反比例函数特殊图形
反比例函数的图像和性质的综合应用
解析
根据题意,将点 A(-2 ,3)和点 B(3,-2 )分别代入两个函数中 ,得到关于 m、k、b 的方程组,解方程组求 得 m、k、b 的值,即 可得到两个函数的解析
式。
05
反比例函数在几何图形中应用
相似三角形判定定理推广
预备定理
平行于三角形的一边,并且和 其他两边相交的线段,所截得 的三角形的三边与原三角形三 边对应成比例。
反比例函数图像在平面直角坐标系中 ,沿y轴方向平移,函数表达式不变, 图像沿y轴平移。
伸缩变换规律
01
当k>0时,图像分别位于第一、三象限,每一个象限内,从 左往右,y随x的增大而减小;
02
当k<0时,图像分别位于第二、四象限,每一个象限内,从 左往右,y随x的增大而增大。
03
k>0时,函数在x<0上同为减函数、在x>0上同为减函数; k<0时,函数在x<0上为增函数、在x>0上同为增函数。
3
平行四边形面积问题
通过已知相邻两边及其夹角求解面积,或已知面 积和一边长度及夹角求解另一边长度,应用反比 例函数进行求解。
速度、时间、距离关系分析
匀速直线运动问题
通过已知速度和时间求解距离,或已 知距离和时间求解速度,利用反比例 关系建立方程。
变速直线运动问题
曲线运动问题
通过已知速度和方向的变化规律,求 解某时刻的速度或某段时间内的平均 速度及运动轨迹,结合反比例函数进 行综合分析。
解析
根据题意,将点(-2, -1)代入两个函数中, 得到关于 k、m、n 的 方程组,解方程组求得 k、m、n 的值,即可 得到两个函数的解析式 。再将 x = 3 代入两个 函数中,得到关于 k、 m、n 的另一个方程, 与前面的方程组联立求 解,即可得到最终的解
初中反比例函数
今天给大家介绍反比例函数,反比例函数在习题或者测试中经常会结合图形来考察我们,所以我们需要对反比例函数的图形熟练掌握。
同时要牢记其表达式,知道其中的特殊关系,那么许多问题就迎刃而解了。
首先让我们来了解一下什么是反比例函数。
形如y=k/x(k为常数,k≠0)的函数叫做反比例函数。
类似的其他形式有:
在知道反比例函数表达式之后,我们再来复习下反比例函数的图形。
反比例函数图形:
形状:反比例函数的形状是双曲线;
性质:|k|越大,图像的弯曲度越小,曲线越平直;|k|越小,图像的弯曲度越大。
当k>0时,图像的两支分别位于一、三象限;在每个象限内, y 随x 的增
大而减小;
k<0时,图像的两支分别位于二、四象限;在每个象限内, y 随x 的增
大而增大。
对称性:反比例函数图像关于原点对称。
|k|的几何意义:
在掌握这些基础知识的基础上,我们结合几道例题来巩固下。
大家可以看到这道例题就是对我们反比例函数几何意义的考察,类似的题在我们作业或者测试中经常会遇到,所以大家一定要熟练掌握。
我们再来做一道综合型的。
这种题型是我们在反比例函数大题中偶尔会遇见的题型,需要先求出k值再进行相应的计算,不过总体难度不大,只要掌握了反比例函数的基本知识,都能解决。
再来一道升级版的。
这道题就比较综合一些,但是只要耐心分析,总体难度都不是很大。
大家也发现了,反比例函数这个章节,只要把基础知识和性质、物理意义掌握好,那么做题就会迎刃而解。
考点05 反比例函数的图像和性质(解析版)
考点五反比例函数的图像和性质知识点整合一、反比例函数的概念1.反比例函数的概念一般地,函数ky x=(k 是常数,k ≠0)叫做反比例函数.反比例函数的解析式也可以写成1y kx -=的形式.自变量x 的取值范围是x ≠0的一切实数,函数的取值范围也是一切非零实数.2.反比例函数ky x=(k 是常数,k ≠0)中x ,y 的取值范围反比例函数ky x=(k 是常数,k ≠0)的自变量x 的取值范围是不等于0的任意实数,函数值y 的取值范围也是非零实数.二、反比例函数的图象和性质1.反比例函数的图象与性质(1)图象:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限.由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图象与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴.(2)性质:当k >0时,函数图象的两个分支分别在第一、三象限,在每个象限内,y 随x 的增大而减小.当k <0时,函数图象的两个分支分别在第二、四象限,在每个象限内,y 随x 的增大而增大.表达式ky x=(k 是常数,k ≠0)kk >0k <0大致图象所在象限第一、三象限第二、四象限增减性在每个象限内,y随x的增大而减小在每个象限内,y随x的增大而增大2.反比例函数图象的对称性反比例函数的图象既是轴对称图形,又是中心对称图形,其对称轴为直线y=x和y=-x,对称中心为原点.3.注意(1)画反比例函数图象应多取一些点,描点越多,图象越准确,连线时,要注意用平滑的曲线连接各点.(2)随着|x|的增大,双曲线逐渐向坐标轴靠近,但永远不与坐标轴相交,因为反比例函数kyx=中x≠0且y≠0.(3)反比例函数的图象不是连续的,因此在谈到反比例函数的增减性时,都是在各自象限内的增减情况.当k>0时,在每一象限(第一、三象限)内y随x的增大而减小,但不能笼统地说当k>0时,y随x的增大而减小.同样,当k<0时,也不能笼统地说y随x 的增大而增大.三、反比例函数解析式的确定1.待定系数法确定解析式的方法仍是待定系数法,由于在反比例函数kyx=中,只有一个待定系数,因此只需要一对对应值或图象上的一个点的坐标,即可求出k的值,从而确定其解析式.2.待定系数法求反比例函数解析式的一般步骤(1)设反比例函数解析式为kyx=(k≠0);(2)把已知一对x,y的值代入解析式,得到一个关于待定系数k的方程;(3)解这个方程求出待定系数k;(4)将所求得的待定系数k的值代回所设的函数解析式.四、反比例函数中|k|的几何意义1.反比例函数图象中有关图形的面积2.涉及三角形的面积型当一次函数与反比例函数结合时,可通过面积作和或作差的形式来求解.(1)正比例函数与一次函数所围成的三角形面积.如图①,S △ABC =2S △ACO =|k |;(2)如图②,已知一次函数与反比例函数ky x=交于A 、B 两点,且一次函数与x 轴交于点C ,则S △AOB =S △AOC +S △BOC =1||2A OC y ⋅+1||2B OC y ⋅=1(||||)2A B OC y y ⋅+;(3)如图③,已知反比例函数ky x=的图象上的两点,其坐标分别为()A A x y ,,()B B x y ,,C 为AB 延长线与x 轴的交点,则S △AOB =S △AOC –S △BOC =1||2A OC y ⋅–1||2B OC y ⋅=1(||||)2A B OC y y ⋅-.五、反比例函数与一次函数的综合1.涉及自变量取值范围型当一次函数11y k x b =+与反比例函数22k y x=相交时,联立两个解析式,构造方程组,然后求出交点坐标.针对12y y >时自变量x 的取值范围,只需观察一次函数的图象高于反比例函数图象的部分所对应的x 的范围.例如,如下图,当12y y >时,x 的取值范围为A x x >或0B x x <<;同理,当12y y <时,x 的取值范围为0A x x <<或B x x <.2.求一次函数与反比例函数的交点坐标(1)从图象上看,一次函数与反比例函数的交点由k 值的符号来决定.①k 值同号,两个函数必有两个交点;②k 值异号,两个函数可能无交点,可能有一个交点,也可能有两个交点;(2)从计算上看,一次函数与反比例函数的交点主要取决于两函数所组成的方程组的解的情况.考向一反比例函数的定义1.反比例函数的表达式中,等号左边是函数值y ,等号右边是关于自变量x 的分式,分子是不为零的常数k ,分母不能是多项式,只能是x 的一次单项式.2.反比例函数的一般形式的结构特征:①k ≠0;②以分式形式呈现;③在分母中x 的指数为-1典例引领变式拓展故答案为:2.考向二反比例函数的图象和性质当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内,y随x的增大而减小.当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内,y随x的增大而增大.双曲线是由两个分支组成的,一般不说两个分支经过第一、三象限(或第二、四象限),而说图象的两个分支分别在第一、三象限(或第二、四象限).典例引领根据图象可知,114x x>+的解集是-正确的有②③;故选:B .【点睛】本题考查了反比例函数的性质,平移的性质,反比例函数图象与几何变换,掌握性质,数形结合是解题的关键.2.如图,点(1,2)A 和点(,)B a b 是反比例函数右侧,则下列说法中,不正确的是(A .该反比例函数解析式B .矩形OCBD 的面积为C .