超经典一元一次方程中考应用题专练
中考数学总复习《一元一次方程》专项测试卷-附带参考答案
中考数学总复习《一元一次方程》专项测试卷-附带参考答案(测试时间60分钟满分100分)学校:___________姓名:___________班级:___________考号:___________一、选择题(共8题,共40分)1.某人驾驶一艘小船在甲、乙两个码头之间航行,顺水航行需6h,逆水航行比顺水航行多用2h.若水流速度是2km/h,则这艘小船在静水中的平均速度是( ) A.14km/h B.15km/h C.16km/h D.17km/h2.已知关于x的方程∣5x−4∣+a=0无解,∣4x−3∣+b=0有两个解∣3x−2∣+c= 0只有一个解,则化简∣a−c∣+∣c−b∣−∣a−b∣的结果是( )A.2a B.2b C.2c D.03.已知七(1)班有学生48名,其中参加数学小组的有36人,参加英语小组的人数比参加数学小组的人数少10,并且这两个小组都不参加的人数比这两个小组都参加的人数的14多1,则同时参加这两个小组的人数是( )A.20B.16C.12D.84.下列四个等式中,是一元一次方程的是( )A.3x+2y=6B.2x+1=3xC.x2−2x−3=1D.2x=45.我国古代《孙子算经》卷中记载“多人共车”问题,其原文如下:今有三人共车,二车空,二人共车,九人步,问人与车各几何?若设有x个人,则可列方程是( ) A.3(x+2)=2x−9B.3(x−2)=2x+9C.x3+2=x−92D.x3−2=x+926.A、B两地相距900km,一列快车以200km/h的速度从A地匀速驶往B地,到达B地后立刻原路返回A地,一列慢车以75km/h的速度从B地匀速驶往A地,两车同时出发,截止到它们都到达终点的过程中,两车第四次相距200km时,行驶的时间是( )A.283h B.445h C.285h D.4h7.一个长方形的长比宽多9米,周长是54米,若设长方形的宽为x米,依题意,所列方程正确的是( )A.x+(x+9)=54B.x+(x−9)=54C.x+(x−9)=12×54D.x+(x+9)=12×548.把方程2x−y=3改写成用含x的式子表示y的形式,正确的是( )A.y=2x−3B.y=3−2xC.y=−2x−3D.y=x+32二、填空题(共5题,共15分)9.若方程−x2k−3+5=0是关于x的一元一次方程,则k=.10.如图,为了测一个玻璃瓶的容积,小丽将一袋240毫升的牛奶倒入瓶中,测得牛奶高度为8厘米,再将瓶子倒放,测得空余部分高度为2厘米,小丽计算得到玻璃瓶的容积应该是毫升.11.一个袋子里有若干个球,其中红球占38,后来又往袋子里放12个红球,这时红球占总数的12,则袋子中原来共有球个.12.一列火车现在以120千米/时的速度从A地前往B地,原来的速度是现在速度的23,现在全程所用时间比原来少用4小时,则A,B两地的全程为千米.13.小红在某月日历的一个竖列上圈了三个数,这三个数的和恰好是33,则这三个数中最大的一个是.三、解答题(共3题,共45分)14.某冷饮店用200元购进A,B两种水果共20kg,进价分别为7元/kg和12元/kg.(1) 这两种水果各购进多少千克?(2) 该冷饮店将所购进的水果全部混合制成50杯果汁,要使售完后所获利润不低于进货款的50%,则每杯果汁的售价至少为多少元?15.在某体育用品商店,购买30根跳绳和60个毽子共需720元,购买10根跳绳和50个毽子共需360元.(1) 跳绳、毽子的单价各是多少元?(2) 该店在儿童节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1800元,该店的商品按原价的几折销售?16.某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间房.求该店有客房多少间?房客多少人?参考答案1. 【答案】A2. 【答案】D3. 【答案】A4. 【答案】B5. 【答案】C6. 【答案】B7. 【答案】D8. 【答案】A9. 【答案】 210. 【答案】 30011. 【答案】 4812. 【答案】 96013. 【答案】 1814. 【答案】(1) 设 A 种水果购进了 x kg ,则 B 种水果购进了 (20−x)kg ,根据题意,得7x +12(20−x)=200,解得x =8.所以20−x =12.答:购进 A 种水果 8 kg ,B 种水果 12 kg .(2) 设每杯果汁的售价为 y 元,根据题意,得50y −200≥200×50%,解得y ≥6.答;每杯果汁的售价至少为 6 元.15. 【答案】(1) 设跳绳的单价为 x 元,毽子的单价为 y 元根据题意,得{30x +60y =720,10x +50y =360,解得{x =16,y =4.(2) 设该店的商品按原价的 a 折销售,可得(100×16+100×4)×a10=1800,解得a=9.答:该店的商品按原价的9折销售.16. 【答案】设该店有x间客房则7x+7=9x−9解得x=8.7x+7=7×8+7=63.答:该店有客房8间,房客63人.。
(完整)列一元一次方程解应用题专项练习180题(有答案)
列一元一次方程解应用题专项练习180题(有答案)1.种一批树,如果每人种10棵,则剩6棵未种;如果每人种12棵,则缺6棵.有多少人种树有多少棵树?2.某中外合资企业,按外商要求承做一批机器,原计划13天完成,科技人员采用一种高新技术后,每天多生产10台,结果用12天,不但完成任务,而且超额了60台,问原计划承做多少台机器?3.心连心艺术团在世纪广场组织了一场义演为“灾区"募捐活动,共售出3000张门票,已知成人票每张15元,学生票每张6元,共收入票款34200元,问:成人票和学生票各多少张?4.甲、乙两人分别后,沿着铁轨反向而行,此时,一列火车匀速地向甲迎面驶来,列车在甲身旁开过,用了15秒,然后在乙身旁开过,用了17秒,已知两人的步行速度都是3。
6千米∕时,这列火车有多长?5.一个长方形的养鸡场的长边靠墙,墙长14米,其它三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米,你认为谁的设计符合实际按照他的设计,鸡场的面积是多少?6.甲乙两个工厂,去年计划总产值为360万元,结果甲厂完成了计划的112%,乙厂比原计划增加了10%,这样两厂共完成的产值为400万元,求去年两厂各超额完成产值多少万元?7.(1)某长方形足球场的周长为310米,长和宽之差为25米,这个足球场的长与宽分别是多少米?(2)小彬和小明每天早晨坚持跑步,小彬每秒跑4米,小明每秒跑6米.如果小明站在百米跑道的起点处,小彬站在他前面10米处,两人同时同向起跑,几秒后小明能追上小彬?8.某工厂加强节能措施,2008年下半年与上半年相比,月平均用电量减少了0.5万度,全年用电39万度,问这个工厂2008年上半年每月平均用电多少万度?9.某周日小明在家门口搭乘出租车去参观博物馆,出租车的收费标准是:不超过3公里的付费7元;超过3公里后,每公里需加收一定费用,超出部分的公里数取整,即小数部分按1公里计算.小明乘出租车到距家6。
_一元一次方程应用题专练(部分)
一元一次方程专项测试1、一个通讯员骑自行车需要在规定时间内把信件送到某地,每小时走15公里早到24分钟,如果每小时走12公里,就要迟到15分钟,问原定时间是多少?他离某地多远?2、甲、乙两车同时以相距440千米的A 、B 两地出发,相向而行,甲速是乙速的1.2倍,4小时相遇,求乙车速度?3、甲、乙两人骑自行车,从相距75千米的两地相向而行,甲行2小时20分钟后,乙开始动身,又经过1小时40分钟,两人相遇,已知甲比乙每小时慢2.5千米,甲、乙两人每小时各行多少千米?4、一条环形跑道长400米,甲练习自行车,平均每分钟骑550米,乙练习赛跑,平均每分钟跑250米,两人同时同地同向出发,经过多少分钟两人才能再相遇?5、一架飞机飞行于甲、乙两城之间,顺风时需要5小时30分钟,逆风时需要6小时,若风速是每小时24公里,求两城之间的距离.6.甲、乙两地相距175千米,小明骑助动车以每小时45千米的速度,由甲地前往乙地,1小时后,小方乘汽车以每小时60千米的速度也从甲地开往乙地,小方几小时后能追上小明?7.从甲地到乙地,先下山然后走平路,某人骑自行车从甲地以每小时12千米的速度下山,而以每小时9千米的速度通过平路,到乙地用55分钟,他回来,以每小时8千米的速度上山,回到甲地用1小时30分钟,求甲、乙两地距离多远?8.慢车以 15千米/小时的速度从甲地开往乙地,半小时后快车以30千米/小时速度从甲地沿路追上去,结果两车同时到达乙地,问甲乙两地相距多少千米?9、小明每早上要7:50之前赶到距家1000米的学校上学。
一天,小明以80米/分的速度出发,5分钟后,小明的爸爸发现他忘了带语文书。
于是,爸爸立即以180米/分的速度去追小明,并且在途中追上了他。
爸爸追上小明用了多长时间?10、一轮船往返于A 、B 两港之间,逆水航行需3小时,顺水航行需2小时,水速是每小时3千米,则轮船在静水中的速度是( )(A )18千米/时 (B )15千米/时 (C )12千米/时 (D )20千米/时11、 一条环形的跑道长800米,甲练习骑自行车平均每分钟行500米,乙练习赛跑,平均每分钟跑200米,两人同时同地出发。
一元一次方程专题训练经典练习题(含答案)
一元一次方程专题训练经典练习题一、解下列一元一次方程1、2x+2=3x+62、 3x-11=253、2(x-1)+3(1-x)=04、5x(2-3.140)=2(x-6)5、0.8x +2=1.6x-26、10%(x+2)=17、2(x+5)=3(x-6) 8、1-2(x-3)=3(x+2)9、3(x-1)=2(x+2)+(1-x) 10、4x-[2+(3x-6)]=111、2x-20%(x+3)=12÷10 12、7x+5(x-2)= 2(x+10)13、4x-4=2(2+x)-3(x+1) 14、1- 12x=215、3- 13x=2(x+1) 16、2(x-34)=8-x17、12(2x+1)+1=2(2-x) 18、x-13(x-5)=2319、-x= -3(x-4) 20、7x·(5 - 4·12)= 5+x21、0.1+x2=2 22、x-10.2=3(x-1)23、x-10.3+x+20.3=2 24 、12+13x =23+125、2x-10.5= 2-3x+20.326、错误! =3x27、错误! =3 28、错误! =错误!29、12{13[14(x+1)+1]+2} =2 30、25(300+x)-35(200+x)=400·110二、一元一次方程应用题1、一艘船在两个码头之间航行,水流的速度是3千米/时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离。
2、小华从家里骑自行车到学校。
若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?3、小兵由A地到B地,若以每小时12千米的速度,他将比原计划的时间迟到20分,若以每小时15千米的速度前进,则比原计划的时间早4分钟到达B地,求A、B两地间的距离。
4、甲、乙两人同时从A地前往相距25.5千米的B地,甲骑自行车,乙步行,甲的速度比乙的速度的2倍还快2千米/时,甲先到达B地后,立即由B地返回,在途中遇到乙,这时距他们出发的时间时已过了3小时。
中考数学复习之一元一次方程综合应用训练题(20大题)
