求阴影图形面积
求阴影部分面积的三种方法
求阴影部分面积的三种方法
一. 和差法
和差法是指不改变图形的位置,而将它的面积用规则图形的面积的和或差表示,经过计算后即得所求图形面积。
练习:
1、
2、
3、
4、
二. 移动法
移动法是指将图形的位置进行移动,以便为使用和差法提供条件。
具体方法有:平移、旋转、割补、等积变换等。
练习1、正方形ABCD的边长为a,以A为圆心,AB为半径作弧,以C为圆心,CD为半径作弧,求阴影部分面积.
练习2、求下列阴影部分的面积(三个圆的半径都是2cm)
三:覆盖法.
几个规则图形覆盖在一起,重叠部分就是阴影部分.
练习1、大圆的直径是6cm,最小圆的直径是大圆直径的1/3。
求下列阴影部分的面积练习2、。
求阴影部分面积的几种常用方法
总结:对于不规则图形面积的计算问题一般将它转化为若干基本规蒈则图形的组合,分析整体与部分的和、差关系,问题便得到解决.常用的基本方法有:蒇一、相加法:这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面袁例如,下图中,要求整个图形的面积,只要先求出上面积,然后相加求出整个图形的面积..半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了薀衿羅二、相减法:这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积袄.例如,下图,若求阴影部分的面积,只需先求出正方形面积再减去里面圆的面积即可差.蚀羆蚇蚃三、直接求法:这种方法是根据已知条件,从整体出发直接求出不规则图形面积.如下页右螀的三角形,其面积直42、高是上图,欲求阴影部分的面积,通过分析发现它就是一个底是1?2?4?4。
:接可求为|2莇莂四、重新组合法:这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组袀例如,欲求下图中阴影部分面积,可以.合成一个新的图形,设法求出这个新图形面积即可. 把它拆开使阴影部分分布在正方形的4个角处,这时采用相减法就可求出其面积了螈蒅袆袀五、辅助线法:这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图膈如下图,求两个正方形中转化成若干个基本规则图形,然后再采用相加、相减法解决即可..此题虽然可以用相减法解决,但不如添加一条辅助线后用直接法作更简便阴影部分的面积.芄膃羀六、割补法:这种方法是把原图形的一部分切割下来补在图形中的另一部分使之成为基本蕿例如,如下图,欲求阴影部分的面积,只需把右边弓形切.规则图形,从而使问题得到解决.割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半肆羂七、平移法:这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成肀例如,如下图,欲求阴影部分面积,可先沿中间切.一个新的基本规则图形,便于求出面积开把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。
小学六年级数学求阴影面积与周长
小学六年级数学求阴影面积与周长例1.求阴影部分的面积。
(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。
设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积。
(单位:厘米)解:最基本的方法之一。
用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。
例4.求阴影部分的面积。
(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分的面积。
(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。
例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。
(单位:厘米)解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形)例8.求阴影部分的面积。
(单位:厘米)解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘米例9.求阴影部分的面积。
