北师大版九年级数学上册-第一章-特殊的平行四边形-单元测试题(有答案)
北师大九年级上《第1章特殊平行四边形》单元测试含答案解析
《第1章 特殊平行四边形》一、选择题1.平行四边形ABCD 中,AC 、BD 是两条对角线,如果添加一个条件,即可推出平行四边形ABCD 是矩形,那么这个条件是( )A .AB=BCB .AC=BDC .AC ⊥BD D .AB ⊥BD2.在平面直角坐标系中,正方形A 1B 1C 1D 1、D 1E 1E 2B 2、A 2B 2C 2D 2、D 2E 3E 4B 3、A 3B 3C 3D 3…按如图所示的方式放置,其中点B 1在y 轴上,点C 1、E 1、E 2、C 2、E 3、E 4、C 3…在x 轴上,已知正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O=60°,B 1C 1∥B 2C 2∥B 3C 3…则正方形A 2015B 2015C 2015D 2015的边长是( )A .()2014B .()2015C .()2015 D .()2014二、填空题 3.如图,▱ABCD 的对角线相交于点O ,请你添加一个条件 (只添一个即可),使▱ABCD 是矩形.4.如图,在正方形ABCD 的外侧,作等边△ADE ,则∠BED 的度数是 .5.如图,正方形ABCD 的边长为1,以对角线AC 为边作第二个正方形,再以对角线AE 为边作第三个正方形AEGH ,如此下去,第n 个正方形的边长为 .6.如图,在正方形ABCD 中,点F 为CD 上一点,BF 与AC 交于点E .若∠CBF=20°,则∠AED 等于 度.7.边长为1的一个正方形和一个等边三角形如图摆放,则△ABC 的面积为 .8.如图,点E 在正方形ABCD 的边CD 上.若△ABE 的面积为8,CE=3,则线段BE 的长为 .9.正方形OA 1B 1C 1、A 1A 2B 2C 2、A 2A 3B 3C 3,按如图放置,其中点A 1、A 2、A 3在x 轴的正半轴上,点B 1、B 2、B 3在直线y=﹣x+2上,则点A 3的坐标为 .10.已知E 是正方形ABCD 的对角线AC 上一点,AE=AD ,过点E 作AC 的垂线,交边CD 于点F ,那么∠FAD= 度.11.如图,要使平行四边形ABCD 是矩形,则应添加的条件是 (只填一个).12.如图,正方形ABCD 的边长为a ,在AB 、BC 、CD 、DA 边上分别取点A 1、B 1、C 1、D 1,使AA 1=BB 1=CC 1=DD 1=a ,在边A 1B 1、B 1C 1、C 1D 1、D 1A 1上分别取点A 2、B 2、C 2、D 2,使A 1A 2=B 1B 2=C 1C 2=D 1D 2=A 1B 2,….依次规律继续下去,则正方形A n B n C n D n 的面积为 .13.如图,▱ABCD 中,AB >AD ,AE ,BE ,CM ,DM 分别为∠DAB ,∠ABC ,∠BCD ,∠CDA 的平分线,AE 与DM 相交于点F ,BE 与CM 相交于点N ,连接EM .若▱ABCD 的周长为42cm ,FM=3cm ,EF=4cm ,则EM= cm ,AB= cm .三、解答题14.如图,在△ABC 中,AB=BC ,BD 平分∠ABC .四边形ABED 是平行四边形,DE 交BC 于点F ,连接CE .求证:四边形BECD 是矩形.15.如图,在平面直角坐标系中,点A(2,n),B(m,n)(m>2),D(p,q)(q<n),点B,D在直线y=x+1上.四边形ABCD的对角线AC,BD相交于点E,且AB∥CD,CD=4,BE=DE,△AEB 的面积是2.求证:四边形ABCD是矩形.16.如图,在△ABC中,AB=AC,点D(不与点B重合)在BC上,点E是AB的中点,过点A作AF∥BC交DE延长线于点F,连接AD,BF.(1)求证:△AEF≌△BED.(2)若BD=CD,求证:四边形AFBD是矩形.17.正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A按顺时针方向旋转,记旋转角∠DAG=α,其中0°≤α≤180°,连结DF,BF,如图.(1)若α=0°,则DF=BF,请加以证明;(2)试画一个图形(即反例),说明(1)中命题的逆命题是假命题;(3)对于(1)中命题的逆命题,如果能补充一个条件后能使该逆命题为真命题,请直接写出你认为需要补充的一个条件,不必说明理由.18.如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE.(1)求证:BE=CE.(2)求∠BEC的度数.19.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.20.在平面直角坐标系xOy中,直线y=﹣x+3与x轴、y轴分别交于A、B,在△AOB内部作正方形,使正方形的四个顶点都落在该三角形的边上,求正方形落在x轴正半轴的顶点坐标.21.如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.22.已知在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,四边形ADBE是平行四边形.(1)求证:四边形ADBE是矩形;(2)求矩形ADBE的面积.23.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.24.如图,在梯形ABCD中,AD∥BC,点E是BC的中点,连接AC,DE,AC=AB,DE∥AB.求证:四边形AECD是矩形.25.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE ⊥AN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.26.如图,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.(1)求证:△ADE≌△CBF;(2)求证:四边形BFDE为矩形.27.如图,在正方形ABCD中,点P在AD上,且不与A、D重合,BP的垂直平分线分别交CD、AB于E、F两点,垂足为Q,过E作EH⊥AB于H.(1)求证:HF=AP;(2)若正方形ABCD的边长为12,AP=4,求线段EQ的长.28.如图,在梯形ABCD中,AD∥BC,∠ADC=90°,∠B=30°,CE⊥AB,垂足为点E.若AD=1,AB=2,求CE的长.29.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.30.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.《第1章 特殊平行四边形》参考答案与试题解析一、选择题1.平行四边形ABCD 中,AC 、BD 是两条对角线,如果添加一个条件,即可推出平行四边形ABCD 是矩形,那么这个条件是( )A .AB=BCB .AC=BDC .AC ⊥BD D .AB ⊥BD【考点】矩形的判定;平行四边形的性质.【专题】证明题;压轴题.【分析】根据对角线相等的平行四边形是矩形判断.【解答】解:A 、是邻边相等,可得到平行四边形ABCD 是菱形,故不正确;B 、是对角线相等,可推出平行四边形ABCD 是矩形,故正确;C 、是对角线互相垂直,可得到平行四边形ABCD 是菱形,故不正确;D 、无法判断.故选B .【点评】本题主要考查的是矩形的判定定理.但需要注意的是本题的知识点是关于各个图形的性质以及判定.2.在平面直角坐标系中,正方形A 1B 1C 1D 1、D 1E 1E 2B 2、A 2B 2C 2D 2、D 2E 3E 4B 3、A 3B 3C 3D 3…按如图所示的方式放置,其中点B 1在y 轴上,点C 1、E 1、E 2、C 2、E 3、E 4、C 3…在x 轴上,已知正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O=60°,B 1C 1∥B 2C 2∥B 3C 3…则正方形A 2015B 2015C 2015D 2015的边长是( )A .()2014B .()2015C .()2015D .()2014【考点】正方形的性质.【专题】压轴题;规律型.【分析】利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.