串联谐振串联补偿装置的分类
论串联谐振与并联谐振区别

论串联谐振与并联谐振区别在电阻、电容、电感串联电路中,出现电源、电压、电流同相位现象、叫做串联谐振,其特点是:电路呈纯电阻性,电源、电压和电流同相位,电抗X等于O,抗阻Z等于电阻R。
此时电路的阻抗最小,电流最大,在电感和电容上可能产生比电源电压大很多倍的高电压,因此串联谐振也称为电压谐振。
谐振电压与原电压叠加,并联谐振:在电阻、电容、电感并联电路中,出现电路端电压和总电流同相位的现象,叫做并联谐振,其特点是:并联谐振时一种完全的补偿,电源无需提供无功功率,只提供电阻所需要的有功功率,谐振时,电路的总电流最小,而支路电流往往大于电路中的总电流,因此,并联谐振也叫电流谐振。
串联谐振和并联谐振区别一1. 从负载谐振方式划分,可以为并联逆变器和串联逆变器两大类型,下面列出串联逆变器和并联逆变器的主要技术特点及其比较:串联逆变器和并联逆变器的差别,源于它们所用的振荡电路不同,前者是用L、R和C串联,后者是L、R和C并联。
(1)串联逆变器的负载电路对电源呈现低阻抗,要求由电压源供电。
因此,经整流和滤波的直流电源末端,必须并接大的滤波电容器。
当逆变失败时,浪涌电流大,保护困难。
并联逆变器的负载电路对电源呈现高阻抗,要求由电流源供电,需在直流电源末端串接大电抗器。
但在逆变失败时,由于电流受大电抗限制,冲击不大,较易保护。
串联谐振和并联谐振区别二(2)串联逆变器的输入电压恒定,输出电压为矩形波,输出电流近似正弦波,换流是在晶闸管上电流过零以后进行,因而电流总是超前电压一φ角。
并联逆变器的输入电流恒定,输出电压近似正弦波,输出电流为矩形波,换流是在谐振电容器上电压过零以前进行,负载电流也总是越前于电压一φ角。
这就是说,两者都是工作在容性负载状态。
(3)串联逆变器是恒压源供电,为避免逆变器的上、下桥臂晶闸管同时导通,造成电源短路,换流时,必须保证先关断,后开通。
即应有一段时间(t )使所有晶闸管(其它电力电子器件)都处于关断状态。
串联谐振电抗器全分类讲解

串联谐振电抗器全分类讲解串联谐振电抗器也叫电感器,一个导体通电时就会在其所占据的一定空间范围产生磁场,所以所有能载流的电导体都有一般意义上的感性。
然而通电长直导体的电感较小,所产生的磁场不强,因此实际的电抗器是导线绕成螺线管形式,称空心电抗器;有时为了让这只螺线管具有更大的电感,便在螺线管中插入铁心,称铁心电抗器。
电抗分为感抗和容抗,比较科学的归类是感抗器(电感器)和容抗器(电容器)统称为电抗器,然而由于过去先有了电感器,并且被称为电抗器,所以现在人们所说的电容器就是容抗器,而电抗器专指电感器。
一、电抗器的作用串联谐振电抗器的接分串联和并联两种方式。
串联电抗器通常起限流作用,并联电抗器经常用于无功补偿。
串联电抗器主要用来限制短路电流,在滤波器中与电容器串联或并联用来限制电网中的高次谐波。
220kV、110kV、35kV、10kV电网中的电抗器是用来吸收电缆线路的充电容性无功的。
可以通过调整并联电抗器的数量来调整运行电压。
超高压并联电抗器有改善电力系统无功功率有关运行状况的多种功能,主要包括:1、轻空载或轻负荷线路上的电容效应,以降低工频暂态过电压;2、改善长输电线路上的电压分布;3、使轻负荷时线路中的无功功率尽可能就地平衡,防止无功功率不合理流动同时也减轻了线路上的功率损失;4、在大机组与系统并列时降低高压母线上工频稳态电压,便于发电机同期并列;5、防止发电机带长线路可能出现的自励磁谐振现象;6、当采用电抗器中性点经小电抗接地装置时,还可用小电抗器补偿线路相间及相地电容,以加速潜供电流自动熄灭,便于采用。
二、电抗器的分类按结构及冷却介质、按接法、按功能、按用途进行分类。
1、按结构及冷却介质:分为空心式、铁心式、干式、油浸式等,例如:干式空心电抗器、干式铁心电抗器、油浸铁心电抗器、油浸空心电抗器、夹持式干式空心电抗器、绕包式干式空心电抗器、水泥电抗器等。
2、按接法:分为并联电抗器和串联电抗器。
3、按功能:分为限流和补偿。
变电所补偿电容器串联电抗器时发生谐振的探讨

