人教b版数学必修三:3.3.1《几何概型》导学案(含答案)

合集下载

2019高中数学必修3导学案:3.3.1几何概型

2019高中数学必修3导学案:3.3.1几何概型

人教版高中数学必修精品教学资料《3.3.1几何概型》导学案【学法指导】1.认真阅读教科书,努力完成“基础导学”部分的内容;2.探究部分内容可借助资料,但是必须谈出自己的理解;不能独立解决的问题,用红笔做好标记;3.课堂上通过合作交流研讨,认真听取同学讲解及教师点拨,排除疑难;4.全力以赴,相信自己!用。

2、如何利用几何图形,把问题转化为几何概型问题。

学习难点正确判断几何概型并求出概率。

复习提问:1、古典概型的两个特点:(1)试验中所有可能出现的基本事件只有____________.(2)每个基本事件出现的_____________________________.2、计算古典概型的公式:探究(一)1.一个人到单位的时间可能是8:00至9:00之间的任何一个时刻;2.往一个方格中投一个石子,石子可能落在方格中的任何一点……这些试验可能出现的结果都是有限的还是无限的。

那么对于有无限多个试验结果的情况相应的概率应如果求呢?进行下面的探究问题1:下图是卧室和书房地板的示意图,图中每一块方砖除颜色外完全相同,甲壳虫分别在卧室和书房中自由地飞来飞去,并随意停留在某块方砖上,问在哪个房间里,甲壳虫停留在黑砖上的概率大?问题2:图中有两个转盘,甲乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜。

书房在两种情况下分别求甲获胜的概率是多少?(图见教材135页图3.3-1)问题3:甲获胜概率与区域的位置有关吗?与图形的大小有关吗?甲获胜可能性是由什么决定的?几何概型:定义:如果每个事件发生的概率只与构成该事件区域的_________________________成比例,则称这样的概率模型为______________概率模型(geometric models of probability),简称几何概型。

几何概型的公式:几何概型的特点a) 试验中所有可能出现的基本事件有______________b) 每个基本事件出现的__________________________古典概型与几何概型的区别相同:两者基本事件发生的可能性都是___________的;不同:__________概型要求基本事件有有限个,______________概型要求基本事件有无限多个。