中考数学复习之一元一次方程综合应用训练题(20大题)1.如图,线段AB=10,动点P从点A出发,以每秒1个单位的速度,沿线段AB向终点B 运动,同时,另一个动点Q从点B出发,以每秒3个单位的速度在线段AB上来回运动(从点B向点A运动,到达点A后,立即原速返回,再次到达B点后立即调头向点A运动.)当点P到达B点时,P,Q两点都停止运动.设点P的运动时间为x.(1)当x=3时,线段PQ的长为.(2)当P,Q两点第一次重合时,求线段BQ的长.(3)是否存在某一时刻,使点Q恰好落在线段AP的中点上?若存在,请求出所有满足条件的x的值;若不存在,请说明理由.2.如图,已知数轴上点A表示的数为﹣60,点B表示的数为20,甲在A点,乙在B点,甲的速度是每秒5个单位,乙的速度是每秒3个单位,小狗的速度是每秒20个单位.(1)点A与点B之间的距离是.(2)若甲、乙两人同时同向(向右)而行,几秒钟甲追上乙?(3)若甲、乙两人同时相向而行,在C点相遇,求点C表示的数并在数轴上表示出来?(4)若小狗随甲同时同地向右出发,当小狗碰到乙时,乙才开始出发,乙和小狗同时向甲方向前进,当小狗再次碰到甲时又向乙方向跑,碰到乙的时候再向甲方向跑,就这样一直跑下去,直到甲、乙两人相遇为止,问这只小狗一共跑了多少路程?3.已知:A,B在数轴上对应的数分别用a,b表示,且(a+4)2+|b﹣12|=0.(1)数轴上点A表示的数是,点B表示的数是.(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,当C点在数轴上且满足AC=3BC时,求C点对应的数.(3)若一动点P从点A出发,以3个单位长度/秒速度由A向B运动,当P运动到B点时,再立即以同样速度返回,运动到A点停止;点P从点A出发时,另一动点Q从原点O出发,以1个单位长度/秒速度向B运动,运动到B点停止.设点Q运动时间为t秒.当t为何值时,点P与点Q之间的距离为2个单位长度.4.盘锦红海滩景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x人,门票费用为y元,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示.(1)a=,b=;(2)直接写出y1、y2与x之间的函数关系式;(3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B旅游团到红海滩景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?5.某景区内的环形路是边长为800米的正方形ABCD,如图1和图2.现有1号、2号两游览车分别从出口A和景点C同时出发,1号车顺时针、2号车逆时针沿环形路连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车速度均为200米/分.探究:设行驶时间为t分.(1)当0≤t≤8时,分别写出1号车、2号车在左半环线离出口A的路程y1,y2(米)与t(分)的函数关系式,并求出当两车相距的路程是400米时t的值;(2)t为何值时,1号车第三次恰好经过景点C?并直接写出这一段时间内它与2号车相遇过的次数.发现:如图2,游客甲在BC上的一点K(不与点B,C重合)处候车,准备乘车到出口A,设CK=x米.情况一:若他刚好错过2号车,便搭乘即将到来的1号车;情况二:若他刚好错过1号车,便搭乘即将到来的2号车.比较哪种情况用时较多?(含候车时间)决策:已知游客乙在DA上从D向出口A走去.步行的速度是50米/分.当行进到DA 上一点P(不与点D,A重合)时,刚好与2号车迎面相遇.(1)他发现,乘1号车会比乘2号车到出口A用时少,请你简要说明理由;(2)设P A=s(0<s<800)米.若他想尽快到达出口A,根据s的大小,在等候乘1号车还是步行这两种方式中.他该如何选择?6.2012年,某地开始实施农村义务教育学校营养计划﹣﹣“蛋奶工程”.该地农村小学每份营养餐的标准是质量为300克,蛋白质含量为8%,包括一盒牛奶、一包饼干和一个鸡蛋.已知牛奶的蛋白质含量为5%,饼干的蛋白质含量为12.5%,鸡蛋的蛋白质含量为15%,一个鸡蛋的质量为60克.(1)一个鸡蛋中含蛋白质的质量为多少克?(2)每份营养餐中牛奶和饼干的质量分别为多少克?7.某单位计划“五一”期间组织职工到东江湖旅游,如果单独租用40座的客车若干辆刚好坐满;如果租用50座的客车可以少租一辆,并且有40个剩余座位.(1)该单位参加旅游的职工有多少人?(2)如同时租用这两种客车若干辆,问有无可能使每辆车刚好坐满?如有可能,两种车各租多少辆?(此问可只写结果,不写分析过程)8.利用方程解决下面问题:相传有个人不讲究说话艺术常引起误会,一天他摆宴席请客,他看到还有几个人没来,就自言自语:“怎么该来的还不来呢?”客人听了,心想难道我们是不该来的,于是有一半客人走了,他一看十分着急,又说:“不该走的倒走了!”剩下的人一听,是我们该走啊!又有剩下的三分之二的人离开了,他着急地一拍大腿,连说:“我说的不是他们.”于是最后剩下的三个人也都告辞走了,聪明的你能知道开始来了几位客人吗?9.列方程或方程组解应用题:中国2010年上海世博会第三期预售平日门票分为普通票和优惠票,其中普通票每张150元人民币,优惠票每张90元人民币.某日一售票点共售出1000张门票,总收入12.6万元人民币.那么,这一售票点当天售出的普通票和优惠票各多少张?注:优惠票的适用对象包括残疾人士、老年人(1950年12月31日前出生的)、学生、身高超过1.20米的儿童、现役军人.10.十一届全国人大常委会第二十次会议审议的个人所得税法修正案草案(简称“个税法草案”),拟将现行个人所得税的起征点由每月2000元提高到3000元,并将9级超额累进税率修改为7级,两种征税方法的1~5级税率情况见下表:税级现行征税方法草案征税方法月应纳税额x税率速算扣除数月应纳税额x税率速算扣除数1x≤5005%0x≤15005%0 2500<x≤200010%251500<x≤450010%32000<x≤500015%1254500<x≤900020%45000<x≤2000020%3759000<x≤3500025%975520000<x≤4000025%137535000<x≤5500030%2725注:“月应纳税额”为个人每月收入中超出起征点应该纳税部分的金额.“速算扣除数”是为快捷简便计算个人所得税而设定的一个数.例如:按现行个人所得税法的规定,某人今年3月的应纳税额为2600元,他应缴税款可以用下面两种方法之一来计算:方法一:按1~3级超额累进税率计算,即500×5%+1500×10%+600×15%=265(元).方法二:用“月应纳税额x适用税率﹣速算扣除数”计算,即2600×15%﹣125=265(元).(1)请把表中空缺的“速算扣除数”填写完整;(2)甲今年3月缴了个人所得税1060元,若按“个税法草案”计算,则他应缴税款多少元?(3)乙今年3月缴了个人所得税3千多元,若按“个税法草案”计算,他应缴的税款恰好不变,那么乙今年3月所缴税款的具体数额为多少元?11.某会议厅主席台上方有一个长12.8m的长条形(矩形)会议横标框,铺红色衬底.开会前将会议名称用白色厚纸或不干胶纸刻出来贴于其上.但会议名称不同,字数一般每次都多少不等,为了制作及贴字时方便美观,会议厅工作人员对有关数据作了如下规定:边空:字宽:字距=9:6:2,如图所示.根据这个规定,求会议名称的字数为18时,边空、字宽、字距各是多少?12.某学校为改善办学条件,计划购置至少40台电脑,现有甲,乙两家公司供选择:甲公司的电脑标价为每台2000元,购买40台以上(含40台),则按标价的九折优惠;乙公司的电脑标价也是每台2000元,购买40台以上(含40台),则一次性返回10000元给学校.(1)假如你是学校负责人,在电脑品牌,质量,售后服务等完全相同的前提下,你如何选择?请说明理由;(2)甲公司发现乙公司与他竞争(但甲公司不知乙公司的销售方案),便主动与该校联系,提出新的销售方案;标价为每台2000元,购买40台以上(含40台),则按标价的九折优惠,在40台的基础上,每增加15台,便赠送一台.问:该学校计划购买120台(包括赠送),至少需要多少元?13.阅读下列材料:我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离;即|x|=|x﹣0|,也就是说,|x|表示在数轴上数x与数0对应点之间的距离;这个结论可以推广为|x1﹣x2|表示在数轴上数x1,x2对应点之间的距离;在解题中,我们会常常运用绝对值的几何意义:例1:解方程|x|=2.容易得出,在数轴上与原点距离为2的点对应的数为±2,即该方程的x=±2;例2:解不等式|x﹣1|>2.如图,在数轴上找出|x﹣1|=2的解,即到1的距离为2的点对应的数为﹣1,3,则|x﹣1|>2的解为x<﹣1或x>3;例3:解方程|x﹣1|+|x+2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和﹣2的距离之和为5的点对应的x的值.在数轴上,1和﹣2的距离为3,满足方程的x对应点在1的右边或﹣2的左边.若x对应点在1的右边,如图可以看出x=2;同理,若x 对应点在﹣2的左边,可得x=﹣3.故原方程的解是x=2或x=﹣3.参考阅读材料,解答下列问题:(1)方程|x+3|=4的解为;(2)解不等式|x﹣3|+|x+4|≥9;(3)若|x﹣3|﹣|x+4|≤a对任意的x都成立,求a的取值范围.14.如图,正方形ABCD的周长为40米,甲、乙两人分别从A、B同时出发,沿正方形的边行走,甲按逆时针方向每分钟行55米,乙按顺时针方向每分钟行30米.(1)出发后分钟时,甲乙两人第一次在正方形的顶点处相遇;(2)如果用记号(a,b)表示两人行了a分钟,并相遇过b次,那么当两人出发后第一次处在正方形的两个相对顶点位置时,对应的记号应是.15.梅林中学租用两辆小汽车(设速度相同)同时送1名带队老师及7名九年级的学生到县城参加数学竞赛,每辆限坐4人(不包括司机).其中一辆小汽车在距离考场15km 的地方出现故障,此时离截止进考场的时刻还有42分钟,这时唯一可利用的交通工具是另一辆小汽车,且这辆车的平均速度是60km /h ,人步行的速度是5km /h (上、下车时间忽略不计).(1)若小汽车送4人到达考场,然后再回到出故障处接其他人,请你通过计算说明他们能否在截止进考场的时刻前到达考场;(2)假如你是带队的老师,请你设计一种运送方案,使他们能在截止进考场的时刻前到达考场,并通过计算说明方案的可行性.16.某电信局现有600部已申请装机的电话尚待装机,此外每天有新申请装机的电话也待装机.假定每天新申请装机的电话部数相同,每个电话装机小组每天安装电话的部数也相同,若安排3个装机小组去安装电话,则30天可将待装电话装机完毕;若安排5个装机小组去安装电话,则恰好10天可将待装电话装机完毕.(1)求每天新申请装机的电话部数及每个电话装机小组每天安装电话部数.(2)如果要在5天内将待装电话装机完毕,那么电信局至少需按排几个电话装机小组同时装机?17.据了解,火车票价按“全程参考价×实际乘车里程数总里程数”的方法来确定.已知A 站至H 站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H 站的里程数: 车站名ABC D E F G H各站至H 站的里程 数(单位:千米)1500 1130 910 622 402 219 72 0 例如,要确定从B 站至E 站火车票价,其票价为180×(1130−402)1500=87.36≈87(元).(1)求A站至F站的火车票价(结果精确到1元);(2)旅客王大妈乘火车去女儿家,上车过两站后拿着火车票问乘务员:我快到站了吗?乘务员看到王大妈手中票价是66元,马上说下一站就到了.请问王大妈是在哪一站下车的(要求写出解答过程).18.某牛奶公司计划在三栋楼之间建一个取奶站,三栋楼在一条直线上,顺次为A楼、B楼、C楼,其中A楼与B楼之间的距离为40米,B楼与C楼之间的距离为60米、已知A楼每天有20人取奶,B楼每天有70人取奶,C楼每天有60人取奶,公司提出两种建站方案:方案一:让每天所有取奶的人到奶站的距离最小;方案二:让每天A楼与C楼所有取奶的人到奶站的距离之和等于B楼所有取奶的人到奶站的距离之和,(1)若按第一种方案建站,取奶站应建在什么位置?(2)若按方案二建站,取奶站应建在什么位置?(3)在(2)的情况下,若A楼每天取奶的人数增加,增加的人数不超过22人,那么取奶站将离B楼越来越远,还是越来越近?请说明理由.19.阅读以下材料:滨江市区内的出租车从2004年“5•1”节后开始调整价格.“5•1”前的价格是:起步价3元,行驶2千米后,每增加1千米加收1.4元,不足1千米的按1千米计算.如顾客乘车2.5千米,需付款3+1.4=4.4元;“5•1”后的价格是:起步价2元,行驶1.4千米后,每增加600米加收1元,不足600米的按600米计算,如顾客乘车2.5千米,需付款2+1+1=4元.(1)以上材料,填写下表: 顾客乘车路程(单位:千米) 1 1.5 2.5 3.5 需支付的金额(单位:元) “5.1”前4.4 “5.1”后4(2)小方从家里坐出租车到A 地郊游,“5•1”前需10元钱,“5•1”后仍需10元钱,那么小方的家距A 地路程大约 .(从下列四个答案中选取,填入序号)①5.5千米②6.1千米③6.7千米④7.3千米.20.某商场在促销期间规定:商场内所有商品按标价的80%出售;同时,当顾客在该商场内消费满一定金额后,还可按如下方案获得相应金额的奖券:消费金额a (元) 200≤a <400 400≤a <500 500≤a <700 700≤a <900 … 获奖券金额(元)3060100130…根据上述促销方法,顾客在该商场购物可以获得双重优惠.例如:购买标价为400元的商品,则消费金额为320元,获得的优惠额为:400×(1﹣80%)+30=110(元). 购买商品得到的优惠率=购买商品获得的优惠额÷商品的标价. 试问:(1)购买一件标价为1000元的商品,顾客得到的优惠率是多少?(2)对于标价在500元与800元之间(含500元和800元)的商品,顾客购买标价为多少元的商品,可以得到13的优惠率?。