小学求阴影部分面积(例题加习题)
小学求阴影部分面积(例题和练习)【经典例题1】求如图阴影部分的面积。
(单位:厘米)考点:组合图形的面积;梯形的面积;圆、圆环的面积。
分析:阴影部分的面积等于梯形的面积减去直径为4厘米的半圆的面积,利用梯形和半圆的面积公式代入数据即可解答。
解答:解:(4+6)×4÷2÷2﹣3.14×÷2=10﹣3.14×4÷2=10﹣6.28=3.72(平方厘米)答:阴影部分的面积是3.72平方厘米.点评:组合图形的面积一般都是转化到已知的规则图形中利用公式计算,这里考查了梯形和圆的面积公式的灵活应用。
【巩固提高】1、如图,求阴影部分的面积.(单位:厘米)2、计算如图阴影部分的面积.(单位:厘米)3、求出如图阴影部分的面积:单位:厘米.4、求如图阴影部分的面积。
(单位:厘米)【经典例题2】求如图阴影部分面积。
(单位:厘米)考点:长方形正方形的面积;平行四边形的面积;三角形的周长和面积。
分析:图一中阴影部分的面积=大正方形面积的一半-与阴影部分相邻的小三角形的面积;图二中阴影部分的面积=梯形的面积-平行四边形的面积。
再将题目中的数据代入公式中计算。
解答:图一中阴影部分的面积=6×6÷2-4×6÷2=6(平方厘米)图二中阴影部分的面积=(8+15)×(48÷8)÷2-48=21(平方厘米)点评:此题目是组合图形,需要把握好正方形、三角形、平行四边形、梯形的面积公式,再将题目中的数据代入相关公式进行计算。
【巩固提高】1、计算如图中阴影部分的面积.单位:厘米.2、求阴影部分的面积.单位:厘米.【经典例题3】如图是三个半圆,求阴影部分的周长和面积。
(单位:厘米)考点:组合图形的面积,圆和圆环的面积。
分析:观察图形可知,图中的大半圆内的两个小半圆的弧长之和与大半圆的弧长相等,所以图中阴影部分的周长等于直径为13厘米的圆的周长,再利用圆的周长公式即可计算;阴影部分的面积=大半圆的面积-两个小半圆的面积解答:解:周长:3.14×(10+3)=3.14×13=40.82(厘米)面积:×3.14×[(10+3)÷2]2﹣×3.14×(10÷2)2﹣×3.14×(3÷2)2=×3.14×(42.25﹣25﹣2.25)=×3.14×15=23.55(平方厘米)点评:此题主要考查半圆的周长及面积的计算方法,根据半圆的弧长=πr,得出图中两个小半圆的弧长之和等于大半圆的弧长,是解决本题的关键。
求阴影部分面积的常用方法
求阴影部分面积的常用方法天文测量学是一门应用数学知识研究天体测量问题的学科,主要研究天体距离、大小及其形状、位置等方面的几何学问题。
其中一个重要的几何问题是求阴影部分面积,已经被用于测算太阳和月亮的位置以及行星的运动规律。
求阴影部分面积的方法有多种,经过长期的研究和实际应用,衍生出了许多可以用来计算阴影部分面积的方法,这些方法包括三角求面积法、Sommerville法、Trapezoid法和向量法等。
三角求面积法是求阴影部分面积最常用的方法。
若图形由多个三角形组成,则可用此方法求出这些三角形的面积和,再求出总面积。
其求面积的公式为:$$A=frac{1}{2}cdot acdot bcdot sin({theta})$$ 其中$a$和$b$分别为三角形的两条边的长度,${theta}$为这两条边的夹角的大小。
Sommerville法是求阴影部分面积的另一种有效方法,其原理是:根据顶点和其他顶点坐标,计算阴影区域面积。
该方法在实际应用中便于编程操作,结果往往比三角求面积法更准确。
通常根据多边形表示,如:{$A_1$,$A_2$,$A_3$,$A_4$,…,$A_n$},其阴影着陆面积S由$$S=frac{1}{2}sum_{i=1}^{n}{A_icdot A_{i+1}cdotsin({theta_i})}$$得到,其中$A_i$和$A_{i+1}$分别为多边形的相邻的顶点的坐标,${theta_i}$是这两个顶点的夹角大小。
Trapezoid法是另一种求阴影部分面积的有效方法,它通过使用梯形计算阴影部分面积。
假设有一个梯形,其两个腰段的长度分别为$a$和$b$,中间部分长度为$c$,面积则有:$$A=frac{1}{2}(a+b)cdot c$$此外,研究者还衍生了以向量法求面积的方式。
假设有一个以$O(x_1,y_1)$为原点的平面,其上有一个直线段$AB((x_2,y_2)-(x_3,y_3))$,则其面积可以表示为:$$A=|(vec{OA})cdot (vec{OB})|$$其中$vec{OA}=(x_2-x_1,y_2-y_1)$和$vec{OB}=(x_3-x_1,y_3-y_1)$。