【解答】方法一:解:如图所示:∵正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O=60°,B 1C 1∥B 2C 2∥B 3C 3…∴D 1E 1=B 2E 2,D 2E 3=B 3E 4,∠D 1C 1E 1=∠C 2B 2E 2=∠C 3B 3E 4=30°,∴D 1E 1=C 1D 1sin30°=,则B 2C 2=()1,同理可得:B 3C 3==()2,故正方形A n B n C n D n 的边长是:()n ﹣1.则正方形A 2015B 2015C 2015D 2015的边长是:()2014. 故选:D .方法二:∵正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O=60°,∴D 1E 1=B 2E 2=,∵B 1C 1∥B 2C 2∥B 3C 3…∴∠E 2B 2C 2=60°,∴B 2C 2=, 同理:B 3C 3=×=…∴a 1=1,q=,∴正方形A 2015B 2015C 2015D 2015的边长=1×.【点评】此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键.二、填空题3.如图,▱ABCD的对角线相交于点O,请你添加一个条件AC=BD (只添一个即可),使▱ABCD 是矩形.【考点】矩形的判定;平行四边形的性质.【专题】开放型.【分析】根据矩形的判定定理(对角线相等的平行四边形是矩形)推出即可.【解答】解:添加的条件是AC=BD,理由是:∵AC=BD,四边形ABCD是平行四边形,∴平行四边形ABCD是矩形,故答案为:AC=BD.【点评】本题考查了矩形的判定定理的应用,注意:对角线相等的平行四边形是矩形,此题是一道开放型的题目,答案不唯一.4.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是45°.【考点】正方形的性质;等边三角形的性质.【分析】根据正方形的性质,可得AB与AD的关系,∠BAD的度数,根据等边三角形的性质,可得AE与AD的关系,∠AED的度数,根据等腰三角形的性质,可得∠AEB与∠ABE的关系,根据三角形的内角和,可得∠AEB的度数,根据角的和差,可得答案.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°.∵等边三角形ADE,∴AD=AE,∠DAE=∠AED=60°.∠BAE=∠BAD+∠DAE=90°+60°=150°,AB=AE,∠AEB=∠ABE=(180°﹣∠BAE)÷2=15°,∠BED=∠DAE﹣∠AEB=60°﹣15°=45°,故答案为:45°.【点评】本题考查了正方形的性质,先求出∠BAE的度数,再求出∠AEB,最后求出答案.5.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为()n﹣1.【考点】正方形的性质.【专题】压轴题;规律型.【分析】首先求出AC、AE、HE的长度,然后猜测命题中隐含的数学规律,即可解决问题.【解答】解:∵四边形ABCD为正方形,∴AB=BC=1,∠B=90°,∴AC2=12+12,AC=;同理可求:AE=()2,HE=()3…,=()n﹣1.∴第n个正方形的边长an故答案为()n﹣1.【点评】该题主要考查了正方形的性质、勾股定理及其应用问题;应牢固掌握正方形有关定理并能灵活运用.6.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于65 度.【考点】正方形的性质;全等三角形的判定与性质.【分析】根据正方形的性质得出∠BAE=∠DAE,再利用SAS证明△ABE与△ADE全等,再利用三角形的内角和解答即可.【解答】解:∵正方形ABCD,∴AB=AD,∠BAE=∠DAE,在△ABE与△ADE中,,∴△ABE≌△ADE(SAS),∴∠AEB=∠AED,∠ABE=∠ADE,∵∠CBF=20°,∴∠ABE=70°,∴∠AED=∠AEB=180°﹣45°﹣70°=65°,故答案为:65【点评】此题考查正方形的性质,关键是根据正方形的性质得出∠BAE=∠DAE,再利用全等三角形的判定和性质解答.7.边长为1的一个正方形和一个等边三角形如图摆放,则△ABC的面积为.【考点】正方形的性质;等边三角形的性质;含30度角的直角三角形.【分析】过点C作CD和CE垂直正方形的两个边长,再利用正方形和等边三角形的性质得出CE的长,进而得出△ABC的面积即可.【解答】解:过点C作CD和CE垂直正方形的两个边长,如图∵一个正方形和一个等边三角形的摆放,∴四边形DBEC是矩形,∴CE=DB=,∴△ABC的面积=AB•CE=×1×=,故答案为:.【点评】此题考查正方形的性质,关键是根据正方形和等边三角形的性质得出BE和CE的长.8.如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为 5 .【考点】正方形的性质;三角形的面积;勾股定理.【分析】根据正方形性质得出AD=BC=CD=AB,根据面积求出EM,得出BC=4,根据勾股定理求出即可.【解答】解:过E作EM⊥AB于M,∵四边形ABCD是正方形,∴AD=BC=CD=AB,∴EM=AD,BM=CE,∵△ABE的面积为8,∴×AB×EM=8,解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:BE===5,故答案为:5.【点评】本题考查了三角形面积,正方形性质,勾股定理的应用,解此题的关键是求出BC 的长,难度适中.9.正方形OA 1B 1C 1、A 1A 2B 2C 2、A 2A 3B 3C 3,按如图放置,其中点A 1、A 2、A 3在x 轴的正半轴上,点B 1、B 2、B 3在直线y=﹣x+2上,则点A 3的坐标为 (,0) .【考点】正方形的性质;一次函数图象上点的坐标特征.【专题】压轴题;规律型.【分析】设正方形OA 1B 1C 1的边长为t ,则B 1(t ,t ),根据t 一次函数图象上点的坐标特征得到t=﹣t+2,解得t=1,得到B 1(1,1),然后利用同样的方法可求得B 2(,),B 3(,),则A 3(,0).【解答】解:设正方形OA 1B 1C 1的边长为t ,则B 1(t ,t ),所以t=﹣t+2,解得t=1,得到B 1(1,1);设正方形A 1A 2B 2C 2的边长为a ,则B 2(1+a ,a ),a=﹣(1+a )+2,解得a=,得到B 2(,);设正方形A 2A 3B 3C 3的边长为b ,则B 3(+b ,b ),b=﹣(+b )+2,解得b=,得到B 3(,),所以A 3(,0).故答案为(,0).【点评】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角.也考查了一次函数图象上点的坐标特征.10.已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD= 22.5 度.【考点】正方形的性质;全等三角形的判定与性质.【分析】根据正方形的性质可得∠DAC=45°,再由AD=AE易证△ADF≌△AEF,求出∠FAD.【解答】解:如图,在Rt△AEF和Rt△ADF中,∴Rt△AEF≌Rt△ADF,∴∠DAF=∠EAF,∵四边形ABCD为正方形,∴∠CAD=45°,∴∠FAD=22.5°.故答案为:22.5.【点评】本题考查了正方形的性质,全等三角形的判定与性质,求证Rt△AEF≌Rt△ADF是解本题的关键.11.如图,要使平行四边形ABCD是矩形,则应添加的条件是∠ABC=90°或AC=BD(不唯一)(只填一个).【考点】矩形的判定;平行四边形的性质.【专题】开放型.【分析】根据矩形的判定定理:①对角线相等的平行四边形是矩形,②有一个角是直角的平行四边形是矩形,直接添加条件即可.【解答】解:根据矩形的判定定理:对角线相等的平行四边形是矩形,有一个角是直角的平行四边形是矩形故添加条件:∠ABC=90°或AC=BD .故答案为:∠ABC=90°或AC=BD .【点评】本题主要应用的知识点为:矩形的判定. ①对角线相等且相互平分的四边形为矩形.②一个角是90度的平行四边形是矩形.12.如图,正方形ABCD 的边长为a ,在AB 、BC 、CD 、DA 边上分别取点A 1、B 1、C 1、D 1,使AA 1=BB 1=CC 1=DD 1=a ,在边A 1B 1、B 1C 1、C 1D 1、D 1A 1上分别取点A 2、B 2、C 2、D 2,使A 1A 2=B 1B 2=C 1C 2=D 1D 2=A 1B 2,….依次规律继续下去,则正方形A n B n C n D n 的面积为 .【考点】正方形的性质.【专题】压轴题;规律型.【分析】首先在Rt △A 1BB 1中,由勾股定理可求得正方形A 1B 1C 1D 1的面积=,然后再在Rt △A 2B 1B 2中,由勾股定理求得正方形A 2B 2C 2D 2的面积=,然后找出其中的规律根据发现的规律即可得出结论.