初中数学一元一次方程精选试题(含答案和解析)
初中数学一元一次方程精选试题(含答案和解析)一.选择题1.(2018·湖北省恩施·3分)一商店在某一时间以每件120元的价格卖出两件衣服.其中一件盈利20%.另一件亏损20%.在这次买卖中.这家商店()A.不盈不亏 B.盈利20元C.亏损10元D.亏损30元【分析】设两件衣服的进价分别为x、y元.根据利润=销售收入﹣进价.即可分别得出关于x、y的一元一次方程.解之即可得出x、y的值.再用240﹣两件衣服的进价后即可找出结论.【解答】解:设两件衣服的进价分别为x、y元.根据题意得:120﹣x=20%x.y﹣120=20%y.解得:x=100.y=150.∴120+120﹣100﹣150=﹣10(元).故选:C.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.2.(2018湖南省邵阳市)(3分)程大位是我国明朝商人.珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著.详述了传统的珠算规则.确立了算盘用法.书中有如下问题:一百馒头一百僧.大僧三个更无争.小僧三人分一个.大小和尚得几丁.意思是:有100个和尚分100个馒头.如果大和尚1人分3个.小和尚3人分1个.正好分完.大、小和尚各有多少人.下列求解结果正确的是()A.大和尚25人.小和尚75人 B.大和尚75人.小和尚25人C.大和尚50人.小和尚50人 D.大、小和尚各100人【分析】根据100个和尚分100个馒头.正好分完.大和尚一人分3个.小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100.大和尚分得的馒头数+小和尚分得的馒头数=100.依此列出方程即可.【解答】解:设大和尚有x人.则小和尚有(100﹣x)人.根据题意得:3x+=100.解得x=25则100﹣x=100﹣25=75(人)所以.大和尚25人.小和尚75人.故选:A.【点评】本题考查了一元一次方程的应用.关键以和尚数和馒头数作为等量关系列出方程.二.填空题1.(2018·湖北江汉油田、潜江市、天门市、仙桃市·3分)某公司积极开展“爱心扶贫”的公益活动.现准备将6000件生活物资发往A.B两个贫困地区.其中发往A区的物资比B区的物资的1.5倍少1000件.则发往A区的生活物资为3200 件.【分析】设发往B区的生活物资为x件.则发往A区的生活物资为(1.5x﹣1000)件.根据发往A.B两区的物资共6000件.即可得出关于x的一元一次方程.解之即可得出结论.【解答】解:设发往B区的生活物资为x件.则发往A区的生活物资为(1.5x﹣1000)件.根据题意得:x+1.5x﹣1000=6000.解得:x=2800.∴1.5x﹣1000=3200.答:发往A区的生活物资为3200件.故答案为:3200.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.3.(2018•上海•4分)方程组的解是..【分析】方程组中的两个方程相加.即可得出一个一元二次方程.求出方程的解.再代入求出y即可.【解答】解:②+①得:x2+x=2.解得:x=﹣2或1.把x=﹣2代入①得:y=﹣2.把x=1代入①得:y=1.所以原方程组的解为..故答案为:..【点评】本题考查了解高次方程组.能把二元二次方程组转化成一元二次方程是解此题的关键.三.解答题1.(2018•广东•7分)某公司购买了一批A.B型芯片.其中A型芯片的单价比B型芯片的单价少9元.已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A.B型芯片的单价各是多少元?(2)若两种芯片共购买了200条.且购买的总费用为6280元.求购买了多少条A型芯片?【分析】(1)设B型芯片的单价为x元/条.则A型芯片的单价为(x ﹣9)元/条.根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.即可得出关于x的分式方程.解之经检验后即可得出结论;(2)设购买a条A型芯片.则购买(200﹣a)条B型芯片.根据总价=单价×数量.即可得出关于a的一元一次方程.解之即可得出结论.【解答】解:(1)设B型芯片的单价为x元/条.则A型芯片的单价为(x﹣9)元/条.根据题意得:=.解得:x=35.经检验.x=35是原方程的解.∴x﹣9=26.答:A型芯片的单价为26元/条.B型芯片的单价为35元/条.(2)设购买a条A型芯片.则购买(200﹣a)条B型芯片.根据题意得:26a+35(200﹣a)=6280.解得:a=80.答:购买了80条A型芯片.【点评】本题考查了分式方程的应用以及一元一次方程的应用.解题的关键是:(1)找准等量关系.正确列出分式方程;(2)找准等量关系.正确列出一元一次方程.2.(2018•海南•8分)“绿水青山就是金山银山”.海南省委省政府高度重视环境生态保护.截至2017年底.全省建立国家级、省级和市县级自然保护区共49个.其中国家级10个.省级比市县级多5个.问省级和市县级自然保护区各多少个?【分析】设市县级自然保护区有x个.则省级自然保护区有(x+5)个.根据国家级、省级和市县级自然保护区共49个.即可得出关于x的一元一次方程.解之即可得出结论.【解答】解:设市县级自然保护区有x个.则省级自然保护区有(x+5)个.根据题意得:10+x+5+x=49.解得:x=17.∴x+5=22.答:省级自然保护区有22个.市县级自然保护区有17个.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.3.(2018湖南张家界5.00分)列方程解应用题《九章算术》中有“盈不足术”的问题.原文如下:“今有共買羊.人出五.不足四十五;人出七.不足三.问人数、羊價各幾何?”题意是:若干人共同出资买羊.每人出5元.则差45元;每人出7元.则差3元.求人数和羊价各是多少?【分析】可设买羊人数为未知数.等量关系为:5×买羊人数+45=7×买羊人数+3.把相关数值代入可求得买羊人数.代入方程的等号左边可得羊价.【解答】解:设买羊为x人.则羊价为(5x+45)元钱.5x+45=7x+3.x=21(人).5×21+45=150(员).答:买羊人数为21人.羊价为150元.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.。
人教版九年级数学中考一元一次方程及其应用专项练习及参考答案
人教版九年级数学中考一元一次方程及其应用专项练习专题知识回顾知识点1:一元一次方程的概念1.一元一次方程:一元一次方程的标准形式是:ax+b=0(其中x是未知数,a,b是已知数,且a≠0)。
要点诠释:一元一次方程须满足下列三个条件:(1)只含有一个未知数;(2)未知数的次数是1次;(3)整式方程.注意:方程要化为最简形式,且一次项系数不能为零。
2.方程的解:判断一个数是否是某方程的解,将其代入方程两边,看两边是否相等.知识点2:一元一次方程的解法1.方程的同解原理(也叫等式的基本性质)性质1:等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。
性质2:等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式。
要点诠释:分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。
2.解一元一次方程的一般步骤:(1)去分母在方程两边都乘以各分母的最小公倍数,依据等式基本性质2,注意防止漏乘(尤其整数项),注意添括号。
(2)去括号一般先去小括号,再去中括号,最后去大括号,依据去括号法则、分配律,注意变号,防止漏乘。
(3)移项把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(记住移项要变号),依据等式基本性质1,移项要变号,不移不变号。
(4)合并同类项把方程化成ax =b(a≠0)的形式,依据合并同类项法则,计算要仔细,不要出差错。
(5)系数化为1在方程两边都除以未知数的系数a ,得到方程的解x =b/a ,依据等式基本性质2,计算要仔细,分子分母勿颠倒。
要点诠释:理解方程ax=b 在不同条件下解的各种情况,并能进行简单应用: ①a≠0时,方程有唯一解x =b/a ; ②a=0,b=0时,方程有无数个解; ③a=0,b≠0时,方程无解。
知识点3:列一元一次方程解应用题 1.列一元一次方程解应用题的一般步骤:(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系。
一元一次方程中考试题精选(最新整理)
12.(4 分)如果单项式 2xm+2nyn﹣2m+2 与 x5y7 是同类项,那么 nm 的值是 . 三:解答题 13.荔枝是深圳的特色水果,小明的妈妈先购买了 2 千克桂味和 3 千克糯米糍,共花费 90 元; 后又购买了 1 千克桂味和 2 千克糯米糍,共花费 55 元.(每次两种荔枝的售价都不变) (1)求桂味和糯米糍的售价分别是每千克多少元; (2)如果还需购买两种荔枝共 12 千克,要求糯米糍的数量不少于桂味数量的 2 倍,请设计 一种购买方案,使所需总费用最低.
Hale Waihona Puke 17979
7.某车间有 26 名工人,每人每天可以生产 800 个螺钉或 1000 个螺母,1 个螺钉需要配 2
个螺母,为使每天生产的螺钉和螺母刚好配套.设安排 x 名工人生产螺钉,则下面所列方程
正确的是( )
A.2×1000(26﹣x)=800x B.1000(13﹣x)=800x
C.1000(26﹣x)=2×800x D.1000(26﹣x)=8 00x 二:填空题
8.一件服装的标价为 300 元,打八折销售后可获利 60 元,则该件服装的成本价是 元. 9.王经理到襄阳出差带回襄阳特产﹣﹣孔明菜若干袋,分给朋友们品尝,如果每人分 5 袋,还 余 3 袋;如果每人分 6 袋,还差 3 袋,则王经理带回孔明菜 袋. 10.为了改善办学条件,学校购置了笔记本电脑和台式电脑共 100 台,已知笔记本电脑的台 数比台式电脑的台数的 还少 5 台,则购置的笔记本电脑有 台.