该反比例函数的另一个分支在第三象限,且【详解】解:根据题意,10k ->,解得1k <,∴0k =满足题意,故选:D .变式拓展二、填空题三、解答题把上表中的坐标系中描出这些点,并用光滑的曲线连接起来,得到如图所示的(1)请在该平面直角坐标系中作出(2)观察函数图象,并结合表中的数据:①猜测1y与x之间的函数关系,并求②求2y关于x的函数表达式;(2)①观察表格可知,1y 是x 设1k y x=,把()30,10代入得:1030k =,∴300k =,∴612x ≤≤.考向三反比例函数解析式的确定1.反比例函数的解析式k y x=(k ≠0)中,只有一个待定系数k ,确定了k 值,也就确定了反比例函数,因此要确定反比例函数的解析式,只需给出一对x ,y 的对应值或图象上一个点的坐标,代入k y x=中即可.2.确定点是否在反比例函数图象上的方法:(1)把点的横坐标代入解析式,求出y 的值,若所求值等于点的纵坐标,则点在图象上;若所求值不等于点的纵坐标,则点不在图象上.(2)把点的横、纵坐标相乘,若乘积等于k ,则点在图象上,若乘积不等于k ,则点不在图象上.典例引领【答案】30【分析】此题主要考查了平移的性质和反比例函数图象上点的坐标特征,题关键.利用平行四边形的面积公式得出得出k 的值.【详解】∵将该函数图像向上平移x 【答案】52【分析】本题主要考查了矩形的性质及待定系数法求反比例函数解析式,根据矩形的边与y 轴平行,()1,B m ,D【答案】8 yx =【分析】本题主要考查了求反比例函数解析式、正方形的性质等知识点,确定点是解题的关键.先根据坐标与图形得到A【答案】5 yx =-【分析】本题考查反比例函数图像的性质,键.变式拓展【答案】28【分析】利用反比例函数图像上的坐标特点,即可得出答案.【详解】解:∵ABCD 是矩形,∴90DAB ABC ∠∠==【答案】24a <<【分析】本题考查利用待定系数法求反比例函数解析式,及解不等式.先求出双曲线解析式,由题意可用长.再由线段BC 与双曲线有交点且与点考向四反比例函数中k的几何意义三角形的面积与k的关系(1)因为反比例函数kyx=中的k有正负之分,所以在利用解析式求矩形或三角形的面积时,都应加上绝对值符号.(2)若三角形的面积为12|k|,满足条件的三角形的三个顶点分别为原点,反比例函数图象上一点及过此点向坐标轴所作垂线的垂足.典例引领A .4-B .6【答案】C 【分析】本题考查反比例函数与一次函数的交点问题,题的关键.利用APC 与PBD 相似即可解决问题.【详解】解:PC x ⊥ 轴,PD ⊥PDB PCA ∴∠=∠,PD x 轴,BPD PAC ∴∠=∠,APC PBD ∴ ∽,∴AC PC PD BD=.二、填空题【答案】-3【分析】本题考查的是反比例函数系数k 的几何意义,的面积是是解答此题的关键.作AD OB ⊥OA =12OB ,然后通过证得AOD BOA ∽何意义即可求得k 的值.∵Rt OAB 中,30ABO ∠=︒,∴OA =12OB ,∵90ADO OAB ∠∠==︒,AOD BOA ∠∠=∴AOD BOA ∽,∴214AOD S OA S OB ⎛⎫== ⎪⎝⎭ ,【答案】5-【分析】此题主要考查了反比例函数的图象,比例函数的图象,理解反比例函数比例系数的几何意义是解决问题的关键.连接AB y ∥轴,得ABC 和AB y ∥轴,ABC ∴ 和AOB ∆关于AB 边上的高相等,52ABC AOB S S ∆∆∴==,根据反比例函数比例系数的几何意义得:变式拓展(1)用含m 的代数式表示(2)若3OMN S =△,则【答案】24m k =90OAB ∠=︒,∴N 点的横坐标为m ,反比例函数()0k y x x=>的图象过点N ,∴N 点的纵坐标为4m , OME OAN S S =△△,OMN OME OAN MEAN MEAN S S S S S=+-=△△△梯形梯形,3OMN S =△,三、解答题【答案】(2,4)C 或(8,1)C 【分析】本题考查了反比例函数的图象与性质,形的判定与性质;由反比例函数的对称性得四边形设点8,C m m ⎛⎫ ⎪⎝⎭,分别过点∵点A 、C 在反比例函数∴1842AOE COF S S ∆∆==⨯=,当04m <<时,则AOE S ∆∴6ACFE AOC S S ∆==梯形,k=【答案】6【分析】本题考查了反比例函数⊥轴,垂足为点E,连接等.作AE x到三角形AOB的面积,两个面积之和为⊥轴,垂足为点【详解】解:作AE x,AE x⊥轴,AB AC=∴=,BE CE,=5OC OB(1)求k和m的値;(2)当8x≥时,求函数值【答案】(1)10k=,m(2)5 04y<≤.考向五反比例函数与一次函数的综合反比例函数与一次函数综合的主要题型:(1)利用k值与图象的位置的关系,综合确定系数符号或图象位置;(2)已知直线与双曲线表达式求交点坐标;(3)用待定系数法确定直线与双曲线的表达式;(4)应用函数图象性质比较一次函数值与反比例函数值的大小等.解题时,一定要灵活运用一次函数与反比例函数的知识,并结合图象分析、解答问题.典例引领(1)若2k =,4b =-,则(2)若CE DE =,则b 与【答案】12k +【分析】本题考查了一次函数和反比例函数的交点问题,系是解此题的关键.【答案】12【分析】本题主要考查了反比例函数的综合应用,解析式,解题的关键是数形结合,熟练掌握相关的性质.过点⊥轴于点E,过点CB作BE x()DE=---=,证明AD∥132联立43y x y x =+⎧⎪⎨=-⎪⎩,解得:1131x y =-⎧⎨=⎩,2113x y =-⎧⎨=⎩,∴()3,1A -,()1,3B -,二、解答题(1)求反比例函数与一次函数的函数表达式;(2)连接OA OB ,,求OAB 的面积;(3)请结合图象直接写出不等式m kx b x+<【答案】(1)6y x =,y =x +1(2)52AOB S =对于1y x =+,当0y =时,=1x -;当0x =∴()1,0C -,()0,1D ∴1,OC =1,OD =∴111112*********AOB S =⨯⨯+⨯⨯+⨯⨯=+ (3)解:由图象可知:不等式m kx b x+<的解集为:(1)求反比例函数和一次函数的解析式;(2)设D 为线段AC 上的一个动点(不包括图象于点E ,当CDE 的面积最大时,求点【答案】(1)反比例函数解析式为y =(2)点E 坐标为()2,3-.变式拓展(1)求一次函数和反比例函数的解析式;(2)求AOB 的面积;(3)观察图象,直接写出不等式【答案】(1)y x =--(2)6(3)<4x -或02x <<【分析】(1)先把点A 代入反比例函数解析式,即可求出(2)先求出直线y =-(3)观察函数图象即可求得不等式的解集.【详解】(1)解:∵(A(1)求一次函数和反比例函数的关系式;(2)若点E 是点C 关于x 轴的对称点,求【答案】(1)一次函数解析式1y x 4=-(2)32ABE S =△【分析】(1)利用点A 的坐标,代入可求出反比例函数解析式,进而求出点待定系数法可求出一次函数的解析式;当点P在BC上运动时,则PB∵2sin ==2PH B PB ,即PH =∴(1132822y DB PH =⋅=⨯⋅()304;x x ⎧≤≤由图像可得,函数图像有最大值为(3)解:根据函数图像可得:当【点睛】本题主要考查了函数图像与性质、求函数解析式、画函数图像、三角形面积、运用函数图像解不等式等知识点,求得函数解析式以及数形结合思想是解题的关键.(1)求反比例函数和一次函数的解析式;的面积;(2)求ABO(1)求a ,k 的值.(2)利用图像信息,直接写出不等式1102k x x+-≥的解集(3)如图2,直线CD 过点A ,与反比例函数图像交于点C ,与x 轴交于点,OA OC ,求OAC 的面积.【答案】(1)4a =,12k =;(2)4x ≥(1)求一次函数和反比例函数的解析式;(2)在y轴上取一点N,当(3)将直线1y向下平移2围.根据函数图象可得:当11.如图,在平面直角坐标系例函数2myx=(m为常数,且(1)求反比例函数与一次函数的解析式.(1)求反比例函数的解析式;(2)点C在这个反比例函数图象上,坐标.【答案】(1)8 yx =(2)()4,2 C90∠=∠=∠=ABO BOE AEO∴四边形ABOE是矩形,∴==,OB AE2OE AB==45,∠=︒ADO∴ 是等腰直角三角形,AED∴==,DE AE4。
反比例函数的图像和性质ppt课件
7、若点(-2,y1)、(-1,y2)、(2,y3)在
反比例函数 y = - 1 0 0 的图象上,则(
xቤተ መጻሕፍቲ ባይዱ
B
)
A、y1>y2>y3 C、y3>y1>y2
B、y2>y1>y3 D、y3>y2>y1
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
已知点A(2,y1), B(5,y2)C是(反-3比,y例3)函是数y 象上的两点.请比较y1,y2的,y大3的小大.小.