【解答】解:在Rt △A 1BB 1中,由勾股定理可知; ==,即正方形A 1B 1C 1D 1的面积=;在Rt △A 2B 1B 2中,由勾股定理可知:==;即正方形A 2B 2C 2D 2的面积= …∴正方形A n B n C n D n 的面积=.故答案为:.【点评】本题主要考查的是正方形的性质和勾股定理的应用,通过计算发现其中的规律是解题的关键.13.如图,▱ABCD 中,AB >AD ,AE ,BE ,CM ,DM 分别为∠DAB ,∠ABC ,∠BCD ,∠CDA 的平分线,AE 与DM 相交于点F ,BE 与CM 相交于点N ,连接EM .若▱ABCD 的周长为42cm ,FM=3cm ,EF=4cm ,则EM= 5 cm ,AB= 13 cm .【考点】矩形的判定与性质;勾股定理的应用;平行四边形的性质;相似三角形的应用.【专题】综合题;压轴题.【分析】由条件易证∠AEB=∠AFD=∠DMC=90°.进而可证到四边形EFMN 是矩形及∠EFM=90°,由FM=3cm ,EF=4cm 可求出EM .易证△ADF ≌△CBN ,从而得到DF=BN ;易证△AFD ∽△AEB ,从而得到4DF=3AF .设DF=3k ,则AF=4k .AE=4(k+1),BE=3(k+1),从而有AD=5k ,AB=5(k+1).由▱ABCD 的周长为42cm 可求出k ,从而求出AB 长.【解答】解:∵AE 为∠DAB 的平分线,∴∠DAE=∠EAB=∠DAB ,同理:∠ABE=∠CBE=∠ABC ,∠BCM=∠DCM=∠BCD ,∠CDM=∠ADM=∠ADC .∵四边形ABCD 是平行四边形,∴∠DAB=∠BCD ,∠ABC=∠ADC ,AD=BC .∴∠DAF=∠BCN ,∠ADF=∠CBN .在△ADF 和△CBN 中,.∴△ADF≌△CBN(ASA).∴DF=BN.∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAB+∠ABC=180°.∴∠EAB+∠EBA=90°.∴∠AEB=90°.同理可得:∠AFD=∠DMC=90°.∴∠EFM=90°.∵FM=3,EF=4,∴ME==5(cm).∵∠EFM=∠FMN=∠FEN=90°.∴四边形EFMN是矩形.∴EN=FM=3.∵∠DAF=∠EAB,∠AFD=∠AEB,∴△AFD∽△AEB.∴=.∴=.∴4DF=3AF.设DF=3k,则AF=4k.∵∠AFD=90°,∴AD=5k.∵∠AEB=90°,AE=4(k+1),BE=3(k+1),∴AB=5(k+1).∵2(AB+AD)=42,∴AB+AD=21.∴5(k+1)+5k=21.∴k=1.6.∴AB=13(cm).故答案为:5;13.【点评】本题考查了平行四边形的性质、平行线的性质、矩形的判定与性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识,综合性较强.三、解答题14.(2015•聊城)如图,在△ABC中,AB=BC,BD平分∠ABC.四边形ABED是平行四边形,DE交BC 于点F,连接CE.求证:四边形BECD是矩形.【考点】矩形的判定.【专题】证明题.【分析】根据已知条件易推知四边形BECD是平行四边形.结合等腰△ABC“三线合一”的性质证得BD⊥AC,即∠BDC=90°,所以由“有一内角为直角的平行四边形是矩形”得到▱BECD是矩形.【解答】证明:∵AB=BC,BD平分∠ABC,∴BD⊥AC,AD=CD.∵四边形ABED是平行四边形,∴BE∥AD,BE=AD,∴BE=CD,∴四边形BECD是平行四边形.∵BD⊥AC,∴∠BDC=90°,∴▱BECD是矩形.【点评】本题考查了矩形的判定.矩形的定义:有一个角是直角的平行四边形是矩形.15.如图,在平面直角坐标系中,点A(2,n),B(m,n)(m>2),D(p,q)(q<n),点B,D在直线y=x+1上.四边形ABCD的对角线AC,BD相交于点E,且AB∥CD,CD=4,BE=DE,△AEB 的面积是2.求证:四边形ABCD是矩形.【考点】矩形的判定;一次函数图象上点的坐标特征.【专题】证明题.【分析】首先利用对角线互相平分的四边形是平行四边形判定该四边形为平行四边形,然后根据△ABE的面积得到整个四边形的面积和AD的长,根据平行四边形的面积计算方法得当DA⊥AB即可判定矩形.【解答】证明:作EF⊥AB于点F,∵AB∥CD,∴∠1=∠2,∠3=∠4,在△ABE和△CDE中,,∴△ABE≌△CDE,∴AE=CE,∴四边形ABCD是平行四边形,∵A(2,n),B(m,n),易知A,B两点纵坐标相同,∴AB∥CD∥x轴,∴m﹣2=4,m=6,将B(6,n)代入直线y=x+1得n=4,∴B(6,4),∵CD=4=AB,△AEB的面积是2,∴EF=1,∵D(p,q),∴E(,),F(,4),∴+1=4,∴q=2,p=2,∴DA⊥AB,∴四边形ABCD是矩形.【点评】本题考查了矩形的判定,解题的关键是了解有一个角是直角的平行四边形是矩形,难度不大.16.如图,在△ABC中,AB=AC,点D(不与点B重合)在BC上,点E是AB的中点,过点A作AF∥BC交DE延长线于点F,连接AD,BF.(1)求证:△AEF≌△BED.(2)若BD=CD,求证:四边形AFBD是矩形.【考点】矩形的判定;全等三角形的判定与性质.【专题】证明题.【分析】(1)AAS或ASA证全等;(2)根据对角线互相平分的证明四边形AFBD是平行四边形,再根据等腰三角形三线合一证明∠ADB=90°,进而根据有一个角是直角的平行四边形是矩形得证.【解答】证明:(1)∵AF∥BC,∴∠AFE=∠EDB,∵E为AB的中点,∴EA=EB,在△AEF和△BED中,,∴△AEF≌△BED(ASA);(2)∵△AEF≌△BED,∴AF=BD,∵AF∥BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD,∴AD⊥BD,∴四边形AFBD是矩形.【点评】本题考查了矩形的判定,三角形全等的判定及性质,能够了解矩形的判定定理是解答本题的关键,难度不大.17.(2015•义乌市)正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A按顺时针方向旋转,记旋转角∠DAG=α,其中0°≤α≤180°,连结DF,BF,如图.(1)若α=0°,则DF=BF,请加以证明;(2)试画一个图形(即反例),说明(1)中命题的逆命题是假命题;(3)对于(1)中命题的逆命题,如果能补充一个条件后能使该逆命题为真命题,请直接写出你认为需要补充的一个条件,不必说明理由.【考点】正方形的性质;全等三角形的判定与性质;命题与定理;旋转的性质.【专题】压轴题.【分析】(1)利用正方形的性质证明△DGF≌△BEF即可;(2)当α=180°时,DF=BF.(3)利用正方形的性质和△DGF≌△BEF的性质即可证得是真命题.【解答】(1)证明:如图1,∵四边形ABCD和四边形AEFG为正方形,∴AG=AE,AD=AB,GF=EF,∠DGF=∠BEF=90°,∴DG=BE,在△DGF和△BEF中,,∴△DGF≌△BEF(SAS),∴DF=BF;(2)解:图形(即反例)如图2,(3)解:补充一个条件为:点F在正方形ABCD内;即:若点F在正方形ABCD内,DF=BF,则旋转角α=0°.【点评】本题主要考查正方形的性质及全等三角形的判定和性质,旋转的性质,命题和定理,掌握全等三角形的对应边相等是解题的关键,注意利用正方形的性质找三角形全等的条件.18.(2015•鄂州)如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE.(1)求证:BE=CE.(2)求∠BEC的度数.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)根据正方形的性质,可得AB=AD=CD,∠BAD=∠ADC=90°,根据正三角形的性质,可得AE=AD=DE,∠EAD=∠EDA=60°,根据全等三角形的判定与性质,可得答案;(2)根据等腰三角形的性质,∠ABE=∠AEB,根据三角形的内角和定理,可得∠AEB,根据角的和差,可得答案.【解答】(1)证明:∵四边形ABCD为正方形∴AB=AD=CD,∠BAD=∠ADC=90°∵三角形ADE为正三角形∴AE=AD=DE,∠EAD=∠EDA=60°∴∠BAE=∠CDE=150°在△BAE和△CDE中,∴△BAE≌△CDE∴BE=CE;(2)∵AB=AD,AD=AE,∴AB=AE,∴∠ABE=∠AEB,又∵∠BAE=150°,∴∠ABE=∠AEB=15°,同理:∠CED=15°∴∠BEC=60°﹣15°×2=30°.