c l r c a a zd T e[2q 1¥ pe e t n o e rsl T Pw r rs n d T e p r si e} m nc a pc t w @ s n l e h / aI rv ni f h  ̄ol i e p ee t h emi b mr o i y R. ̄ q 1 o t f c a e e sl
_、 , 几一 一{ v 偿电窖
l 引 言
在 民用建筑 中 , 调 、 空 风机 、 泵 等 变 频 调 速 水 装 置 ,P U S电源 、 急 电源 、 流 电 源柜 等 整 流 装 应 直 置, 以及 日光 灯 电子 镇 流器 等 , 是 非 线性 负 载 . 都 产 生高 次谐 波 , 电网有 污染 同时 , 电 系统 为 对 配
, — 某次 谐波 电流 ( — A) Ⅳ ——谐 波 次数
( )流入 电容 器 的谐 渡 电流 3
根 据 图 1 出等 效 电路 如 图 2 示 , 中 : 绘 所 图
作 者 蒋 晓红 男 16 9 8年生 .90年四川大学 J 工 程帅 19 .
44 一
维普资讯
Ab ta t Th  ̄ o atec u e vc p ctrc mp n ainw t eisra tri tep w rsb tt nfrpa t sr c : elsn y a sdh a a iJ o e st i s r eco h o e u sai o rel c  ̄ o h e n o —
图 1 高改谐波谅 及补偿电 存器接 在同一低压母线
式 中 —— 高 次谐 波次 数
— —
整 流脉 冲次数 。单 相桥 式 为 4, 三相 桥式 为 6
n —— 12 …… , ,, 正整 数
LLC串联谐振全桥DCDC变换器的研究 移相全桥和LLC区别

II
独创性声明
本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作及取得的研 究成果。尽我所知,除文中已经标明引用的内容外,本论文不包含任何其他个人或集 体已经发表或撰写过的研究成果。对本文的研究做出贡献的个人和集体,均已在文中 以明确方式标明。本人完全意识到,本声明的法律结果由本人承担。
学位论文作者签名: 日期: 年 月 日
保密□ ,在_____年解密后适用本授权书。 本论文属于 不保密□。
(请在以上方框内打“√” )
学位论文作者签名: 日期: 年 月 日
指导教师签名: 日期: 年 月 日
1 绪论
1.1 电力电子技术的概况
电力电子技术是电工技术的分支之一, 应用电力电子器件和以计算机为代表的控 制技术对电能特别是大的电功率进行处理和变换是电力电子技术的主要内容[1][2]。 在现代工业、交通、国防、生活等领域中,除变比固定的交流变压器以外,大量 需要其他各种类型的电力变换装置和变换系统,将一种频率、电压、波形的电能变换 为另一种频率、电压、波形的电能,使用电设备处于各自理想的最佳工作情况,或满 足用电负载的特殊工作情况要求,以获得最大的技术经济效益。经过变换处理后再供 用户使用的电能占全国总发电量的百分比值的高低, 已成为衡量一个国家技术进步的 主要标志之一。2000年末,美国发电站生产的40%以上的电能都是经变换或处理后再 提供负载使用,预计到21世纪二、三十年代,美国发电站生产的全部电能都将经变换 或处理后再供负载使用。 当今世界环境保护问题日益严重,广泛采用电力电子技术后,可以节省大量的电 力,这就可以节约大量资源和一次能源,从而改善人类的生活环境。此外,如果在电 力系统的适当位置设置电力变换器或电力补偿器,能显著改善电力系统的运行特性。
电力系统补偿装置分类