一元一次方程中考试题精选
一:选择题 1.一元一次方程 3x﹣3=0 的解是( )
A.x=1 B.x=﹣1 C.x= D.x=0
一元一次方程常考练习题
一元一次方程常考练习题第一部分:基础题1. 解方程:3x 7 = 112. 解方程:5 2x = 33. 解方程:4x + 8 = 2x 44. 解方程:7x 15 = 2x + 185. 解方程:9 3x = 6x + 3第二部分:进阶题6. 解方程:2(x 3) = 3(x + 2)7. 解方程:5 2(x + 1) = 3x 18. 解方程:4(2x 3) + 7 = 3(3x + 2)9. 解方程:3(x 4) 2(x + 5) = 710. 解方程:6 2(3x 1) = 4(x + 2)第三部分:应用题11. 小明买了3本书和2支笔,共花费50元。
若每本书比每支笔贵5元,求每本书和每支笔的价格。
12. 甲、乙两地相距360公里,两辆汽车同时从甲、乙两地出发,相向而行,3小时后相遇。
若甲车速度比乙车速度快20公里/小时,求两车的速度。
13. 某商店举行打折活动,原价200元的商品打8折后,再减去20元。
求现价。
故障停留了1小时,然后以原速度继续行驶,又行驶了3小时。
求汽车总共行驶的路程。
15. 某班有男生和女生共60人,若男生人数是女生人数的2倍,求男生和女生各有多少人。
第四部分:挑战题16. 已知方程2x 3 = a(x + 1)的解为x = 3,求a的值。
17. 若方程3(x 2) + 4 = b(x + 1)的解为x = 4,求b的值。
18. 方程5 2(x 3) = c(2x + 1)的解为x = 2,求c的值。
19. 若方程4(x 1) 3 = 2(x + d)的解为x = 5,求d的值。
20. 方程k(x 3) + 7 = 2x的解为x = 4,求k的值。
第五部分:图形题21. 在直角坐标系中,点A(2, 3)和点B(x, 5)在同一直线上,求x的值。
22. 若直线y = 2x + b经过点(3, 8),求b的值。
23. 已知直线y = 4x 1与直线y = 2x + c平行,求c的值。
列一元一次方程解应用题中考试题训练
列一元一次方程解应用题中考试题训练1、(2011浙江省舟山)目前“自驾游”已成为人们出游的重要方式.“五一”节,林老师驾轿车从舟山出发,上高速公路途经舟山跨海大桥和杭州湾跨海大桥到嘉兴下高速,其间用了4.5小时;返回时平均速度提高了10千米/小时,比去时少用了半小时回到舟山. (1)求舟山与嘉兴两地间的高速公路路程; (2)两座跨海大桥的长度及过桥费见下表:我省交通部门规定:轿车的高速公路通行费y (元)的计算方法为:5++=b ax y ,其中a (元/千米)为高速公路里程费,x (千米)为高速公路里程(不包括跨海大桥长),b (元)为跨海大桥过桥费.若林老师从舟山到嘉兴所花的高速公路通行费为295.4元,求轿车的高速公路里程费a . 2、(2011安徽)江南生态食品加工厂收购了一批质量为10000千克的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量3倍还多2000千克,求粗加工的该种山货质量. 3、(2011福建福州)植树节期间,两所学校共植树834棵,其中海石中学植树的数量比励东中学的2倍少3棵,两校各植树多少棵?嘉兴舟山东海4、(2011浙江台州)毕业在即,九年级某班为纪念师生情谊,班委决定花800元班会费买两种不同单价的留念册,分别给50位同学和10位任课老师每人一本留做纪念。
其中送给任课老师的留念册的单价比给同学的单价多8元。
请问这两种不同留念册的单价分别为多少元?5、(2011江苏连云港)根据我省“十二五”铁路规划,连云港至徐州客运专线项目建成后,连云港至徐州的最短客运时间将由现在的2小时18分钟缩短为36分钟,其速度每小时将提高260km,求提速后的火车速度.(精确到1km/h)6、(2011山东泰安)某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲、乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲乙两种奖品各买多少件?7、(2011四川绵阳)灾后重建,四川从悲壮走向豪迈.灾民发扬伟大的抗震救灾精神,桂花村派男女村民共15 人到山外采购建房所需的水泥,已知男村民一人挑两包,女村民两人抬一包,共购回15 包.请问这次采购派男女村民各多少人?8、(2011江苏扬州,24,10分)古运河是扬州的母亲河,为打造古运河风光带,现有一段长为180米的河道整治任务由A、B两个工程队先后接力完成。
一元一次方程应用题专题练习
一元一次方程应用题专题(15个)一、年龄问题1.小明今年6年,他爷爷今年72岁,问多少年之后小明年龄是他爷爷年龄的1 4倍?解:设x年后小明的年龄是爷爷的14倍,根据题意得方程为:二、数字问题2.一个两位数它的个位数字比十位数字大3,那么这个两位数可以表示为什么?如果把个位数字和十位数字对调,新的两位数可以表示为什么?(添表格并完成解答过程)解:设这个数的十位数字是x,根据题意得解方程得:答:3.两个连续奇数的和为156,求这两个奇数,设最小的数为x,列方程得4.一个五位数最高位上的数字是2,如果把这个数字移到个位数字的右边,那么所得的数比原来的数的3倍多489,求原数。
5.将连续的奇数1,3,5,7,9…,排成如下的数表:(1)十字框中的五个数的平均数与15有什么关系?(2)若将十字框上下左右平移,可框住另外的五个数,这五个数的和能等于315吗?若能,请求出这五个数;若不能,请说明理由.三、日历时钟问题6、你能在日历中圈出2×2的一个正方形,使得圈出的4个数之和是77吗?如果能,求出这四天分别是几号?如果不能,请说明理由.7、在6点和7点间,时钟分针和时针重合?四、几何等量变化问题(等周长变化,等体积变化)常用公式:三角形面积=,正方形面积圆的面积,梯形面积矩形面积柱体体积椎体体积球体体积8、已知一个用铁丝折成的长方形,它的长为9cm,宽为6cm,把它重新折成一个宽为5cm的长方形,则新的长方形的宽是多少?设新长方形长为xcm,列方程为9、将棱长为20cm的正方体铁块没入盛水量筒中,已知量筒底面积为12cm2,问量筒中水面升高了多少cm?10、如图所示,两个长方形重叠部分的面积相当于大长方形面积的六分之一,相当于小长方形面积的四分之一,阴影部分的面积为224cm2,求重叠部分面积。
11、如图是两个圆柱体的容器,它们的半径分别是4cm和8cm,高分别为16cm 和10cm,先在第一个容器中倒满水,然后将其全部倒入第二个容器中。
一元一次方程中考练习题
一元一次方程中考练习题一、选择题1. 已知方程3x 5 = 2x + 8,则x的值为()。
A. 13B. 21C. 5D. 62. 若方程5(x 2) = 3(2x + 1)的解为x = a,则a的值为()。
A. 7B. 3C. 7D. 33. 方程2(x 3) + 4 = 3(x + 1)的解是()。
A. 1B. 2C. 3D. 44. 下列方程中,x的值等于5的是()。
A. 3x 15 = 0B. 2x + 10 = 20C. 4x 20 = 0D. 5x 25 = 0二、填空题1. 方程3x 7 = 11的解为x = ______。
2. 若方程4(x 2) + 8 = 2(x + 3)的解为x = a,则a = ______。
3. 方程5x 3 = 2x + 7中,x的值为______。
4. 已知方程2(x 3) + 4 = 3(x 1)的解为x = a,则a + 5 =______。
三、解答题1. 解方程:4x 8 = 3x + 7。
2. 解方程:5(x 2) + 10 = 2(x + 4)。
3. 解方程:3(2x 1) 4 = 2(3x + 2)。
4. 解方程:7(x 3) + 21 = 4(x + 2)。
5. 解方程:6x 9 = 5 2(x 1)。
6. 解方程:2(x + 3) 4 = 3(x 1) + 5。
7. 解方程:4(x 2) + 8 = 3(x + 1) 2。
8. 解方程:5x 3(2x 1) = 7 2(x + 2)。
四、应用题1. 小华的年龄比小明大3岁,两人的年龄之和为39岁。
求小华和小明的年龄。
2. 甲、乙两地相距120公里,一辆汽车从甲地开往乙地,速度为60公里/小时。
求汽车行驶多少小时后,离甲地还有40公里。
3. 某商店举行打折活动,一件衣服原价200元,打八折后售出。
求顾客实际支付了多少钱。
4. 一辆自行车以每小时15公里的速度行驶,行驶了2小时后,又以每小时10公里的速度行驶了3小时。
九年级中考数学复习《一元一次方程》专项练习题-附带答案
九年级中考数学复习《一元一次方程》专项练习题-附带答案一、单选题1.已知|x ﹣1|=3,则x 的值为( ) A .x =4B .x =2或x =﹣4C .x =4或x = -2D .x =﹣32.根据下列条件,能列出方程−13x=6的是( ) A .x 的13是6 B .x 的相反数的3倍是6 C .x 的相反数的13是6D .13与x 的差是63.下列运用等式性质进行的变形,正确的是( ) A .如果a =b ,那么a+c =b ﹣c B .如果a 2=3a ,那么a =3 C .如果a =b ,那么 ac =bcD .如果 ac =bc ,那么a =b4.已知关于x 的方程 3x =x +a 的解与 x+12=x +14的解相同,则a 的值为( )A .1B .−1C .2D .−25.小明在体育器材店中,按标价的八折购买了一双跑步钉鞋,比按标价购买节省了40元,则这双跑步钉鞋的实际售价为( ) A .160元B .180元C .200元D .220元6.随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价a 元后,再次降价20%,现售价为b 元,则原售价为( ) A .(a+ b)元 B .(a + b)元 C .(b+a)元D .(b+a)元7.一项工程,甲单独做需10天完成,乙单独完成需6天完成.现由甲先做2天,乙再加入合做,完成这项工程需多少天?若设完成这项工程共需x 天,依题意可得方程( ) A .x10+x6=1 B .x+210+x−26=1C .x10+x−26=1D .2x +x−210+x−26=18.为配合荆州市“我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠.小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元.若此次小慧同学不买卡直接购书,则她需付款多少元?( ) A .140元B .150元C .160元D .200元二、填空题9.已知关于x的方程:x−2−ax6=x3−1有非负整数解,则整数a的所有可能的值之和为.10.一家商店某种裤子按成本价提高50%后标价,又以八折以后出卖,结果每条裤子获利10元,则是这条裤子的成本是元.11.若关于x的方程(k+2)x2+4kx﹣5k=0是一元一次方程,则k= ,方程的解x= .12.把一批图书分给同学,若每人分3本,则剩下20本,若每人分4本,则还差25本.问有多少同学?若设有x名同学,则可列方程.13.某商品的进货价为每件x元,零售价为每件900元,为了适应市场竞争,商店按零售价的九折降低后再让利40元销售,仍可获利10%(相对于进价),则x=元三、解答题14.解方程(1)8x−4=6x−8;(2)x+12−2=x−34.15.2022年春节来临之际,各大商场都进行了促销活动.某商场将某品牌的电视机按进价提高60%作为标价,然后以“九折酬宾,再返现金200元”的优惠进行促销,结果该品牌电视机每台仍可获利460元.求该品牌电视机每台的进价.16.某同学解方程x+12=2−x4+3的过程如下,请仔细阅读,并解答所提出的问题:解:去分母,得2(x+1)=(2−x)+3.(第一步)去括号,得2x+2=2−x+3.(第二步)移项,得2x+x=2−2+3.(第三步)合并同类项,得3x=3.(第四步)系数化为1,得x=1.(第五步)(1)该同学解答过程从第步开始出错,错误原因是;(2)写出正确的解答过程.17.某开发公司要生产若干件新产品,需要精加工后,才能投放市场,现有红星和巨星两个加工厂都想加工这批产品,已知红星厂单独加工这批产品比巨星厂单独加工这批产品多用20天,红星厂每天可加工16件产品,巨星厂每天可加工24件产品公司每天需付红星厂每天加工费80元,巨星厂每天加工费120元.(1)这个公司要加工多少件新产品?(2)在加工过程中,公司需另派一名工程师每天到厂家进行技术指导,并负担每天5元的午餐补助费,公司制定产品加工方案如下:可由一个厂单独加工完成,也可由两厂合作同时完成,请你帮助公司从所有可供选择的方案中选择一种即省钱,又省时间的加工方案.18.当涂大青山有较为丰富的毛竹资源,某企业已收购毛竹110吨,根据市场信息,将毛竹直接销售,每吨可获利100元;如果对毛竹进行粗加工,每天可加工8吨,每吨可获利1000元;如果进行精加工,每天可加工1.5吨,每吨可获利5000元,由于受条件限制,在同一天中只能采用一种方式加工,并且必须在一个月(30天)内将这批毛竹全部销售、为此研究了两种方案:(1)方案一:将收购毛竹全部粗加工后销售,则可获利元;方案二:30天时间都进行精加工,未来得及加工的毛竹,在市场上直接销售,则可获利元.(2)是否存在第三种方案,将部分毛竹精加工,其余毛竹粗加工,并且恰好在30天内完成?若存在,求销售后所获利润;若不存在,请说明理由.参考答案1.C2.C3.D4.A5.A6.A7.C8.B9.−1910.5011.﹣2;5412.3x+20=4x-2513.70014.(1)解:2x=−4x=−2(2)解:2(x+1)−8=x−32x+2−8=x−3x=3 15.解:设该品牌电视机每台的进价为x元.根据题意,得(1+60%)x×0.9−200−x=460.解得x=1500.答:该品牌电视机每台的进价为1500元.16.(1)一;漏乘不含分母的项(2)解:去分母,得2(x+1)=(2-x)+12去括号,得2x+2=2-x+12移项,得2x+x=2-2+12合并同类项,得3x=12系数化为1,得x=4.17.(1)解:设这个公司要加工x件新产品,由题意得:x16﹣x24=20解得:x=960(件)答:这个公司要加工960件新产品=60天,需要费用为:60×(5+80)=5100元;②由巨星(2)解:①由红星厂单独加工:需要耗时为96016=40天,需要费用为:40×(120+5)=5000元;厂单独加工:需要耗时为96024=24天,需要费用为:24×(80+120+5)=4920元.③由两场厂共同加工:需要耗时为96024+16所以,由两厂合作同时完成时,既省钱,又省时间18.(1)110000;231500(2)解:由已知分析存在第三种方案.设粗加工x天,则精加工(30-x)天,依题意得:8x+1.5×(30-x)=110解得:x=10,30-x=20所以销售后所获利润为:1000×10×8+5000×20×1.5=230000(元)。