阴影部分面积的求法
求图形面积的几种常用方法1、割补法:对于一些求不在一起的几块阴影面积的和,往往需要把它们通过剪割、拼补在一起,才便于计算,在剪割、拼补过程中,一定要注意割下来的图形和补上去的图形的形状、大小必须完全一样。
【例1】如图,每个小圆的半径是2厘米,求阴影部分的面积是多少平方厘米?【例2】右图中三个圆的半径都是4厘米,三个圆两两交于圆心。
求阴影部分的面积是多少平方厘米?2,重新组合法:这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可•例如,求下图中阴影部分面积3、加减法:注意观察,所求阴影部分的面积看是由哪几个图形相加,再减去哪个图形变可以得到。
我们把这种通过加、减就能求出它的面积的方法,我们的把它称为“加减法”【例3】如图,正方形的边长为4厘米,求阴影部分的面积是多少?使之组合成一个 原来【例4】如图,长方形的长为 12厘米,宽为8厘米,求阴影部分的面积是多少?4.辅助线法:这种方法是根据具体情况在图形中添一条或若干条辅助线, 使不规则图形转化 成若干个基本规则图形,然后再采用相加、相减法解决即可 例如,求下图中阴影部分面积5, 平移法:这种方法是将图形中某一部分切割下来平行移动到一恰当位置, 新的基本规则图形,便于求出面积•例如,如下图,求阴影部分面积6. 对称添补法:这种方法是作出原图形的对称图形,从而得到一个新的基本规则图形 图形面积就是这个新图形面积的一半 •例如,求下图中阴影部分的面积,7、旋转法:在求一些面积时,有时需要把某个图形进行一定方向的旋转,使之拼在一起, 变成另一个比较方便求的图形。
【例5】如图,梯形ABCD的上底是3厘米,下底是5厘米,高是4厘米,E是梯形的中点。
求阴影部分的面积是多少?8、等分法:就是将整个图形,平均分成若干份,再看所求的图形的面积占多少份,从而求得阴影部分的面积。
【例6】将三角形ABC的三条边分别向外延长一倍,得到一个大的六边形,已知三角形ABC【例7】如图,在正方形中,放置了两个小正方形,大正方形的面积是180平方厘米,求甲乙两个小正方形有面积各是多少?9、抓不变量:若甲比乙的面积大a,则甲和乙同时加上或减去相同的数,它们的大小不变,而图形发生变化,再通过变化后的图形进行求解,就可以使问题得到简便;若两个面积相等的图形,同时加上或差动相同的面积,则剩下的面积仍然相等。
求平面几何阴影部分面积的三种方法
思路探寻求平面几何阴影部分的面积问题是平面几何中的典型问题.大部分求平面几何阴影部分面积问题中的几何图形都是不规则的图形,对此,我们要学会灵活运用和差法、等积法、割补法来解题.一、和差法和差法就是把所求图形的面积问题转化为若干个图形的面积的和或差来进行计算的方法.而运用和差法解题的关键是弄清楚阴影部分的面积可以由哪些图形的面积的差或和构成.针对某些较为复杂图形的阴影面积问题,可以通过不改变图形的位置,将它的面积用几个规则图形的面积的和或差表示出来,再通过计算求得图形的面积.例1.如图1所示,B 是AC 上的一点,分别以AB ,BC ,AC 为直径作半圆,过B 作BD ⊥AC 与半圆交于点D .求证:图中阴影部分面积等于以BD 为直径的圆的面积.分析:通过观察图形可以发现,将大半圆的面积减去两个小半圆的面积,就可以得到阴影部分的面积,可用和差法来解答本题.证明:∵AC =AB +BC ,∴S 阴影=π2∙æèöøAC 22-π2∙æèöøAB 22-π2∙æèöøBC 22=π4AB ∙BC ,而以BD 为直径的圆的面积为S 圆=π∙æèöøBD 22=π4BD 2,∵BD ⊥AC ,∠ADC =90°,∴BD 2=AB ∙BC ,∴阴影部分面积等于以BD 为直径的圆的面积.二、等积法当图形的面积很难求出或者无法利用和差法来求解时,我们通常运用等积法,即将问题转化为求与其等面积的图形的面积来求解.运用等积法解题的关键是弄清楚哪两个图形的面积相等.可借助同底等高或等底同高的两个三角形、平行四边形面积相等的性质来解答有关问题.例2.如图2所示,⊙0的半径为1,C 是⊙0上一点,以C 为圆心,以1为半径作弧与⊙0相交于A ,B 两点,求图中阴影部分的面积.分析:我们无法直接求出本题中阴影部分的面积,可运用等积法来求解,连接分割线AB ,将问题转化为求两个弓形图形的面积.