电力系统补偿装置分类电力系统补偿装置主要用于对系统中的电参数进行调节和优化,以提高电力系统的稳定性和效率。
根据其工作原理和应用场景,电力系统补偿装置可以分为以下几类:1.静态补偿装置:主要通过连接电容器、电感器等静态元件来实现对系统电参数的调节。
它主要包括无功补偿、降压补偿、升压补偿、无功-有功转换等补偿方式。
静态补偿装置具有体积小、响应速度快、精度高等优点,但无法对频率变化、电压突变等问题进行补偿。
2.动态补偿装置:通过控制电子器件,如IGBT、PWM等,实现对电气系统电参数的精确调节。
主要包括交流传输线的串补偿、交流传输线的并补偿、直流输电线的电压稳定、电力系统稳定控制等技术。
动态补偿装置可以在毫秒级别内进行精确的响应和调节,有效解决电力系统中频率变化、电压波动等问题。
3.谐波补偿装置:通过连接电容、电感等被动元件,或使用谐波滤波器等主动元件,来消除电气系统中的谐波干扰。
谐波补偿装置主要用于电气系统中的非线性负载,如电炉、变频器等设备,能够有效地消除谐波干扰,避免对其他设备的影响。
4.电力质量调节装置:通过对电气系统中的有害电参数进行监测,在出现问题时通过控制电气元件来进行调节,从而实现对电气系统的优化。
主要包括电压调节器、电流平衡器、电能质量综合控制器等。
能够实现对电气系统电流、电压、功率等参数进行准确监测和调节,有效提升电力系统的稳定性和可靠性。
此外,还有一些特定的补偿装置,如无功并联补偿器,主要通过并联电容器来提供无功电流,以提高电网的功率因数,具有调节范围广、响应速度快、无噪音等优点。
以及串联补偿器,一般采用电抗器或电容器串联在负载电路上,以减小谐波、降低谐波压缩比等作用,主要用于短线路和电力负载变化大的场合。
在实际应用中,需要根据电力系统的实际情况和需求选择合适的补偿装置。
最新FACTS串联补偿

2.3 可控串补的基频阻抗
基频阻ห้องสมุดไป่ตู้的表达式:
X TC 1 C S C K 2 ( 2 C ( K s 2 2 1 ) i) n 4 K C ( 2 K c 2 2 1 o ) 2 ( K t sK a n ta )n
式中:
K 为0 工频角频率。
有学者基于TCR的原理,提出可关断晶闸管 控制串联电容器方案(GCSC: GTO controlled series capacitor)。
TCSC最有代表性,常简称可控串补。 P316
2.1 可控串补的结构图
TCSC 的原理接线图
2.2 可控串补的功能
TCSC由于可通过改变晶闸管的触发导通角来连续 地调节串联补偿量,即连续改变串联在线路中的 容抗的大小,甚至可变容抗为感抗,因而为控制 线路中的潮流提供了一种极好的手段。
•
IC
•
Iline
导通角进行精确控制,就可以对
•
IL
TCSC的等值电抗快速、连续、 平滑地调节,从而为系统提供可
控串联补偿。
2.3 可控串补的基频阻抗
由电抗器和电容器组成的并联回路,其等效阻 抗取决于两者的关系。
当电容器容抗小于电抗器感抗时,其等值阻抗 呈容性,且等效容抗值不低于电容器实际容抗。
当电容器容抗大于电抗器感抗时,其等值阻抗 呈感性,且等效电抗值不低于电抗器实际感抗。
一、可控串补概述
4.串联补偿器分类 P307 a.固定串补:断路器投切的电容器或 电抗器; b.静止串补:晶闸管投切或控制的电 容器或电抗器。 c.有源串补:基于DC/AC 换流技术的 补偿器。
b、c皆为FACTS控制器。
谐振