初中数学解一元一次方程经典练习题(含答案)
初中数学解一元一次方程经典练习题(含答案)解下列一元一次方程:1、3x+7 =2x+14;2、59 x + 2.5 = 23 x + 2.4;3、6(x+1)+7(x+2)= 8(x+3);4、x=2−x 3 + 2+x 4 ;5、2x +3(21+x )=6x +5(9+x );6、5−x 3 + 6-x = 1−x 2 + 20+x 4 ;7、23 [ x - 15( x +1)]= 14(x+14);8、4+3x−10.7 =2- 2x−30.5 ;9、5(x-2)+6x= 0.8(x+4)-3;10、3x+4(x+1)+5(x+2)=50;11、 13 - 15(16 x -1;12、1= x + x 2 + x 4 + x 6 + x12 ;参考答案1、3x+7=2x+14;解:3x+7=2x+143x-2x=14-7x=7故原方程的解是:x=72、59 x + 2.5 = 23 x + 2.4; 解:59 x + 2.5 = 23 x + 2.4 59 x - 23 x =2.4-2.5 5−2×39 x= -0.1 −19x= -0.1x= -0.9故原方程的解是:x= -0.93、6(x+1)+7(x+2)= 8(x+3);解:6(x+1)+7(x+2)= 8(x+3)6x+6+7x+14 =8x+2413x+20 =8x+2413x-8x=24-205x= 4x= 45故原方程的解是:x= 454、x= 2−x3 + 2+x4;解:x= 2−x3 + 2+x412x =4(2-x)+3(2+x)12x=8-4x+6+3x12x=14-x12x+x =1413x=14x= 1413故原方程的解是:x= 14135、2x +3(21+x)=6x +5(9+x);解:2x +3(21+x)=6x +5(9+x)2x+63+3x =6x+45+5x5x+63 =11x+455x-11x=45-63-6x= -18x=3故原方程的解是:x=36、5−x3 + 6-x = 1−x2+ 20+x4;解:5−x3 + 6-x = 1−x2+ 20+x4等式两边同时乘以124(5-x)+12(6-x)=6(1-x)+3(20+x)20-4x+72-12x =6-6x+60+3x-16x+92 =-3x+66-16x+3x =-92+66-13x= -26x=2故原方程的解是:x=27、23[ x - 15( x +1)]=14(x+14);解:23[ x - 15( x +1)]=14(x+14)等式两边同时乘以128 [ x - 15( x +1)]=3(x+14)8x- 85( x +1)=3x+42- 85( x +1)= 3x-8x+42- 85( x +1)= -5x+42等式两边同时乘以5-8(x+1)=5(-5x+42)-8x-8 =-25x+21025x-8x=210+817x=218x= 21817故原方程的解是:x=218178、4+ 3x−10.7 =2- 2x−30.5 ;解:4+ 3x−10.7 =2- 2x−30.5等式两边同时乘以0.7×0.54×0.7×0.5 +0.5(3x-1)=2×0.7×0.5 -0.7(2x-3)1.4+1.5x-0.5= 0.7-1.4x+2.10.9+1.5x= -1.4x+2.81.5x+1.4x=2.8-0.92.9x= 1.9x= 1929 故原方程的解是:x= 19299、5(x -2)+6x= 0.8(x+4)-3;解:5(x -2)+6x= 0.8(x+4)-35x-10+6x =0.8x+3.2-35x+6x-0.8x =3.2-3+10(5+6-0.8)x=10.210.2x=10.2x=1故原方程的解是:x=110、3x+4(x+1)+5(x+2)=50; 解:3x+4(x+1)+5(x+2)=503x+4x+4+5x+10=503x+4x+5x= 50-4-10(3+4+5)x= 3612x= 36x= 3故原方程的解是:x=311、 13 - 15(16 x -1;解: 13 - 15(16 x -1等号两边同时乘以15 - 15(16 x -1)] = x 等号左边去中括号(16 x -1)=x 等号左边去小括号- 16 x +1=x等号两边同时乘以2430x-4x+24=24x26x+24=24x2x= -24x= -12故原方程的解是:x= -1212、1= x + x2 + x4+ x6+ x12;解:1= x + x2 + x4+ x6+ x12等式两边同时乘以12 12=12x+6x+3x+2x+x12=24xx= 12故原方程的解是:x= 12。
九年级中考数学专题练习解一元一次方程(含解析)
中考数学专题练习-解一元一次方程〔含解析〕一、单项选择题1.式子6+x与x+1的和是31,那么x的值是〔〕A.–12B.12C.13D.–192.解方程时,去分母正确的选项是〔〕A. B. C. D.3.方程3x+6=2x﹣8移项后,正确的选项是〔〕A.3x+2x=6﹣8B.3x﹣2x=﹣8+6C.3x﹣2x=﹣6﹣8D.3x﹣2x=8﹣64.假如x=2是方程x+a=-1的解,那么a的值是〔〕A.0B.2C. -2D. -65.在以下方程中:①3x-16=4;②=8;③6x+7=31;④-3〔x-2〕=x-10.其中解为x=4的方程是〔〕A.①②B.①③C.②④D.③④6.以下方程变形正确的选项是〔〕A.将方程3x﹣2=2x﹣1移项,得3x﹣2x=﹣1﹣2B.将方程3﹣x=2﹣5〔x﹣1〕去括号,得3﹣x=2﹣5x﹣1C.将方程去分母,得2〔x+1〕﹣4=8+〔2﹣x〕D.将方程化系数为1,得x=﹣17.当1﹣〔3m﹣5〕2获得最大值时,关于x的方程5m﹣4=3x+2的解是〔〕A. B. C. - D. -8.y1=,y2=,假设y1+y2=20,那么x=〔〕A. -30B. -48C.48D.309.方程2x=6的解是〔〕A.4B.C.3D.﹣310.以下解方程过程中,变形正确的选项是〔〕A.由2x﹣1=3得2x=3﹣1B.由+1=+1.2得+1=+12C.由﹣75x=76得x=﹣D.由﹣=1得2x﹣3x=611.对任意四个有理数a,b,c,d定义新运算:,=18,那么x=〔〕A.﹣1B.2C.3D.412.关于x的方程2x-3=1的解为〔〕A.-1B.1C.2D. -213.在解方程﹣=1时,去分母正确的选项是〔〕A.3〔x﹣1〕﹣2〔2x+3〕=6B.3x﹣3﹣4x+3=1C.3〔x﹣1〕﹣2〔2x+3〕=1D.3x﹣3﹣4x﹣2=614.方程2x﹣1=3x+2的解为〔〕A.x=1B.x=﹣1C.x=3D.x=﹣3二、填空题15.代数式的值是1,那么k = ________.16.方程x+5=2x﹣3的解是________.17.假设x﹣3与1互为相反数,那么x=________.18.一组数:2,1,3,x,7,﹣9,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b〞,例如这组数中的第三个数“3〞是由“2×2﹣1〞得到的,那么这组数中x 表示的数为________.19.方程3x=5x﹣14的解是x=________.20.假设代数式x+2的值为1,那么x等于________.21.方程﹣2x=1的解为________.三、计算题22.解方程:〔1〕2〔5﹣2x〕=﹣3〔x﹣〕〔2〕23.解以下方程〔1〕2x﹣〔x+10〕=6x〔2〕;24.解以下方程〔1〕7+2x=13〔2〕3x+7=32﹣2x〔3〕2x﹣〔x+10〕=5x+2〔x﹣1〕〔4〕= .25.解方程:3x-2〔x+3〕=6-2x26.解方程:〔1〕10〔x﹣1〕=5〔2〕.27.解方程:﹣3〔x+1〕=9四、解答题28.在梯形面积公式S=〔a+b〕h中,假设S=120,a=12,h=8,求b.29.当x取什么值时,式子与+1的值相等.答案解析部分一、单项选择题1.式子6+x与x+1的和是31,那么x的值是〔〕A.–12B.12C.13D.–19【答案】B【考点】解一元一次方程【解析】【解答】根据题意得:〔6+x〕+〔x+1〕=31,化简得:2x=24,解得:x=12.应选B.【分析】式子6+x与x+1的和是31,即〔6+x〕+〔x+1〕=31,解即可.此题考察解一元一次方程的解法.解一元一次方程常见的思路有通分、移项、左右同乘除等.2.解方程时,去分母正确的选项是〔〕A. B. C. D.【答案】B【考点】解一元一次方程【解析】【分析】方程,要去掉其分母,那么方程两边同时乘以2、3的最小公约数,即乘以6,那么去分母后为3x-6=2〔x-1〕,去括号后得【点评】此题考察分式方程,解答此题需要掌握方程的解法,解分式方程的关键是化分式方程为整式方程,此题护根底题3.方程3x+6=2x﹣8移项后,正确的选项是〔〕A.3x+2x=6﹣8B.3x﹣2x=﹣8+6C.3x﹣2x=﹣6﹣8D.3x﹣2x=8﹣6【答案】C【考点】解一元一次方程【解析】【解答】解:原方程移项得:3x﹣2x=﹣6﹣8.应选C.【分析】此题只要求移项,移项注意变号就可以了.4.假如x=2是方程x+a=-1的解,那么a的值是〔〕A.0B.2C. -2D. -6【答案】C【考点】解一元一次方程【解析】【分析】此题可将x=2代入方程,然后得出关于a的一元一次方程,解方程即可得出a的值.【解答】将x=2代入方程x+a=-1得1+a=-1,解得:a=-2.应选C.【点评】此题考察的是一元一次方程的解法,方程两边可同时减去1,即可解出a的值.5.在以下方程中:①3x-16=4;②=8;③6x+7=31;④-3〔x-2〕=x-10.其中解为x=4的方程是〔〕A.①②B.①③C.②④D.③④【答案】D【考点】解一元一次方程【解析】【分析】把x=4代入各方程,看是否左边等于右边来判断即可.【解答】把x=4代入各方程得:①左边=3×4-16=-2≠4〔右边〕;②左边==2≠右边;③左边=6×4+7=31=右边;④左边=-3×〔4-2〕=-6,右边=4-10=-6,左边=右边.所以其中解为x=4的方程是③④.应选:D.6.以下方程变形正确的选项是〔〕A.将方程3x﹣2=2x﹣1移项,得3x﹣2x=﹣1﹣2B.将方程3﹣x=2﹣5〔x﹣1〕去括号,得3﹣x=2﹣5x﹣1C.将方程去分母,得2〔x+1〕﹣4=8+〔2﹣x〕D.将方程化系数为1,得x=﹣1【答案】C【考点】解一元一次方程【解析】【解答】解:A、将方程3x﹣2=2x﹣1移项,得3x﹣2x=﹣1+2,错误;B、将方程3﹣x=2﹣5〔x﹣1〕去括号,得3﹣x=2﹣5x+5,错误;C、将方程去分母得:2〔x+1〕﹣4=8+〔2﹣x〕,正确;D、将方程x系数化为1,得:x=﹣,错误,故答案为:C【分析】去分母就是等式的两边同时乘以分母的最小公倍数,而且不能漏项。
一元一次方程经典应用题
1. 年龄问题爸爸今年的年龄是儿子年龄的3倍。
再过5年,爸爸的年龄将是儿子年龄的2倍。
问爸爸和儿子现在的年龄分别是多少岁?2. 距离问题一辆汽车以每小时60公里的速度行驶,另一辆汽车以每小时80公里的速度行驶。
如果两车同时从同一地点出发,向相反方向行驶,问经过多少小时后两车相距300公里?3. 工作问题A 完成某项工作需要5天,B 完成同样的工作需要10天。
两人合作完成这项工作需要多少天?4. 商品价格问题某商品原价为100元,现在打8折销售,若销售总额为1200元,则销售了多少件商品?5. 时间与速度问题一名运动员以每分钟100米的速度跑步,另一名运动员以每分钟120米的速度跑步。
如果两人同时同地出发,问经过多少分钟后第一名运动员落后于第二名运动员100米?6. 几何问题一个矩形的长是宽的2倍,其周长为24米。
求这个矩形的长和宽。
7. 投资问题张先生把一部分钱存入银行,年利率为5%,一年后他得到利息200元。
问张先生存入银行的本金是多少元?8. 混合溶液问题一瓶酒精浓度为20%的溶液与另一瓶酒精浓度为50%的溶液混合后,得到一瓶浓度为30%的溶液。
如果两瓶溶液混合后的总量为1000毫升,问每瓶溶液各有多少毫升?9. 工作效率问题甲单独完成某项工程需8天,乙单独完成同样工程需12天。