人教版高中数学必修三导学案 3.3.1几何概型

人教版高中数学必修三导学案 3.3.1几何概型

3.3几何概型3.3.1几何概型1.问题导航(1)当试验的所有可能结果是无穷多的情况,还能用古典概型来计算事件发生的概率吗?(2)什么叫几何概率模型?其求解方法是什么?(3)几何概型有几种模型?2.例题导读通过例1的学习,学会如何求解长度型的几何概型的概率.1.几何概型的定义与特点(1)定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.(2)特点:①可能出现的结果有无限多个;②每个结果发生的可能性相等.2.几何概型中事件A的概率的计算公式P(A)=构成事件A的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).1.下列概率模型都是几何概型吗?(对的打“√”,错的打“×”)(1)从区间[-10,10]中任取出一个数,求取到1的概率;()(2)从区间[-10,10]中任取出一个数,求取到绝对值不大于1的数的概率;()(3)从区间[-10,10]中任取出一个数,求取到大于1且小于2的数的概率;()(4)向一个边长为4 cm的正方形ABCD内投一点P,求点P离正方形的中心不超过1 cm的概率.()解析:(1)不是几何概型;(2)(3)(4)是几何概型,满足无限性,且等可能性.答案:(1)× (2)√ (3)√ (4)√2.在区间[-1,2]上随机取一个数x ,则|x |≤1的概率为( ) A.13 B.12 C.14D.23解析:选D.由|x |≤1,得-1≤x ≤1,所以|x |≤1的概率为P (|x |≤1)=23.3.如图,假设你在如图所示的图形中随机撒一粒黄豆,则它落到阴影部分的概率为________.解析:设圆的半径为R ,则圆的面积为S =πR 2,阴影的面积S 阴=12·2R ·R =R 2,故所求概率P =S 阴S =R 2πR 2=1π. 答案:1π4.古典概型与几何概型有何区别?解:几何概型也是一种概率模型,它与古典概型的区别是:古典概型的试验结果是有限的,而几何概型的试验结果是无限的.1.利用几何概型的概率公式,结合随机模拟试验,可以解决求概率、面积、参数值等一系列问题,体现了数学知识的应用价值.2.如果一个随机试验可能出现的结果有无限多个,并且每个结果发生的可能性相等,那么该试验可以看作是几何概型.3.几何概型是不同于古典概型的又一个最基本、最常见的概率模型,对应随机事件及试验结果的几何量可以是长度、面积或体积.与长度有关的几何概型(2014·高考湖南卷)在区间[-2,3]上随机选取一个数X ,则X ≤1的概率为( ) A.45 B.35 C.25D.15[解析] 在区间[-2,3]上随机选取一个数X ,则X ≤1,即-2≤X ≤1的概率为P =35.[答案] B[互动探究] 本例中,若将“X ≤1”改为“|X |≤1”,则概率为多少?解:由|X |≤1,得-1≤X ≤1,由几何概型概率计算公式可得,|X |≤1的概率为P =1-(-1)3-(-2)=25. 方法归纳(1)本题的关键是判断事件发生的概率是只与长度有关的几何概型.(2)将每个事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点,这样的概率模型就可以用几何概型来求解.1.(1)某人从甲地去乙地共走了500米,途经一条宽为x 米的河流,他不小心把一件物品丢到途中,如果物品掉到河里就找不到,若物品不掉到河里,则能找到,已知该物品被找到的概率是45,则河宽为( )A .80米B .100米C .40米D .50米解析:选B.该物品能够被找到的路径长为500-x 米,由几何概型知,45=500-x500,解得x =100米,故选B.(2)某人午觉醒来,发现表停了,他打开收音机,想听电台报时,求他等待的时间不多于10分钟的概率.(链接教材P 136例1)解:设A ={等待的时间不多于10分钟},我们所关心的事件A 恰好是打开收音机的时刻位于[50,60]时间段内,因此由几何概型的概率公式得P (A )=60-5060=16.即“等待报时的时间不多于10分钟”的概率为16.与面积有关的几何概型(2014·高考辽宁卷)若将一个质点随机投入如图所示的长方形ABCD 中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是( )A.π2B.π4C.π6D.π8[解析] 设质点落在以AB 为直径的半圆内为事件A , 则P (A )=阴影面积长方形面积=12π·121×2=π4.[答案] B方法归纳(1)与面积有关的几何概型的概率公式如果试验的结果所构成的区域的几何度量可用面积表示,则其概率的计算公式为:P (A )=构成事件A 的区域面积试验的全部结果所构成的区域面积.(2)解与面积相关的几何概型问题的三个关键点 ①根据题意确认是否是与面积有关的几何概型问题;②找出或构造出随机事件对应的几何图形,利用图形的几何特征计算相关面积; ③套用公式,从而求得随机事件的概率.2.一海豚在水池中自由游弋,水池为长30 m ,宽20 m 的长方形,求海豚嘴尖离岸边不超过2 m 的概率.解:如图所示,区域Ω是长30 m 、宽20 m 的长方形,图中阴影部分表示事件A :“海豚嘴尖离岸边不超过2 m ”,问题可以理解为求海豚嘴尖出现在图中阴影部分的概率.由于区域Ω的面积为30×20=600(m 2),阴影部分的面积为30×20-26×16=184(m 2). 所以P (A )=184600=2375.即海豚嘴尖离岸边不超过2 m 的概率约为2375.与体积有关的几何概型一只小蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个面的距离均大于1,则称其为“安全飞行”,求蜜蜂“安全飞行”的概率.[解] 满足题意的点区域为:位于该正方体中心的一个棱长为1的小正方体.由几何概型的概率公式,可得满足题意的概率为:P =1333=127.方法归纳“体积比”求几何概型的概率是常见题型,通常利用图形的几何特征度量来求随机事件的概率.3.(1)如图所示,有一瓶2升的水,其中含有1个细菌.用一小杯从这瓶水中取出0.1升水,求小杯水中含有这个细菌的概率.解:记“小杯水中含有这个细菌”为事件A ,则事件A 的概率只与取出的水的体积有关,符合几何概型的条件.∵小瓶中有0.1升水,原瓶中有2升水, ∴由几何概型求概率的公式得P (A )=0.12=0.05.(2)在1升高产小麦种子中混入一粒带麦锈病的种子,从中随机抽取10毫升,则其含有麦锈病种子的概率是多少?解:1升=1 000毫升,记事件A =“取10毫升种子含有这粒带麦锈病的种子”,则P (A )=101 000=0.01,即取出10毫升种子含有这粒带麦锈病的种子的概率是0.01.数学思想数形结合思想在求解几何概型中的应用(2014·高考重庆卷)某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为________.(用数字作答)[解析] 设小王到校时间为x ,小张到校时间为y ,则小张比小王至少早到5分钟时满足x -y ≥5.如图,原点O 表示7:30,在平面直角坐标系中画出小王和小张到校的时间构成的平面区域(图中正方形区域),该正方形区域的面积为400,小张比小王至少早到5分钟对应的图形(图中阴影部分)的面积为12×15×15=2252,故所求概率为P =2252400=932.[答案]932[感悟提高]数形结合思想的实质就是把抽象的数学语言、数量关系和直观的图形结合起来.包含“以形助数”和“以数辅形”两个方面.在本节中把几何概型问题利用坐标系转化成图形问题(或符合条件的点集问题)去解决.本题的难点是把两个时间分别用x 、y 两个坐标轴表示,构成平面内的点(x ,y ),从而把时间这一个一维长度问题转化为平面图形的二维面积问题,转化成面积型几何概型问题,这种方法是解决这类问题的常用手法,不失为一种好方法.1.如图,在边长为25 cm 的正方形中挖去边长为23 cm 的两个等腰直角三角形,现有均匀的粒子散落在正方形中,则粒子落在中间带形区域的概率为( )A.529625B.433625C.192625D.96625解析:选D.因为均匀的粒子落在正方形内任何一点是等可能的,所以符合几何概型的条件.设A =“粒子落在中间带形区域”,则依题意得正方形面积为25×25=625,两个等腰直角三角形的面积为2×12×23×23=529,带形区域的面积为625-529=96,故所求概率为P (A )=96625.2.如图所示,四边形ABCD 为矩形, AB =3,BC =1,以A 为圆心,1为半径作四分之一个圆弧DE ,在圆弧DE 上任取一点P ,则直线AP 与线段BC 有公共点的概率是( )A.13B.23C.25D.35解析:选A.连结AC ,交弧DE 于P (图略).由题意知,∠BAC =π6.弧PE 的长度为π6,弧DE 的长度为π2,则直线AP 与线段BC 有公共点的概率是P =π6÷π2=13.3.已知方程x 2+3x +p4+1=0,若p 在[0,10]中随机取值,则方程有实数根的概率为( )A.12B.13C.25D.23解析:选A.因为总的基本事件是[0,10]内的全部实数,所以基本事件总数为无限个,符合几何概型的条件,事件对应的测度为区间的长度,总的基本事件对应区间[0,10],长度为10,而事件“方程有实数根”应满足Δ≥0,即9-4×1×⎝⎛⎭⎫p 4+1≥0,得p ≤5,所以对应区间[0,5],长度为5,所以所求概率为510=12.4.一个球型容器的半径为3 cm ,里面装有纯净水,因为实验人员不小心混入了一个H7N9病毒,从中任取1 mL 水,含有H7N9病毒的概率是________.解析:水的体积为43πR 3=43×π×33=36π(cm 3)=36π(mL).故含有病毒的概率为P =136π.答案:136π[A.基础达标]1.下列关于几何概型的说法中,错误的是( )A .几何概型是古典概型的一种,基本事件都具有等可能性B .几何概型中事件发生的概率与它的位置或形状无关C .几何概型在一次试验中可能出现的结果有无限多个D .几何概型中每个结果的发生都具有等可能性解析:选A.几何概型和古典概型是两种不同的概率模型,故选A.2.在圆心角为90°的扇形中,以圆心O 为起点作射线OC ,则使得∠AOC 和∠BOC 都不小于30°的概率为( )A.13B.23C.14D.34解析:选A.记M =“射线OC 使得∠AOC 和∠BOC 都不小于30°”.如图所示,作射线OD ,OE 使∠AOD =30°,∠AOE =60°.当OC 在∠DOE 内时,使得∠AOC 和∠BOC 都不小于30°,此时的测度为度数30,所有基本事件的测度为直角的度数90.所以P (M )=3090=13.3.在2015年春节期间,3路公交车由原来的每15分钟一班改为现在的每10分钟一班,在车站停1分钟,则乘客到达站台立即乘上车的概率是( )A.110B.19C.111D.910解析:选A.记“乘客到达站台立即乘上车”为事件A ,则A 所占时间区域长度为1分钟,而整个区域的时间长度为10分钟,故由几何概型的概率公式,得P (A )=110.4.已知在一个边长为2的正方形中有一个圆,随机向正方形内丢一粒豆子,若落入圆内的概率为0.3,则该圆的面积为( )A .0.6B .0.8C .1.2D .1.6解析:选C.记“豆子落入圆内”为事件A ,豆子落入正方形内任一点的机会都是等可能的,这是一个几何概型,P (A )=S 圆S 正,所以S 圆=P (A )×S 正=0.3×22=1.2.因此,圆的面积为1.2.5.(2013·高考湖南卷)已知事件“在矩形ABCD 的边CD 上随机取一点P ,使△APB 的最大边是AB ”发生的概率为12,则ADAB=( )A.12 B.14 C.32D.74根据解析:选D.由于满足条件的点P 发生的概率为12,且点P 在边CD 上运动,向点图形的对称性当点P 在靠近点D 的CD 边的14分点时,EB =AB (当点P 超过点ERt △D 运动时,PB >AB ).设AB =x ,过点E 作EF ⊥AB 交AB 于点F ,则BF =34x .在FBE 中,EF 2=BE 2-FB 2=AB 2-FB 2=716x 2,即EF =74x ,∴AD AB =74.6.(2015·西安质检)在正方体ABCD -A 1B 1C 1D 1内随机取点,则该点落在三棱锥A 1­ABC 内的概率是______.解析:设正方体的棱长为a ,则所求概率P =VA 1-ABC VABCD ­A 1B 1C 1D 1=13×12a 2·a a 3=16.答案:167.如图,在平面直角坐标系内,射线OT 落在60°角的终边上,任作一条射线OA ,则射线OA 落在∠xOT 内的概率为________.解析:记“射线OA 落在∠xOT 内”为事件A .构成事件A 的区域最大角度是60°,所有基本事件对应的区域最大角度是360°,所以由几何概型的概率公式得P (A )=60°360°=16.答案:168.(2014·高考福建卷)如图,在边长为1的正方形中随机撒1 000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________.解析:由题意知,这是个几何概型问题,S 阴S 正=1801 000=0.18,∵S 正=1,∴S 阴=0.18. 答案:0.189.如图,已知AB 是半圆O 的直径,AB =8,M ,N ,P 是将半圆圆周四等分的三个分点.(1)从A ,B ,M ,N ,P 这5个点中任取3个点,求这3个点组成直角三角形的概率;(2)在半圆内任取一点S ,求△SAB 的面积大于82的概率.解:(1)从A ,B ,M ,N ,P 这5个点中任取3个点,一共可以组成10个三角形:△ABM ,△ABN ,△ABP ,△AMN ,△AMP ,△ANP ,△BMN ,△BMP ,△BNP ,△MNP ,其中是直角三角形的只有△ABM ,△ABN ,△ABP 3个,所以组成直角三角形的概率为310.(2)连接MP ,取线段MP 的中点D ,则OD ⊥MP ,易求得OD =22,当S 点在线段MP 上时,S △ABS =12×22×8=82,所以只有当S 点落在阴影部分时,△SAB 的面积才能大于82,而S 阴影=S 扇形MOP -S △OMP =12×π2×42-12×42=4π-8,所以由几何概型的概率公式得△SAB 的面积大于82的概率为4π-88π=π-22π. 10.射箭比赛的箭靶涂有五个彩色得分环.从外向内分为白色、黑色、蓝色、红色、靶心是金色.金色靶心叫“黄心”.奥运会的比赛靶面直径为122 cm ,靶心直径为12.2 cm.运动员在70 m 外射箭.假设射箭都能中靶,且射中靶面内任一点都是等可能的,那么射中“黄心”的概率为多少?解:因为射中靶面内任一点都是等可能的, 所以基本事件总数为无限个.此问题属于几何概型,事件对应的测度为面积, 总的基本事件为整个箭靶的面积, 它的面积为π⎝⎛⎭⎫12222cm 2;记事件A ={射中“黄心”},它的测度为“黄心”的面积,它的面积为π⎝⎛⎭⎫12.222cm 2, P (A )=“黄心”的面积箭靶的面积=π⎝⎛⎭⎫12.222π⎝⎛⎭⎫12222=1100, 所以射中“黄心”的概率为1100. [B.能力提升]1.有四个游戏盘,如果撒一粒黄豆落在阴影部分,即可中奖,小明希望中奖,则他应当选择的游戏盘为( )解析:选A.根据几何概型的面积比,A 游戏盘的中奖概率为38,B 游戏盘的中奖概率为13,C 游戏盘的中奖概率为(2r )2-πr 2(2r )2=4-π4,D 游戏盘的中奖概率为r 2πr 2=1π,故A 游戏盘的中奖概率最大.2.(2015·郑州六校联考)如图,扇形AOB 的半径为1,圆心角为90°,点C ,D ,E 将弧AB 等分成四份.连接OC ,OD ,OE ,从图中所有扇形中随机取出一个,面积恰为π8的概率是( )A.310B.15C.25D.12解析:选A.题图中共有10个不同的扇形,分别为扇形AOB 、AOC 、AOD 、AOE 、EOB 、EOC 、EOD 、DOC 、DOB 、COB ,其中面积恰为π8的扇形(即相应圆心角恰为π4的扇形)共有3个(即扇形AOD 、EOC 、BOD ),因此所求的概率等于310.3.甲、乙两人约定在6时到7时之间在某处会面,并约定先到者应等候另一个人一刻钟,过时即可离去,则两人能会面的概率为________.解析:以x 轴和y 轴分别表示甲、乙两人到达约定地点的时间,则两人能够会面的条件是|x -y |≤15.如图,平面直角坐标系下,(x ,y )的所有可能结果是边长为60的正方形,而事件A “两人能够会面”的可能结果由图中的阴影部分表示,由几何概型的概率公式得P (A )=S A S =602-452602=716. 答案:7164.如图,正方形OABC 的边长为2.(1)在其四边或内部取点P (x ,y ),且x ,y ∈Z ,则事件“|OP |>1”的概率为________.(2)在其内部取点P (x ,y ),且x ,y ∈R ,则事件“△POA ,△PAB ,△PBC ,△PCO 的面积均大于23”的概率是________.解析:(1)在正方形的四边和内部取点P (x ,y ),且x ,y ∈Z ,则所有可能的事件是(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),共有n =9个,其中满足|OP |>1的事件是(0,2),(1,1),(1,2),(2,0),(2,1),(2,2),共有m =6个,所以满足|OP |>1的概率为P=69=23. (2)在正方形内部取点,其总的事件包含的区域面积为4,由于各边长为2,所以要使△POA ,△PAB ,△PBC ,△PCO 的面积均大于23,应该三角形的高大于23,所以这个区域为每个边长从两端各去掉23后剩余的正方形,其面积为23×23=49,所以满足条件的概率为494=19. 答案:(1)23 (2)195.2013年度世界新闻人物——斯诺登,他揭露了美国的监听丑闻.国家安全机关监听录音机记录了两个间谍的谈话,发现30 min 长的磁带上在开始录音的1 min 内从第30 s 后的某一时刻开始,有10 s 长的一段内容包含间谍犯罪的信息.后来发现,这段谈话的一部分被某工作人员擦掉了,该工作人员声称他完全是无意中按错了键,使从此处起往后的所有内容都被擦掉了,那么由于按错了键使含有犯罪内容的谈话被部分或全部擦掉的概率有多大?解:记A ={按错键使含有犯罪内容的谈话被部分或全部擦掉},A 发生就是在0到23 min 时间段内按错键.P (A )=2330=145.6.(选做题)一个多面体的直观图和三视图如图所示,其中M 是AB 的中点.一只苍蝇在几何体ADF -BCE 内自由飞行,求它飞入几何体F -AMCD 内的概率. 解:由三视图可得直观图为直三棱柱且底面ADF 中AD ⊥DF ,DF =AD =DC . 因为V F ­AMCD =13S 四边形AMCD ×DF =13×12(12a +a )·a ·a =14a 3,V ADF ­BCE =12a 2·a =12a 3,所以苍蝇飞入几何体F -AMCD 内的概率为14a 312a 3=12.。