解:连接AB ,则S 阴影=2×S 弓形ACB ,∵OD =12OC =12,可得∠OAB =30°,从而∠AOB =120°∴S 弓形=120π360-12×3×12=π3,∴S 阴影=23π-.三、割补法割补法就是把图形割补成几个规则图形,使题目便于解答的方法.有些图形较为复杂,我们可以结合题意将图形割补为规则图形,如三角形、平行四边形、圆、扇形等,然后运用三角形、平行四边形、圆、扇形等的面积公式进行求解.例3.如图3所示,已知菱形ABCD 的两条对角线分别为a ,b ,分别以每条边为直径向菱形内作半圆,求四条半圆弧围成的花瓣形面积,即图中阴影部分的面积.分析:所求阴影部分的面积是由几个图形叠加而成,我们需要运用割补法来求解.将阴影部分面积看作是四个半圆与菱形重叠之后的面积,割去重叠的部分,便可求出阴影部分的面积.解:设以BC 为直径的半圆面积为S 半圆,则S 半圆-S △OBC =14S 花瓣,S 花瓣=4S 半圆-S 菱形ABCD =4×12π2-ab 2=π()a 2+b 2-4ab 8.作差法、等积法和割补法都是求平面几何图形阴影部分面积的基本方法.无论运用哪种方法进行求解,我们都需要仔细观察阴影部分的图形,寻找它与规则图形之间的联系,将问题转化为求规则图形面积的问题.(作者单位:新疆特克斯县高级中学)朱家燕图2图1图3A B C D 53Copyright©博看网 . All Rights Reserved.。
五年级《圆》求阴影部分面积的十大方法
求与圆相关的阴影部分面积的十大方法(一)、相加法(分割法):将不规则图形分割成成几个基础规则图形,分别计算它们的面积,然后相加求出整个图形的面积。
例:下图只要先求出上面半圆的面积,再求出下面正方形的面积,然后相加即可。
(二)、相减法:将所求的不规则图形的面积看成是若干个基本规则图形的面积之差。
例:下图只需先求出正方形面积再减去里面圆的面积即可。
(三)、直接求法:根据已知条件,从整体出发直接求出不规则图形面积。
例:下图阴影部分的面积,分析发现它是一个底为2,高为4的三角形,就可以直接求面积了。
(四)、重新组合法:将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可。
S 阴影=S 半圆+S 正方形S 阴影=S 正方形-S 圆S 阴影=S 三角形例:下图可以把它拆开使阴影部分分布在正方形的4个角处,这时采用相减法就可求出其面积了。
(五)、辅助线法:根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可。
例:下图虽然可以用相减法解决,但不如添加一条辅助线后用直接法计算2个三角形面积之和更简便。
(六)、割补法:把原图形的一部分切割下来,补在图形中的另一部分,使之成为规则图形,从而使问题得到解决。
例:下图只需把右边弓形切割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半。
(七)、平移法:将图形中某一部分切割下来,平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积。
S 阴影=S 正方形-S 圆S 阴影=S 正方形÷2S 阴影=S 三角形①+S 三角形②例:下图可先沿中间切开,把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。
(八)、旋转法:将图形中某一部分切割下来之后,使之沿某一点或某一轴旋转一定角度,贴补在另一图形的一侧,从而组合成一个新的基本规则的图形,便于求出面积。
(完整版)求阴影部分面积的几种常用方法
总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决.常用的基本方法有:一、相加法:这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如,下图中,要求整个图形的面积,只要先求出上面半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了.二、相减法:这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差.例如,下图,若求阴影部分的面积,只需先求出正方形面积再减去里面圆的面积即可.三、直接求法:这种方法是根据已知条件,从整体出发直接求出不规则图形面积.