两人合作完成这项工程需要多少天?10. 行程问题一辆汽车以每小时60公里的速度从A地出发前往B地,出发后1小时,一辆摩托车以每小时90公里的速度从A地出发追赶汽车。
问摩托车多久能追上汽车?11. 销售问题某商品的成本为200元,售价为280元。
如果销售利润为1600元,问销售了多少件商品?12. 时间问题一台机器每分钟加工5个零件,另一台机器每分钟加工8个零件。
如果两台机器同时工作,加工了总共600个零件,问共工作了多少分钟?13. 水池注水问题一个水池的容量为1000升,如果一个水管每分钟可以注入20升水,问需要多少分钟才能将水池注满?14. 利润问题一项工程的成本为10000元,完工后可以获得利润为3000元。
一元一次方程应用题100道(带答案)
初一数学上册一元一次方程应用题100道问题补充:第3章一元一次方程全章综合测试(时间90分钟,满分100分)一、填空题.(每小题3分,共24分)1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.2.若x=-1是方程2x-3a=7的解,则a=_______.3.当x=______时,代数式x-1和的值互为相反数.4.已知x的与x的3倍的和比x的2倍少6,列出方程为________.5.在方程4x+3y=1中,用x的代数式表示y,则y=________.6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.7.已知三个连续的偶数的和为60,则这三个数是________.8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,•则需________天完成.二、选择题.(每小题3分,共30分)9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为().A.0 B.1 C.-2 D.-10.方程│3x│=18的解的情况是().A.有一个解是6 B.有两个解,是±6C.无解D.有无数个解11.若方程2ax-3=5x+b无解,则a,b应满足().A.a≠,b≠3 B.a= ,b=-3C.a≠,b=-3 D.a= ,b≠-312.把方程的分母化为整数后的方程是().13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,•两人同地、同时、同向起跑,t 分钟后第一次相遇,t等于().A.10分B.15分C.20分D.30分14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额().A.增加10% B.减少10% C.不增也不减D.减少1%15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=(•)厘米.A.1 B.5 C.3 D.416.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是().A.从甲组调12人去乙组B.从乙组调4人去甲组C.从乙组调12人去甲组D.从甲组调12人去乙组,或从乙组调4人去甲组17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,•一个队打了14场比赛,负了5场,共得19分,那么这个队胜了()场.A.3 B.4 C.5 D.618.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?()A.3个B.4个C.5个D.6个三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)19.解方程:7(2x-1)-3(4x-1)=4(3x+2)-1 20.解方程:(x-1)- (3x+2)= - (x-1).21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,•这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.•已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.23.据了解,火车票价按“”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:车站名 A B C D E F G H各站至H站里程数(米)1500 1130 910 622 402 219 72 0例如:要确定从B站至E站火车票价,其票价为=87.36≈87(元).(1)求A站至F站的火车票价(结果精确到1元).(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员:•“我快到站了吗?”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).24.某公园的门票价格规定如下表:购票人数1~50人51~100人100人以上票价5元 4.5元4元某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?(2)两班各有多少名学生?(提示:本题应分情况讨论)答案:一、1.32.-3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)3.(点拨:解方程x-1=- ,得x= )4.x+3x=2x-6 5.y= - x6.525 (点拨:设标价为x元,则=5%,解得x=525元)7.18,20,228.4 [点拨:设需x天完成,则x(+ )=1,解得x=4] 二、9.D10.B (点拨:用分类讨论法:当x≥0时,3x=18,∴x=6当x<0时,-3=18,∴x=-6故本题应选B)11.D (点拨:由2ax-3=5x+b,得(2a-5)x=b+3,欲使方程无解,必须使2a-5=0,a= ,b+3≠0,b≠-3,故本题应选D.)12.B (点拨;在变形的过程中,利用分式的性质将分式的分子、•分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)13.C (点拨:当甲、乙两人再次相遇时,甲比乙多跑了800•米,•列方程得260t+800=300t,解得t=20)14.D15.B (点拨:由公式S= (a+b)h,得b= -3=5厘米)16.D 17.C18.A (点拨:根据等式的性质2)三、19.解:原方程变形为200(2-3y)-4.5= -9.5∴400-600y-4.5=1-100y-9.5500y=404∴y=20.解:去分母,得15(x-1)-8(3x+2)=2-30(x-1)∴21x=63∴x=3 21.解:设卡片的长度为x厘米,根据图意和题意,得5x=3(x+10),解得x=15所以需配正方形图片的边长为15-10=5(厘米)答:需要配边长为5厘米的正方形图片.22.解:设十位上的数字为x,则个位上的数字为3x-2,百位上的数字为x+1,故100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171解得x=3答:原三位数是437.23.解:(1)由已知可得=0.12A站至H站的实际里程数为1500-219=1281(千米)所以A站至F站的火车票价为0.12×1281=153.72≈154(元)(2)设王大妈实际乘车里程数为x千米,根据题意,得=66解得x=550,对照表格可知,D站与G站距离为550千米,所以王大妈是在D站或G•站下的车.24.解:(1)∵103>100∴每张门票按4元收费的总票额为103×4=412(元)可节省486-412=74(元)(2)∵甲、乙两班共103人,甲班人数>乙班人数∴甲班多于50人,乙班有两种情形:①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得5x+4.5(103-x)=486解得x=45,∴103-45=58(人)即甲班有58人,乙班有45人.②若乙班超过50人,设乙班x人,则甲班有(103-x)人,根据题意,得4.5x+4.5(103-x)=486∵此等式不成立,∴这种情况不存在.故甲班为58人,乙班为45人.36,2837,28545454654544121dhgghsaqy数学题要细心,慢慢做,要做对。
超经典一元一次方程中考应用题专练
第六章一元一次方程(应用题)专练1. 某石油入口国这个月的石油入口量比上个月减少了5%,因为国际油价上升,这个月入口石油的花费反而比上个月增添了14%.求这个月的石油价钱相对上个月的增添率.2.京津城际铁路将于 2008 年 8 月 1 日开通营运,估计高速列车在北京、天津间单程直抵运转时间为半小时.某次试车时,试验列车由北京到天津的行驶时间比估计时间多用了 6 分钟,由天津返回北京的行驶时间与估计时间同样.假如此次试车时,由天津返回北京比去天津时均匀每小时多行驶40 千米,那么此次试车时由北京到天津的均匀速度是每小时多少千米?解:3. 某足球竞赛的计分规则为胜一场得分,平一场得分,负一场得分.一个队踢场球负场共得分,问这个队胜了几场?4. 芜湖供电公司分时电价履行时段分为平、谷两个时段,平段为8:00~22: 00, 14 小时,谷段为22:00~第二天 8: 00, 10 小时.平段用电价钱在原销售电价基础上每千瓦时上浮0. 03 元,谷段电价在原销售电价基础上每千瓦时下浮元,小明家5月份适用平段电量40 千瓦时,谷段电量60 千瓦时,按分时电价付费元.(1)问小明该月支付的平段、谷段电价每千瓦时各为多少元?(2)如不使用分时电价结算, 5 月份小明家将多支付电费多少元?6.一件商品按成本价提升 20%后标价,又以 9折销售,售价为 270 元,则这件商品的成本价是多少?7.为了增强公民的节水意识,合理利用水资源,某市采纳价风格控手段达到节水的目的.该市自来水收费价钱见价目表.若某户居民 1月份用水8m3,则应收水费:价目表264(86) 20 元.每个月水用量单价3的部分3( 1)若该户居民2月份用水 12.5m 3,不高出 6m 2 元/ m33高出 6m 不高出 10m的部 4 元/ m3则应收水费 ______元;分33( 2)若该户居民3、 4 月份共用水15m3高出 10m 的部分8 元/ m注:水费按月结算.( 4 月份用水量超出 3 月份),共交水费44 元,则该户居民 3 , 4 月份各用水多少立方米?8.2007 年 5 月 19 日起,中国人民银行上浮存款利率.人民币存款利率调整表项目调整前年利率%调整后年利率%活期存款二年期按期存款储户的实得利息利润是扣除利息税后的所得利息,利息税率为20%.( 1)小明于2007 年 5 月 19 日把 3500 元的压岁钱按一年期按期存入银行,到期时他实得利息利润是多少元 ?( 2)小明在此次利率调整前有一笔一年期按期存款,到期时按调整前的年利率%计息,本金与实得利息利润的和为元,问他这笔存款的本金是多少元?( 3)小明爸爸有一张在2007 年 5 月 19 日前存人的10000 元的一年期按期存款单,为获取更大的利息冰箱(含冰柜)数目是彩电数目的倍,求彩电、冰箱、手机三大类产品分别销售多少万台(部)计算获取的政府补助分别为多少万元?11.为了贯彻落实国务院对于促使家电下乡的指示精神,相关部门自2007 年 12 月尾起进行利润,想把这笔存款转存为利率调整后的一年期按期存款.问他能否应当转存?请说明原因.商定:①存款天数按整数天计算,一年按360 天计算利息.②比较利息大小是指从初次存入日开始的一年时间内.获取的利息比较.假如不转存,利息按调整前的一年期按期利率计算;假如转存,转存前已存天数的利息按活期利率计算,转存后,余下天数的利息按调整后的一年期按期利率计算(转存前后本金不变).下乡试点,对彩电、冰箱(含冰柜)、手机三大类产品赐予产品销售价钱13%的财政资本直补数据显示,截止 2008 年 12 月尾 , 试点产品已销售350 万台(部),销售额达50 亿元,与上年比,试点产品家电销售量增添了40%.( 1)求 2007 年同期试点产品类家电销售量为多少万台(部)?( 2)假如销售家电的均匀价钱为:彩电每台1500 元,冰箱每台2000 元, ?手机每部800 销售的冰箱(含冰柜)数目是彩电数目的倍,求彩电、冰箱、手机三大类产品分别销售多少万台请理解题意,关注商定并计算获取的政府补助分别为多少万元?12. 列方程或方程组解应用题:9. 我国政府从 2007 年起对职业中专在校学生赐予生活补助. 每生每年补助 1500 元 . 某市估计 2008 年职业中北京市实行交通管理新举措以来,全市公共交通客运量明显增添.据统计,2008年1专在校生人数是 2007 年的倍,且要在 2007 年的基础上增添投入600 万元 .2008 年该市职业中专在校生有至 2009 年 2 月 28 日时期,地面公交日均客运量与轨道交通日均客运量总和为1696 万人次多少万人,补助多少万元?交日均客运量比轨道交通日均客运量的 4 倍少 69 万人次.在此时期,地面公交和轨道交通日均客运量各为多少万人次?13. 当前我省小学和初中在校生共136 万人,此中小学在校生人数比初中在校生人数的10. 为了贯彻落实国务院对于促使家电下乡的指示精神,相关部门自2007 年 12 月尾起进行了家电下乡试 2 万人,问当前我省小学和初中在校生各有多少万人?点,对彩电、冰箱(含冰柜)、手机三大类产品赐予产品销售价钱13%的财政资本直补.