人教版高中必修3(B版)3.3.1几何概型教学设计

人教版高中必修3(B版)3.3.1几何概型教学设计

人教版高中必修3(B版)3.3.1几何概型教学设计
一、教学目的
1.理解几何概型的概念和性质。

2.掌握分段讨论和间断函数的求解方法。

3.能够解决常见的几何问题,如角平分线、垂心、垂线等问题。

4.培养学生的逻辑思维和推理能力。

二、教学重点
1.了解几何概型的性质。

2.学会运用几何概型的思想解决几何问题。

三、教学难点
1.掌握分段讨论和间断函数的求解方法。

2.学会几何问题中常用的一些策略和方法。

四、教学资源
1.人教版高中数学(B版)教材。

2.电脑和投影仪。

3.黑板、彩色粉笔。

五、教学过程设计
1. 导入环节
引导学生回忆上一节学习的内容,如线段平分线、角平分线等概念,以及它们的性质和应用。

2. 理论讲解
1.讲解几何概型的概念和性质。

2.介绍分段讨论和间断函数的求解方法。

3.讲解如何运用几何概型的思想解决几何问题。

3. 练习环节
1.给学生提供一些几何问题,引导他们通过分析和运用几何概型的思想
来解决问题。

2.带着学生复习之前学过的几何知识,解决一些常见问题。

4. 总结反思
让学生回顾本节课学到的内容,提出问题、分享经验,帮助大家理解几何概型和解题思路。

同时告诉学生,几何问题虽然看似简单,但需要不断地练习和思考。

六、教学评价
1.在练习环节中观察学生的解题方法和策略,以及对几何概型的掌握程
度。

2.根据课堂互动、讨论和回答问题的表现,对学生进行评价。

3.希望学生课后主动做一些练习,加深对几何概型的理解和应用。

高中数学人教B版必修3学案3.3.1 几何概型 Word版含解析

高中数学人教B版必修3学案3.3.1 几何概型 Word版含解析

随机数的含义与应用几何概型.理解几何概型的定义及特点.(重点).掌握几何概型的计算方法和求解步骤,准确地把实际问题转化为几何概型问题.(难点).与长度、角度有关的几何概型问题.(易混点)[基础·初探]教材整理几何概型阅读教材,完成下列问题..定义如果把事件理解为区域Ω的某一子区域(如图--所示),的概率只与子区域的几何度量(长度、面积或体积)成正比,而与的位置和形状无关,满足以上条件的试验称为几何概型.图--.几何概型的概率公式在几何概型中,事件的概率定义为:()=,其中μΩ表示区域Ω的几何度量,μ表示子区域的几何度量..判断(正确的打“√”,错误的打“×”)()几何概型的概率与构成事件的区域形状无关.( )()在射击中,运动员击中靶心的概率在()内.( )()几何概型的基本事件有无数多个.( )【答案】()√()×()√.在区间[-]上随机取一个数,则≤的概率为.【解析】∵区间[-]的长度为,由≤得∈[-],而区间[-]的长度为,取每个值为随机的,∴在[-]上取一个数,≤的概率=.【答案】[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问:解惑:疑问:解惑:疑问:解惑:[小组合作型]某汽车站每隔有一辆汽车到达,乘客到达车站的时刻是任意的,求一位乘客到达车站后等车时间超过的概率.【精彩点拨】乘客在上一辆车发车后的之内到达车站,等车时间会超过.【尝试解答】设上一辆车于时刻到达,而下一辆车于时刻到达,则线段的长度为,设是线段上的点,且=,=,如图所示.记“等车时间超过”为事件,则当乘客到达车站的时刻落在线段上(不含端。

人教B版必修3高中数学3.3.1《几何概型》word学案

人教B版必修3高中数学3.3.1《几何概型》word学案

3.3.1几何概型
一、【使用说明】
1、课前完成导学案,牢记基础知识,掌握基本题型;
2、认真限时完成,规范书写;课上小组合作探究,答疑解惑。

二、【重点难点】
重点:几何概型的概念及应用;
难点:几何概型的应用.
三、【学习目标】
1、了解并掌握几何概型的概念及其应用,与古典概型相区别;
2、了解几何概型的两个特点:无限性、等可能性;
四、自主学习
1、几何概型的定义及其算法;
2、几何概型的两大特点:
例1、在500ml水中有一个草履虫,现从中随机抽取2ml水样放到显微镜下观察,求发现草履虫的概率.
例2、取一根长为4米的绳子,拉直后在任意位置剪断,那么剪得两段的长度都不少于1米的概率是多少?
五、合作探究
1、设为圆周上一定点,在圆周上等可能地任取一点与连结,求弦长超过半径的概率?
2、一海豚在水池中自由游弋,水池为长30m,宽20m的长方形,求此刻海豚嘴尖离岸边不超过2m的概率.
3、平面上画了一些彼此相距的平行线,把一枚半径为的硬币任意掷在这平面上,求硬币不与任一条平行线相碰的概率.
4、在面积为的的边上任取一点,求的面积小于的概率
六、总结升华
1、知识与方法:
2、数学思想及方法:
七、当堂检测(见大屏幕)。

高中数学新人教版B版精品教案《人教版B高中数学必修3 3.3.1 几何概型》

高中数学新人教版B版精品教案《人教版B高中数学必修3 3.3.1 几何概型》

几何概型一李立峰(广东省汕头市澄海中学)一、教材与考试大纲要求分析《几何概型》人教版必修3第三章第3节的内容,考试大纲要求:了解几何概型的意义。

从大纲要求及近年全国卷考题可以看到,几何概型的意义及计算是概率中的重要知识,在考题中也经常出现。

二、教学目标1理解几何概型的概念及特点。

通过实例分析,从“特殊 一般”的归纳推理,从长度、面积多角度展示满足几何概型的问题的特点,由实例分析让学生理几何概型的概念和特点;注意古典概型与几何概型的联系与区别,在对比的过程中掌握几何概型的概念及特点。

2理解并掌握几何概型的计算公式。

通过设计问题情境,将教材中实例进行大胆改编,通过分析,从长度、面积多角度分析几何概型问题的计算规律,从而引导学生自行归纳出几何概型的计算公式。

3综合运用几何概型的知识与其他知识网络交汇解决问题。

通过例题和习题的设计,把几何概型与时间长度、图形对称性、几何体体积、生活中的实例结合起来,提高学生分析和解决问题的能力,培养学生对数学问题进行抽象概括和建模的能力。

三、学情分析学生对本内容的学习,主要存在以下三个方面的问题及困惑:1 几何概型的概念的未能正确理解。

解决方法:通过生活实例分析,通过与古典概型的对比,加深学生对几何概型的概念的理解,掌握几何概型的特点。

2未能正确几何概型解决一些实际问题。

解决方法:通过例题、习题分析,使学生在理解好几何概型的概念和计算公式的基础上,培养学生的数学建模素养,进而使学生能运用几何概型解决一些实际问题。

3对古典概型与几何概型区分不清。

解决方法:通过背景相近例题的不同设问的分析、对比,使学生正确理解好古典概型与几何概型,注意两者的联系,正确辨析两者的区别。

四、教学策略分析型与几何概型的联系和区别、几何概型与其他知识网络的交汇。

在教学中通过情境的引入、实例的分析、不同概型的对比,采用问题引导的方式,让学生围绕本节的主线来思考,通过自主探究来深化学生对几何概型的理解和掌握,自主区分古典概型与几何概型的区别,培养学生的数学建模素养。