如下页右上图,欲求阴影部分的面积,通过分析发现它就是一个底是2、高是4的三角形,其面积直接可求为|:四、重新组合法:这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可.例如,欲求下图中阴影部分面积,可以把它拆开使阴影部分分布在正方形的4个角处,这时采用相减法就可求出其面积了.五、辅助线法:这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可.如下图,求两个正方形中阴影部分的面积.此题虽然可以用相减法解决,但不如添加一条辅助线后用直接法作更简便.六、割补法:这种方法是把原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形,从而使问题得到解决.例如,如下图,欲求阴影部分的面积,只需把右边弓形切割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半.七、平移法:这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积.例如,如下图,欲求阴影部分面积,可先沿中间切开把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。
八、旋转法:这种方法是将图形中某一部分切割下来之后,使之沿某一点或某一轴旋转一定角度贴补在另一图形的一侧,从而组合成一个新的基本规则的图形,便于求出面积.例如,欲求下图(1)中阴影部分的面积,可将左半图形绕B 点逆时针方向旋转180°,使A与C 重合,从而构成如右图(2)的样子,此时阴影部分的面积可以看成半圆面积减去中间等腰直角三角形的面积.九、对称添补法:这种方法是作出原图形的对称图形,从而得到一个新的基本规则图形.原来图形面积就是这个新图形面积的一半.例如,欲求下图中阴影部分的面积,沿AB在原图下方作关于AB为对称轴的对称扇形ABD.弓形CBD的面积的一半就是所求阴影部分的面积。
《小学奥数》专题:求阴影部分面积的技巧
割补法
学而优教育 求阴影面积方法之六
例题6:如图,已知正方形的 边长为3,求图形的阴影部分 面积。
3
3
3
3
割补法
解:S阴
1 2
33
9. 2
学而优教育 求阴影面积方法之六
例题6:如图,已知正方形的 边长为3,求图形的阴影部分 面积。
3
3
割补法
学而优教育 求阴影面积方法之六
例题6:如图,已知正方形的 边长为3,求图形的阴影部分 面积。
2
2
学而优质教mn 育 难 例题8:如图,已知直角三角 分 形的直角边长为2,求图形的 析 阴影部分面积。
2
2
学而优质教mn 育 难 例题8:如图,已知直角三角 分 形的直角边长为2,求图形的 析 阴影部分面积。
4
重新组合法 4
解:S阴 S正 S圆 42 22 16 4.
学而优教育
求阴影面积方法之四
mn
例题4: 如图,已知正方形的
边长为4,求图形的阴影部分
面积。
4
重新组
4
合法
解:S阴 S圆 S正 42 22 16 4.
学而优教育 求阴影面积方法之五
例题5: 如图,已知大正方形 的边长为4,小正方形的边长 为2,求图形的阴影部分面积。
2 4
2
解:S阴
1 2
2
4
4.
学而优教育
求阴影面积方法之四
例题4: 如图,已知正方形的 边长为4,求图形的阴影部分 面积。
4
学而优教育
求阴影面积方法之四
例题4: 如图,已知正方形的边长为4, 求图形的阴影部分面积。
4
重新组合法
4
四种方法求阴影部分面积
微专题 四种方法求阴影部分面积
3. (2019淄博)如图,矩形内有两个相邻的正方形,其面积分别为2和8,则图中阴 影部分的面积为(B ) A. 2 B. 2 C. 2 2 D. 6
第3题图
第4题图
4. 如图,在矩形ABCD中,AB=2,BC=3,以点A为圆心,AB长为半径画弧交
AD于点E,以点C为圆心,CB长为半径画弧交CD的延长线于点F,则图中阴影 部分的面积为___13_4___6_.
微专题 四种方法求阴影部分面积
★构造和差法 满分技法
先设法将不规则阴影部分与空白部分组合,构造规则图形或分割后为规则图形,再 进行面积和差计算.如图:
微专题 四种方法求阴影部分面积
针对演练 5. 如图,在扇形AOB中,∠AOB=90°,正方形CDEF的顶点C是 AB 的中点, 点D在OB上,点E在OB的延长线上.当正方形CDEF的边长为2 2 时,则阴影 部分的面积为__2_π_-__4__.