公司数据显示,截至 2008 年 12 月尾 , 试点产品已销售 350万台(部),销售额达 50亿元,与上年同期对比,试点产品家电销售量增添了 40%.( 1)求 2007 年同期试点产品类家电销售量为多少万台(部)?16. 为了防控甲型 H1N1流感,某校踊跃进行校园环境消毒,购置了甲、乙两种消毒液共1( 2)假如销售家电的均匀价钱为:彩电每台1500 元,冰箱每台2000 元, ?手机每部 800 元,已知销售的中甲种 6 元/ 瓶,乙种 9 元/ 瓶.( 1)假如两种消毒液共用780 元,求甲、乙两种消毒液各多少瓶?( 2)校准再次两种消毒液(不包含已的100 瓶),使乙种瓶数是甲种瓶数的 2 倍,且所需..用不多于1200 元(不包含780 元),求甲种消毒液最多能再多少瓶?...17. 在我市某一城市美化工程招,有甲、乙两个工程投.算:甲独达成工程需要60天;若由甲先做 20 天,剩下的工程由甲、乙合做24 天可达成.( 1)乙独达成工程需要多少天?( 2)甲施工一天,需付工程款万元,乙施工一天需付工程款 2 万元.若工程划在70 天内达成,在不超划天数的前提下,是由甲或乙独达成工程省?是由甲乙两全程合作达成工程省?19.某校极推“阳光体育” 工程,本学期在九年11 个班中展开球循比(每个班与其余班分行一比,每班需行10 比).比定:每比都要分出,一得 3 分,一得分.( 1)假如某班在全部的比中只得14 分,那么班数分是多少?( 2)假比束后,甲班得分是乙班的 3 倍,甲班的数不超 5 ,且甲班的数多于乙班,你求出甲班、乙班各了几.参照答案1、解:个月的石油价钱相上个月的增率x .依据意,得(1 x)(15%) 1 14%.解得: x120%.520%.答:个月的石油价钱相上个月的增率2.解:次,由北京到天津的均匀速度是每小x 千米,由天津返回北京的均匀速度每小 (x 40) 千米.1依意,得30 6x1(x40) .3 602解得 x 200 .4答:次,由北京到天津的均匀速度是每小200 千米.53、解:个了,依意得:(解得:(答:个了.(4、 (1) 原售价每千瓦x 元,依据意得:⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分40x 1.2 60x 15.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分∴当,; x 0.25 .答 : 小明家 月支付平段 价 每千瓦 元、谷段 价每千瓦 元.⋯⋯ 6 分(2)100 0.5653 42.73 13.8 ( 元 )答 : 如不使用分 价 算,小明家5月份将多支付元.⋯⋯⋯⋯⋯⋯⋯⋯8 分5、解:( 1)1533 (h)45 (分 ),Q 4542 ,604不可以在限制 内抵达考 .4 分(2)方案 1:先将 4 人用 送到考 ,此外4 人同 步行前去考 ,汽 到考 后返回到与此外4 人的相遇 再 他 到考 .5 分先将 4 人用 送到考 所需15 0.25(h)15 (分 ).6015( km )小 此外4 人步行了 ,此 他 与考 的距离7 分汽 返回 t (h) 后先步行的4 人相遇,5t 60t,解得 t.132.75 h .汽 由相遇点再去考 所需 也是9 分13因此用 一方案送8 人到考 共需 156040.4 42 .213因此 8 个个能在截止 考 的 刻前赶到.10 分方案 2:8 人同 出 , 4 人步行,先将4 人用 送到离出 点xkm 的 A ,而后 4 个人步行前往考 , 回去接 后边的4 人,使他 跟前面 4 人同 抵达考 .6 分由 A 步行前考 需15 x (h) ,5汽 从出 点到A 需x(h) 先步行的 4人走了 5x(km) ,6060 x 11x 汽 返回 t ( h )后与先步行的4 人相遇, 有 60t5tx 5,解得 t,607808 分因此相遇点与考 的距离15 x 6011x 2 x (km) .1513780由相遇点坐 到考 需1 x(h) .4 390因此先步行的 4 人到考 的x11x 1 x (h) ,780 439060先坐 的 4 人到考 的x 15 x (h) ,60 5他 同 抵达, 有x 11x1xx15 x ,解得 x13.60 780 4 390 605将 x13代入上式,可得他 赶到考 所需13 2 37 (分 ).60605Q 37 42 .他 能在截止 考 的 刻前抵达考 .1其余方案没有 算 明可行性的不 分.6、解: 种商品的成本价x 元,依 意得,x(1 20%) 90% 270 ,(4 分)解以上方程,得x 250 .(5 分)答: 种商品的成本价是250 元.(6 分)7、( 1) 收水2 6 4 (10 6)10) 48 元.( 2)当三月份用水不超 6m 3 , 三月份用水xm 3 , 2x 2 64 4 8(15 x 10)解之得 x 4 11,切合 意.当三月份用水超6m 3 ,但不超 10m 3 , 三月份用水 xm 3 ,2 6 4( x6)2 64 4 8(15 10 x)44 解之得 x3 6 (舍去)因此三月份用水4m 3 .四月份用水 11 m 3 .8、解: (1)3500 ×%× 80% =( 元 ) ,∴到期 他 得利息利润是85.68 元.(2)他 笔存款的本金是x 元,x (1+ %× 80% )= ,解得 x =2500,∴ 笔存款的本金是 2500 元.(3)小明爸爸的 笔存款 存前已存了x 天,由 意得l0000 ×x ×% +10000× 360x×% >10000×%,8 分360360解得 x <41 7,9 分1341 天 ;他 存;否 不需 存.10 分当他 笔存款 存前已存天数不超9、( 1) 2007 中 的在校生x 万 人依据 意得: 1500× - 1500x =600⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分解得: x 2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分因此.22.4 万人2.4 1500=3600 万元⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 7 分 答:略 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分10、解:( 1) 2007 年 量 a 万台, a (1+40%)=350 , a =250(万台).( 2 )售 彩x万台,售冰箱3x 万 台 , 售 手 机 (350-5x ) 万 台 . 由 意 得 :221500 x +2000× 3x +800(3505x )=500000 .22解得= 88.x∴35x 130 .x 132 ,35022因此,彩 、冰箱(含冰柜)、手机三大 品分 售 88 万台、 132 万台、 130 万部.∴ 88×1500×13%=17160(万元) ,132×2000×13%=34320(万元) , 130×800×13%=13520(万元) . 得的政府 分 是17160 万元、 34320 万元、 13520 万元.11、解:( 1) 2007 年 量a 万台, a ( 1+40%)=350, a =250(万台).( 2 )售彩x万台 ,售冰 箱 3x 万 台,售手 机( 350-5x )万 台 .由 意 得 :221500 x +2000× 3x +800( 3505x ) =500000.22解得 x = 88.∴3x 132 ,3505x 130 .22因此,彩 、冰箱(含冰柜)、手机三大 品分 售 88 万台、 132 万台、 130 万部.∴ 88×1500×13%=17160(万元) ,132×2000×13%=34320(万元) ,130×800×13%=13520(万元) . 得的政府 分 是17160 万元、 34320 万元、 13520 万元.12、解法一: 道交通日均客运量x 万人次, 地面公交日均客运量 (4 x 69) 万人依 意,得x (4 x 69) 1696 .解得 x353.4x 69 4 353 69 1343 .答: 道交通日均客运量 353 万人次,地面公交日均客运量1 343 万人次.解法二: 道交通日均客运量x 万人次,地面公交日均客运量 y 万人次.x y 1696, 依 意,得y 4 x 69.x 353, 解得y 1343.答: 道交通日均客运量353 万人次,地面公交日均客运量 1 343 万人次.13、解: 初中在校生x 万人,依 意得x (2 x 2) 136解得 x 46于是 2x 2 2 46 2 90 (万人).答:当前我省小学在校生 90 万人,初中在校生46 万人.14、解: 公司今年到台湾采 苹果的成本价钱 x 元 / 公斤依据 意列方程得100000 100000 20000x 2x解得x2.5 是原方程的根.当 , 2x 5答: “三通”前 公司到台湾采 苹果的成本价钱5 元/ 公斤.15、解:设每此中国结的原价为x 元,依据题意得1601602x解得 x 20 .经查验, x 20 是原方程的根. 答:每此中国结的原价为20 元.16、(1)解法一:设甲种消毒液购置x 瓶,则乙种消毒液购置 (100x) 瓶.依题意,得 6x 9(100 x) 780 .解得: x40 .100 x 100 40 60 (瓶).答:甲种消毒液购置 40 瓶,乙种消毒液购置60 瓶.解法二:设甲种消毒液购置x 瓶,乙种消毒液购置 y 瓶.xy ,依题意,得1006x.9 y 780 x,40解得:. y60答:甲种消毒液购置 40 瓶,乙种消毒液购置 60 瓶.( 2)设再次购置甲种消毒液y 瓶,刚购置乙种消毒液 2 y 瓶.依题意,得 6 y 9 2 y ≤ 1200 .解得: y ≤ 50 .答:甲种消毒液最多再购置50 瓶.17、解:( 1)设乙队独自达成需天依据题意,得1 20 (11)24160x60解这个方程,得 =90经查验, =90 是原方程的解∴乙队独自达成需90 天( 2)设甲、乙合作达成需天,则有解得(天)甲独自达成需付工程款为 60×=210(万元)乙独自达成超出计划天数不符题意(若不写此行不扣分) .甲、乙合作达成需付工程款为36( +2) =198(万元)答:在不超出计划天数的前提下,由甲、乙合作达成最省钱.18、解: (1) 设试销时这类苹果的进货价是每千克x 元,依题意,得)1100050002x 解之,得x5经查验, x5 是原方程的解.(2) 试销时进苹果的数目为:5000 1000 5第二次进苹果的数目为: 2×( 千克 )盈余为:2600×7+400×7×- 5000-0( 元 )答:试销时苹果的进货价是每千克5 元,商场在两次苹果销售中共盈余 4160 元.19、解 : ( 1)设该班胜 场,则该班负场.依题意得 : 解之得 :因此该班胜 6 场,负 4 场.( 2)设甲班胜了场,乙班胜了场,依题意有:化简得:即因为是非负整数,且,∴,.因此甲班胜 4 场,乙班胜 3 场.答:( 1)该班胜 6 场,负 4 场.( 2)甲班胜 4 场,乙班胜 3 场.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章一元一次方程(应用题)专练1.某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%.求这个月的石油价格相对上个月的增长率.2.京津城际铁路将于2008年8月1日开通运营,预计高速列车在北京、天津间单程直达运行时间为半小时.某次试车时,试验列车由北京到天津的行驶时间比预计时间多用了6分钟,由天津返回北京的行驶时间与预计时间相同.如果这次试车时,由天津返回北京比去天津时平均每小时多行驶40千米,那么这次试车时由北京到天津的平均速度是每小时多少千米解:3.某足球比赛的计分规则为胜一场得3分,平一场得1分,负一场得0分.一个队踢14场球负5场共得19分,问这个队胜了几场4.芜湖供电公司分时电价执行时段分为平、谷两个时段,平段为8:00~22:00,14小时,谷段为22:00~次日8:00,10小时.平段用电价格在原销售电价基础上每千瓦时上浮0.03元,谷段电价在原销售电价基础上每千瓦时下浮元,小明家5月份实用平段电量40千瓦时,谷段电量60千瓦时,按分时电价付费元.(1)问小明该月支付的平段、谷段电价每千瓦时各为多少元(2)如不使用分时电价结算, 5月份小明家将多支付电费多少元6.一件商品按成本价提高20%后标价,又以9折销售,售价为270元,则这件商品的成本价是多少7. 为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节若某户居民1月份用水38m 264(86)20⨯+⨯-=元.(1)若该户居民2月份用水则应收水费______元;(2)若该户居民3、4(4月份用水量超过3月份)立方米8. 2007年5月19日起,中国人民银行上调存款利率. 人民币存款利率调整表储户的实得利息收益是扣除利息税后的所得利息,利息税率为20%. (1)小明于2007年5月19日把3500元的压岁钱按一年期定期存入银行,到期时他实得利息收益是多少元(2)小明在这次利率调整前有一笔一年期定期存款,到期时按调整前的年利率%计息,本金与实得利息收益的和为元,问他这笔存款的本金是多少元(3)小明爸爸有一张在2007年5月19日前存人的10000元的一年期定期存款单,为获取更大的利息收益,想把这笔存款转存为利率调整后的一年期定期存款.问他是否应该转存请说明理由.