人教版高中必修3(B版)3.3.1几何概型课程设计

人教版高中必修3(B版)3.3.1几何概型课程设计

人教版高中必修3(B版)3.3.1几何概型课程设计一、课程背景几何概型是高中数学必修课程的重要内容之一,也是初中数学学习中重要的过渡环节。

在高中课程中,几何概型的学习不仅有利于学生形成立体思维,还有助于他们理解和掌握解决实际问题的几何方法。

本课程主要是以建立学生对几何概型基本概念和方法的认识为主要目的,同时也要在实际问题中应用所学几何知识并使学生形成科学的思维方法和逻辑思维能力。

二、教材分析本课程所使用的教材为人教版高中必修3(B版)。

该教材对几何概型的教学内容进行了比较详细的描述,包括基本概念、基本定理、平面几何、空间几何等内容。

在本课程的教学过程中,将会结合教材中的内容,进行教学和辅导。

三、课程目标本课程的主要目标是:1.让学生掌握几何概型的基本概念和术语。

2.让学生掌握几何概型的基本定理和证明方法。

3.培养学生观察、分析、解决几何问题的能力。

4.培养学生科学的思维方法和逻辑思维能力。

四、课程内容和教学方法本课程的主要内容包括:几何概型的基本概念和术语、基本定理和证明方法、平面几何与空间几何等内容。

在教学过程中,将会采用以下教学方法:1.讲解法。

通过讲解教材内容,引导学生理解概念和定理,并且让学生能够掌握证明方法。

2.实例法。

通过实际问题引出几何概型的相关知识,让学生在解决实际问题的过程中掌握几何知识。

3.讨论法。

通过讨论教材上的例题或是学生提出的问题,让学生积极参与,提高他们的思维能力和分析能力。

4.实验法。

通过实验让学生在实践中感性认识几何知识,提高他们的实际操作能力。

五、课程评估本课程的评估方式主要包括课堂测试、作业评定、实验报告、考试等。

其中,考试是本课程的重要评估方式,在考试中将会设置选择题、填空题、解答题等不同考试题型,从而全面考察学生掌握几何概型的情况。

除了考试,本课程也将充分重视学生的学习兴趣、思维习惯、合作精神等方面的培养,从而全面评估学生的学习成绩。

六、教学资源本课程的教学资源主要包括教师教学PPT、教材、讲义、练习册、作业、实验器材等。

高中数学新人教版B版精品教案《人教版B高中数学必修3 3.3.1 几何概型》4

高中数学新人教版B版精品教案《人教版B高中数学必修3 3.3.1 几何概型》4

几何概型习题课【三维目标】一、知识与技能1理解几何概型的概念,掌握几何概型的计算公式;2正确将几何概型问题转化为相应的几何图形,用图形的几何度量进行解决问题。

二、过程与方法1通过对几何概型四个测度的探究,培养学生的观察力及归纳推理能力;2通过对长度型与角度型,面积型和体积型的区分,培养学生思维的深刻性和灵活性。

三、情感态度与价值观通过概念的归纳概括,培养学生的观察、分析的能力,积极思维,追求新知的创新意【重点难点】1、重点:理解几何概型的概念,掌握其计算公式;区分几何概型的四种测度,能够准确解决几何概型问题是教学重点。

2、难点:区分几何概型的四种测度,特别是是长度和角度的区别是教学难点。

【教学过程】引例:如图,△ABC,AB=1,AC=√3,BC=2(1)在BC边上任取一点D,求AD>1的概率(2)过A的∠BAC内任取一条射线AD,交BC于D,求AD>1的概率贝特朗悖论:在一个给定的圆内所有弦中任选一条弦,求该弦长度长于圆内接正三角形边长的概率。

例1:分别在区间[0,5]和[0,3]内任取一个实数,依次记为m 和n,则m>n 的概率为_________基本事件空间{m,n|0n}则概率为例2:某校早8:00上课,设A,B 两人在早上7:30~7:50随机到校,则A 比B 至少早5分钟到校的概率为______ 基本事件空间{m,n|01691-m -n, m1-m -n>nn1-m -n>m所以A={m,n|0<m<,0<n<,<mn<1}则概率为41四、【作业布置】五、【课堂小结】1几何概型适用于试验结果是无限多且事件是等可能发生的概率模型.2.几何概型主要用于解决与长度、面积、体积有关的题目.3.注意理解几何概型与古典概型的区别.4.理解如何将实际问题转化为几何概型的问题,利用几何概型公式求解,概率公式为P A=错误!六、【教学后记】。

数学人教B版必修3导学案:§3.3 几何概型 Word版含解析

数学人教B版必修3导学案:§3.3 几何概型 Word版含解析

教学目标:1.通过师生共同探究,体会数学知识的形成,正确理解几何概型的概念;掌握几何概型的概率公式:P (A )=)()(面积或体积的区域长度试验的全部结果所构成面积或体积的区域长度构成事件A ,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力.2.本节课学习时养成勤学严谨的学习习惯,会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型,会进行简单的几何概率计算,培养学生从有限向无限探究的意识.教学重点:理解几何概型的定义、特点,会用公式计算几何概率.教学难点:等可能性的判断与几何概型和古典概型的区别.一、导入新课:1、复习古典概型的两个基本特点:(1)所有的基本事件只有有限个;(2)每个基本事件发生都是等可能的.那么对于有无限多个试验结果的情况相应的概率应如何求呢?2、在概率论发展的早期,人们就已经注意到只考虑那种仅有有限个等可能结果的随机试验是不够的,还必须考虑有无限多个试验结果的情况.例如一个人到单位的时间可能是8:00至9:00之间的任何一个时刻;往一个方格中投一个石子,石子可能落在方格中的任何一点……这些试验可能出现的结果都是无限多个.这就是我们要学习的几何概型.二、新课讲授:提出问题(1)随意抛掷一枚均匀硬币两次,求两次出现相同面的概率?(2)试验1.取一根长度为3 m 的绳子,拉直后在任意位置剪断.问剪得两段的长都不小于1 m 的概率有多大?试验 2.射箭比赛的箭靶涂有五个彩色得分环.从外向内为白色,黑色,蓝色,红色,靶心是金色.金色靶心叫“黄心”.奥运会的比赛靶面直径为122 cm,靶心直径为12.2 cm.运动员在70 m 外射箭.假设射箭都能射中靶面内任何一点都是等可能的.问射中黄心的概率为多少?(3)问题(1)(2)中的基本事件有什么特点?两事件的本质区别是什么?(4)什么是几何概型?它有什么特点?(5)如何计算几何概型的概率?有什么样的公式?(6)古典概型和几何概型有什么区别和联系?撰稿教师:赵志岩结果:(1)硬币落地后会出现四种结果:分别记作(正,正)、(正,反)、(反,正)、(反,反).每种结果出现的概率相等,P (正,正)=P (正,反)=P (反,正)=P (反,反)=1/4.两次出现相同面的概率为214141=+. (2)经分析,第一个试验,从每一个位置剪断都是一个基本事件,剪断位置可以是长度为 3 m的绳子上的任意一点.第二个试验中,射中靶面上每一点都是一个基本事件,这一点可以是靶面直径为122 cm 的大圆内的任意一点.在这两个问题中,基本事件有无限多个,虽然类似于古典概型的“等可能性”,但是显然不能用古典概型的方法求解.考虑第一个问题,如右图,记“剪得两段的长都不小于1 m”为事件A.把绳子三等分,于是当剪断位置处在中间一段上时,事件A 发生.由于中间一段的长度等于绳长的31, 于是事件A 发生的概率P(A)=31. 第二个问题,如右图,记“射中黄心”为事件B,由于中靶心随机地落在面积为41×π×1222 cm 2的大圆内,而当中靶点落在面积为41×π×12.22 cm 2的黄心内时,事件B 发生,于是事件B 发生的概率P(B)=22122412.1241⨯⨯⨯⨯ππ=0.01.(3)硬币落地后会出现四种结果(正,正)、(正,反)、(反,正)、(反,反)是等可能的,绳子从每一个位置剪断都是一个基本事件,剪断位置可以是长度为3 m 的绳子上的任意一点,也是等可能的,射中靶面内任何一点都是等可能的,但是硬币落地后只出现四种结果,是有限的;而剪断绳子的点和射中靶面的点是无限的;即一个基本事件是有限的,而另一个基本事件是无限的.(4)几何概型.对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中的每一个点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型.如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.几何概型的基本特点:a.试验中所有可能出现的结果(基本事件)有无限多个;b.每个基本事件出现的可能性相等.(5)几何概型的概率公式:P (A )=)()(面积或体积的区域长度试验的全部结果所构成面积或体积的区域长度构成事件A . (6)古典概型和几何概型的联系是每个基本事件的发生都是等可能的;区别是古典概型的基本事件是有限的,而几何概型的基本事件是无限的,另外两种概型的概率计算公式的含义也不同.三、知能训练:1.与长度有关的几何概型例1 有一段长为10米的木棍,现要将其截成两段,要求每一段都不小于3米,则符合要求的截法的概率是多大?2.与面积有关的几何概型例2 郭靖、潇湘子与金轮法王等武林高手进行一种比赛,比赛规则如下:在很远的地方有一顶帐篷,可以看到里面有一张小方几,要将一枚铜板扔到这张方几上.已知铜板的直径是方几边长的43,谁能将铜板整个地落到方几上就可以进行下一轮比赛.郭靖一扔,铜板落到小方几上,且没有掉下,问他能进入下一轮比赛的概率有多大?3.与体积有关的几何概型例4 在5升水中有一个病毒,现从中随机地取出1升水,含有病毒的概率是多大?4.与角度有关的几何概型例6 在圆心角为90°的扇形中,以圆心为起点作射线OC,求使得∠AOC 和∠BOC 都不小于30°的概率.注意:在高中数学阶段,我们对于与面积有关的几何概型和与体积有关的几何概型要求重点掌握.这里只是列出了几道与几何概型有关的题目,可以说,在高中数学学习阶段,这四种几何概率模型基本上包括了我们所要学习的几何概型,希望能对大家有一点帮助.3.3.2 随机数的含义与应用------阅读教材110---114.。