第1题图
微专题 四种方法求阴影部分面积
★直接和差法
方法二 和差法
满分技法 将不规则阴影部分的面积看成是以规则图形为载体的一部分,其他部分空白且为规 则图形,此时采用整体作差法求解.如图:
微专题 四种方法求阴影部分面积
针对演练 2. 如图,已知AB是⊙O的直径,弦CD⊥AB,垂足为E.若∠AOC=60°,OC= 2 cm,则阴影部分的面积是( D ) A. (π- 3 ) cm2 B. (π+ 3)cm2 C. (2π+2 3 )cm2 D. (2π-2 3 )cm2
微专题 四种方法求阴影部分面积
微专题 四种方法求阴影部分面积
(近10年中仅2011年未考查) 方法一 公式法
满分技法 所求阴影部分的面积是规则图形,直接用几何图形的面积公式求解.如图:
三种方法求阴影部分的面积
三种方法求阴影部分的面积求解阴影部分的面积的三种方法可以是几何方法、数学方法和计算机图形学方法。
下面将详细介绍这三种方法。
一、几何方法:几何方法是通过利用几何知识来求解阴影部分的面积。
这种方法通常适用于简单的几何形状,如圆、矩形等。
方法如下所示:1.首先确定被阴影投射物体的几何形状,如圆形、矩形等。
2.确定光源的位置和投射角度。
3.根据光线的角度和被投射物体的形状,求解出光线与表面的交点。
4.根据交点之间的连线和被投射物体的形状,求解出阴影部分的面积。
二、数学方法:数学方法是通过数学方程来求解阴影部分的面积。
这种方法可以应用于复杂的几何形状,如曲线、不规则形状等。
方法如下所示:1.将被投射物体的形状建模成数学方程。
2.根据光线的角度和被投射物体的形状方程,求解出光线与表面的交点。
3.根据交点之间的连线和被投射物体的形状方程,求解出阴影部分的面积。
三、计算机图形学方法:计算机图形学方法是通过计算机图形学算法来求解阴影部分的面积。
这种方法适用于复杂的三维场景,可以考虑光线的折射、反射等现象。
方法如下所示:1.通过三维建模软件将场景建模成三维模型。
2.根据光源的位置和投射角度,使用光线追踪算法计算光线与场景中物体的交点。
3.根据交点之间的连线和物体的材质属性,计算出阴影部分的面积。
这三种方法可以根据具体情况选择使用。
如果是简单的几何形状,可以使用几何方法来求解阴影部分的面积;如果是复杂的几何形状,可以使用数学方法;如果是复杂的三维场景,可以使用计算机图形学方法。
小学数学 9种“求图形阴影面积”的方法
小学数学9种“求图形阴影面积”的方法
在数学几何考试中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算,一般我们称这样的图形为不规则图形。
对于这类不规则图形,考试常考的就是求图形中的阴影面积。
“几何”问题不仅是小学数学的重点,到了初高中数学学习中也占很大比重,内容是循序渐进的,所以基础一定要打好。
下面9种方法就是学习哥今天分享给大家的内容,家长们赶紧收藏让孩子在单元考试前好好掌握吧!相信只要孩子掌握了这9种求面积的方法,数学考试再也不怕了!。
求阴影面积的十种方法
求阴影面积的十种方法
阴影面积是指在光源照射下,物体投射出的阴影所覆盖的面积。
在几何学中,阴影面积是计算投影面积的一个重要概念。
对于不同形状的物体,计算其阴影面积有不同的方法,下面介绍几种常见的方法。
1. 直接计算法:对于简单的几何体,例如矩形、三角形、圆形等,可以根据相应的公式计算出其阴影面积。
2. 消影法:利用几何形体之间的消影关系计算阴影面积,这种方法适用于多个物体在同一平面上的情况。
3. 画图法:通过绘制物体投影图和阴影图,求出阴影面积。
4. 面积加减法:对于复杂物体,可以将其分解成若干个简单形体,再分别计算其阴影面积,最后将得到的结果加减得到总面积。