约定:①存款天数按整数天计算,一年按360天计算利息.②比较利息大小是指从首次存入日开始的一年时间内.获得的利息比较.如果不转存,利息按调整前的一年期定期利率计算;如果转存,转存前已存天数的利息按活期利率计算,转存后,余下天数的利息按调整后的一年期定期利率计算(转存前后本金不变).9.我国政府从2007年起对职业中专在校学生给予生活补贴.每生每年补贴1500元.某市预计2008年职业中专在校生人数是2007年的倍,且要在2007年的基础上增加投入600万元.2008年该市职业中专在校生有多少万人,补贴多少万元10. 为了贯彻落实国务院关于促进家电下乡的指示精神,有关部门自2007年12月底起进行了家电下乡试点,对彩电、冰箱(含冰柜)、手机三大类产品给予产品销售价格13%的财政资金直补.企业数据显示,截至2008年12月底,试点产品已销售350万台(部),销售额达50亿元,与上年同期相比,试点产品家电销售量增长了40%.(1)求2007年同期试点产品类家电销售量为多少万台(部)(2)如果销售家电的平均价格为:彩电每台1500元,冰箱每台2000元,•手机每部800元,已知销售的冰箱(含冰柜)数量是彩电数量的23倍,求彩电、冰箱、手机三大类产品分别销售多少万台(部),并计算获得的政府补贴分别为多少万元11. 为了贯彻落实国务院关于促进家电下乡的指示精神,有关部门自2007年12月底起进行了家电下乡试点,对彩电、冰箱(含冰柜)、手机三大类产品给予产品销售价格13%的财政资金直补.企业数据显示,截至2008年12月底,试点产品已销售350万台(部),销售额达50亿元,与上年同期相比,试点产品家电销售量增长了40%.(1)求2007年同期试点产品类家电销售量为多少万台(部)(2)如果销售家电的平均价格为:彩电每台1500元,冰箱每台2000元,•手机每部800元,已知销售的冰箱(含冰柜)数量是彩电数量的23倍,求彩电、冰箱、手机三大类产品分别销售多少万台(部),并计算获得的政府补贴分别为多少万元12. 列方程或方程组解应用题:北京市实施交通管理新措施以来,全市公共交通客运量显著增加.据统计,2008年10月11日至2009年2月28日期间,地面公交日均客运量与轨道交通日均客运量总和为1696万人次,地面公交日均客运量比轨道交通日均客运量的4倍少69万人次.在此期间,地面公交和轨道交通日均客运量各为多少万人次13. 目前我省小学和初中在校生共136万人,其中小学在校生人数比初中在校生人数的2倍少2万人,问目前我省小学和初中在校生各有多少万人16. 为了防控甲型H1N1流感,某校积极进行校园环境消毒,购买了甲、乙两种消毒液共100瓶,其中甲种6元/瓶,乙种9元/瓶.(1)如果购买这两种消毒液共用780元,求甲、乙两种消毒液各购买多少瓶(2)该校准备再次..购买这两种消毒液(不包括已购买的100瓶),使乙种瓶数是甲种瓶数的2倍,且所需费用不多于...1200元(不包括780元),求甲种消毒液最多能再购买多少瓶17. 在我市某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙合做24天可完成.(1)乙队单独完成这项工程需要多少天(2)甲队施工一天,需付工程款万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱还是由甲乙两队全程合作完成该工程省钱19. 某校积极推进“阳光体育”工程,本学期在九年级11个班中开展篮球单循环比赛(每个班与其它班分别进行一场比赛,每班需进行10场比赛).比赛规则规定:每场比赛都要分出胜负,胜一场得3分,负一场得1 分.(1)如果某班在所有的比赛中只得14分,那么该班胜负场数分别是多少(2)假设比赛结束后,甲班得分是乙班的3倍,甲班获胜的场数不超过5场,且甲班获胜的场数多于乙班,请你求出甲班、乙班各胜了几场.参考答案1、解:设这个月的石油价格相对上个月的增长率为x.根据题意,得(1)(15)114x+-=+%%.5分解得:1205x==%.答:这个月的石油价格相对上个月的增长率为20%.8分2.解:设这次试车时,由北京到天津的平均速度是每小时x千米,则由天津返回北京的平均速度是每小时(40)x+千米.1分依题意,得3061(40)602x x+=+.3分解得200x=.4分答:这次试车时,由北京到天津的平均速度是每小时200千米.5分3、解:设这个队胜了x场,依题意得:3(145)19x x+--=(4分)解得:5x=(6分)答:这个队胜了5场.(7分)4、(1)设原销售电价为每千瓦时x元,根据题意得: ……………………………1分40(0.03)60(0.25)42.73x x⨯++⨯-=………………………………3分40 1.2601542.73x x ++-= 10042.7313.8x =+0.5653x =. ………………………………4分∴当0.5653x =时,0.030.5953x +=;0.250.3153x -=.答:小明家该月支付平段电价为每千瓦时元、谷段电价每千瓦时元.……6分 (2) 1000.565342.7313.8⨯-=(元)答:如不使用分时电价结算,小明家5月份将多支付元. ……………………8分5、解:(1)1533(h)45604⨯==(分钟),4542>, ∴不能在限定时间内到达考场. 4分(2)方案1:先将4人用车送到考场,另外4人同时步行前往考场,汽车到考场后返回到与另外4人的相遇处再载他们到考场. 5分先将4人用车送到考场所需时间为150.25(h)1560==(分钟). 小时另外4人步行了 1.25km ,此时他们与考场的距离为15 1.2513.75-=(km )7分设汽车返回(h)t 后先步行的4人相遇,56013.75t t +=,解得 2.7513t =. 汽车由相遇点再去考场所需时间也是2.75h 13. 9分所以用这一方案送这8人到考场共需 2.751526040.44213+⨯⨯≈<. 所以这8个个能在截止进考场的时刻前赶到. 10分方案2:8人同时出发,4人步行,先将4人用车送到离出发点km x 的A 处,然后这4个人步行前往考场,车回去接应后面的4人,使他们跟前面4人同时到达考场. 6分由A 处步行前考场需15(h)5x-, 汽车从出发点到A 处需(h)60x 先步行的4人走了5(km)60x⨯, 设汽车返回t (h )后与先步行的4人相遇,则有605560x t t x +=-⨯,解得11780xt =,8分所以相遇点与考场的距离为112156015(km)78013x xx -+⨯=-. 由相遇点坐车到考场需1(h)4390x ⎛⎫-⎪⎝⎭. 所以先步行的4人到考场的总时间为111(h)607804390x x x ⎛⎫++-⎪⎝⎭, 先坐车的4人到考场的总时间为15(h)605x x -⎛⎫+ ⎪⎝⎭,他们同时到达,则有11115607804390605x x x x x-++-=+,解得13x =. 将13x =代入上式,可得他们赶到考场所需时间为1326037605⎛⎫+⨯=⎪⎝⎭(分钟). 3742<.∴他们能在截止进考场的时刻前到达考场. 10分其他方案没有计算说明可行性的不给分.6、解:设这种商品的成本价为x 元,依题意得,270%90%)201(=⨯+x , (4分)解以上方程,得250=x . (5分)答:这种商品的成本价是250元. (6分)7、(1)应收水费264(106)8(12.510)48⨯+⨯-+⨯-=元.(2)当三月份用水不超过36m 时,设三月份用水3m x ,则226448(1510)44x x +⨯+⨯+--= 解之得411x =<,符合题意.当三月份用水超过36m 时,但不超过310m 时,设三月份用水3m x ,则264(6)26448(1510)44x x ⨯+-+⨯+⨯+⨯--=解之得36x =<(舍去)所以三月份用水34m .四月份用水113m .8、解:(1)3500×%×80%=(元),∴到期时他实得利息收益是85.68元. 2分(2)设他这笔存款的本金是x 元,则x (1+%×80%)=,4分解得x =2500,∴这笔存款的本金是2500元.6分(3)设小明爸爸的这笔存款转存前已存了x 天,由题意得 l0000×360x ×%+10000×360360x -×%>10000×%, 8分 解得x <41713, 9分当他这笔存款转存前已存天数不超过41天时;他应该转存;否则不需转存. 10分9、(1)设2007职业中专的在校生为x 万 人根据题意得:1500×-1500x=600 ………………………………………3分 解得:2x = ………………………………5分所以.()2 1.2 2.4⨯=万人()2.415003600⨯=万元 ……………………………7分 答:略. …………………………………8分10、解:(1)2007年销量为a 万台,则a (1+40%)=350,a =250(万台).(2)设销售彩电x 万台,则销售冰箱23x 万台,销售手机(350-25x )万台.由题意得:1500x +2000×x 23+800(35052-x )=500000.解得x =88.∴ 31322x =,53501302x -=.所以,彩电、冰箱(含冰柜)、手机三大类产品分别销售88万台、132万台、130万部.∴ 88×1500×13%=17160(万元),132×2000×13%=34320(万元), 130×800×13%=13520(万元).获得的政府补贴分别是17160万元、34320万元、13520万元.11、解:(1)2007年销量为a 万台,则a (1+40%)=350,a =250(万台).(2)设销售彩电x 万台,则销售冰箱23x 万台,销售手机(350-25x )万台.由题意得:1500x +2000×x 23+800(35052-x )=500000.解得x =88.∴ 31322x =,53501302x -=.所以,彩电、冰箱(含冰柜)、手机三大类产品分别销售88万台、132万台、130万部.∴ 88×1500×13%=17160(万元),132×2000×13%=34320(万元),130×800×13%=13520(万元).获得的政府补贴分别是17160万元、34320万元、13520万元.12、解法一:设轨道交通日均客运量为x 万人次,则地面公交日均客运量为(469)x -万人次.依题意,得(469)1696x x +-=. 解得353x =.4694353691343x -=⨯-=.答:轨道交通日均客运量为353万人次,地面公交日均客运量为1 343万人次.解法二:设轨道交通日均客运量为x 万人次,地面公交日均客运量为y 万人次.依题意,得1696469.x y y x +=⎧⎨=-⎩,解得3531343.x y =⎧⎨=⎩,答:轨道交通日均客运量为353万人次,地面公交日均客运量为1 343万人次.13、解:设初中在校生为x 万人,依题意得(22)136x x+-=解得46x=于是22246290x-=⨯-=(万人).答:目前我省小学在校生为90万人,初中在校生为46万人.14、解:设该公司今年到台湾采购苹果的成本价格为x元/公斤根据题意列方程得100000100000200002x x+=解得 2.5x=经检验 2.5x=是原方程的根.当 2.5x=时,25x=答:实现“三通”前该公司到台湾采购苹果的成本价格为5元/公斤.15、解:设每个中国结的原价为x元,根据题意得16016020.8x x-=解得20x=.经检验,20x=是原方程的根.答:每个中国结的原价为20元.16、(1)解法一:设甲种消毒液购买x瓶,则乙种消毒液购买(100)x-瓶.依题意,得69(100)780x x+-=.解得:40x=.∴1001004060x-=-=(瓶).答:甲种消毒液购买40瓶,乙种消毒液购买60瓶.解法二:设甲种消毒液购买x瓶,乙种消毒液购买y瓶.依题意,得10069780x yx y+=⎧⎨+=⎩,.解得:4060x y =⎧⎨=⎩,.答:甲种消毒液购买40瓶,乙种消毒液购买60瓶.(2)设再次购买甲种消毒液y 瓶,刚购买乙种消毒液2y 瓶.依题意,得6921200y y +⨯≤.解得:50y ≤.答:甲种消毒液最多再购买50瓶.17、解:(1)设乙队单独完成需x 天根据题意,得11120()2416060x ⨯++⨯= 解这个方程,得x =90经检验,x =90是原方程的解 ∴乙队单独完成需90天(2)设甲、乙合作完成需y 天,则有11()16090y += 解得36y =(天)甲单独完成需付工程款为60×=210(万元)乙单独完成超过计划天数不符题意(若不写此行不扣分).甲、乙合作完成需付工程款为36(+2)=198(万元)答:在不超过计划天数的前提下,由甲、乙合作完成最省钱.18、解:(1)设试销时这种苹果的进货价是每千克x 元,依题意,得)11000500020.5x x=⨯+解之,得 x =5经检验,x =5是原方程的解. (2)试销时进苹果的数量为:500010005= 第二次进苹果的数量为:2×=(千克)盈利为: 2600×7+400×7×-5000-=0(元)答:试销时苹果的进货价是每千克5元,商场在两次苹果销售中共盈利4160元.19、解: (1)设该班胜x 场,则该班负)10(x -场.依题意得: 14)10(3=--x x 解之得: 6=x 所以该班胜6场,负4场.(2)设甲班胜了x 场,乙班胜了y 场,依题意有:)]10(3[3)10(3y y x x --=--化简得:53+=x y 即35+=x y 由于y x , 是非负整数,且05x ≤≤,y x > ∴4=x ,3=y .所以甲班胜4场,乙班胜3场.答:(1)该班胜6场,负4场.(2)甲班胜4场,乙班胜3场.。