【点评】本题考查了正方形的性质,(1)利用了正方形的性质,等腰三角形的性质,全等三角形的判定与性质;(2)利用了等腰三角形的判定与性质,角的和差.19.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.【考点】正方形的性质;全等三角形的判定与性质;菱形的性质.【专题】证明题.【分析】(1)先证出△ABP≌△CBP,得PA=PC,由于PA=PE,得PC=PE;(2)由△ABP≌△CBP,得∠BAP=∠BCP,进而得∠DAP=∠DCP,由PA=PC,得到∠DAP=∠E,∠DCP=∠E,最后∠CPF=∠EDF=90°得到结论;(3)借助(1)和(2)的证明方法容易证明结论.【解答】(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∴PC=PE;(2)由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)在菱形ABCD中,AB=BC,∠ABP=∠CBP=60°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠BCP,∵PA=PE,∴PC=PE,∴∠DAP=∠DCP,∵PA=PC,∴∠DAP=∠AEP,∴∠DCP=∠AEP∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠AEP,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,【点评】本题考查了正方形的性质,全等三角形的判定与性质,菱形的性质,等边对等角的性质,熟记正方形的性质确定出∠ABP=∠CBP是解题的关键.20.在平面直角坐标系xOy中,直线y=﹣x+3与x轴、y轴分别交于A、B,在△AOB内部作正方形,使正方形的四个顶点都落在该三角形的边上,求正方形落在x轴正半轴的顶点坐标.【考点】正方形的性质;一次函数图象上点的坐标特征.【分析】分两种情况:①如图1,令x=0,则y=3,令y=0,则x=3,得到OA=OB=3,∠BAO=45°,根据DE⊥OA,推出DE=AE,由于四边形COED是正方形,得到OE=DE,等量代换得到OE=AE,即可得到结论;②如图2,由(1)知△OFC,△EFA是等腰直角三角形,由四边形CDEF是正方形,得到EF=CF,于是得到AF=OF=2OF,求出OA=OF+2OF=3,即可得到结论.【解答】解:分两种情况;①如图1,令x=0,则y=3,令y=0,则x=3,∴OA=OB=3,∴∠BAO=45°,∵DE⊥OA,∴DE=AE,∵四边形COED是正方形,∴OE=DE,∴OE=AE,∴OE=OA=,∴E(,0);②如图2,由①知△OFC,△EFA是等腰直角三角形,∴CF=OF,AF=EF,∵四边形CDEF是正方形,∴EF=CF,∴AF=OF=2OF,∴OA=OF+2OF=3,∴OF=1,∴F(1,0).【点评】本题考查了正方形的性质,一次函数图象上点的坐标特征,等腰直角三角形的性质,正确的画出图形是解题的关键.21.如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.【考点】矩形的判定;全等三角形的判定与性质.【专题】证明题.【分析】求出∠BAE=∠CAD,证△BAE≌△CAD,推出∠BEA=∠CDA,BE=CD,得出平行四边形BCDE,根据平行线性质得出∠BED+∠CDE=180°,求出∠BED,根据矩形的判定求出即可.【解答】证明:∵∠BAD=∠CAE,∴∠BAD﹣∠BAC=∠CAE﹣∠BAC,∴∠BAE=∠CAD,∵在△BAE和△CAD中∴△BAE≌△CAD(SAS),∴∠BEA=∠CDA,BE=CD,∵DE=CB,∴四边形BCDE是平行四边形,∵AE=AD,∴∠AED=∠ADE,∵∠BEA=∠CDA,∴∠BED=∠CDE,∵四边形BCDE是平行四边形,∴BE∥CD,∴∠CDE+∠BED=180°,∴∠BED=∠CDE=90°,∴四边形BCDE是矩形.【点评】本题考查了矩形的判定,平行四边形的性质和判定,平行线的性质全等三角形的性质和判定的应用,主要考查学生运用定理进行推理的能力,注意:有一个角是直角的平行四边形是矩形.22.已知在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,四边形ADBE是平行四边形.(1)求证:四边形ADBE是矩形;(2)求矩形ADBE的面积.【考点】矩形的判定与性质;勾股定理;平行四边形的性质.【分析】(1)利用三线合一定理可以证得∠ADB=90°,根据矩形的定义即可证得;(2)利用勾股定理求得BD的长,然后利用矩形的面积公式即可求解.【解答】解:(1)∵AB=AC,AD是BC边上的中线,∴AD⊥BC,∴∠ADB=90°,∵四边形ADBE是平行四边形.∴平行四边形ADBE是矩形;(2)∵AB=AC=5,BC=6,AD是BC的中线,∴BD=DC=6×=3,在直角△ACD中,AD===4,∴S=BD•AD=3×4=12.矩形ADBE【点评】本题考查了三线合一定理以及矩形的判定,理解三线合一定理是关键.23.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.【考点】矩形的判定;全等三角形的判定与性质.【专题】证明题.【分析】(1)根据两直线平行,内错角相等求出∠AFE=∠DCE,然后利用“角角边”证明△AEF和△DEC全等,根据全等三角形对应边相等可得AF=CD,再利用等量代换即可得证;(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形AFBD是平行四边形,再根据一个角是直角的平行四边形是矩形,可知∠ADB=90°,由等腰三角形三线合一的性质可知必须是AB=AC.【解答】解:(1)BD=CD.理由如下:依题意得AF∥BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴AF=CD,∵AF=BD,∴BD=CD;(2)当△ABC满足:AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD(三线合一),∴∠ADB=90°,∴▱AFBD是矩形.【点评】本题考查了矩形的判定,全等三角形的判定与性质,平行四边形的判定,是基础题,明确有一个角是直角的平行四边形是矩形是解本题的关键.24.(2014•宁德)如图,在梯形ABCD中,AD∥BC,点E是BC的中点,连接AC,DE,AC=AB,DE∥AB.求证:四边形AECD是矩形.【考点】矩形的判定.【专题】证明题.【分析】先判断四边形AECD为平行四边形,然后由∠AEC=90°即可判断出四边形AECD是矩形.【解答】证明:∵AD∥BC,DE∥AB,∴四边形ABED是平行四边形.∴AD=BE.∵点E是BC的中点,∴EC=BE=AD.∴四边形AECD是平行四边形.∵AB=AC,点E是BC的中点,∴AE⊥BC,即∠AEC=90°.∴▱AECD是矩形.【点评】本题考查了梯形和矩形的判定,难度适中,解题关键是掌握平行四边形和矩形的判定定理.25.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE ⊥AN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.【考点】矩形的判定;角平分线的性质;等腰三角形的性质;正方形的判定.【专题】证明题;开放型.(1)根据矩形的有三个角是直角的四边形是矩形,已知CE⊥AN,AD⊥BC,所以求证∠DAE=90°,【分析】可以证明四边形ADCE为矩形.(2)根据正方形的判定,我们可以假设当AD=BC,由已知可得,DC=BC,由(1)的结论可知四边形ADCE为矩形,所以证得,四边形ADCE为正方形.【解答】(1)证明:在△ABC中,AB=AC,AD⊥BC,∴∠BAD=∠DAC,∵AN是△ABC外角∠CAM的平分线,∴∠MAE=∠CAE,∴∠DAE=∠DAC+∠CAE=180°=90°,又∵AD⊥BC,CE⊥AN,∴∠ADC=∠CEA=90°,∴四边形ADCE为矩形.(2)当△ABC满足∠BAC=90°时,四边形ADCE是一个正方形.理由:∵AB=AC,∴∠ACB=∠B=45°,∵AD⊥BC,∴∠CAD=∠ACD=45°,∴DC=AD,∵四边形ADCE为矩形,∴矩形ADCE是正方形.∴当∠BAC=90°时,四边形ADCE是一个正方形.【点评】本题是以开放型试题,主要考查了对矩形的判定,正方形的判定,等腰三角形的性质,及角平分线的性质等知识点的综合运用.26.如图,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.(1)求证:△ADE≌△CBF;(2)求证:四边形BFDE为矩形.【考点】矩形的判定;全等三角形的判定与性质;平行四边形的性质.【专题】证明题.【分析】(1)由DE与AB垂直,BF与CD垂直,得到一对直角相等,再由ABCD为平行四边形得到AD=BC,对角相等,利用AAS即可的值;(2)由平行四边形的对边平行得到DC与AB平行,得到∠CDE为直角,利用三个角为直角的四边形为矩形即可的值.【解答】证明:(1)∵DE⊥AB,BF⊥CD,∴∠AED=∠CFB=90°,∵四边形ABCD为平行四边形,∴AD=BC,∠A=∠C,在△ADE和△CBF中,,∴△ADE≌△CBF(AAS);(2)∵四边形ABCD为平行四边形,。