数学人教B版必修3教案3.3 几何概型含答案

数学人教B版必修3教案3.3 几何概型含答案
答:钻到油层面的概率是0.004.
例4:在1升高产小麦种子中混入了一种带麦诱病的种子,从中随机取出10毫升,则取出的种子中含有麦诱病的种子的概率是多少?
分析:病种子在这1升中的分布可以看作是随机的,取得的10毫克种子可视作构成事件的区域,1升种子可视作试验的所有结果构成的区域,可用“体积比”公式计算其概率.
讲练
教学过程
一、复习引入
创设情境:在概率论发展的早期,人们就已经注意到只考虑那种仅有有限个等可能结果的随机试验是不够的,还必须考虑有无限多个试验结果的情况。例如一个人到单位的时间可能是8:00至9:00之间的任何一个时刻;往一个方格中投一个石子,石子可能落在方格中的任何一点……这些试验可能出现的结果都是无限多个。
解:(1)抛掷两颗骰子,出现的可能结果有6×6=36种,且它们都是等可能的,因此属于古典概型;
(2)游戏中指针指向B区域时有无限多个结果,而且不难发现“指针落在阴影部分”,概率可以用阴影部分的面积与总面积的比来衡量,即与区域长度有关,因此属于几何概型.
例2:某人欲从某车站乘车出差,已知该站发往各站的客车均每小时一班,求此人等车时间不多于10分钟的概率.
二、新课讲授
(一)知识点讲解
1.几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;
2.几何概型的概率公式:
P(A)= ;
3.几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.
(二)例题讲解
解:设A={等待的时间不多于10分钟},我们所关心的事件A恰好是到站等车的时刻位于[50,60]这一时间段内,因此由几何概型的概率公式,得P(A)= = ,即此人等车时间不多于10分钟的概率为 .

人教B版高中数学必修三教案3.3.1几何概型

人教B版高中数学必修三教案3.3.1几何概型

《几何概型》教课方案一、教课目的1.知识与技术目标:(1)经过本部分内容的学习,理解几何概型的意义、特色,掌握几何概型的概率公式;(2)会依据古典概型与几何概型的差别与联系来鉴别某种概型是古典概型仍是几何概型;(3)经过解决详细问题的实例感觉理解几何概型的观点,掌握基本领件等可能性的判断方法,逐渐学会依照详细问题的本质背景剖析问题、解决问题的能力。

感知用图形解决概率问题的方法,掌握数学思想与逻辑推理的数学方法。

2.过程与方法目标:(1)情境引入,经过师生共同对“问题链”的研究,运用察看、类比、思虑、研究、归纳、归纳的方法领会数学知识的形成的过程,学会应用数学知识来解决问题,领会数学知识与现实世界的联系,培育逻辑推理能力。

(2)经过小组的研究议论,让学生学会分享自己的看法,培育学生的团队合作精神。

3.感情态度与价值观目标:本节课的主要特色是切近生活,领会概率在生活中的重要作用,同时随机试验多,学习时养成好学谨慎的思想习惯。

经过学习,让学生领会生活和学习中与几何概型有关的实例,加强学生解决本质问题的能力;同时,适合地增添学生合作学习沟通的时机,培育学生的合作能力.二、要点、难点1.教课要点:领会几何概型的意义,几何概型的观点和公式的应用,注意理解几何概型与古典概型的差别与联系2.教课难点:在几何概型中把试验的基本领件和随机事件与某一特定的几何地区及其子地区对应,而且从中理解怎样利用几何概型的知识把本质问题转变为各样几何概率问题,从而娴熟应用几何概型的概率公式计算有关事件发生的概率。

三、教课方案情境引入设计企图问题1 : 若A={1,2,3,4,5,6,7,8,9},则从 A 中任拿出一个数,这个数不大于3问题 1、2 设计意图:复习稳固古的概率是多少?典概型的特色及其概率公式,为变式 1:若 A=(0,9], 则从 A 中任意拿出一个数 , 则这个数不大于 3 的概率是几何概型的引入做好铺垫。

多少?变式 1、2 设计意问题 2:2008 年奥运会时期,某厂商为销售其生产的福娃产品,特举办了一图:次有奖活动 : 顾客任意掷两颗骰子,假如点数之和大于10,可获取一套福娃1.以本质问题引玩具。

高中数学新人教版B版精品教案《人教版B高中数学必修3 3.3.1 几何概型》1

高中数学新人教版B版精品教案《人教版B高中数学必修3 3.3.1 几何概型》1

1基本情况授课对象本节课教授的是绥中一高中学生,基础较弱,普遍比较惧怕数学,不喜欢呆板的运算和证明。

但思维比较灵活,经激发后也有一定的思辨能力。

教材分析本节课是在讲授了几何概型的基本概念以后,进一步对几何概型中D测度和d测度的确认方法进行讨论。

几何概型是新课改以后新加入的内容,是与以往教材安排上的最大的不同之处。

这充分体现了新课改强调的数学与实际生活的紧密关系,是学生思维从有限到无限的自然延伸。

同时它在概率论中有非常重要的作用本节课有利于学生动手试验、合作探究能力的提升,有助于提高学生发现问题、解决问题的能力,有助于增强学生数学知识在实际问题中的应用。

但是执教过几何概型这部分内容的教师,却有这样的感受:“几何概型”这一概念的教学比较抽象,学生理解起来困难,遇到具体问题时,时常出错,主要是对题目的理解上出现问题。

教学目标:(1)指导学生如何明辨题意,使学生能够较为清楚的辨认几何概型类型问题中的测度。

(2)培养学生数形结合的能力,能够较为熟练的掌握几何概型中的图像与具体数据之间的联系。

(3)培养学生的阅读能力,通过仔细辨析题目中间每句话,以至于每个字的含义,提升学生理解分析题目的能力。

(4)通过本节课数形结合,比较辨析的方法,希望能使学生认识到数学学习并不是完全呆板的,体会到学习数学的乐趣,提高学习数学的兴趣。

教学重点:通过对具体问题的讨论分析,增强学生理解几何概型问题的能力。

教学难点:在几何概型中把实验的基本事件组和随机事件与某一特定的几何区域及其子区域对应,并且从中理解如何利用几何概型的知识把实际问题转化为各种几何概率问题,并且通过具体事例比较学会对测度的确定。

2教学过程21 复习师:前面我们学习了古典概型的概念和特征,以及古典概型计算的公式,我们再来回忆一下。

几何概型中,事件A的计算公式为?(学生一起回答)师:好的,那么今天这节课我们就是接着上一课的内容,来一起看这么一个问题:在0到10这11个整数中任意取一个整数,则该整数小于5的概率是多少?如果问题改为:在0到10实数中任意取一个实数,则该数小于5的概率是多少?请对比题目前后差别活动意图:承前启后,开门见山。

高中数学新人教版B版精品教案《人教版B高中数学必修3 3.3.1 几何概型》5

高中数学新人教版B版精品教案《人教版B高中数学必修3 3.3.1 几何概型》5

《几何概型》教学设计沈阳市56中学高永利【教学目标】1.知识与技能:了解几何概型的意义,会运用几何概型的概率计算公式,会求简单的几何概型事件的概率。

2.过程与方法:通过案例分析,初步体会几何概型的含义,学习运用几何概型的过程,体验几何概型与古典概型的联系与区别。

3.情感、态度与价值观:通过对几何概型的研究,感知生活中的数学,体会数学文化,培养学生的数学素养。

【学习重点】几何概型的特点,几何概型的识别,几何概型的概率公式。

【学习难点】将现实问题转化为几何概型问题,从实际背景中找几何度量。

【学习过程】自主学习,合作探究,精讲点拨,巩固检测。

无限个。

积的比值来计算只是猜想,我们自然而然地需要一个理论依据去支持这个猜测,从而引入几何概型的概念二、通过类比,形成概念三.自主探究,深化重点游戏1:试验结果等可能、有限个。

游戏2:试验结果等可能、无限个。

游戏2与古典概型的区别在于它的试验结果不是有限个,但是它的试验结果在一个区域内均匀地分布,因此它满足无限性和等可能性的特征。

例1、请学生判断下列几个试验是否为几何概型,并分别计算。

试验1、一个袋中装有10个除颜色外全部相同的小球,其中6个白球,4个黑球,从袋中任取一个,求取出黑球的概率。

试验2、在500m水中有一个草履虫,现从中随机抽取2m水样放到显微镜下观察,求发现草履虫的概率。

试验3、取一根长为3米的绳子,拉直后在任意位置剪断,那么剪得两段的长度都不少于11教师引导学生仿照古典概型的概率公式,用事件包含的基本事件个数与试验的基本事件总数的比例来解决这个问题,那样就会出现“无数比无数”的情况,没有办法求解。