2、并联谐振
发生在线圈和电容并联电路中的谐振称为 并联电路的总电流等于线圈电流的有功 分量,电路呈阻性。 并联谐振时电路呈高 阻抗这一特点被用来 并联谐振的特点: 消除某种谐波。 ①总电流达到最小值。当线圈电阻可以忽略 时,总电流接近于零,电路阻抗接近等于无 限大。
1、串联谐振
发生在RLC串联电路中的谐振称为串联谐振。当电 路中的感抗XL等于容抗XC时,电压和电流的相位差ψ= 0o,电压和电流同相位,功率因数等于1,此时电路发生 谐振。因而发生串联谐振的条件是 ωL=1/ ωC 在电力系统中要避免 无线电和电讯工程常 发生串联谐振,以免出 利用串联谐振 谐振时的特点: 现过大电压损坏线圈、 使微弱信号放大 电容器和其他设备。 ①电路的阻抗Z=R,为一纯电阻,且达到最小值,在电 源电压不变的情况下,电流达到最大值,其值为I=U/R ②电感电压和电容电压相等 UL=UC=IXL=IXC=UXL/R=UXC/R 如果XC=XL≥R,则UL=UC≥U ,所以串联谐振也叫电压 谐振。
②线圈支路和电容支路的电流可能比总电流 大许多倍。因此,并联谐振也称电流谐振。
3、铁磁谐振
电压互感器铁磁谐振常发生在中性点不接地系统中。 谐振常受到的激发原因有两种:一是电源对只带电压互感 器的空母线突然合闸;二是发生单相接地。 谐振的后果:电压互感器会出现很大的励磁涌流,使电 压互感器一次电流增大十几倍,诱发电压互感器过电压 。谐波本身可能是基波、分频或者是高频 谐振现象: 电压互感器发生基波谐振的现象是:两相对地电压升高, 一相降低,或者是两相对地电压降低,一相升高。 电压互感器发生分频谐振的现象是:三相电压同时或依 次轮流升高,电压表指针在同范围内低频(每秒1次左右) 摆动。 谐振时其线电压不变
机组培训系列
串联静止补偿器:GCSC、TSSC、TCSC和SSSC(1)

1 串联补偿目的:阻尼功率振荡
补偿措施反作用于受扰发电机 的加速、减速摆动就可阻尼功 率振荡。即当dδ/dt>0时,增 加输电功率以补偿额外的机械 输入功率;反之,当dδ/dt<0 时,减小输电功率以平衡不足 的机械输入功率;
额定功角δ0,额定功率P0,串补系数k。当dδ/dt>0时,k最大;当 dδ/dt<0时,k为0;Bang-Bang控制方式,适合于阻尼剧烈振荡; 当阻尼轻微功率振荡时,可连续调节k,效果更好。
18
2 变阻抗型串联补偿器:TSSC(直流偏置)
TSSC电流过0时自然关断,电容电压半周波内从0开始上升至最大,又 经半周波下降到0,存在直流偏置分量,为减小浪涌电流,必须在电容 电压过0时才可旁路电容器,开通延时为1个周波; TSSC通过插入、旁路电容能控制串联补偿程度,但不能改变串联电容 补偿的自然特性,有导致SSR的危险,在需要补偿程度较高、有SSR危 险的场合,纯TSSC不能用,但可用于要求响应速度适中的潮流控制和 19 功率振荡阻尼场合。
2 变阻抗型串联补偿器:TCSC(基本思想)
1986年Vithayathil提出TCSC 电网阻抗快速调节方法; 串联补偿电容与TCR并联; 实际常用多个TCSC串联; 感抗远小于容抗时,TCSC可运 行于TSSC投切模式;
X C X L X TCSC X C X L
i t I cos t
1 t I vC t i t dt sin t sin C C
2 变阻抗型串联补偿器:GCSC(基波电压)
GCSC与TCR 有诸多对偶 关系; 电容、电 抗,串联、 并联,电压、 电流,关断、 开通,导纳、 阻抗,…;
串联补偿原理

串联补偿原理
串联补偿原理是指在电路中通过串联电容或串联电感来实现对电路性能的补偿调节,以达到改善电路性能的目的。
串联补偿原理在电子电路设计中起着非常重要的作用,下面将详细介绍串联补偿原理的相关知识。
首先,串联补偿原理的基本概念是通过串联电容或串联电感来调节电路的频率特性。
在电子电路中,由于元件的内部电容、电感等因素,会导致电路的频率响应出现不理想的情况。
为了解决这一问题,可以通过串联补偿的方式来调节电路的频率特性,使其更加符合设计要求。
其次,串联补偿原理的具体实现方式可以分为串联电容补偿和串联电感补偿两种。
串联电容补偿是在电路中串联一个电容元件,通过改变电容的数值来调节电路的频率特性;而串联电感补偿则是在电路中串联一个电感元件,通过改变电感的数值来实现对电路频率特性的调节。
这两种方式都可以有效地改善电路的频率响应。
另外,串联补偿原理在实际电路设计中有着广泛的应用。
比如在放大器电路中,为了避免频率过高时出现的不稳定情况,可以采
用串联补偿的方式来调节放大器的频率响应,使其更加平稳;在滤波电路中,也可以通过串联补偿来调节滤波器的频率特性,使其更加符合设计要求。
最后,需要注意的是在进行串联补偿设计时,需要充分考虑电路的稳定性和相位裕度等因素。
合理选择串联补偿元件的数值和类型,以及合理设计电路的结构,才能够达到最佳的补偿效果。
总之,串联补偿原理是一种重要的电路调节方法,通过串联电容或串联电感来实现对电路频率特性的调节,能够有效地改善电路的性能。
在实际电子电路设计中,合理应用串联补偿原理,可以使电路的性能更加稳定可靠,是电子工程师必备的重要知识之一。
电缆串联谐振装置