北师大版-九年级-数学-上册-第一章-特殊平行四边形-同步练习(含答案解析)
第一章特殊平行四边形评价检测(45分钟100分)一、选择题(每小题4分,共28分)1.矩形、菱形、正方形都具有的性质是( )A.每一条对角线平分一组对角B.对角线相等C.对角线互相平分D.对角线互相垂直2.如图,矩形ABCD中,E在AD上,且EF⊥EC,EF=EC,DE=2,矩形的周长为16,则AE的长是( )A.3B.4C.5D.73.下列说法正确的是( )A.对角线相等且互相垂直的四边形是菱形B.对角线互相垂直且平分的四边形是正方形C.对角线互相垂直的四边形是平行四边形D.对角线相等且互相平分的四边形是矩形4.如图,在矩形ABCD中,BC=2,AE⊥BD,垂足为E,∠BAE=30°,那么△ECD的面积是( )A.2B.C.D.【变式训练】如图,在矩形ABCD中,E是BC的中点,∠BAE=30°,AE=2,则矩形ABCD的面积为.5.如图,已知菱形ABCD与△ABE,其中D在BE上.若AB=17,BD=16,AE=25,则DE的长度为( )A.8B.9C.11D.126.如图,在矩形ABCD中,AB=10,BC=5,点E,F分别在AB,CD上,将矩形ABCD沿EF折叠,使点A,D分别落在矩形ABCD外部的点A1,D1处,则阴影部分图形的周长为( )A.15B.20C.25D.307.如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.下列结论:①点G是BC的中点;②FG=FC;③S△FGC=.其中正确的是( )A.①②B.①③C.②③D.①②③二、填空题(每小题5分,共25分)8.等边三角形、平行四边形、矩形、正方形四个图形中,既是轴对称图形又是中心对称图形的是.【易错提醒】平行四边形是中心对称图形,但不是轴对称图形,本题易误认为平行四边形既是轴对称图形又是中心对称图形.【知识归纳】特殊平行四边形的对称性(1)矩形、菱形、正方形既是轴对称图形又是中心对称图形.(2)矩形与菱形有两条对称轴,正方形有四条对称轴.(3)对角线的交点是它们的对称中心,过对称中心的任一条直线均把原图形分成面积相等的两部分.9.如图所示,平行四边形ABCD的对角线AC,BD相交于点O,试添加一个条件: ,使得平行四边形ABCD是菱形.【解析】添加AC⊥BD,则对角线互相垂直的平行四边形是菱形;添加AD=DC,则一组邻边相等的平行四边形是菱形.10.如图,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别是AO,AD的中点,若AB=6cm,BC=8cm,则△AEF的周长= .【变式训练】如图,顺次连接菱形ABCD的各边中点E,F,G,H.若AC=a,BD=b,则四边形EFGH的面积是.11.如图,在矩形ABCD中,AE=AF,过点E作EH⊥EF交DC于点H,过F作FG⊥EF交BC于G,连接GH,当AD,AB满足时,四边形EFGH为矩形.12.如图,四边形ABCD与AEFG都是菱形,其中点C在AF上,点E,G分别在BC,CD上,若∠BAD=135°,∠EAG=75°,则= .三、解答题(共47分)13.(10分)如图,在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF 交BC于点D,交AB于点E,且CF=AE.(1)求证:四边形BECF是菱形.(2)若四边形BECF为正方形,求∠A的度数.【互动探究】四边形BECF的面积与△ABC的面积有什么关系?为什么?14.(12分)如图,已知菱形ABCD,AB=AC,E,F分别是BC,AD的中点,连接AE,CF.(1)证明:四边形AECF是矩形.(2)若AB=8,求菱形的面积.15.(12分)(2014·新民市一模)已知:如图,在四边形ABCD中,点G在边BC的延长线上,CE平分∠BCD,CF平分∠GCD,EF∥BC交CD于点O.(1)求证:OE=OF.(2)若点O为CD的中点,求证:四边形DECF是矩形.16.(13分)(2013·青岛中考)已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点(1)求证:△ABM≌△DCM.(2)判断四边形MENF是什么特殊四边形,并证明你的结论.明)。
2022-2023学年北师大版九年级数学上册第一章特殊平行四边形单元测试题含答案
第一章 特殊平行四边形一 选择题(共10小题,每小题3分,共30分.每小题有四个选项,其中只有一个选项符合题意)1.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,下列说法不正确的是 ( )A.AB ∥DCB.AC=BDC.AC ⊥BDD.OA=OB(第1题) (第2题)2.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,E 为AD 的中点,连接OE ,若OE=3,则菱形ABCD 的周长为 ( )A.10B.12C.16D.243.如图,正方形ABCD 的对角线AC ,BD 相交于点O ,P 为边BC 上一点,且BP=OB ,则∠COP= ( ) A.15° B.22.5° C.25°D.17.5°(第3题) (第4题)4.如图,在矩形ACBE 中,∠ABC=30°,AB 交CE 于点D ,若AC=2,则CD 的长为 ( )A.2B.3C.4D.55.如图,EF 过矩形ABCD 的对角线的交点O ,且分别交AB ,CD 于点E ,F ,那么阴影部分的面积是矩形ABCD 面积的 ( )A.15B.14C.13D.310(第5题) (第6题)6.如图,已知▱ABCD 的对角线AC ,BD 相交于点O ,下列说法正确的是( ) A.当OA=OB 时,▱ABCD 为菱形 B.当AB=AD 时,▱ABCD 为正方形 C.当∠ABC=∠BCD 时,▱ABCD 为矩形 D.当AC ⊥BD 时,▱ABCD 为正方形7.如图,在矩形ABCD 中,BC=8,AB=4,点E ,F 分别为AD 和BC 的中点,连接CE ,DF ,交于点O ,连接AO ,则AO 的长为( )A.2√10B.5√2C.32√10 D.4√2(第7题)(第8题)8.如图,在四边形ABCD中,点E,F,G,H分别是AB,BD,CD,AC的中点,要使四边形EFGH是菱形,四边形ABCD应满足的一个条件是()A.AD=BCB.AC⊥BDC.AC=BDD.AB=CD9.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB'C'D',边B'C'与DC 相交于点O,则OC的长是() A.2√2-2 B.2+√2 C.2-√2 D.√2(第9题)(第10题)10.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B'处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是() A.12 B.24 C.12√3 D.16√3二填空题(共5小题,每小题3分,共15分)11.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,若∠A=26°,则∠DCA=.(第11题)(第12题)12.如图,在平面直角坐标系中,矩形木框OABC的顶点B的坐标为(1,2),若固定OA,向左推矩形木框OABC,使点B落在y轴上的点B'处,则点C的对应点C'的坐标为.13.对下列现象中蕴含的数学原理阐述正确的是(填序号).图(1)图(2)图(3)①如图(1),工人师傅在做矩形门窗时,不仅要测量出两组对边的长度相等,还要测量出两条对角线的长度相等,以确保门窗是矩形.其依据是“对角线相等的四边形是矩形”.②如图(2),将两张等宽的矩形纸条交叉叠放在一起,重合部分构成的四边形ABCD一定是菱形.其依据是“有一组邻边相等的平行四边形是菱形”.③把一张矩形纸片按图(3)的方式折一下,然后沿EF裁剪,打开就可以得到正方形.其依据是“有一组邻边相等的矩形是正方形”.14.