5. 数学模型法:利用数学模型模拟物体在光源照射下的投影过程,计算出阴影面积。
6. 三角网格法:使用三角网格模型计算阴影面积,适用于复杂非规则形状的物体。
7. 光线追踪法:通过模拟光线在场景中的传播方向,计算出阴影面积。
8. 蒙特卡罗法:通过随机生成光线投射到物体上,进行多次模拟,最终统计得到阴影面积。
9. 深度图法:通过产生一个深度图,依据深度图中的遮挡关系得出阴影区域,计算阴影面积。
10. 像素级法:将物体的每一个像素与光线相交,统计被覆盖的像素点,通过像素点的数量计算出阴影面积。
总之,计算阴影面积的方法主要取决于物体的形状和光源的位置,通过选择适合的方法,能够得到比较准确的结果。
求阴影部分面积的方法
求阴影部分面积的方法在数学中,求阴影部分面积是一个常见的问题。
阴影部分面积的计算方法有很多种,下面我们将介绍几种常见的方法。
一、几何法。
几何法是最直观的求阴影部分面积的方法之一。
首先,我们需要将阴影部分与已知图形进行比较,找到相似的图形或者利用几何图形的性质来求解。
例如,如果阴影部分是一个三角形,我们可以利用三角形面积公式来计算阴影部分的面积。
如果阴影部分是一个不规则图形,我们可以将其分割成几个已知图形,然后分别计算它们的面积,最后将它们相加得到阴影部分的面积。
二、积分法。
积分法是一种比较高级的求阴影部分面积的方法。
如果阴影部分是一个曲线围成的区域,我们可以利用定积分的概念来求解。
首先,我们需要确定曲线的方程,并找到曲线与坐标轴之间的交点。
然后,利用定积分的性质,可以将曲线围成的区域分割成无穷小的矩形,然后将这些矩形的面积相加,即可得到阴影部分的面积。
三、投影法。
投影法是一种利用投影关系来求解阴影部分面积的方法。
如果阴影部分是一个立体图形在平面上的投影,我们可以利用投影的性质来求解。
首先,我们需要确定立体图形的形状和位置,然后利用投影的关系,可以将立体图形的面积投影到平面上,最后计算投影部分的面积即可得到阴影部分的面积。
四、数值逼近法。
数值逼近法是一种利用数值计算方法来求解阴影部分面积的方法。
如果阴影部分的形状比较复杂,难以用几何法或者积分法求解,我们可以利用数值计算方法来逼近阴影部分的面积。
例如,可以利用蒙特卡洛方法来进行随机抽样,然后利用抽样结果来估计阴影部分的面积。
以上就是几种常见的求阴影部分面积的方法,每种方法都有其适用的场景和计算步骤。
在实际问题中,我们可以根据具体情况选择合适的方法来求解阴影部分的面积。
希望本文的介绍对您有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求阴影图形面积1、求下列组合图形阴影部分的面积。
Xk b1. c om
2、①求它的周长和面积。
(单位:厘米)②圆的周长是18.84cm,求阴影部分面积。
③长方形的面积和圆的面积相等,已知圆④求直角三角形中阴影部分的面积。
的半径是3cm,求阴影部分的周长和面积。
(单位:分米)
⑤下图中长方形长6cm,宽4cm,已知阴影⑥图中阴影①比阴影②面积小48平方厘米,
①比阴影②面积少3cm2,求EC的长。
AB=40cm,求BC的长。
⑦平行四边形的面积是30cm2,⑧一个圆的半径是4cm,求阴影部分面积。
求阴影部分的面积。
⑨已知AB=8cm,AD=12cm,三角形ABE和三角形ADF的面积,各占长方形ABCD的1/3,求
三角形AEF的面积。
⑩梯形上底8cm,下底16cm,阴影⑾求阴影部分面积。
(单位:cm)部分面积64cm2,求梯形面积。
⑿梯形面积是48平方厘米,阴影部分比空白⒀阴影部分比空白部分大6cm2,求S 阴。
部分12平方厘米,求阴影部分面积。
3、求下列图形的体积。
(单位:厘米)。