电缆串联谐振装置
电缆串联谐振装置是一种在电力系统中广泛使用的装置,用于改善电力系统的直流电阻、电感及电容的等效值,以提高电力系统的稳定性。
在电力系统中,电缆串联谐振装置可以通过改变系统的等效电感和等效电容,对电力系统进行动态调节,从而保障电力系统的稳定运行,减少电力系统的故障发生率,提高电力系统的可靠性和经济性。
电缆串联谐振装置是由电容器、电感器、变压器等器件组成的,可以分为四类:
1、单调谐振装置
单调谐振装置是一种普遍采用的谐振器,它由电容器、电感器和变压器等组成。
当装置的谐振频率与系统的谐振频率相同时,装置能够有效的消除谐振现象,提高系统的稳定性。
正向双调谐振装置与双调谐振装置相似,差别在于其谐振频率与系统谐振频率相同,因此由其效果要好于双调谐振装置。
谐振减缓装置也是一种广泛采用的装置,它可以消除系统中的多种谐振现象,可以有效地减少系统的电磁干扰和电压谐振现象的产生,使系统运行更加稳定可靠。
在适用电网工程中,使用电缆串联谐振装置可以有效的保障电力系统的稳定性,降低系统的故障率,保障电力系统的正常运转。
同时,这种装置运行稳定,使用简单,可靠性高,并且具有较好的经济效益,已被广泛应用于各种电网工程中。
变频串联谐振耐压试验装置系统讲解串联谐振人必看

变频串联谐振耐压试验装置系统讲解|串联谐振人必看变频串联谐振耐压试验装置是什么。
在电阻、电感及电容所组成的串联电路内,当容抗XC与感抗XL相等时,即XC=XL,电路中的电压U与电流I的相位相同,电路呈现纯电阻性,这种现象叫串联谐振。
当电路发生串联谐振时电路的阻抗Z=√R^2 +(XC-XL)^2=R,电路中总阻抗最小,电流将达到最大值。
变频串联谐振耐压试验装置的三大应用高压大电容量设备进行交流耐压试验时,试验变压器容量要求非常大,试验设备笨重,而应用串联谐振原理可以利用电压及容量小得多的设备产生所需的试验电压,满足试验要求。
下面三新电力给大家介绍一下串联谐振试验装置在各个领域的应用。
1.在电缆试验中的应用城乡电网中电缆的大量使用,其故障时有发生。
为保证交联电缆的安全运行,国家电网公司对电缆交接和预防性试验做出了新的规定,用交流耐压试验替代原来的直流耐压试验,以避免直流试验的累积效应对电缆造成损伤。
国际大电网会议(CIGRE)21.09工作组的建议导则提出高压挤包绝缘电缆的现场试验采用DAXZ串联谐振试验系统,频率范围为30~300Hz。
并在1997年发表的题为“高压橡塑电缆系统敷设后的试验”的总结报告中明确指出以下3条。
①由于直流电场强度按电阻率分布,而电阻率受温度等影响较大,同时耐压试验过程中,终端头的外部闪络引起的行波可能造成绝缘损坏。
②直流耐压试验在很高电压下,难以检出相间的绝缘缺陷。
③直流电压本身容易在电缆内部集起空间电荷,引起电缆附件沿绝缘闪络,因波过程还会产生过电压,这些现象迭加在一起,使局部电场增强,容易形成绝缘弱点,在试验过程中可能导致绝缘击穿,并可能在运行中引起事故。
很多电缆在交接试验中按GB50150-2006标准进行直流耐压试验顺利进行,但投运不久就发生绝缘击穿事故,正常运行的电缆被直流耐压试验损坏的情况也时有发生。
交流耐压试验因其电场分布符合运行实际情况,故对电缆的试验最为有效。
串联谐振装置的四个部件都有哪些作用?

