其独到的应用,具体如下:
1、检测可燃气体浓度:光纤光栅传感器可以用于检测各种可燃气体的浓度,其原理是:通过观察各种可燃气体对不同波长的散射系数变化情况,根据系数大小和变化趋势可以推测出各种可燃气体的浓度;
2、检测灌溉补水情况:光纤光栅传感器可以用于无接触地检测灌溉补水情况,通过不同的土壤表面形变量对不同波长的散射系数变化情况,根据系数变化的大小可以推算出土壤的补水情况;
3、检测地面变化:光纤光栅传感器可以用于检测地面变化情况,例如地面沉降、crack等,其原理是:通过检测不同位置地表形变量对不同波长的散射系数变化情况,根据系数变化的大小和变化趋势可以判断出地面变化情况;
4、地下管线和房屋结构的检测:光纤光栅传感器可以用于无接触地检测地下管
线或房屋结构的选型变化,其原理是:通过检测管道或建筑结构的不同波长散射系数,根据散射系数的变化特征可以推测出其结构是否有变化;
5、其他力学工程的检测:光纤光栅传感器还可以用于检测其他力学结构的变化,例如工程机械,它们的特性也可以通过检测物体波长散射系数的变化情况来进行判断。

光纤光栅传感器的工作原理和应用实例

光纤光栅传感器的工作原理和应用实例

光纤光栅传感器的工作原理和应用实例一、本文概述光纤光栅传感器作为一种先进的光学传感器,近年来在多个领域中都得到了广泛的应用。

本文旨在全面介绍光纤光栅传感器的工作原理及其在各领域中的应用实例。

我们将详细阐述光纤光栅传感器的基本原理,包括其结构、光学特性以及如何实现传感功能。

接着,我们将通过一系列应用实例,展示光纤光栅传感器在结构健康监测、温度测量、压力传感以及安全防护等领域的实际应用。

通过本文的阅读,读者将能够对光纤光栅传感器有一个全面深入的了解,并理解其在现代科技中的重要地位。

二、光纤光栅传感器的基本概念和原理光纤光栅传感器,也被称为光纤布拉格光栅(Fiber Bragg Grating, FBG)传感器,是一种基于光纤光栅技术的传感元件。

其基本概念源于光纤中的光栅效应,即当光在光纤中传播时,遇到周期性折射率变化的结构(即光栅),会发生特定波长的反射或透射。

光纤光栅传感器的工作原理基于光纤中的光栅对光的反射作用。

在制造过程中,通过在光纤芯部形成周期性的折射率变化,即形成光栅,当入射光满足布拉格条件时,即入射光的波长等于光栅周期的两倍与光纤有效折射率的乘积时,该波长的光将被反射回来。

当外界环境(如温度、压力、应变等)发生变化时,光纤光栅的周期或折射率会发生变化,从而改变反射光的波长,通过对这些波长变化的检测和分析,就可以实现对环境参数的测量。

光纤光栅传感器具有许多独特的优点,如抗电磁干扰、灵敏度高、测量范围大、响应速度快、能够实现分布式测量等。

这使得它在许多领域,如结构健康监测、航空航天、石油化工、环境监测、医疗设备、智能交通等,都有广泛的应用前景。

光纤光栅传感器的工作原理决定了其可以通过测量光栅反射光的波长变化来感知外界环境的变化。

因此,在实际应用中,通常需要将光纤光栅传感器与光谱分析仪、解调器等设备配合使用,以实现对环境参数的精确测量。

光纤光栅传感器的基本概念和原理为其在各种应用场景中的广泛应用提供了坚实的基础。

光纤光栅传感器的温度灵敏度研究

光纤光栅传感器的温度灵敏度研究

光纤光栅传感器的温度灵敏度研究一、光纤光栅传感器概述光纤光栅传感器是一种利用光纤光栅的特性来检测物理量变化的传感器。

与传统的传感器相比,光纤光栅传感器具有抗电磁干扰能力强、尺寸小、重量轻、可实现分布式测量等优点。

光纤光栅传感器通过在光纤中写入周期性的折射率变化来形成光栅,当外部环境发生变化时,光栅的周期或折射率也会随之变化,从而引起反射或透射光的波长发生变化,通过测量这些变化可以检测出温度、压力、应力等物理量。