4 x
图
y
⑴代入求值
y1 A B
-3 y2 O2 5
C y3
⑵利用增减性
⑶根据图象判断
x
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
1、反比例函数y= - 5 的图象大致是( D )
y
x
y
A:
o
x
B:
o
x
y
C:
o
x
D:
y
o x
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
2、我校食堂有5吨煤,用y表示可以用的天数
,用x表示每天的烧煤量,则y关于x的函数的
10
1、这几个函数图象有 8 什么共同点?
2、函数图象分别位于 6 哪几个象限?
4
3、y随的x变化有怎
反比例函数的性质及图像
反比函数的图像是在一个坐标轴上有两根相互对称的曲线而组成,性质分别为:①单调性、②面积、③图想表达、④对称性。
反比例函数图像:
具体性质:
①单调性:反比函数是具有单调性的,当函数内容k大于零的时候,图像分别位于第一三象限,而在每一个象限的内部,从左往右来数,y是随着x的增大而减少,如果K小于零的时候,图像分别位于第二四象限,在每一个象限的内部,y随着x的增大而增大。
当K大于零的时候,函数在x小于零上是一个减函数,而在x大于零的时候,也是为减函数。
在k小于零的时候,函数在x小于零上为增函数,在x大于零的时候同为增函数。
②面积:在一个反比例函数上面取两个点,这两个点可以随意的取,然后过点分别做一个x轴和
一个y轴的平行线,而这个平行线是可以和坐标轴围成一个矩形,而这一个矩形的面积为绝对值得K。
而在反比例函数上,找到一个点,向X/Y轴分别做一个垂线,设置一个围好的矩形,而这个矩形则为QOWM,这个垂线分别位于y轴和x轴,则围成形状的这个面积为绝对值得K,则连接这个矩形的对角线为OM,则满足RT△OMQ的面积等于二分之一绝对值得K。
③图像表达:对于反比例函数的图像来说的话,不和x轴或者是y轴的相交渐近线为x轴和y轴,K值相等的反比例函数图像是相互重合的,k值不相等的反比例函数图像是永远都不会相交的,而绝对值得K越大的话,反比例函数距离坐标轴就会越来越远。
④对称性:反比例函数是一种中心对称的图形,对称中心是原点,而正是这样的一个反比例函数的图像也是轴对称图形,随意反比例函数上的点是关于原点坐标对称的,图像关于原点对称。
反比例函数一次函数二次函数性质及图像
反比例函数1、反比例函数图象:反比例函数的图像属于以原点为对称中心的中心对称的双曲线反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交K≠0..2、性质:1.当k>0时;图象分别位于第一、三象限;同一个象限内;y随x的增大而减小;当k<0时;图象分别位于二、四象限;同一个象限内;y随x的增大而增大..2.k>0时;函数在x<0上同为减函数、在x>0上同为减函数;k<0时;函数在x<0上为增函数、在x>0上同为增函数..定义域为x≠0;值域为y≠0..3.因为在y=k/xk≠0中;x不能为0;y也不能为0;所以反比例函数的图象不可能与x轴相交;也不可能与y轴相交..4. 在一个反比例函数图象上任取两点P;Q;过点P;Q分别作x轴;y轴的平行线;与坐标轴围成的矩形面积为S1;S2则S1=S2=|K|5. 反比例函数的图象既是轴对称图形;又是中心对称图形;它有两条对称轴y=x y=-x即第一三;二四象限角平分线;对称中心是坐标原点..6.若设正比例函数y=mx与反比例函数y=n/x交于A、B两点m、n同号;那么A B两点关于原点对称..7.设在平面内有反比例函数y=k/x和一次函数y=mx+n;要使它们有公共交点;则n^2+4k·m≥不小于0..8.反比例函数y=k/x的渐近线:x轴与y轴..9.反比例函数关于正比例函数y=x;y=-x轴对称;并且关于原点中心对称.10.反比例上一点m向x、y分别做垂线;交于q、w;则矩形mwqoo为原点的面积为|k|11.k值相等的反比例函数重合;k值不相等的反比例函数永不相交..12.|k|越大;反比例函数的图象离坐标轴的距离越远..13.反比例函数图象是中心对称图形;对称中心是原点一次函数(一)函数1、确定函数定义域的方法:1关系式为整式时;函数定义域为全体实数; 2关系式含有分式时;分式的分母不等于零;3关系式含有二次根式时;被开放方数大于等于零; 4关系式中含有指数为零的式子时;底数不等于零;5实际问题中;函数定义域还要和实际情况相符合;使之有意义.. (二)一次函数 1、一次函数的定义一般地;形如y kx b =+k ;b 是常数;且0k ≠的函数;叫做一次函数;其中x 是自变量..当0b =时;一次函数y kx =;又叫做正比例函数..⑴一次函数的解析式的形式是y kx b =+;要判断一个函数是否是一次函数;就是判断是否能化成以上形式. ⑵当0b =;0k ≠时;y kx =仍是一次函数.⑶当0b =;0k =时;它不是一次函数.⑷正比例函数是一次函数的特例;一次函数包括正比例函数. 2、正比例函数及性质一般地;形如y=kxk 是常数;k≠0的函数叫做正比例函数;其中k 叫做比例系数.注:正比例函数一般形式 y=kx k 不为零 ① k 不为零 ② x 指数为1 ③ b 取零当k>0时;直线y=kx 经过三、一象限;从左向右上升;即随x 的增大y 也增大;当k<0时;•直线y=kx 经过二、四象限;从左向右下降;即随x 增大y 反而减小.(1) 解析式:y=kxk 是常数;k ≠0 (2) 必过点:0;0、1;k(3) 走向:k>0时;图像经过一、三象限;k<0时;•图像经过二、四象限 (4) 增减性:k>0;y 随x 的增大而增大;k<0;y 随x 增大而减小 (5) 倾斜度:|k|越大;越接近y 轴;|k|越小;越接近x 轴 3、一次函数及性一般地;形如y=kx +bk;b 是常数;k≠0;那么y 叫做x 的一次函数.当b=0时;y=kx +b 即y=kx;所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式 y=kx+b k 不为零 ① k 不为零 ②x 指数为1 ③ b 取任意实数一次函数y=kx+b 的图象是经过0;b 和-kb;0两点的一条直线;我们称它为直线y=kx+b;它可以看作由直线y=kx 平移|b|个单位长度得到.当b>0时;向上平移;当b<0时;向下平移 1解析式:y=kx+bk 、b 是常数;k ≠0 2必过点:0;b 和-kb;0 3走向: k>0;图象经过第一、三象限;k<0;图象经过第二、四象限 b>0;图象经过第一、二象限;b<0;图象经过第三、四象限⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限 ⇔⎩⎨⎧<>00b k 直线经过第一、三、四象限⇔⎩⎨⎧><00b k 直线经过第一、二、四象限 ⇔⎩⎨⎧<<00b k 直线经过第二、三、四象限4增减性: k>0;y 随x 的增大而增大;k<0;y 随x 增大而减小.5倾斜度:|k|越大;图象越接近于y 轴;|k|越小;图象越接近于x 轴.6图像的平移: 当b>0时;将直线y=kx 的图象向上平移b 个单位;当b<0时;将直线y=kx 的图象向下平移b 个单位.一次函数()0k kx b k =+≠k ;b 符号 0k >0k < 0b > 0b < 0b = 0b >0b <0b = 图象Ox yyx OOx yyx OOx yyxO性质y 随x 的增大而增大y 随x 的增大而减小4、一次函数y=kx +b 的图象的画法.根据几何知识:经过两点能画出一条直线;并且只能画出一条直线;即两点确定一条直线;所以画一次函数的图象时;只要先描出两点;再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:0;b;.即横坐标或纵坐标为0的点.b>0 b<0 b=0k>0经过第一、二、三象限 经过第一、三、四象限 经过第一、三象限图象从左到右上升;y 随x 的增大而增大k<0 经过第一、二、四象限 经过第二、三、四象限 经过第二、四象限图象从左到右下降;y 随x 的增大而减小5、正比例函数与一次函数之间的关系一次函数y=kx +b 的图象是一条直线;它可以看作是由直线y=kx 平移|b|个单位长度而得到当b>0时;向上平移;当b<0时;向下平移6、正比例函数和一次函数及性质正比例函数 一次函数概 念 一般地;形如y=kxk 是常数;k≠0的函数叫做正比例函数;其中k 叫做比例系数 一般地;形如y=kx +bk;b 是常数;k≠0;那么y 叫做x 的一次函数.当b=0时;是y=kx;所以说正比例函数是一种特殊的一次函数.自变量 范 围X 为全体实数图 象 一条直线必过点 0;0、1;k 0;b 和-k b ;0 走 向 k>0时;直线经过一、三象限; k<0时;直线经过二、四象限 k >0;b >0;直线经过第一、二、三象限 k >0;b <0直线经过第一、三、四象限 k <0;b >0直线经过第一、二、四象限 k <0;b <0直线经过第二、三、四象限 增减性 k>0;y 随x 的增大而增大;从左向右上升 k<0;y 随x 的增大而减小..