串联谐振装置的四个部件都有哪些作用?
华天电力为大家介绍变频串联谐振系统的组成部件共有四种,分别是变频电源、励磁变压器、电容分压器以及高压电抗器四种构件。
一、变频电源
工业用电和生活用电的电压分别为380V和220V,频率为50hz,变频串联谐振的电源将这两种电流的电流调整为电压和电流可以连续调整的电流,并且具有除此之外的的四种功能于一体,可以同时进行操作、保护、控制和监测等四项功能。
二、励磁变压器
具有和变压器相同的的功能,作用就是在谐振电路中升高变频电源输出的电压,也可以根据实验进程设置电压的改变量。
另外还可以将高压和低压隔离开,可以使试验和生产有序不紊的进行。
三、高压电抗器
对变频串联谐振系统的电压波形起到改善作用,可以将整个系统的功率因数大幅提升。
同时也是与容性试品共同发生谐振作用的重要构件。
四、分压器
这个部件在整个变频串联谐振系统中同样具有非常重要的作用,主要功能就是测量调节器上的高压最高值和低压,正是由于分压器的存在可以使试验和生产过程变得安全透明。
变频串联谐振系统能够完成实验或生产工作离不开这几个组成部分的完美结合,每一个器械的功能作用都是必不可少的。
所以不管是变频电源还是励磁变压器等都是变频串联谐振的核心部件,也只有这四个组成部分同时,这个系统才能顺利的进行试验和生产工作。
串联谐振以及并联谐振原理概述

串联谐振的特点
串联谐振时,电流最大,电压最小。 串联谐振时,电感与电容上的电压相等,且等于电源电压的Q倍(Q为品质因数)。
串联谐振时,电路的阻抗最小,因此电流最大。
串联谐振的应用
在电力系统中,串联 谐振可以用于无功补 偿和滤波。
在测量和科学实验中, 串联谐振可以用于频 率测量和电信号处理。
在无线电和电子设备 中,串联谐振可以用 于调频和调相。
并联谐振电路
当输入信号的频率等于电 路的固有频率时,电路发 生谐振,此时电路的阻抗 最大,电流最小。
联系
两者都是利用了电路的感 抗和容抗相互抵消的原理, 从而实现谐振。
应用场景的区别与联系
串联谐振电路
联系
常用于信号源的滤波、放大和选频等 场合。
两者在某些应用场景中可以相互替代, 但在其他应用场景中各有优劣。
品质因数Q值高,电路呈现纯 电阻性。
电路中无功功率Q=0,有功功 率P=I^2R。
并联谐振的应用
在无线电和电子工程中,并联谐振常 用于选择特定频率的信号,如调谐放 大器和调频器等。
在电力系统中,并联谐振可导致电压 或电流的波动,影响系统的稳定性和 安全性,因此需要采取措施避免或抑 制并联谐振的发生。
并联谐振
在并联谐振电路中,电感和电容的阻抗相等,相互补偿,使得整个电路呈现纯电阻性。此时,电路的 阻抗最大,电流最小。并联谐振在电子设备和电力系统中也有着广泛的应用,如用的展望
串联谐振与并联谐振在电子设备和电 力系统中有着广泛的应用前景。随着 科技的发展,串联谐振和并联谐振的 应用领域将不断扩大,如新能源、物 联网等新兴领域。
03
串联谐振与并联谐振的区别与联系
电路结构上的区别与联系
01
2.4 谐振补偿电路原理

谐振补偿电路是一种用于提高电力系统中传输线路效能的电路。
它通过在传输线路两端串联或并联一个谐振电感或电容,以达到补偿线路的电抗功率和改善系统的功率因数。
谐振补偿电路的原理如下:
1. 谐振频率选择:根据传输线路的特性和需要补偿的电抗类型(电感或电容),选择合适的谐振频率。
2. 串联谐振补偿电路:如果传输线路需要补偿电感,则在线路两端串联一个谐振电感。
在谐振频率附近,该电感的电抗与线路电感相消,从而降低或消除电抗。
这样可以提高传输线路的功率传输能力,并改善系统的功率因数。
3. 并联谐振补偿电路:如果传输线路需要补偿电容,则在线路两端并联一个谐振电容。
在谐振频率附近,该电容的电抗与线路电容相消,从而降低或消除电抗。
这样可以提高传输线路的功率传输能力,并改善系统的功率因数。
4. 控制谐振补偿电路:为了确保谐振补偿电路在正确的频率上工作,可以加入控制电路,可根据系统的变化自动调节谐振频率。
例如,通过使用变压器的磁感应耦合或使用控制电容器的电容值来实现。
总之,谐振补偿电路利用谐振频率的特性,通过串联或并联谐振元件来抵消传输线路的电抗,从而提高功率传输能力和改善功率因数。
这样可以减少电力系统中的无效功率损耗,提高能源效率,并改善电力系统的稳定性和可靠性。
并联谐振和串联谐振的区别