因此,我们需要一个量,来度量事件和,使这个比例式可以操作这个量就称为“几何度量”。

例1,设计为抢答的形式,请学生发表自己见解,教师及时点评。

通过试验3引导学生形成简单的构建数学模型的能力:绳长转化为线段长,剪断的位置化为点,此题转化为长度之比。

引导学生得到了几何概型的概率公式()Ap AμμΩ=1、通过对比巩固学生对几何概型概念和特点的理解。

新人教B版高中数学(必修3)3.3.1《几何概型》

新人教B版高中数学(必修3)3.3.1《几何概型》
在几何概型中,事件A的概率的求解步骤?
记事件 指出概率类型 构造几何图形
求概率
计算几何度量
例1.有一杯1升的水,其中含有1个细菌, 用一个小杯从这杯水中取出0.1升,求小 杯水中含有这个细菌的概率. 解: 记A=“小杯水 中含有这个细菌” P(A)=0.1/1=0.1
例2:一金鱼在水池中自由游弋,水 池为长30米,宽20米的长方形,求 金鱼离岸边不超过2米的概率?
E C O D
关 键:
对于复杂的实际问题,解题的关键
是要建立模型,找出随机事件与所有 基本事件相对应的几何区域,把问题 转化为几何概型问题,利用几何概型 的概率公式来求解.
课堂小结
(1)几何概型的特点 (2)几何概型的定义 (3)几何概型的概率计算公式
1、在线段[0,3]上任取一点,则此点坐标小于1 的概率是:( ) A:1/3 B:1/2 C:2/3 D:2/9 2、在直角坐标系内,射线OT落在60°的终边上, 任作一条射线OA,则射线OA落在∠XOT内的概 率是( ) A:1/3 B:1/4 C:1/5 D:1/6 3、如果在一个1万平方公里的海域里有表面积 达40平方公里的大陆架贮藏着石油,假如在这海 领域里随意选定一点钻探,问钻到石油的概率是 ( ) A:1/40 B:1/25 C:1/250 D:1/500
等可能发生的的概率类型;
2.几何概型主要用于解决与长度.角度.面积.
1.几何概型适用于试验结果是无穷多且事件是
体积有关的题目;
3.求解公式为
μA 子 区 域 A的几 何 度 量 P(A) = = μΩ 区 域的 几 何 度 量
练习:求下列事件的概率
长度
1.取一根长为3m的绳子,拉直后在任意位置剪断, 那么剪得两段的长都不小于1m的概率为( 1 ) 3 2.在40根纤维中,有12根的长度超过30mm,从中 3 任取一根,取到长度超过30mm的纤维的概率( 10) 3.如图在圆心角为90O 的扇形AOB中,以圆心O为 起点作射线OC,则∠AOC和∠BOC都不小于20O 5 的概率为( ) 面积 4、向面积为S的△ABC内任投一点P,则△PBC的 面积小于 S 的概率为( 3 )

人教B版必修三导学案3.3.1 几何概型

人教B版必修三导学案3.3.1 几何概型

3.3.1 几何概型学习目标1.通过实例体会几何概型的含义,会区分古典概型和几何概型.2.掌握几何概型的概率计算公式,会求一些事件的概率.【任务一】知识梳理 1.几何概型的概念事件A 理解为区域Ω的某一子区域A ,如图,A 的概率只与子区域A 的____________(长度、面积或体积)成________,而与A 的________和________无关.满足以上条件的试验称为____________. 2.几何概型的概率计算公式在几何概型中,事件A 的概率定义为:______________________,其中,μΩ表示______________,μA 表示__________________. 【任务二】典型例题题型一 与长度有关的几何概型例1 取一根长度为3米的绳子,拉直后在任意位置剪断,求剪得两段的长都不小于1米的概率.变式1 公共汽车站每隔5 min 有一辆汽车通过,乘客到达汽车站的任一时刻是等可能的,求乘客候车不超过3 min 的概率.题型二 与面积有关的几何概型例2已知正方形ABCD 的边长为2,在正方形ABCD 内随机取一点P ,则点P 满足|P A |≤1的概率是( )A .π8B .π8C .1-π16D .π16变式2.1水池的容积是20m 3,水池里的水龙头A 和B 的水流速度都是1m 3/h ,它们一昼夜(0~24h)内随机开启,则水池不溢水的概率为( )A .56B .2572C .518D .13变式2.2甲、乙两人约定晚上6点到7点之间在某地见面,并约定先到者要等候另一人半小时,过时即可离开.求甲、乙能见面的概率.题型三 与角度有关的几何概型例3某人从东西走向的河的南岸向东北方向游去,游了100 m 后没有到岸边,随后,他随意选定了一个方向继续游,求这个人游100 m 之内能够到达南岸边的概率.变式3 如下图,在直角坐标系内,射线OT 落在60°角的终边上,任作一条射线OA ,求射线OA 落在∠xOT 内的概率.【任务三】课后作业1.在正方形ABCD 内任取一点P ,则使∠APB >90°的概率是 ( )A.π8B.π4C.π16D.π22.在半径为1的半圆内,放置一个边长为12的正方形ABCD ,向半圆内任投一点,落在正方形内的概率为 ( )A.12B.14C.14πD.12π3.在区间(10,20]内的所有实数中随机取一个实数a ,则这个实数a <13的概率是 ( )A.13B.17C.310D.7104.如图所示的大正方形面积为13,四个全等的直角三角形围成一个阴影小正方形,较短的直角边长为2,向大正方形内投掷飞镖,飞镖落在阴影部分的概率为________.5.一个游戏盘上有四种颜色:红,黄,蓝,黑,并且它们所占面积的比为6∶2∶1∶4,则指针停在红色或蓝色的区域的概率为________.6.在区间[-1,2]上随机取一个数x ,则|x |≤1的概率为________. 7.在区间[0,2]上随机地取一个数x ,则事件“-1≤lo ≤1”发生的概率为________.8.(2014·重庆)某校早上开始上课,假设该校学生小张与小王在早上~之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5min 到校的概率为________.(用数字作答)1.A[如图,由题意知点P 落在以AB 为直径的半圆内时∠APB >90°,设正方形边长为2,则μΩ=4,μA =π2,∴P (A )=π24=π8.]2.D[如图,半圆的面积为π2,正方形的面积为14,所求概率为P =S 正方形S 半圆=12π.]3.C 4.113解析 由题意得,区域D 所对应的面积是大正方形的面积S 大=13,事件A ={飞镖落在阴影部分}对应的区域面积是阴影部分(小正方形)的面积,S 阴=(13-22-2)2=1,所以P (A )=113.5.7136.23解析 由|x |≤1,得-1≤x ≤1.由几何概型的概率求法知,所求的概率P =区间[-1,1]的长度区间[-1,2]的长度=23.解析:∵lo 2≤lo≤lo,y=lo x 为减函数,∴≤x+≤2,0≤x ≤.∴P=.7. [答案]932[解析] 设小张到校时间是-任意时刻x ,小王到校时间是-任意时刻y ,则x 、y ∈[0,20]的任意实数,因为x 在该时间段的任何时刻到校是等可能的,故为几何概型事件“小张比小王至少早到5min ”为事件A ,即y -x ≥5,如图所示Ω和事件对应测度为∴所求概率P (A )=12×15×1520×20=932.3.3.1 几何概型学习目标1.通过实例体会几何概型的含义,会区分古典概型和几何概型.2.掌握几何概型的概率计算公式,会求一些事件的概率.【任务一】知识梳理1.几何概型的概念事件A 理解为区域Ω的某一子区域A ,如图,A 的概率只与子区域A 的____________(长度、面积或体积)成________,而与A 的________和________无关.满足以上条件的试验称为____________. 2.几何概型的概率计算公式在几何概型中,事件A 的概率定义为:______________________,其中,μΩ表示______________,μA 表示__________________.1.几何度量 正比 位置 形状 几何概型2.P(A)=μAμΩ区域Ω的几何度量 子区域A 的几何度量【任务二】典型例题题型一 与长度或角度有关的几何概型例1 取一根长度为3米的绳子,拉直后在任意位置剪断,求剪得两段的长都不小于1米的概率.解 从每一个位置剪断都是一个基本事件,剪断位置可以是长度为3m 的绳子上的任意一点,其基本事件有无限多个,显然不能用古典概型计算,可考虑运用几何概型计算.如图,记剪得两段绳子都不小于1m 为事件A .把绳子三等分,于是当剪断位置处在中间一段上时,事件A 发生.由于中间一段的长度等于绳长的13,所以事件A 发生的概率P (A )=13.变式1 公共汽车站每隔5 min 有一辆汽车通过,乘客到达汽车站的任一时刻是等可能的,求乘客候车不超过3 min 的概率.解 设A =“候车时间不超过3 min ”,x 表示乘客来到车站的时刻,那么每一个试验结果可表示为x ,假定乘客到达车站后开来一辆公共汽车的时刻为t ,据题意,乘客必然在(t -5,t ]内来到车站,故Ω={x |t -5<x ≤t },欲乘客候车时间不超过3 min ,必有t -3≤x ≤t ,所以A ={x |t -3≤x ≤t },所以P (A )=A 的度量Ω的度量=35=0.6.答 乘客候车时间不超过3 min 的概率为0.6. 题型二 与面积有关的几何概型例2已知正方形ABCD 的边长为2,在正方形ABCD 内随机取一点P ,则点P 满足|P A |≤1的概率是( )A .π8B .π8C .1-π16D .π16变式2.1水池的容积是20m 3,水池里的水龙头A 和B 的水流速度都是1m 3/h ,它们一昼夜(0~24h)内随机开启,则水池不溢水的概率为( )A .56B .2572C .518D .13变式2.2甲、乙两人约定晚上6点到7点之间在某地见面,并约定先到者要等候另一人半小时,过时即可离开.求甲、乙能见面的概率.[解析] 如图所示:用x 、y 轴分别表示甲、乙两人到达约定地点的时间,则两人能够会面的等价条件是|x -y |≤30.在平面直角坐标系内,(x ,y )的所有可能结果是边长为60的正方形.而事件A “两人能够见面”的可能结果仅是阴影部分所示的区域.由几何概型概率的计算公式,得P (A )=602-302602=34.题型三 与面积有关的几何概型例3某人从东西走向的河的南岸向东北方向游去,游了100 m 后没有到岸边,随后,他随意选定了一个方向继续游,求这个人游100 m 之内能够到达南岸边的概率.解如图所示,某人从B 沿北偏东45°方向游了100 m 到达O 点处.由图可知,∠OBA =45°,OA =OB =100 m ,在点O 处只有向阴影方向游100 m 之内才能到达岸边,故所求的概率为P =90°360°=14.变式3 如下图,在直角坐标系内,射线OT落在60°角的终边上,任作一条射线OA,求射线OA落在∠xOT内的概率.[解析]以O为起点作射线OA是随机的,因而射线OA落在任何位置都是等可能的,落在∠xOT内的概率只与∠xOT的大小有关,符合几何概型的条件.设事件A=“射线OA落在∠xOT内”.事件A的几何度量是60°,区域Ω的几何度量是360°,所以,由几何概率公式得P(A)=μAμΩ=60360=16.。