从左向右下降 倾斜度 |k|越大;越接近y 轴;|k|越小;越接近x 轴 图像的 平 移 b>0时;将直线y=kx 的图象向上平移b 个单位;b<0时;将直线y=kx 的图象向下平移b 个单位.7、直线11b x k y +=01≠k 与22b x k y +=02≠k 的位置关系 1两直线平行⇔21k k =且21b b ≠ 2两直线相交⇔21k k ≠3两直线重合⇔21k k =且21b b = 4两直线垂直⇔121-=k k8、用待定系数法确定函数解析式的一般步骤:1根据已知条件写出含有待定系数的函数关系式;2将x 、y 的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程; 3解方程得出未知系数的值;4将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.9、一元一次方程与一次函数的关系任何一元一次方程到可以转化为ax+b=0a;b 为常数;a ≠0的形式;所以解一元一次方程可以转化为:当某个一次函数的值为0时;求相应的自变量的值. 从图象上看;相当于已知直线y=ax+b 确定它与x 轴的交点的横坐标的值.10、一次函数与一元一次不等式的关系任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0a;b 为常数;a ≠0的形式;所以解一元一次不等式可以看作:当一次函数值大小于0时;求自变量的取值范围.11、一次函数与二元一次方程组1以二元一次方程ax+by=c 的解为坐标的点组成的图象与一次函数y=bcx b a +-的图象相同. (2)二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解可以看作是两个一次函数y=1111b cx b a +-和y=2222b c x b a +-的图象交点.二次函数一、二次函数概念:1.二次函数的概念:一般地;形如2y ax bx c =++a b c ,,是常数;0a ≠的函数;叫做二次函数.. 这里需要强调:和一元二次方程类似;二次项系数0a ≠;而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数;右边是关于自变量x 的二次式;x 的最高次数是2. ⑵ a b c ,,是常数;a 是二次项系数;b 是一次项系数;c 是常数项.二、二次函数的基本形式① 一般式:()()20f x ax bx c a =++≠ ② 顶点式:()()()20f x a x m n a =++≠ ③ 零点式:()()()()120f x a x x x x a =--≠当240b ac∆=->时;二次函数的图像和x轴有两个交点()11,0M x;()22,0M x;线段1212M M x xa a=-==.当240b ac∆=-=时;二次函数的图像和x轴有两个重合的交点,02bMa⎛⎫-⎪⎝⎭.特别地;当且仅当0b=时;二次函数()()20f x ax bx c a=++≠为偶函数.1. 二次函数基本形式:2y ax=的性质:a 的绝对值越大;抛物线的开口越小..2. 2y ax c=+的性质:上加下减..3. ()2y a x h=-的性质:左加右减..4.()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+;确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变;将其顶点平移到()h k ,处;具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移;负左移;k 值正上移;负下移”. 概括成八个字“左加右减;上加下减”.方法二:⑴c bx ax y ++=2沿y 轴平移:向上下平移m 个单位;c bx ax y ++=2变成m c bx ax y +++=2或m c bx ax y -++=2⑵c bx ax y ++=2沿轴平移:向左右平移m 个单位;c bx ax y ++=2变成c m x b m x a y ++++=)()(2或c m x b m x a y +-+-=)()(2四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看;()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式;后者通过配方可以得到前者;即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭;其中2424b ac b h k a a -=-=,.五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+;确定其开口方向、对称轴及顶点坐标;然后在对称轴两侧;左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,;()20x ,若与x 轴没有交点;则取两组关于对称轴对称的点.画草图时应抓住以下几点:开口方向;对称轴;顶点;与x 轴的交点;与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时;抛物线开口向上;对称轴为2bx a =-;顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,. 当2b x a <-时;y 随x 的增大而减小;当2b x a >-时;y 随x 的增大而增大;当2bx a =-时;y 有最小值244ac b a -.2. 当0a <时;抛物线开口向下;对称轴为2b x a =-;顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时;y 随x 的增大而增大;当2b x a >-时;y 随x 的增大而减小;当2bx a=-时;y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++a ;b ;c 为常数;0a ≠;2. 顶点式:2()y a x h k =-+a ;h ;k 为常数;0a ≠;3. 两根式:12()()y a x x x x =--0a ≠;1x ;2x 是抛物线与x 轴两交点的横坐标.注意:任何二次函数的解析式都可以化成一般式或顶点式;但并非所有的二次函数都可以写成交点式;只有抛物线与x 轴有交点;即240b ac -≥时;抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中;a 作为二次项系数;显然0a ≠.⑴ 当0a >时;抛物线开口向上;a 的值越大;开口越小;反之a 的值越小;开口越大;⑵ 当0a <时;抛物线开口向下;a 的值越小;开口越小;反之a 的值越大;开口越大.总结起来;a 决定了抛物线开口的大小和方向;a 的正负决定开口方向;a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下;b 决定了抛物线的对称轴.⑴ 在0a >的前提下;当0b >时;02ba-<;即抛物线的对称轴在y 轴左侧; 当0b =时;02ba-=;即抛物线的对称轴就是y 轴; 当0b <时;02ba->;即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下;结论刚好与上述相反;即 当0b >时;02ba->;即抛物线的对称轴在y 轴右侧; 当0b =时;02ba-=;即抛物线的对称轴就是y 轴; 当0b <时;02ba-<;即抛物线对称轴在y 轴的左侧. ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ;在y 轴的右侧则0<ab ;概括的说就是“左同右异”3. 常数项c⑴ 当0c >时;抛物线与y 轴的交点在x 轴上方;即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时;抛物线与y 轴的交点为坐标原点;即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时;抛物线与y 轴的交点在x 轴下方;即抛物线与y 轴交点的纵坐标为负. 总结起来;c 决定了抛物线与y 轴交点的位置. 总之;只要a b c ,,都确定;那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式;通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点;选择适当的形式;才能使解题简便.一般来说;有如下几种情况:1. 已知抛物线上三点的坐标;一般选用一般式;2. 