并联谐振和串联谐振的区别
并联谐振是⼀种完全的补偿,电源⽆需提供⽆功功率,只提供电阻所需要的有功功率。
谐振时,电路的总电流最⼩,⽽⽀路的电流往往⼤于电路的总电流,因此,并联谐振也称为电流谐振。
串联谐振是⼀种电路性质。
同时也是串联谐振试验装置。
串联谐振产品优点
1.所需电源容量⼤⼤减⼩。
系列串联谐振试验装置是利⽤谐振电抗器和被试品电容产⽣谐振,从⽽得到所需⾼电压和⼤电流的,在整个系统中,电源只需要提供系统中有功消耗的部分,因此,试验所需的电源功率只有试验容量的1/Q倍(Q为品质因素)。
2.设备的重量和体积⼤⼤减⼩。
串联谐振电源中,不但省去了笨重的⼤功率调压装置和普通的⼤功率⼯频试验变压器,⽽且,谐振激磁电源只需试验容量的1/Q,使得系统重量和体积⼤⼤减⼩,⼀般为普通试验装置的1/5~1/10。
3.改善输出电压波形。
谐振电源是谐振式滤波电路,能改善输出电压的波形畸变,获得很好的正弦波,有效地防⽌了谐波峰值引起的对被试品的误击穿。
4.防⽌⼤的短路电流烧伤故障点。
在谐振状态,当被试品的绝缘弱点被击穿时,电路⽴即脱谐(电容量变化,不满⾜谐振条件),回路电流迅速下降为正常试验电流的1/Q。
⽽采⽤并联谐振或者传统试验变压器的⽅式进⾏交流耐压试验时,击穿电流⽴即上升⼏⼗倍,两者相⽐,短路电流与击穿电流相差数百倍。
所以,串联谐振能有效地找到绝缘弱点,⼜不存在⼤的短路电流烧伤故障点的忧患。
5.不会出现任何恢复过电压。
被试品发⽣击穿闪络时,因失去谐振条件,⾼电压也⽴即消失,电弧⽴刻熄灭,装置的保护回路动作,切断输出。
电力电容器、电抗器的分类及作用

电容补偿柜中避雷器的作用电源供给负载的电流中,含有 1.有功电流 2.无功电流(分感性无功和容性无功) 都要流过二者之间的导线,并有一点损耗(被导线损耗掉的)有功电流,不断的被负载消耗掉,用于做功,比如机械装置的转动等其他能量形式无功电流,不断的与电源交换能量,用于为有功的能量转换建立必要的磁场,但是建立的磁场所需只是和电源交换,理论上并没有消耗现在通过电容器补偿,感性负载就可以和电容器相互交换这个能量了就不用再向电源额外的索取了这样导线上的电流就减少了,损耗减少了,导线所占的压降也减小了,电网末端的电压升高了电源的负担也就减少了,有能力做其他需要做的事情了,相当于电源出力增加了整体上看电容器和感性负载,等效为一个功率因数很高的负载电力电容器的作用及允许运行方式电力电容器分为串联电容器和并联电容器,它们都改善电力系统的电压质量和提高输电线路的输电能力,是电力系统的重要设备。
1. 电力电容器的作用1)串联电容器的作用串联电容器串接在线路中,其作用如下:(1)提高线路末端电压。
串接在线路中的电容器,利用其容抗xc补偿线路的感抗xl,使线路的电压降落减少,从而提高线路末端(受电端)的电压,一般可将线路末端电压最大可提高10%~20%。
(2)降低受电端电压波动。
当线路受电端接有变化很大的冲击负荷(如电弧炉、电焊机、电气轨道等)时,串联电容器能消除电压的剧烈波动。
这是因为串联电容器在线路中对电压降落的补偿作用是随通过电容器的负荷而变化的,具有随负荷的变化而瞬时调节的性能,能自动维持负荷端(受电端)的电压值。
(3)提高线路输电能力。
由于线路串入了电容器的补偿电抗xc,线路的电压降落和功率损耗减少,相应地提高了线路的输送容量。
(4)改善了系统潮流分布。
在闭合网络中的某些线路上串接一些电容器,部分地改变了线路电抗,使电流按指定的线路流动,以达到功率经济分布的目的。
(5)提高系统的稳定性。
线路串入电容器后,提高了线路的输电能力,这本身就提高了系统的静稳定。
串联谐振补偿电容