如图,P是正方形ABCD的对角线BD上一点,PE⊥DC于点E,PF⊥BC于点F,若CF=3,CE=4,则AP的长是.(第14题)(第15题)15.如图,在边长为6的菱形ABCD中,∠DAB=60°,E为AB的中点,F为AC上一动点,连接EF,BF,则EF+BF的最小值是.三解答题(共6小题,共55分)16.(7分)如图,正方形ABCD中,点E,F分别在边CD,AD上,DE=AF,BE与CF相交于点G.(1)求证:BE=CF.(2)若BC=4,DE=1,求CF的长.17.(8分)如图,矩形ABCD的对角线AC,BD相交于点O,过点B作AC的平行线交DC的延长线于点E.(1)求证:BD=BE.(2)若BE=10,CE=6,连接OE,求△ODE的面积.18.(8分)如图,在矩形ABCD中,AB=3 cm,BC=6 cm.点P从点D出发向点A运动,运动到点A即停止;同时,点Q从点B出发向点C运动,运动到点C即停止.点P,Q的速度都是1 cm/s.连接PQ,AQ,CP.设点P,Q运动的时间为t s.(1)当t为何值时,四边形ABQP是矩形?(2)当t为何值时,四边形AQCP是菱形?19.(9分)如图(1),在菱形纸片ABCD中,∠A=45°.对其进行如下操作:如图(2),现将纸片进行折叠,使点A与点D重合,点C与点D重合,折痕分别为EG,FH,且两条折痕的延长线交于点O.(1)求∠EOF的度数;(2)四边形DGOH是菱形吗?请说明理由.图(1)图(2)20.(10分)我们给出如下定义:把对角线互相垂直的四边形叫做“对角线垂直四边形”.如图(1),在四边形ABCD中,AC⊥BD于点O,四边形ABCD就是“对角线垂直四边形”.(1)下列四边形,一定是“对角线垂直四边形”的是.①平行四边形,②矩形,③菱形,④正方形.(2)如图(2),在“对角线垂直四边形ABCD”中,点E,F,G,H分别是边AB,BC,CD,DA的中点.求证:四边形EFGH是矩形.图(1)图(2)(3)小明说:计算“对角线垂直四边形”的面积可以仿照求菱形的面积的方法,其面积是对角线长的乘积的一半.小明的说法正确吗?如果正确,请结合图(1)说明理由;如果不正确,请给出反例.21.(13分)如图(1),矩形ABCD的对角线AC,BD相交于点O,过点D作DP∥OC,且DP=OC,连接CP.(1)猜想:请你判断四边形CODP的形状,并说明理由.(2)证明:如果将矩形变为菱形,如图(2),请你判断四边形CODP的形状,并说明理由.(3)应用:如果将矩形变为正方形,如图(3),请你判断四边形CODP的形状,并说明理由.图(1)图(2)图(3)答案解析1.C根据矩形的性质可知,矩形的对角线不一定互相垂直.故选C.【归纳总结】矩形的有关性质①边,矩形的对边平行且相等;②角,矩形的四个角都是直角;③对角线,矩形的对角线互相平分且相等.2.D根据菱形的性质可知,O是AC的中点.∵E为AD的中点,∴OE为△ACD的中位线,∴CD=2OE=6.又菱形的四边相等,∴菱形ABCD的周长为6×4=24.故选D.【一题多解】由题意得∠AOD=90°.在Rt△AOD中,∵E为AD的中点,∴AD=2OE=2×3=6,∴菱形ABCD的周长为6×4=24.故选D.3.B∵四边形ABCD是正方形,∴∠BOC=90°,∠OBC=45°.∵BP=OB,∴∠BOP=∠BPO=12(180°-45°)=67.5°,∴∠COP=90°-67.5°=22.5°.故选B.4.A∵四边形ACBE是矩形,∴∠ACB=90°,D为AB的中点.∵AC=2,∠ABC=30°,∴AB=2AC=4,∴CD=12AB=2,故选A.5.B∵四边形ABCD为矩形,∴OB=OD,AB∥CD,∴∠EBO=∠FDO.在△EBO与△FDO中,∵∠EOB=∠FOD,OB=OD,∠EBO=∠FDO,∴△EBO≌△FDO,∴S阴影部分=S△AEO+S△EBO=S△AOB.∵S△AOB=12S△ABC=14S矩形ABCD,∴S阴影部分=14S矩形ABCD.故选B.【数学思想】本题利用全等三角形把不规则图形的面积转化为较简单的规则图形的面积,进而利用整体思想求解.6.C∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.又OA=OB,∴AC=BD,由“对角线相等的平行四边形是矩形”,可判定▱ABCD为矩形,故选项A中说法错误.当AB=AD时,由菱形的定义可知,▱ABCD为菱形,故选项B中说法错误.∵在▱ABCD中,AB∥CD,∴∠ABC+∠BCD=180°.又∠ABC=∠BCD,∴∠ABC=90°.由矩形的定义,可判定▱ABCD为矩形,故选项C中说法正确.当AC⊥BD时,根据“对角线互相垂直的平行四边形是菱形”,可判定▱ABCD为菱形,但无法判定其为正方形,故选项D中说法错误.故选C.7.A连接EF,过点O作OM⊥AD于点M,易证四边形EFCD为正方形,∴OM=MD=12AB=2,∴AM=6.在Rt△AOM中,由勾股定理,得AO=√AM2+OM2=2√10.8.A∵点E,F,G,H分别是AB,BD,CD,AC的中点,∴GH∥AD,EF∥AD,FG∥BC,HE∥BC,且GH=12AD,EH=12BC,∴EF∥GH,HE∥FG,∴四边形EFGH是平行四边形.当AD=BC时,GH=EH,此时平行四边形EFGH是菱形.故选A.9.C如图,连接B'C,AC.∵旋转角∠BAB'=45°,∠BAC=45°,∴点B'在对角线AC上.∵AB=AB'=BC=1,∴AC=√2,∴B'C=√2-1.在等腰直角三角形OB'C中,OB'=B'C=√2-1,∴OC=√2(√2-1)=2-√2.故选C.10.D在矩形ABCD中,∵AD∥BC,∴∠DEF=∠EFB=60°.由翻折可知,∠EFB'=60°,∠A'B'F=∠B=90°,∠A'=∠A=90°,A'E=AE=2,A'B'=AB.在△EFB'中,∵∠B'EF=∠EFB'=60°,∴△EFB'是等边三角形.在Rt△A'EB'中,∵∠A'B'E=90°-60°=30°,∴B'E=2A'E=4,∴A'B'=2√3,即AB=2√3.∵AE=2,DE=6,∴AD=AE+DE=2+6=8,∴矩形ABCD的面积=AB·AD=2√3×8=16√3.故选D.AB=AD,∴∠DCA=∠A=26°.11.26°【解析】∵∠ACB=90°,D是AB的中点,∴DC=1212.(-1,√3)【解析】∵四边形OABC是矩形,点B的坐标为(1,2),∴OA=1,AB=2.由题意得AB'=AB=2,四边形OAB'C'是平行四边形,∴OB'=√AB'2-OA2=√3,B'C'=OA=1,∴点C的对应点C'的坐标为(-1,√3).13.②③【解析】①∵两组对边的长度相等,∴四边形是平行四边形.又对角线相等,∴该平行四边形是矩形(对角线相等的平行四边形是矩形),故①错误.②如图,由矩形的对边平行,可得AB∥CD,AD∥BC,∴四边形ABCD是平行四边形.过点D分别作AB,BC边上的高DE,DF,则DE=DF.∵平行四边形ABCD的面积=AB×DE=BC×DF,∴AB=BC,∴平行四边形ABCD为菱形(有一组邻边相等的平行四边形是菱形),故②正确.③根据折叠可知,所得到的四边形有三个直角,∴该四边形为矩形.又有一组邻边相等,∴该矩形为正方形(有一组邻边相等的矩形是正方形),故③正确.故正确的阐述为②③.14.5【解析】如图,连接PC.∵四边形ABCD是正方形,∴AD=DC,∠ADP=∠CDP.∵PD=PD,∴△APD≌△CPD,∴AP=CP.∵四边形ABCD是正方形,∴∠DCB=90°.∵PE⊥DC,PF⊥BC,∴四边形PFCE是矩形,∴PC=EF.在Rt△CEF中,EF=√CE2+CF2=√42+32=5,∴AP=CP=EF=5.15.3√3【解析】∵四边形ABCD是菱形,∴点B,D关于AC对称,AB=AD.如图,连接BD,ED,则ED 的长即为EF+BF的最小值.∵∠DAB=60°,∴△ABD是等边三角形.∵E为AB的中点,∴DE⊥AB,AE=12AB=3.在Rt△ADE中,根据勾股定理,得ED=√AD2-AE2=√62-32=3√3,∴EF+BF 的最小值为3√3.16.【参考答案】(1)证明:∵四边形ABCD是正方形,∴BC=CD=DA,∠BCE=∠CDF=90°.(2分)∵DE=AF,∴CE=DF.(3分)在△BCE和△CDF中,{BC=CD,∠BCE=∠CDF, CE=DF,∴△BCE≌△CDF,∴BE=CF.(5分) (2)∵CD=AD=BC=4,AF=DE=1,∴DF=3.在Rt△CDF中,CF=√CD2+DF2=5.(7分) 17.【参考答案】(1)证明:∵四边形ABCD是矩形,∴AC=BD,AB∥CD.又BE∥AC,∴四边形ABEC是平行四边形,∴AC=BE,∴BD=BE.(3分)(2)如图,过点O作OF⊥CD于点F.