已知抛物线顶点或对称轴或最大小值;一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标;一般选用两根式;4. 已知抛物线上纵坐标相同的两点;常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况;可以用一般式或顶点式表达1. 关于x 轴对称2y ax bx c =++关于x 轴对称后;得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后;得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后;得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后;得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后;得到的解析式是2y ax bx c =-+-;()2y a x h k =-+关于原点对称后;得到的解析式是()2y a x h k =-+-;4. 关于顶点对称即:抛物线绕顶点旋转180° 2y ax bx c =++关于顶点对称后;得到的解析式是222b y ax bx c a =--+-; ()2y a x h k =-+关于顶点对称后;得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后;得到的解析式是()222y a x h m n k =-+-+-根据对称的性质;显然无论作何种对称变换;抛物线的形状一定不会发生变化;因此a 永远不变.求抛物线的对称抛物线的表达式时;可以依据题意或方便运算的原则;选择合适的形式;习惯上是先确定原抛物线或表达式已知的抛物线的顶点坐标及开口方向;再确定其对称抛物线的顶点坐标及开口方向;然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系二次函数与x 轴交点情况:一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况.图象与x 轴的交点个数:① 当240b ac ∆=->时;图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠;其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=. ② 当0∆=时;图象与x 轴只有一个交点;③ 当0∆<时;图象与x 轴没有交点.1' 当0a >时;图象落在x 轴的上方;无论x 为任何实数;都有0y >;2' 当0a <时;图象落在x 轴的下方;无论x 为任何实数;都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交;交点坐标为(0;)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标;需转化为一元二次方程;⑵ 求二次函数的最大小值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ;b ;c 的符号;或由二次函数中a ;b ;c 的符号判断图象的位置;要数形结合;⑷ 二次函数的图象关于对称轴对称;可利用这一性质;求和已知一点对称的点坐标;或已知与x 轴的一个交点坐标;可由对称性求出另一个交点坐标.二次函数与一元二次方程、一元二次不等式的关系从函数观点来看;一元二次不等式()200ax bx c a ++>≠的解集就是二次函数()()20f x ax bx c a =++≠的图像上;位于x 轴上方的点的横坐标的集合;一元二次不等式()200ax bx c a ++<≠的解集就是二次函数()()20f x ax bx c a =++≠的图像上;位于x 轴下方的点的横坐标的集合;一元二次不等式()200ax bx c a ++≥≠的解集就是二次函数()()20f x ax bx c a =++≠的图像上;位于x 轴上方的点和与x 轴的交点的横坐标的集合;一元二次不等式()200ax bx c a ++≤≠的解集就是二次函数()()20f x ax bx c a =++≠的图像上;位于x 轴下方的点和与x 轴的交点的横坐标的集合.一元二次方程()200ax bx c a ++=≠的解就是二次函数()()20f x ax bx c a =++≠的图像上;与x 轴的交点的横坐标.。
反比例函数图像与性质知识点
反比例函数图像与性质知识点一、反比例函数公式口诀反比例函数双曲线,待定只需一个点,正k落在一三限,x增大y在减,图象上面任意点,矩形面积都不变,对称轴是角分线,x、y的顺序可交换。
二、反比例函数图象当k>0时,两支曲线分别位于第一、三象限内;当k<0时,两支曲线分别位于第二、四象限内,两个分支无限接近x和y轴,但永远不会与x轴和y轴相交.图象画法1)列表x...-3-2-11234...y...-4-6-1212643...2)在平面直角坐标系中标出点(一般标5个点,称为5点作图法)。
3)用平滑的曲线连接点。
当K>0时,在图象所在的每一象限内,Y随X的增大而减小。
当K<0时,在图象所在的每一象限内,Y随X的增大而增大。
当两个数相等时那么曲线呈弯月型。
k的意义及应用过反比例函数y=k/x(k≠0)图象上任意一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积为|k|。
过反比例函数图象一点,作任一坐标轴的.垂线,并连接原点,围成的三角形的面积为|k|/2。
研究函数问题要透视函数的本质特征。
反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积为|k|。
所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数。
这个常数是k的绝对值。
在解有关反比例函数的问题时,若能灵活运用反比例函数中k的几何意义,会给解题带来很多方便。
三、反比例函数性质单调性当k>0时,图象分别位于第一、三象限,每一个象限内,从左往右,y随x的增大而减小;当k<0时,图象分别位于第二、四象限,每一个象限内,从左往右,y随x的增大而增大。
k>0时,函数在x<0上为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。
反比例函数一次函数二次函数性质及图像
在工程学中,反比例函数、一次函数和二次函数可以用来描 述各种工程问题的数学模型,如结构优化、路径规划等。利 用这些函数的性质和图像,可以进行工程设计和优化,提高 工程质量和效率。
感谢您的观看
THANKS
顶点
二次函数的顶点坐标为 $left(frac{b}{2a}, c frac{b^2}{4a}right)$。
04
图像特征
01
02
03
04
形状
二次函数的图像是一条抛物线 。
位置
根据 $a$、$b$、$c$ 的取值 ,抛物线的位置会有所不同。
与坐标轴的交点
令 $y = 0$ 可求得与 $x$ 轴 的交点,令 $x = 0$ 可求得
05
函数图像比较
图像的平移与伸缩
平移
函数图像在平面直角坐标系中的位置可以通过平移来改变。对于一次函数和二次函数,图像可以沿x轴或y轴进 行平移,而对于反比例函数,图像可以沿原点进行平移。
伸缩
函数图像的形状可以通过伸缩来改变。对于一次函数,图像的伸缩表现为斜率的改变;对于二次函数,图像的 伸缩表现为开口大小或方向的改变;对于反比例函数,图像的伸缩表现为离原点的远近。
单调性
反比例函数
反比例函数的单调性取决于其定义域。在每个象限内,反比例函数都是单调的,但在整个 定义域内不是单调的。
一次函数
一次函数的单调性取决于其斜率。当斜率大于0时,函数在整个定义域内单调递增;当斜 率小于0时,函数在整个定义域内单调递减。
二次函数
二次函数的单调性取决于其二次项系数的正负和对称轴的位置。当二次项系数为正时,函 数在对称轴左侧单调递减,在对称轴右侧单调递增;当二次项系数为负时,函数在对称轴 左侧单调递增,在对称轴右侧单调递减。
反比例函数图象及性质
2x
2x
4x
800x
3、下列反比例函数图像的一个分支,在第三象限的是( B )
3
21k3(A) y (B)y (C) y (D) y
x
x
x
x
4、函数 y 1 a2 的图象在第 二、四 象限.
x
例题讲解
2 例1:在反比例函数 y x 的图象上有两点(x1,y1)、
(x2,y2),若x1>x2 ,则y1>y2吗?
x 当k>0时,双曲线的两支分别位于第一、第三象限, 在每个 象限内y值随x值的增大而减小.
当k<0时,双曲线的两支分别位于第二、第四象限, 在每个 象限内y值随x值的增大而增大.
y
6
y=
6 x
5 4
3
2
1
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 x
-1
-2 -3
-4 -5
-6
观察y 6 和y 6 的图象
x
x
发现函数值y怎样随着自变量x的变化而变化?