1.1 光纤光栅传感器的工作原理光纤光栅传感器的工作原理基于光的干涉和衍射现象。

当光波在光纤中传播时,遇到光栅结构会发生衍射,产生多个衍射级。

这些衍射级相互干涉,形成特定的反射和透射光谱。

当光栅的周期或折射率发生变化时,衍射光谱也会相应地移动,通过测量光谱的移动量,可以推算出外部环境的变化。

1.2 光纤光栅传感器的分类根据光栅的类型,光纤光栅传感器可以分为布拉格光栅传感器、长周期光栅传感器和光纤布拉格光栅传感器等。

根据测量的物理量,又可以分为温度传感器、压力传感器、应力传感器等。

每种类型的传感器都有其独特的优势和应用场景。

二、光纤光栅传感器的温度灵敏度研究温度是光纤光栅传感器中最常见的测量对象之一。

温度的变化会影响光纤的折射率,进而影响光栅的周期和反射光谱的位置。

因此,研究光纤光栅传感器的温度灵敏度对于提高测量精度和应用范围具有重要意义。

2.1 温度对光纤光栅传感器的影响温度的变化会引起光纤材料的热膨胀和折射率的变化,从而影响光栅的周期和波长。

这种影响可以通过温度系数来量化。

不同的光纤材料具有不同的温度系数,选择合适的材料可以提高传感器的温度灵敏度。

2.2 提高温度灵敏度的方法为了提高光纤光栅传感器的温度灵敏度,研究者们提出了多种方法,包括优化光栅的参数、使用特殊的光纤材料、采用复合光栅结构等。

这些方法可以有效地提高传感器对温度变化的响应速度和精度。

2.3 温度灵敏度的测量与标定温度灵敏度的测量通常采用实验方法,通过将传感器暴露在不同温度下,测量反射光谱的变化,从而计算出温度灵敏度。

光纤光栅温度传感器应用场景

光纤光栅温度传感器应用场景

温馨小提示:本文主要介绍的是关于光纤光栅温度传感器应用场景的文章,文章是由本店铺通过查阅资料,经过精心整理撰写而成。

文章的内容不一定符合大家的期望需求,还请各位根据自己的需求进行下载。

本文档下载后可以根据自己的实际情况进行任意改写,从而已达到各位的需求。

愿本篇光纤光栅温度传感器应用场景能真实确切的帮助各位。

本店铺将会继续努力、改进、创新,给大家提供更加优质符合大家需求的文档。

感谢支持!(Thank you for downloading and checking it out!)阅读本篇文章之前,本店铺提供大纲预览服务,我们可以先预览文章的大纲部分,快速了解本篇的主体内容,然后根据您的需求进行文档的查看与下载。

光纤光栅温度传感器应用场景(大纲)一、引言1.1光纤光栅传感器简介1.2光纤光栅温度传感器的研究意义二、光纤光栅温度传感器工作原理2.1光纤光栅传感器的结构2.2光纤光栅温度传感器的原理2.3光纤光栅温度传感器的优势三、光纤光栅温度传感器应用场景3.1石油化工行业3.1.1输油输气管道温度监测3.1.2化工设备温度监测3.2电力行业3.2.1变压器温度监测3.2.2输电线路温度监测3.3建筑行业3.3.1大型建筑结构健康监测3.3.2桥梁温度监测3.4交通行业3.4.1铁路轨道温度监测3.4.2飞机发动机温度监测3.5生物医疗行业3.5.1内窥镜温度监测3.5.2生物组织温度监测四、光纤光栅温度传感器在特定场景的应用案例4.1案例一:光纤光栅温度传感器在石油化工行业的应用4.2案例二:光纤光栅温度传感器在电力行业的应用4.3案例三:光纤光栅温度传感器在建筑行业的应用4.4案例四:光纤光栅温度传感器在交通行业的应用4.5案例五:光纤光栅温度传感器在生物医疗行业的应用五、光纤光栅温度传感器的发展趋势与挑战5.1发展趋势5.2面临的挑战5.3未来研究方向六、总结6.1光纤光栅温度传感器在我国的应用现状6.2光纤光栅温度传感器的发展前景6.3对行业发展的建议与展望一、引言光纤光栅传感器是一种新型的传感器,它利用光纤光栅的特性,通过测量光的波长变化来获取被测量的信息。