∵四边形ABCD是矩形,∴∠BCD=90°,∴∠BCE=90°.在Rt△BCE中,根据勾股定理可得BC=8.∵BE=BD,∴CD=CE=6,∴DE=12.∵OD=OC,∴CF=DF.又OB=OD,∴OF为△BCD的中位线,∴OF=12BC=4,∴S△ODE=12DE·OF=12×12×4=24.(8分)18.【参考答案】(1)由题意得,BQ=DP=t,AP=CQ=6-t.在矩形ABCD中,∠B=90°,AD∥BC.要使四边形ABQP是矩形,则BQ=AP,即t=6-t,解得t=3.故当t=3时,四边形ABQP是矩形.(4分) (2)由题意得,四边形AQCP是平行四边形.要使平行四边形AQCP是菱形,则AQ=CQ,即√32+t2=6-t,解得t=94.故当t=94时,四边形AQCP是菱形.(8分)19.【参考答案】(1)由折叠可知∠DEG=∠DFH=90°.∵四边形ABCD是菱形,∴AB∥CD,∠C=∠A=45°,∴∠A+∠ADC=180°,∴∠ADC=135°.∵∠EOF+∠DEG+∠DFH+∠ADC=360°,∴∠EOF=360°-90°-90°-135°=45°.(4分) (2)是菱形.(5分)理由:由折叠可知∠ADG=∠A=45°,∠CDH=∠C=45°.∵∠ADC=135°,∴∠GDC=∠ADH=90°.∵∠AEG=∠CFH=90°,∴GE∥DH,GD∥HF,∴四边形DGOH是平行四边形.(7分)∵∠A=∠C,AD=CD,∠ADG=∠CDH,∴△ADG≌△CDH,∴DG=DH,∴四边形DGOH是菱形.(9分)20.【参考答案】(1)③④(2分) (2)∵点E,F,G,H分别是边AB,BC,CD,DA的中点,∴HG∥AC,EF∥AC,∴HG∥EF.同理可得HE∥GF.∴四边形EFGH是平行四边形.(4分)∵DB⊥AC,∴HE⊥HG,∴∠EHG=90°,∴四边形EFGH是矩形.(6分) (3)正确.(7分)理由:S四边形ABCD=S△ADC+S△BAC=12AC·OD+12AC·BO=12AC(OD+OB)=12AC·BD,即“对角线垂直四边形”的面积是对角线长的乘积的一半.(10分)【提分技法】解决中点四边形的有关方法(1)解决中点四边形问题,往往借助三角形的中位线的性质证明四边形的对边相等或平行.(2)中点四边形的形状由原来四边形对角线的特征决定.连接矩形各边中点得到的四边形是菱形;连接菱形各边中点得到的四边形是矩形;连接正方形各边中点得到的四边形是正方形.21.【解题思路】(1)由DP∥OC且DP=OC,得四边形CODP是平行四边形,根据矩形的性质得OC=OD,从而可证得四边形CODP是菱形;(2)由DP∥OC且DP=OC,得四边形CODP是平行四边形,又根据菱形的性质得∠DOC=90°,从而证得四边形CODP是矩形;(3)由DP∥OC且DP=OC,得四边形CODP 是平行四边形,又由正方形的性质得∠DOC=90°,OD=OC,从而证得四边形CODP是正方形.【参考答案】(1)四边形CODP是菱形.(1分)理由:∵DP∥OC,DP=OC,∴四边形CODP是平行四边形.(2分)∵四边形ABCD是矩形,∴AC=BD,OC=12AC,OD=12BD,∴OC=OD,∴四边形CODP是菱形.(4分) (2)四边形CODP是矩形.(5分)理由:∵DP∥OC,DP=OC,∴四边形CODP是平行四边形.∵四边形ABCD是菱形,∴AC⊥BD,∴∠DOC=90°,∴四边形CODP是矩形.(8分) (3)四边形CODP是正方形.(9分)理由:∵DP∥OC,DP=OC,∴四边形CODP是平行四边形.∵四边形ABCD是正方形,∴AC⊥BD,AC=BD,OC=12AC,OD=12BD,∴∠DOC=90°,OC=OD,(12分)∴四边形CODP是正方形.(13分)。
九年级数学(上)单元测试卷 第一章《特殊平行四边形》(含答案与解析)
【新北师大版九年级数学(上)单元测试卷】第一章《特殊平行四边形》(含答案与解析)班级:___________ 姓名:___________ 得分:___________一.选择题:(每小题3分,共36分)1. 已知下列命题:①矩形是轴对称图形,且有两条对称轴;②两条对角线相等的四边形是矩形;③有两个角相等的平行四边形是矩形;④两条对角线相等且互相平分的四边形是矩形.其中正确的有()A. 4个B. 3个C. 2个D. 1个2. 如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A. AB=BCB. AC=BCC. ∠B=60°D. ∠ACB=60°3.菱形的对角线长分别为3和4,则该菱形的面积是A. 6B. 8C. 12D. 244. 已知四边形ABCD中,分别是的中点,则四边形EFGH是A. 菱形B. 矩形C. 正方形D. 梯形5.在四边形ABCD中,O是对角线的交点,能判定这个四边形为正方形的是()A. AD∥BC,∠B=∠DB. AC=BD,AB=CD,AD=BCC. OA=OC,OB=OD,AB=BCD. OA=OB=OC=OD,AC⊥BD6. 正方形具有而矩形不一定有的性质是()A. 对角线相等且互相平分B. 对角线互相垂直且平分每一组对角C. 每一内角均为直角D. 对边平行且相等7. 平行四边形ABCD是正方形需增加的条件是()A. 邻边相等B. 邻角相等8.如图,在矩形ABCD中,,则BD的长为A. 5B. 10C. 12D. 139.若一个菱形的两条对角线长分别是5cm和10cm,则与该菱形面积相等的正方形的边长是A. 6cmB. 5cmC.D.10.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边上的点B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A. 12B. 24C. 12D. 1611.如图,正方形ABCD中,E,F分别为AB,CD的中点,连接DE,BF,CE,AF,正方形ABCD的面积为1,则阴影部分的面积为()A. B. C. D.12.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为点F,则EF的长为()A. 1B.C. 4-2D. 3-4二.填空题:(每小题3分共12分)13.正方形的一条边长是4,则它的对角线长是_________.15.矩形的对角线相交构成的钝角为120°,短边等于5cm,则对角线的长为__________.16.如图,E为正方形ABCD边BC延长线上一点,且CE=BD,AE交DC于F,则∠AFC=_________.三.解答题:(共52分)17.如图,在四边形ABCD中,∠ABC=∠ADC=90°,点P是AC的中点.求证:∠BDP=∠DBP.18.已知:菱形ABCD中,对角线于点E,求菱形ABCD的面积和BE的长.于点F,且,连接BF.证明:;当满足什么条件时,四边形AFBD是矩形?并说明理由.20.已知中对角线AC的垂直平分线交AD于点F,交BC于点E.求证:四边形AECF是菱形.证明:∵EF是AC的垂直平分线(已知)∴四边形AECF是不正确⑴你能找出小明错误的原因吗?请你指出来.⑵请你给出本题的证明过程.21.如图,在菱形ABCD中,F是BC上任意一点,连接AF交对角线BD于点E,连接EC.(2)当∠ABC=60°,∠CEF=60°时,点F在线段BC上的什么位置?说明理由.22. 如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是点E,F,并且DE=DF.求证:(1)△ADE≌△CDF;(2)四边形ABCD是菱形.23.如图,F是正方形ABCD的边BC的中点,CG平分∠DCM,交过F点AF的垂线FG于G,求证:AF=FG.一.选择题:(每小题3分,共36分)1. 已知下列命题:①矩形是轴对称图形,且有两条对称轴;②两条对角线相等的四边形是矩形;③有两个角相等的平行四边形是矩形;④两条对角线相等且互相平分的四边形是矩形.其中正确的有()A. 4个B. 3个C. 2个D. 1个【答案】C【解析】①正确.②等腰梯形是对角线相等,错误.③菱形也两个角相等,错误.④正确.所以选C.2. 如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A. AB=BCB. AC=BCC. ∠B=60°D. ∠ACB=60°【答案】B【解析】试题分析:∵将△ABC沿BC方向平移得到△DCE,∴AB CD,∴四边形ABCD为平行四边形,当AC=BC时,平行四边形ACED是菱形.故选B.3.菱形的对角线长分别为3和4,则该菱形的面积是A. 6B. 8C. 12D. 24【答案】A【解析】∵菱形的两条对角线长分别为3和4,∴S菱形=.故选A.4. 已知四边形ABCD中,分别是的中点,则四边形EFGH是A. 