1、在每一个象限内 2、在整个自变量的取值范围内
如图xB< xA 但yB< yA
y
6
6
5
y x
4
· 3
A
y
· C 6
6
5
y
x
4
3
2
2
xB
1
x -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 x
-1
A
· -2
B
-3
-4 -5
1
-6 -5 -4 -3 -2 -1 0 1 2
3
-1
-2
第十四讲反比例函数的图像和性质
选择合适坐标系
为了清晰地展示反比例函 数的图像,需要选择合适 的坐标系,通常使用笛卡 尔坐标系。
绘制函数图像
在坐标系中,通过计算不 同 $x$ 值对应的 $y$ 值 ,可以绘制出反比例函数 的图像。
图像变化趋势及拐点分析
变化趋势
当 $x$ 从负无穷增加到 0 时,反比例函数的值 $y$ 会从负无穷增加到负无穷 大;当 $x$ 从 0 增加到正无穷时,反比例函数的值 $y$ 会从正无穷大减小到 正无穷小。因此,反比例函数图像在坐标系中呈现双曲线形状。
图像特征
反比例函数的图像是以原点为对称中 心的两条曲线,当 $k > 0$ 时,图像 位于第一、三象限;当 $k < 0$ 时, 图像位于第二、四象限。
渐近线
反比例函数的图像无限接近于但永不 相交于 $x$ 轴和 $y$ 轴,这两条轴 是反比例函数的渐近线。
单调性
在每一象限内,随着 $x$ 的增大(或
03
与指数函数、对数函数关系
反比例函数与指数函数、对数函数在图像和性质上都有显著区别,一般
不会混淆。但在某些特定条件下,它们之间可能存在一定的联系或转化
关系。
02
反比例函数图像绘制与特点
坐标系中绘制反比例函数图像
01
02
03
确定函数表达式
首先确定反比例函数的表 达式,例如 $y = frac{k}{x}$(其中 $k neq 0$)。
定义
形如 $y = frac{k}{x}$($k$ 为常 数且 $k neq 0$)的函数称为反 比例函数。
表示方法
反比例函数通常用 $y = frac{k}{x}$ 或 $xy = k$($k$ 为 常数且 $k neq 0$)来表示,其 中 $x$ 是自变量,$y$ 是因变量 。
反比例函数及其图象
反比例函数及其图象 一、知识点讲解 1.反比例函数的概念 定义:一般地,函数y=(k是常数,k≠0)叫做反比例函数,其中自变量x的取值范围是x≠0。
注意: ①反比例函数三种形式:反比例函数y=(k是常数,k≠0)可以写成y=k·x-1(k是常数,k≠0), 自变量x的指数是-1;也可写成xy=k(k是常数,k≠0)。
②注意k≠0的条件,否则不是反比例函数。
③反比例函数中,两个变量成反比例关系:由xy=k,因为k为常数,k≠0,两个变量的积是定值,所以y与x成反比变化,而正比例函数y=kx(k≠0)是正比例关系:由=k(k≠0),因为k为不等于零的常数,两个变量的商是定值。
2.反比例函数的图象和性质 反比例函数y= ①x的取值范围是 反比例函数y=kx-1(k≠0)的图象是双曲线,与坐标轴没有交点。
正比例函数y=kx(k≠0)的图象是直线,经过原点。
(k≠0)(k≠0)的图象的画法及应注意的问题 画图方法:描点法。
由于双曲线的图象有关于原点对称的性质,所以只要描出它在一个象限内的分支,再对称地画出另一分支。
一定要注意:k>0,双曲线两分支分别在第一、三象限。
k<0,双曲线两分支分别在第二、四象限。
特点:y==kx-1(k≠0)中,∵x≠0,∴y≠0,则有双曲线不过原点且与两坐标轴永不相交。
但无限靠近x轴、y轴。
画图时图象要体现这种性质,千万注意不要将两个分支连起来。
5.反比例函数解析式的确定。
在反比例函数y=(k≠0)定义中,只有一个常数,所以求反比例函数的解析式只需确定一个待定系数k,反比例函数即可确定。
所以只要将图象上一点的坐标代入y=中即可求出k值。
二、例题分析: 例1.选择题: 1.已知函数y=的图象经过(1,-2)点,那么函数y=kx+1的图象,不经过( )A、第一象限B、第二象限C、第三象限D、第四象限 解:∵y=经过(1,-2)点, ∴-2=,∴k=-2。
反比例函数
反比例函数知识要点1. 反比例函数的概念: 一般地,函数x k y =(k 是常数,且k ≠0)叫做反比例函数。
注意:(1)常数K 称为反比例系数,K 是非零常数;(2)解析式有三种表达式: ①xk y =(k ≠0);②xy=k (k ≠0);③1-=kx y (k ≠0) 2.反比例函数的图像: 3.反比例函数xk y =(k ≠0)的性质: (1)当K >0时,图像的两个分支分别在第一、三象限,在每一象限内,y 随x 的增大而减小;(2)当K <0时,图像的两个分支分别在第二、四象限,在每一象限内,y 随x 的增大而增大;(3)反比例函数的图像:①关于原点成中心对称;②关于直线x y =成轴对称;③关于直线x y -=成轴对称;4. 反比例函数面积的基本模型:①如图,过双曲线x k y =上任意一点P(X ,y),作x 轴(或y 轴)的垂线,则S ∆OMN=2|K |; ②如图,过双曲线x k y =上任意一点P(X ,y),作x 轴、y 轴的垂线,则S 矩形AOBP=|K|;反比例函数 xk y =(k 是常数,且k ≠0) K 的符号K >0K <0 图像(双曲线)这两条曲线只能无限接近于两坐标轴, 不能与其相交。
基础知识检测(一)填空1. 当m= 时,函数y=()的变化范围是时,函数值是反比例函数。
当y x m m 1-x 3-12≤≤+- . 2. 写出一个反比例函数,当x (x >0)增大时,y 反而减小,此函数的解析式是 ;已知反比例函数xk y -=4,当k 时,函数图像位于第一、三象限;当k 时,在每个象限内,y 随x 的增大而增大。
3. 在函数y=xa 12--(a 为常数)的图像上有三点(x1,y1)、(x2,y2)、(x3,y3),且x1<x2<0<x3,则函数y1,y2,y3的关系是 。
4. 已知反比例函数x k y =(k ≠0)的图像经过P(1,3)点,则反比例函数的解析式为 。
反比例函数图象及性质
反比例函数图象及性质【知识点】定义:一般的,如果两个变量x ,y 之间的关系可以表示成(k 为常数,k≠0,x≠0),其中k 叫做反比例系数,x 是自变量,y 是x 的函数,x 的取值范围是不等于0的一切实数,且y 也不能等于0。
表达式:y*x=-1,y=x^(-1)*k ,y=kx^-1(k 为常数(k≠0),x 不等于0)函数的图像:当k>0时,两支曲线分别位于第一、三象限内;当k<0时,两支曲线分别位于第二、四象限内,两个分支无限接近x 和y 轴,但永远不会与x 轴和y 轴相交.函数的性质:Y 与x 的变化:当k>0时,图象分别位于第一、三象限,每一个象限内,从左往右,y 随x 的增大而减小; 当k<0时,图象分别位于第二、四象限,每一个象限内,从左往右,y 随x 的增大而增大。
因为在(k≠0)中,x 不能为0,y 也不能为0,所以反比例函数的图象不可能与x 轴相交,也不可能与y 轴相交,只能无限接近x 轴,y 轴。
面积:在一个反比例函数图像上任取两点,过点分别作x 轴,y 轴的平行线,与坐标轴围成的矩形面积为|k|, 反比例函数上一点 向x 、y 轴分别作垂线,分别交于y 轴和x 轴,则QOWM 的面积为|k|,则连接该矩形的对角线即连接OM,则RT △OMQ 的面积=½|k|。
对称性:类型一:函数性质,比较大小例1.如果两点P 1(1,y 1)和P 2(2,y 2)在反比例函数xy 1=的图象上,那么y 1与y 2间的关系是( ) A. y 2<y 1<0 B.y 1<y 2<0 C.y 2>y 1>0 D.y 1>y 2>0 例2.对于函数3x ky x+=(k >0)有以下四个结论: ①这是y 关于x 的反比例函数;②当x >0时,y 的值随着x 的增大而减小; ③函数图象与x 轴有且只有一个交点;④函数图象关于点(0,3)成中心对称.其中正确的是 。
人教版数学九年级下册《 反比例函数的图象和性质》PPT课件
,
则 a___b(填>、=或<).