高中数学新人教版B版精品教案《人教版B高中数学必修3 3.3.1 几何概型》8

高中数学新人教版B版精品教案《人教版B高中数学必修3 3.3.1 几何概型》8

几何概型【课题】几何概型【教材分析】本节课是高中数学人教B版必修三第三章第三节第一课时几何概型,是在学习了随机事件的概率及古典概型之后,引入的另一类等可能模型,在概率论中占有相当重要的地位学好几何概型有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些现象【学情分析】学生通过古典概型的学习初步形成了解决概率问题的思维模式,但还不是很成熟学生在学习本节课时特别容易和古典概型相混淆,究其原因是思维不严谨,对几何概型的概念理解不清另外,在解决几何概型的问题时,几何度量的选择也需要特别重视,在实际授课时,应当引导学生发现规律,找出适当的方法来解决问题【教学目标】知识与技能:初步体会几何概型的意义,会用公式求解简单的几何概型的概率.过程与方法:通过试验,与已学过计算概率的方法进行比较,提出新问题,师生共同探究,提出可行性解决问题的建议或想法情感态度与价值观:感知生活中的数学,培养学生用随机的观点来理解世界,加强与现实生活的联系,以科学的态度评价身边的随机现象,学会用科学的方法去观察世界和认识世界培养学生数学建模的核心素养。

【重点难点】教学重点: 几何概型的基本特征及如何求几何概型的概率教学难点: 如何判断一个试验是否是几何概型,如何将实际背景转化为几何度量【教法学法】本节课教师采用层层设疑、启发引导学生自主探究的教学模式;使用多媒体来辅助教学,为学生提供直观感性的材料,有助于学生对问题的理解和认识【教学基本流程】创设情境↓探究生成↓形成概念↓巩固深化↓课堂梳理↓布置作业【教学情景设计】探究生成值无关】探究3:问题2中事件A的概率是如何确定的?如何计算?教师让学生展示问题2的解决方案[][]1,32()0,99P A==区间的长度区间的长度解决问题的方案的实质:问题3:一个人练习投飞镖。

假设飞镖落入下面两个圆形区域内的每一点都可能的(不脱靶),那么到飞镖落入图(1)和图(2)两圆中的B区域内的概率哪个大?分别是多少?(结合讨论问题2的经验,让学生通过合作完成分析和求解,然后展示分析与求解过程中遇到的困难,解决问题的方案的实质:问题4:在500mL的水中有一只草履虫,现从中随机取出2mL的水样放到显微镜下观察,求发现草履虫的概率(让学生通过合作交流,独立完成解答然后展示成让学生体会解决问题的实质就是将原来具有无限性的基本事件集合进行了度量,即一维空间时用长度度量.为加深学生对此类问题的理解,也使学生的思维在广度和深度上产生从一维到二维,从二维到三维的飞跃.问题3、4让学生意识到试验的结果均匀分布在几何区域内的任意一点,事件A的概率只与事件A构成的区域的面积或体积有关,与所在区域的位置、形状无关让学生明确具有无限性基本事件集合,二维时用面积度量,三维时用体积度量()P A=构成事件A的区域的长度试验的全部结果构成的区域的长度()P A=构成事件A的区域的面积试验的全部结果构成的区域的面积]1,1[-),(y x 122<+y x )(A P a1111D C B A ABCD -aL 的水中有一只草履虫,现从中随机取出2mL 的水样放到显微镜下观察,求发现草履虫的概率问题5:问题2,3,4的共同特征是什么? 事件A 的概率是怎样确定的?概率如何计算?概率以上讨论回答1、几何概型的概念:2、几何概型的特征:⑴ ⑵ 3、在几何概型中,事件A 的概率计算公式: 4、古典概型与几何概型的区别和联系是什么?巩固深化例2:平面上画了一些彼此相距a 2的平行线,把一枚半径a r <的硬币任意掷在这个平面上,求硬币不与任一条平行线相碰的概率课堂练习:1、在长为12cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,试求这正方形的面积介于362cm 与812cm 之间的概率 向面积为S的ABC∆内任投一点PBC ∆2S ABC S -ABC S ABC P V V --<21古典概型 几何概型 所有的试验结果每个试验结果的发生 概率的计算例1:一海豚在水池中自由游弋,水池为长30m ,宽2021长方形,求此刻海豚嘴尖离岸边不超过2m 的概率例2:平面上画了一些彼此相距a 2的平行线,把一枚半径a r <的硬币任意掷在这个平面上,求硬币不与任一条平行线相碰的概率课堂练习:1、在长为12cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,试求这正方形的面积介于362cm 与812cm 之间的概率2、向面积为S 的ABC ∆内任投一点P ,求PBC ∆的面积小于2S的概率3、已知正三棱ABC S -的底面边长为4,高为3,在正三棱锥内任取一点P ,求使得ABC S ABC P V V --<21的概率是多少?课后思考题1、某人午觉醒来,发现表停了,他打开收音机,想听电台报时,求他等待的时间不多于10分钟的概率2、假设你家订了一份报纸,送报人可能在早上6:30—7:30之间把报纸送到你家,你父亲离开家去工作的时间在早上7:30—8:00之间,问你父亲在离开家前能得到报纸(称为事件A )的概率是多少?。