《光纤光栅传感器》课件

《光纤光栅传感器》课件

远程监测
由于光纤的特性,光纤光栅 传感器可以实现远程监测, 适用于各种复杂环境。
应用领域
1 结构监测
光纤光栅传感器在桥梁、建筑等结构监测中有广泛应用。
2 油气检测
光纤光栅传感器可以用于油气管道中的泄漏检测和流量监测。
3 环境监测
光纤光栅传感器在环境监测领域中用于气体浓度、温度等参数的监测。
制备方法
工作原理
光纤光栅传感器的工作原理基于光纤中的光栅结构。当被测量物理量发生变 化时,光纤中的光栅会发生形变,从而导致光信号的改变。通过分析光信号 的变化,可以确定被测量物理量的数值。
优点
高灵敏度
光纤光栅传感器具有高灵敏 度,可以检测微小的物理量 变化。
抗干扰性强
光纤光栅传感器对外界干扰 的影响较小,具有良好的抗 干扰性能。
1
光纤制备
选择适合的光纤材料,并通过预拉伸等工艺制备光纤。
2
光栅制备
使用光刻、激光干涉等方法制备光栅结构。
3
光纤光栅组装
将光纤与光栅结构组装在一起,形成光纤光栅传感器。
实验室案例分享
实验室搭建
我们在实验室中搭建了一个光纤 光栅传感器测试平台。
传感器测试,我们验证了其性能和准确性。
《光纤光栅传感器》PPT 课件
欢迎大家来到《光纤光栅传感器》PPT课件。在本课程中,我们将介绍光纤光 栅传感器的定义、工作原理、优点、应用领域、制备方法,还会分享一些实 验室案例。让我们一起探索这一领域的知识和技术。
什么是光纤光栅传感器
光纤光栅传感器是一种利用光纤光栅结构对物理量进行测量的传感器。通过监测光纤中的光信号变化,可以获 得被测量物理量的信息。
我们还展示了一些光纤光栅传感 器在实际应用中的示例。

光纤光栅传感器原理课件

光纤光栅传感器原理课件
光纤光栅的反射波长与其光栅周期存在一种反比关系,通过改变光 栅周期可以实现对反射波长的调谐。
光纤光栅传感器的传感原理
外界物理量变化
当光纤光栅受到外界物理量(如 温度、压力、应变等)的作用时 ,其折射率调制周期或纤芯长度
会发生变化。

反射波长漂移
由于光纤光栅的反射波长与光栅周 期相关,当折射率调制周期或纤芯 长度发生变化时,反射波长也会发 生相应的漂移。
03
CATALOGUE
光纤光栅传感器的制作与表征
光纤光栅的制作技术
光纤光栅的写入技术
01
利用紫外光干涉法,通过两束相干紫外光在光纤上形成干涉条
纹,引起光纤折射率周期性变化,从而形成光纤光栅。
光纤光栅的制作材料
02
通常使用石英光纤或掺铒光纤作为基材,其线性和稳定性较好
,能够满足光栅传感器的要求。
制作过程中的关键因素
通过测量由应力引起的光栅周期或折射率 的变化,可以推导出待测物体内部的应力 分布和大小。
结构健康监测
生物医学领域
光纤光栅传感器可以嵌入到建筑物、桥梁 等结构中,实时监测结构的变形、开裂等 状况,确保结构安全。
利用光纤光栅传感器可实现对生物组织内 部的温度、压力等参数的实时监测,为生 物医学研究提供有力支持。
测量反射波长变化
通过测量光纤光栅反射波长的变化 ,可以推断出外界物理量的变化情 况,实现对相应物理量的传感测量 。
光纤光栅传感器的信号解调原理
光谱仪解调
利用光谱仪对光纤光栅的反射光谱进行检测,通过测量反射波长的漂移量来解调出外界物 理量的变化。这种方法具有高精度和高分辨率的优点,但设备成本较高。
可调谐滤波器解调
交叉敏感问题
在实际应用中,光纤光栅传感器可能受到多种物理量的交叉影响, 导致测量准确度降低。