>
已知点(-1,y1),(2,y2),(3,y3)在反比例函数
k2
y
x
的图象上,则下列结论中正确的是( B )
A.y1>y2>y3
B.y1>y3>y2
C.y3>y1>y2
D.y2>y3>y1
(k≠0)
探究新知
考点 2 利用反比例函数的图象和性质求字母的值
已知反比例函数 y a 1 x
…
…
y
描点:以表中各组对应
值作为点的坐标,在直
角坐标系内描绘出相应
的点.
6
5
4
3
2
1
-6 -5-4-3-2-1O
-1
连线:用光滑的曲线顺
-2
-3
次连接各点,即可得函
-4
6
12
-5
y
y
数
与
的图象.
-6
x
x
y
y
12
x
6
x
1 2 3 4 5 6 x
y
观察这两个函数
思考:
图象,回答问题:
(1) 每个函数图象分别
增大.
探究新知
反比例函数的图象和性质
形状
由两支曲线组成的.因此称它的图象为双曲线;
位置
当k>0时,两支双曲线分别位于第一、三象限内;
当k<0时,两支双曲线分别位于第二、四象限内;
增减性
图象的发展趋势
对称性
当k>0时,在每一象限内, y随x的增大而减小;
当k<0时,在每一象限内, y随x的增大而增大.
反比例函数图像与性质知识点
反比例函数是一种数学函数,它通常对应于反对比关系,即如果某个量越大,另一个量就越小,反之亦然。
一般地,一个反比例函数形式为y=k/x,其中k是一个未知的常数。
从定义看,即使x为0,y也能被赋以有限的值,它们的变化关系也不同于线性函数的变化关系。
反比例函数的图像为连续递减的弧形,它以y轴为对称轴,反比例函数在图像上表现为从原点(0,0)出发的一条弯曲的曲线,曲线的弧度越来越小,直至无穷远时与x轴垂直,当x=0时,y值可以被给定,这也是为什么反比例函数和线性函数不同的原因。
此外,反比例函数的基本特性还有,点(a,b)处的导数是负值;它仅当x的值小于k的值的时候才有可能产生拐点;可以通过倒数的非零多项式来求反比例函数的函数值;求反比例函数的定积分时,一般使用其定义域上的积分变量将函数值单调映射到[0,1]端点之间,然后再使用不同的奇偶性求对应此定积分。
总之,反比例函数在数学理论中具有重要的地位,它是一种常用的函数形式,也有着与线性函数不同的曲线图形和相应的参数特性。
这提醒我们,在令人兴奋的数学探索之旅中,要秉承科学的态度紧紧依靠量化的思维方式来深入探讨数学物理的规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比例函数(特殊图形)————————————————————————————————作者:————————————————————————————————日期:反比例函数与特殊图形正方形1.如图,正方形ABCD 的顶点A 、B 分别在x 轴、y 轴的正半轴上,反比例函数y=kx(k >0)的图象经过另外两个顶点C 、D ,且点D (4,n )(0<n <4),则k 的值为2.正方形的A 1B 1P 1P 2顶点P 1、P 2在反比例函数y=x2(x >0)的图象上,顶点A 1、B 1分别在x 轴、 y 轴的正半轴上,再在其右侧作正方形P 2P 3A 2B 2,顶点P 3在反比例函数y= x2(x >0)的图象上,顶点A 2在x 轴的正半轴上,则点P 3的坐标为3.如图,矩形ABCD 的顶点A 、D 在反比例函数y =6x(x >0)的图象上,顶点C 、B 分别在x 轴、y 轴的正半轴上,且ABBC=2.再在其右侧作正方形DEFG 、FPQR (如图),顶点F 、R 在反比例函数y =6x(x >0)的图象上,顶点E 、Q 在x 轴的正半轴上,则点R 的坐标为菱形1.如图,已知四边形OABC 是菱形,CD ⊥x 轴,垂足为D ,函数y=4x的图象经过点C ,且与AB 交于点E .若OD=2,则△OCE 的面积为2.如图,在直角坐标系中,有菱形OABC ,A 点的坐标为(5,0),双曲线y=kx(x >0)经过C 点,且OB •AC=40,则k 的值为3.如图,已知:如图,在直角坐标系中,有菱形OABC ,A 点的坐标为(10,0),对角线OB 、AC 相交于D 点,双曲线y=kx(x >0)经过D 点,交BC 的延长线于E 点,且OB •AC=160,有下列四个结论:①双曲线的解析式为y=40x(x >0);②E 点的坐标是(5,8);③sin ∠COA=45; ④AC+OB=125.其中正确的结论是平行四边形1.如图,▱ABCD 的顶点A ,B 的坐标分别是A (-1,0),B (0,-2),顶点C ,D 在 双曲线y=kx上,边AD 交y 轴于点E ,D 点横坐标为2,则k=2.如图,已知四边形ABCD 是平行四边形,BC=2AB .A ,B 两点的坐标分别是(﹣1,0),(0,2), C ,D 两点在反比例函数y=xk(k <0)的图象上,则k 等于 .3.如图,▱ABCD 中,A (1,0)、B (0,-2),双曲线y=kx(x <0)过点C ,点D 在y 轴上,若S □ABC D =6,则k=1.如图,平行四边形ABOC 中,对角线交于点E ,双曲线y=kx(k <0)经过C 、E 两点,若平行四边形ABOC 的面积为10,则k 的值是2.如图,平行四边形OABC 的顶点B ,C 在第一象限,点A 的坐标为(3,0),点D 为边AB 的中点,反比例函数y=kx(x >0)的图象经过C ,D 两点,若∠COA=α,则k 的值等于( ) A .8sin 2α B .8cos 2αC .4tan αD .2tan α3.如图,□ABCD 的顶点A ,B 的坐标分别是A (-1,0),B (0,-2),顶点C ,D 在双曲线y=xk上, 边AD 交y 轴于点E ,且S 四BCDE =5S △ABE ,则k=__ __矩形1.已知矩形OABC的面积为1003,它的对角线OB与双曲线y=kx相交于点D,且OB:OD=5:3,则k=2.如图,已知矩形OABC的一边OA在x轴上,OC在y轴上,O为坐标原点,连接OB;双曲线y=kx交BC于D,交OB于E,连接OD,若E是OB的中点,且△OBD的面积等于3,则k的值为3.如图,反比例函数y=-3x(x>0)图象经过矩形OABC边AB的中点E,交边BC于F点,连接EF、OE、OF,则△OEF的面积是1.如图,在直角坐标系中,矩形OABC的顶点C在x轴的负半轴上,点A在y轴正半轴上,矩形OABC的面积为82.把矩形OABC沿DE翻折,使点B与点O重合,点C落在第三象限的G点处,作EH⊥x轴于H,过E点的反比例函数y=kx图象恰好过DE的中点F.则k=,线段EH的长为:2.已知:如图,矩形OABC的边OA在x轴的负半轴上,边OC在y轴的正半轴上,且OA=2OC,直线y=x+b过点C,并且交对角线OB于点E,交x轴于点D,反比例函数ya x过点E且交AB于点M,交BC于点N,连接MN、OM、ON,若△OMN的面积是809,则a、b的值分别为()A.a=2,b=3 B.a=3,b=2 C.a=-2,b=3 D.a=-3,b=23.如图,矩形ABOC在坐标系中,A(-3,3),将△ABO沿对角线AO折叠后点B落在B′处,则过点B′的双曲线的解析式为1.如图,在直角坐标系中,正方形OABC 的顶点O 与原点重合,顶点A 、C 分别在x 轴、y 轴上,反比例函数y=kx(k ≠0,x >0)的图象与正方形的两边AB 、BC 分别交于点M 、N ,ND ⊥x 轴,垂足为D ,连接OM 、ON 、MN .下列结论:①△OCN ≌△OAM ;②ON=MN ;③四边形DAMN 与△MON 面积相等;④若∠MON=45°,MN=2,则点C 的坐标为(0,2+1).其中正确结论的个数是( )A .1B .2C .3D .42.