串联谐振补偿电容
串联谐振补偿电容,也称为串联谐振电容器,是一种电容器,用于串联谐振电路中,以补偿电路的电感元件所产生的谐振频率的漂移或不准确性。
在串联谐振电路中,电感元件和电容元件串联在一起,形成一个电路谐振回路。
这个电路的谐振频率取决于电感元件和电容元件的数值,而电感元件的数值可能受到环境因素的影响而发生变化,导致谐振频率的漂移。
为了解决这个问题,可以在电路中加入一个串联谐振补偿电容,以调整电路的谐振频率,使其保持稳定。
串联谐振补偿电容的数值应该与电路中的电感元件数值相对应,以达到最佳的补偿效果。
同时,它的电压等级也需要足够高,以承受电路中的高电压。
总之,串联谐振补偿电容在串联谐振电路中扮演着重要的角色,能够有效地提高电路的稳定性和性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
串联谐振串联补偿装置的分类
在输电线路上采用串联补偿装置( 以下简称“串补装置”)来提高系统的稳定输送容量,改善线路电器参数,实现2条线路输送3 条线路的功率,既提高了传输功率又节省了投资。
串补用的电容器通常有2种:外熔丝电容器及内熔丝电容器。
外熔丝电容器是熔丝装置安装在电容器单元的外部。
IEC标准规定外熔丝的熔断电流应是所保护的电容器额定电流的1.43倍以上,一般取1.5倍。
变频串联谐振耐压试验装置,作为串补用的电容器还需要考虑电容器组两端短路放电时熔丝不被熔断,否则在系统发生故障而串补电容器组退出运行时,旁路间隙或分路开关旁路电容器组时会使电容器组的外熔丝动作。
内熔丝电容器是每相电容器组由320台电容器单元组成。
变频串联谐振耐压试验装置,该电容器是油浸全膜电容器,实际设计的电场强度为170V/um。
电容器组的保护水平为2.3pu,保护电压为230。
熔丝熔断对电容器元件的影响
由于电容器单元的熔丝被熔断后的恢复电压较高,熔丝的制造相对比较困难。
采用内熔丝的电容器的熔丝安装在电容器的内部,每个电容器元件都有相应的熔丝。
当某个电容器元件发生故障时,只是该电容器元件的熔丝熔断,切除该电容器元件。
故障电容器元件被切除后,该电容器单元仍然可以正常运行。
变频串联谐振耐压试验装置,损失的电容器容量较小,按电容器组设计例子,电容器单元只损失1/52 的容量。
运行经验表明,内熔丝电容器单元中单个元件的损坏,不会进一步扩大元件的故障。
这是因为元件的额定电流较小,熔丝被熔断时的恢复电压较低,熔丝动作速度相对较快,熔断的副产物不多,不会对单元中其他元件的运行造成危害.采用内熔丝电容器组的主要缺点:A.内熔丝不保护电容器单元的端子与其外壳之间的故障,若发生这类故障,就需要靠电容器组不平衡保护来旁通电容器组。
实际的经验表明这类故障发生的概率是非常低的。
B.电容器元件或电容器单元发生故障时,不能直观到,必须用专用的仪器定期进行测量才能发现。
由于元件的故障是随机分布在各个电容器单元中,因此该电容器元件的故障概率非常低。
通过500KV安装串联补偿装置的运行实践,实现了提高长线路的稳定输送容量,改善了并联线路之间的负荷分配,降低了线路损耗,有效地提高了电压质量。
变频串联谐振耐压试验装置,对这套串联补偿装置实现了有效的操作与控制,它的使用具有明显的经济效益和社会效益。
但是由于超高压线路使用串联补偿装置为数不多,运行经验、检修经验不成熟,因此若装置中选择带部分可控串联补偿方式,对系统发生故障后消除振荡更为有益。