光纤光栅传感器基本原理之二,光纤光栅传感原理

光纤光栅传感器基本原理之二,光纤光栅传感原理

北诺®毛细®光纤光栅传感器基本原理之二,光纤光栅传感原理在上一篇《北诺®毛细®光纤光栅传感器基本原理之一,波的反射与叠加》文章中,我们通过声波来类比光波,给出了大家了解北京大成永盛科技有限公司生产的北诺®毛细®系列无缝钢管光纤光栅传感器基本原理所需的前置知识——波的反射与叠加(干涉)。

今天我们将以此为基础,介绍光纤光栅传感器的基本原理。

本篇文章同样为科普性文章,非科研性文章,如果哪位朋友觉得本文有错误,也请来信指正。

光纤光栅传感器(Fiber Grating Sensor)属于光纤传感器的一种,基于光纤光栅的传感过程是通过外界物理参量对光纤布拉格光栅(Bragg)波长的调制来获取传感信息,是一种波长调制型光纤传感器。

下图图1所示即为一根刻写了布拉格光纤光栅的光纤纤芯示意图(真实直径9微米)。

人们使用掩膜板、飞秒激光或者其它的加工方式,在光纤的纤芯部分形成无数条具有相同间距的弱反射面(我们在此暂不介绍更复杂的光栅),这些弱反射面被称为光纤光栅,各个弱反射面之间的距离被称为光栅栅距或光栅周期(我们一般用Λ这个符号来表示它——请记住这个符号,下文需要用到)。

图1利用上述光纤光栅就可以进行基本的传感测量,其原理如下图2所示:图2图2中间所示即是一根封装好的北诺®毛细®系列无缝钢管光纤光栅传感器:宽带入射光从传感器的一端进入光纤,遇到光纤光栅后,大部分波长的光作为透射光直接穿过光纤光栅,少部分特殊波长的光被反射了回去(请注意这个特殊波长,这就是我们每次要检测的对象,我们用λB来表示它)。

λB和我们前面所说的光栅栅距Λ有直接关系,表征其关系的数学表达式为:λB =2neffΛ,其中λ为反射波长,neff是光纤纤芯折射率,Λ是光栅栅距。

接下来反射光进入光纤光栅解调仪(图上未标),被解调出波长信号λB。

由于连着传感设备,因此我们每时每刻都能够得到一个不同的测试波长信号λB。

光纤光栅测温原理

光纤光栅测温原理
胀冷缩, 光栅条纹周期也会跟随温度变化,光栅布喇格波长 也就跟着变化。这样通过检测光栅反射光的波长变 化,就可以知道光栅处的温度变化。 光纤光栅分布式传感系统基本原理如下图所示。
光纤光栅分布式传感系统中,一根光纤上串接 多个光栅(各光栅具有不同的光栅常数),宽带光 源所发射的宽带光经Y型分路器通过所有的光栅, 每个光栅反射不同中心波长的光,反射光经Y型分 路器的另一端口耦合进光纤光栅感温探测信号处理 器,通过光纤光栅感温探测信号处理器探测反射光 的波长及变化,就可以得到解调数据,再经过处理, 就得到对应各个光栅处环境的实际温度。
光纤光栅测温原理
光纤光栅的基本结构为沿纤芯折射率周期性的调 制,所谓调制就是本来沿光纤轴线均匀分布的折射率 产生大小起伏的变化。
光纤的材料为石英,由芯层和包层组成。通过对 芯层掺杂,使芯层折射率n1比包层折射率n2大,形成 波导,光就可以在芯层中传播。当芯层折射率受到周 期性调制后,即成为光栅。光栅会对入射的宽带光进 行选择性反射,反射一个中心波长与芯层折射率调制 相位相匹配的窄带光刺中心波长为布喇格波长。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光纤光栅温度传感器工作原理
光纤光栅温度传感器通过测量光纤光栅传感器中光纤长度的微小变化来测量温度。

光纤光栅传感器由许多个光纤构成,每个光纤都有一个独特的折射率,因此在光纤光栅内,光会在光纤之间反射,并会发生干涉。

当发生温度变化时,光纤的长度会发生微小变化,其中一个光束的相位和另一个光束的相位将发生相对位移,导致干涉图案发生了变化。

通过对干涉图案的分析,可以测量出温度变化的大小,从而得到温度值。

这种传感器的特点是精度高、可靠性好、响应快、耐高温、不易受电磁干扰。

光纤光栅温度传感器在航空、石油、化工、电力等领域有广泛应用。

相关文档
最新文档