如图,两个反比例函数y=1k x 和y=2kx(其中k 1>k 2>0)在第一象限内的图象依次是C 1和 C 2,设点P 在C 1上,PC ⊥x 轴于点C ,交C 2于点A ,PD ⊥y 轴于点D ,交C 2于点B ,下列说法正确的是( )①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积等于k 1-k 2;③PA 与PB 始终相等; ④当点A 是PC 的三等分点时,点B 一定是PD 三等分点. A .①② B .①②④C .①④D .①③④3.如图,两个反比例函数y 1=1k x (其中k 1>0)和y 2=3x在第一象限内的图象依次是C 1和C 2,点P 在C 1上.矩形PCOD 交C 2于A 、B 两点,OA 的延长线交C 1于点E ,EF 垂直x 轴于F 点,且图中阴影部分面积为13,则EF :AC 为1.如图,正方形OBCD 的边长为2,点E 是BC 上的中点,点F 是边OD 上一点,若双曲线y=k x(x >0)经过点E ,交CF 于G ,且△OBG 的面积为512 ,则OFDF的值等于2.如图,点A 在x 轴正半轴上,点C 在y 正半轴上,四边形OABC 为矩形,面积为6,双曲线y=kx(x >0)交BC 于点M ,交AB 于点N ,连接OB ,MN ,若2OB=3MN ,则k=1.已知点A ,B 分别在反比例函数y=2x (x >0),y=8x(x >0)的图象上且OA ⊥OB , 则tanB 为2.如图,在平面直角坐标系中,∠AOB=90°,∠OAB=30°,反比例函数y 1=mx的图象经过点A ,反比例函数y 2=nx的图象经过点B ,则m ,n 的关系是3.Rt △AOB 中,O 为坐标原点,∠AOB=90°,∠B=30°,如果点A 在反比例函数y=1x(x >0)的图象上运动,那么点B 应在下列哪个函数的图象上运动4.如图,点A 是双曲线y=4x在第一象限上的一动点,连接AO 并延长交另一分支于点B ,以AB 为斜边作等腰Rt △ABC ,点C 在第二象限,随着点A 的运动,点C 的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为 .1.如图,Rt △AOB 的一条直角边OB 在x 轴上,双曲线y=kx(x >0)经过斜边OA 的中点C ,与另一直角边交于点D .若S △OC D =9,则S △OBD 的值为2.如图,双曲线y=kx经过Rt △OMN 斜边上的点A ,与直角边MN 交于点B ,已知OA=2AN , △OAB 的面积为52,则k 的值是3.如图,等腰直角三角形ABC 顶点A 在x 轴上,∠BCA=90°,AC=BC=22,反比例函数y=x3(x >0) 的图象分别与AB ,BC 交于点D ,E .连结DE ,当△BDE ∽△BCA 时,点E 的坐标为1.如图,P1是反比例函数y=kx(k>0)在第一象限图象上的一点,点A1的坐标为(2,0).若△P1OA1与△P2A1A2均为等边三角形,则A2点的横坐标为2.如图,边长为2的等边三角形AOB的顶点在反比例函数y=mx(m>0)的图象上,等边△BCD的顶点D也在反比例函数的图象上,依次作等边三角形使三角形的一边在x轴上,第三个点D在反比例函数的图象上,则m的值与第n个等边三角形的边长分别为3.如图,△AOB和△ACD均为正三角形,且顶点B、D均在双曲线y=4x(x>0)上,则图中S△OBP=梯形1.如图,梯形AOBC中,对角线交于点E,双曲线y=kx(k>0)经过A、E两点,若AC:OB=1:3,梯形AOBC面积为24,则k=2.如图,四边形ABCD的顶点都在坐标轴上,若AB∥CD,△ABD与△ACD的面积分别为3和6,若双曲线y=kx恰好经过BC的中点E,则k的值为3.如图,双曲线y=-3x(x<0)经过四边形OABC的顶点A、C,∠ABC=90°,OC平分OA与x轴负半轴的夹角,AB∥x轴,将△ABC沿AC翻折后得到△A B′C,B′点落在OA上,则四边形OABC的面积是直线1.直线y=-2x+5分别与x 轴,y 轴交于点C 、D ,与反比例函数y=3x的图象交于点A 、B .过点A 作AE ⊥y 轴于点E ,过点B 作BF ⊥x 轴于点F ,连接EF ,下列结论:①AD=BC ;②EF ∥AB ;③四边形AEFC 是平行四边形;④S △AOD =S △B OC .其中正确的个数是( ) A .1 B .2C .3D .42.已知反比例函数y=kx(k >0)的图象与一次函数y=-x+6相交与第一象限的A 、B 两点,如图所示,过A 、B 两点分别做x 、y 轴的垂线,线段AC 、BD 相交与P ,给出以下结论: ①OA=OB ;②△OAM ∽△OBN ;③若△ABP 的面积是8,则k=5;④P 点一定在直线y=x 上, 其中正确命题的个数是( )个. A .1 B .2C .3D .43.如图,A 、B 是双曲线y =2x上任意两点,过A 、B 两点分别作y 轴的 垂线,垂足分别为C 、D ,且C 、D 的纵坐标分别为3和1.连接AB , 直线OB 、OA 分别交图象于点E 、F ,则△EOF 的面积是1.如图,已知△ABO 的顶点A 和AB 边的中点C 都在双曲线y=4x(x >0)的一个分支上,点B 在x 轴上,CD ⊥OB 于D ,则△AOC 的面积为2.如图,已知A 、B 两点是反比例函数y=xk的图象上的任意两点(x >0,k >0),过点A 、B 分别作y 轴的垂线,垂足分别是D ,C ,记住梯形ABCD 的面积是S 1,△OAB 的面积是S 2, 则S 1:S 2的值是3.如图,A ,B 是反比例函数y=6x图象上两点,AC 和BD 都与坐标轴垂直,垂足分别为C 、D ,OD=1,OC=2,AC 与BD 交于点P ,则△AOB 的面积为1.如图,直线y=-x+b 与双曲线y=1x(x >0)交于A 、B 两点,与x 轴、y 轴分别交于E 、F 两点,AC ⊥x 轴于点C ,BD ⊥y 轴于点D ,当b=34时,△ACE 、△BDF 与△ABO 面积的和等于△EFO 面积的2.如图,直线b x y +-=与双曲线xy 1=(x >0)交于A 、B 两点,与x 轴、y 轴分别交于E 、F 两点, 连结OA 、OB ,若AOB OBF OAF S S S ∆∆∆=+,则=b .3. 如图,直线AB 过点A (m ,0)、B (0,n )(其中m >0,n >0).反比例函数y=xp (p >0)的图象与直线AB 交于C 、D 两点,连接OC 、OD .(1)已知m+n=10,△AOB 的面积为S ,问:当n 何值时,S 取最大值?并求这个最大值; (2)若m=8,n=6,当△AOC 、△COD 、△DOB 的面积都相等时,求p 的值.1.如图,将一块直角三角形纸板的直角顶点放在C (1,12)处,两直角边分别与x ,y 轴平行,纸板的另两个顶点A ,B 恰好是直线y=kx+92与双曲线y=mx(m >0)的交点.则m ,k的值分别是2.如图,直线l 与反比例函数y=2x的图象在第一象限内交于A ,B 两点,交x 轴于点C ,若AB :BC=(m-1):1(m >1),则△OAB 的面积(用m 表示)为( )A .212m m -B .21m m -C .23(1)2m m -D .23(1)m m-3.如图,已知直线y=-x+4与两坐标轴分别相交于点A ,B 两点,点C 是线段AB 上任意一点,过C 分别作CD ⊥x 轴于点D ,CE ⊥y 轴于点E .双曲线y=kx与CD ,CE 分别交于点P ,Q 两点,若四边形ODCE 为正方形,且S △OPQ =32,则k 的值是。