高中数学新人教版B版精品教案《人教版B高中数学必修3 3.3.1 几何概型》2

高中数学新人教版B版精品教案《人教版B高中数学必修3 3.3.1 几何概型》2

几何概型导学案葫芦岛市第一高级中学吴琼一、教学目标:1、知识与能力目标:理解几何概型的概念,能识别几何概型并会用其概率公式求解;2、过程与方法目标:经历由特殊到一般的概念建构过程,通过问题求解,领会将实际问题或一般数学问题转化为几何问题的解题策略;培养学生数形结合的能力;3、情感与态度目标:通过合作学习,培养学生团结协作的思想品质;通过实际应用让学生体会到数学在现实生活中的价值;二、教学重点、难点:重点: 几何概型概念的建构;几何概型中基本事件的确定,“几何度量”的选择;难点: 将事件转化为与之对应的区域;三、教学方法:合作探究四、教学过程:一、引入引例1:取一根长度为3米的绳子,拉直后在任意位置剪断.求剪得两段的长都不小于1米的概率?引例2:图中有两个转盘甲乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜在两种情况下分别求甲获胜的概率是多少引例3:在500m的水中有一只草履虫,现从中随机取出2m水样放到显微镜下观察,求发现草履虫的概率?二、新授1、几何概型的概念:事件A理解为____________________,A发生的概率只与子区域A的几何度量________________________成正比_,而与A的位置和形状无关满足以上条件的试验称为几何概型在几何概型中,事件A的概率定义为()P A________________________________2、几何概型的特点:1无限性:___________________________________2等可能性:___________________________________3、几何概型中事件的概率的性质:4、古典概型和几何概型的区别与联系:5、几何概型的概率计算步骤:确定Ω—确定A—明确几何度量—代入公式三、应用例1、某人午觉醒来,发现表停了,他打开收音机,想听电台整点报时,求他等待的时间不多于10分钟的概率例2.在等腰直角三角形ABC中,在斜边AB上任取一点M,求AM小于AC的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§3.3随机数的含义与应用3.3.1几何概型自主学习学习目标1.通过实例体会几何概型的含义,会区分古典概型和几何概型.2.掌握几何概型的概率计算公式,会求一些事件的概率.自学导引1.几何概型的概念事件A理解为区域Ω的某一子区域A,如图,A的概率只与子区域A的____________(长度、面积或体积)成________,而与A的________和________无关.满足以上条件的试验称为____________.2.几何概型的概率计算公式在几何概型中,事件A的概率定义为:________________,其中,μΩ表示________________,μA表示________________________.对点讲练知识点一与长度或角度有关的几何概型例1公共汽车站每隔5 min有一辆汽车通过,乘客到达汽车站的任一时刻是等可能的,求乘客候车不超过3 min的概率.点评几何概型应用广泛,其难点是确定几何度量.本例中,设定乘客到站后开来一辆公共汽车的时刻t后,就容易写出Ω、A,这里设“t”是关键.变式迁移1某人从东西走向的河的南岸向东北方向游去,游了100 m后没有到岸边,随后,他随意选定了一个方向继续游,求这个人游100 m之内能够到达南岸边的概率.知识点二与面积有关的几何概型例2在墙上挂着一块边长为16 cm的正方形木板,上面画了小、中、大三个同心圆,半径分别为2 cm,4 cm,6 cm,某人站在3 m之外向此板投镖.设投镖击中线上或没有投中木板都不算,可重投,问:(1)投中大圆内的概率是多少?(2)投中小圆与中圆形成的圆环的概率是多少?(3)投中大圆之外的概率是多少?点评在研究射击、射箭、投中、射门等实际问题时,常借助于区域的面积来计算概率的值.此时,只需分清各自区域特征,分别计算其面积,然后利用公式P(A)=构成事件A的区域面积来计算事件的概率.试验的全部结果构成的区域面积变式迁移2两个对讲机持有者莉莉和霍伊都为卡尔货运公司工作,他们的对讲机接收范围为25公里,在下午3∶00时莉莉正在基地正东距离基地30公里以内的某处向基地行驶.而此时霍伊正在基地正北距基地40公里以内的某地向基地行驶,试计算他们能够通过对讲机交谈的概率有多大?知识点三与体积有关的几何概型问题例3在1升高产小麦种子中混入了1粒带麦锈病的种子,从中随机取出10毫升,则“取出的种子中含有麦锈病的种子”的概率是多少?点评如果试验的结果所成的区域可用体积来度量,我们要结合问题的背景,选择好观察角度,准确找出基本事件所占的总的体积及事件A所分布的体积.其概率的计算P (A )=构成事件A 的区域体积试验的全部结果构成的区域体积.变式迁移3 有一杯2升的水,其中含有一个细菌,用一个小杯从这水中取出0.1升水,求小杯水中含有这个细菌的概率.1.几何概型与古典概型的异同点 (1)相同点古典概型与几何概型中基本事件发生的可能性都是相等的. (2)不同点①古典概型要求基本事件有有限个,几何概型要求基本事件有无限多个.②在古典概型中,概率为0的事件为不可能事件,概率为1的事件是必然事件,而在几何概型中概率为0的事件可能发生,概率为1的事件不一定发生.2.几何概型计算步骤(1)判断是否是几何概型,尤其是判断等可能性,比古典概型更难于判断.(2)计算基本事件的总体与事件A 所含的基本事件对应的区域的几何度量(长度、面积或体积).这是计算的难点.(3)利用概率公式计算.课时作业一、选择题1.两根相距6 m 的木杆上系一根绳子,并在绳子上挂一盏灯,则灯与两端距离都大于2 m 的概率为( )A.12B.13C.14D.162.一张方桌的图案如图所示,将一颗豆子随机扔到桌面上,假设豆子不落在线上,则豆子落在红色区域和落在黄色或绿色区域的概率分别是( )A.13,23B.13,16C.16,13D.23,343.在正方形ABCD 内任取一点P ,则使∠APB >90°的概率是( ) A.π8 B.π4C.π16 D.π24.在半径为1的半圆内,放置一个边长为12的正方形ABCD ,向半圆内任投一点,落在正方形内的概率为( )A.12B.14C.14πD.12π5.在区间(10,20]内的所有实数中随机取一个实数a ,则这个实数a <13的概率是( ) A.13 B.17 C.310 D.710 二、填空题6.如图所示的大正方形面积为13,四个全等的直角三角形围成一个阴影小正方形,较短的直角边长为2,向大正方形内投掷飞镖,飞镖落在阴影部分的概率为________.7.一个游戏盘上有四种颜色:红,黄,蓝,黑,并且它们所占面积的比为6∶2∶1∶4,则指针停在红色或蓝色的区域的概率为________.8.在区间[-1,2]上随机取一个数x ,则|x |≤1的概率为________. 三、解答题 9.已知等腰直角三角形ABC 中,∠C =90°,在直角边BC 上任取一点M ,求∠CAM <30°的概率.10.设有关于x 的一元二次方程x 2+2ax +b 2=0.(1)若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.(2)若a 是从区间[0,3]上任取的一个数,b 是从区间[0,2]上任取的一个数,求上述方程有实根的概率.§3.3 随机数的含义与应用3.3.1 几何概型自学导引1.几何度量 正比 位置 形状 几何概型2.P (A )=μAμΩ区域Ω的几何度量 子区域A 的几何度量对点讲练例1 解 设A =“候车时间不超过3 min ”,x 表示乘客来到车站的时刻,那么每一个试验结果可表示为x ,假定乘客到达车站后开来一辆公共汽车的时刻为t ,据题意,乘客必然在(t -5,t ]内来到车站,故Ω={x |t -5<x ≤t },欲乘客候车时间不超过3 min ,必有t -3≤x ≤t ,所以A ={x |t -3≤x ≤t },所以P (A )=A 的度量Ω的度量=35=0.6.答 乘客候车时间不超过3 min 的概率为0.6. 变式迁移1 解如图所示,某人从B 沿北偏东45°方向游了100 m 到达O 点处.由图可知,∠OBA =45°,OA =OB =100 m ,在点O 处只有向阴影方向游100 m 之内才能到达岸边,故所求的概率为P =90°360°=14.例2 解 S 正方形=16×16=256(cm 2), S 小圆=π×22=4π(cm 2),S 圆环=π×42-π×22=12π(cm 2), S 大圆=π×62=36π(cm 2),S 大圆外=16×16-36π=(256-36π)(cm 2),则(1)投中大圆的概率P (A 1)=36π256≈0.442.(2)投中小圆与中圆形成的圆环的概率为P (A 2)=12π256≈0.147.(3)投中大圆之外的概率为P (A 3)=256-36π256=1-36π256=1-P (A 1)≈0.558.变式迁移2 解 设x 和y 分别代表莉莉和霍伊距基地的距离,于是0≤x ≤30,0≤y ≤40.则他俩所有可能的距离的数据构成有序数对(x ,y ),这里x ,y 都在它们各自的限制范围内,则所有这样的有序数对构成的集合即为试验的全部结果,每一个点都代表莉莉和霍伊的一个特定的位置,他们可以通过对讲机交谈这一事件仅当他们之间的距离不超过25公里时发生,因此构成该事件的点由满足不等式x 2+y 2≤25的数对组成,此不等式等价于x 2+y 2≤625.图中,长和宽分别为40和30的矩形区域表示试验的所有结果构成的区域,以25为半径的14圆的区域表示事件发生的区域,而矩形的面积为30×40=1 200(平方公里),而扇形的面积为14π×252=625π4(平方公里),故所求事件成功的概率为P =625π4×1 200=625π4 800=25π192.例3 解 取出10毫升种子,其中“含有麦锈病种子”记为事件A ,则P (A )=取出的种子体积所有种子体积=101 000=0.01.所以“含有麦锈病种子”的概率为0.01.变式迁移3 解 记“小水杯中含有这个细菌”为事件A ,则事件A 的概率只与取出水的体积有关,符合几何概型的条件,又μA =0.1升,μΩ=2升,所以由几何概型的概率公式,得P (A )=μA μΩ=0.12=0.05.课时作业 1.B2.A [一颗豆子落在每一点的可能性相同,是几何概型问题,设A ={豆子落在红色区域},B ={豆子落在黄色或绿色区域},设方桌的总面积为9,则μΩ=9,μA =3,μB =6.∴P (A )=39=13,P (B )=69=23.]3.A [如图,由题意知点P 落在以AB 为直径的半圆内时∠APB >90°,设正方形边长为2,则μΩ=4,μA =π2,∴P (A )=π24=π8.]4.D [如图,半圆的面积为π2,正方形的面积为14,所求概率为P =S 正方形S 半圆=12π.]5.C 6.113解析 由题意得,区域D 所对应的面积是大正方形的面积S 大=13,事件A ={飞镖落在阴影部分}对应的区域面积是阴影部分(小正方形)的面积,S 阴=(13-22-2)2=1,所以P (A )=113.7.713 8.23解析 由|x |≤1,得-1≤x ≤1.由几何概型的概率求法知,所求的概率P =区间[-1,1]的长度区间[-1,2]的长度=23.9.解如图所示,在CB 上取点M 0,使∠CAM 0=30°,设BC =a ,则CM 0=33AC =33BC =33a . 于是有P (∠CAM <30°)=CM 0CB =33aa =33. 10.解 设事件A 为“方程x 2+2ax +b 2=0有实根”.当a ≥0,b ≥0时,方程x 2+2ax +b 2=0有实根的充要条件为a ≥b . (1)基本事件共有12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2).其中第一个数表示a 的取值,第二个数表示b 的取值.事件A 包含9个基本事件,故事件A 发生的概率为P (A )=912=34.(2)试验的全部结果所构成的区域为 {(a ,b )|0≤a ≤3,0≤b ≤2}.构成事件A 的区域为{(a ,b )|0≤a ≤3,0≤b ≤2,a ≥b }. 所以所求的概率为P (A )=3×2-12×223×2=23.。

相关文档
最新文档