菱形B. 矩形C. 正方形D. 梯形【答案】B【解析】如图,∵E、F、G、H分别是AB、BC、CD、DA的中点,∴EF∥AC,HG∥AC,∴EF∥AC,∴四边形EFGH是平行四边形,∵EF∥AC,AC⊥BD,∴EF⊥BD,∵HE∥BD,∴EF⊥HE,∴∠HEF=90°,∴平行四边形EFGH是矩形.故选B.5.在四边形ABCD中,O是对角线的交点,能判定这个四边形为正方形的是()A. AD∥BC,∠B=∠DB. AC=BD,AB=CD,AD=BCC. OA=OC,OB=OD,AB=BCD. OA=OB=OC=OD,AC⊥BD【答案】D【解析】A、不能,只能判定出是平行四边形;B、不能,只能判定出是矩形;C、不能,只能判定出是菱形;D、能,由OA=OB=OC=OD可判断出四边形ABCD是矩形,再根据AC⊥BD,可判断出矩形ABCD 又是菱形,所以可判断出四边形ABCD是正方形,故选D.6. 正方形具有而矩形不一定有的性质是()A. 对角线相等且互相平分B. 对角线互相垂直且平分每一组对角C. 每一内角均为直角D. 对边平行且相等【答案】B【解析】根据正方形和矩形的性质知,它们具有相同的特征有:四个角都是直角、对边平行且相等、对角线相等、对角线互相平分,但矩形的对角线不互相垂直,故选B.7. 平行四边形ABCD是正方形需增加的条件是()A. 邻边相等B. 邻角相等C. 对角线互相垂直D. 对角线互相垂直且相等【解析】如图所示:添加的条件是AC=BD且AC⊥BD,平行四边形ABCD为正方形;理由如下:添加的条件时AC=BD且AC⊥BD时;∵四边形ABCD是平行四边形.又AC=BD,∴四边形ABCD是矩形,∵AC⊥BD,∴四边形ABCD是菱形,∴四边形ABCD是正方形;故选:D.8.如图,在矩形ABCD中,,则BD的长为A. 5B. 10C. 12D. 13【答案】B【解析】∵四边形ABCD是矩形,∠BOC=120°,∴AO=BO,∠BAD=90°,∠AOB=60°,∴△AOB是等边三角形,∴∠ABD=60°,∴∠BDA=30°,∴BD=2AB=10.故选B.9.若一个菱形的两条对角线长分别是5cm和10cm,则与该菱形面积相等的正方形的边长是A. 6cmB. 5cmC.D.【解析】∵菱形的两条对角线分别为5cm和10cm,∴菱形的面积为:(cm2),设正方形的边长为cm,则,解得:(cm).故选B.10.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边上的点B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A. 12B. 24C. 12D. 16【答案】D【解析】试题分析:根据题意可得:AD=2+6=8,根据折叠图形的性质可得:AB=2,然后根据矩形的面积计算公式求出矩形的面积.11.如图,正方形ABCD中,E,F分别为AB,CD的中点,连接DE,BF,CE,AF,正方形ABCD的面积为1,则阴影部分的面积为()A. B. C. D.【答案】C【解析】DE BF,AF EC,EGFH是平行四边形,E,F是中点,易得,四边形对角线垂直,1∴EGFH是菱形。
(常考题)北师大版初中数学九年级数学上册第一单元《特殊平行四边形》检测卷(有答案解析)
一、选择题1.如图,顺次连接四边形ABCD 各边的中点得到四边形EFGH ,要使四边形EFGH 为菱形,应添加的条件是( )A .AB ∥DCB .AB =DC C .AC ⊥BD D .AC =BD2.如图,依据尺规作图的痕迹,则α∠是( )A .54°B .36°C .28°D .72°3.菱形ABCD 中,60D ∠=︒.点E 、F 分别在边BC 、CD 上,且BE CF =.若2EF =,则AEF 的面积为( ).A .43B .33C .23D .34.如图,在四边形ABCD 中,对角线AC ,BD 相交于点O ,且OA OC =,OB OD =.若要使四边形ABCD 为矩形,则可以添加的条件是( )A .60AOB ∠=︒ B .AC BD = C .AC BD ⊥ D .AB BC = 5.如图,在菱形ABCD 中,对角线AC 、BD 交于点O ,且AC =6,BD =8,过A 点作AE 垂直BC ,交BC 于点E ,则BE CE 的值为( )A .512B .725C .718D .5246.如图,在长方形ABCD 中,AE 平分∠BAD 交BC 于点E ,连接ED ,若ED =5,EC =3,则长方形的周长为( )A .20B .22C .24D .267.如图,将等边ABC 与正方形DEFG 按图示叠放,其中D ,E 两点分别在AB ,BC 上,且BD BE =.若6AB =,2DE =,则EFC 的面积为( )A .4B .23C .2D .18.给出下列命题,其中错误命题的个数是( )①四条边相等的四边形是正方形;②四边形具有不稳定性;③有两个锐角对应相等的两个直角三角形全等;④一组对边平行的四边形是平行四边形.A .1B .2C .3D .49.如图,E 为矩形ABCD 的边AB 上一点,将矩形沿CE 折B 叠,使点恰好落在ED 上的点F 处,若5,3CD BC ==,则BE 的长为( )A .0.5B .1C .1.5D .210.如图所示,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在点C '处,折痕为EF ,若122EFC '∠=︒,那么ABE ∠的度数为( )A .24︒B .32︒C .30D .26︒11.如图,四边形ABCD 是菱形,DH ⊥AB 于点H ,若AC=8cm ,BD=6cm ,则DH=( )A .53cmB .25cmC .245cmD .485cm 12.菱形OBCA 在平面直角坐标系中的位置如图所示,点C 的坐标是()8,0,点A 的纵坐标是2,则点B 的坐标是( )A .()4,2B .()4,2-C .()2,6-D .()2,6二、填空题13.如图,在平面直角坐标系中,正方形ABOC 的顶点A 在第二象限,顶点B 在x 轴上,顶点C 在y 轴上,若正方形ABOC 的面积等于7,则点A 的坐标是______.14.有两个全等矩形纸条,长与宽分别为11和7,按如图所示的方式交叉叠放在一起,则重合部分构成的四边形BGDH 的周长为_______________.15.如图,在ABC ∆中,AC BC =,点D 、E 分别是边AB 、AC 的中点.延长DE 到点F ,使DE EF =,得四边形ADCF .当ACB =∠________︒时,四边形ADCF 是长方形.16.请你写出一个原命题与它的逆命题都是真命题的命题____________________ . 17.如图,将长方形纸片进行折叠,ED ,EF 为折痕,A 与A '、B 与B '、C 与C '重合,若∠AED =25°,则∠BEF 的度数为_____.18.如图,在矩形ABCD 中,4AB =,6BC =,E 是边AD 上的一个动点,将ABE △沿BE 对折成BFE △,则线段DF 长度的最小值为_______.19.如图,四边形ABCD 的对角线AC 、BD 相交于点O ,且OA=OC ,OB=OD .请你添加一个适当的条件:______________,使四边形ABCD 成为菱形.20.如图将一张长方形纸片沿EF 折叠后,点A 、B 分别落在A ′、B ′的位置,如果∠2=70°,则∠1的度数是___________.三、解答题21.如图1,长方形ABCD 中,8AB cm =,6BC cm =,点P 从点A 出发,以每秒1cm 的速度沿折线A B →C D →→运动,设点P 运动的时间为t (秒),ADP △的面积为()2y cm ,图2是y 关于t 的部分图象.(1)填写下列表格: t …2 5 10 14 20 … y… 6 _____ 24 ______ ______ … y t (3)当ADP △的面积超过15时,求点P 运动的时间t 的取值范围.22.(1)如图1,点E ,F 分别在正方形ABCD 的边上,且∠EAF =45°,求证:EF =BE +DF ; (2)如图2,四边形ABCD 中,AD //BC ,∠D =90°,AD =DC =10,BC =6,点E 在CD 上,∠BAE =45°,在(1)的基础上求DE 长.23.如图,在ABC 中,,,,AC BC D E F =分别是,,AB AC BC 的中点,连接,DE DF .求证:四边形DFCE 是菱形.24.如图,矩形ABCD 中,AC 与BD 交于点O ,BE ⊥AC ,CF ⊥BD ,垂足分别为E , F . (1)求证:BE=CF .(2)若∠AOB=60°,AB=8,求矩形的面积.25.如图在Rt ABC △中,AB AC =,90BAC ∠=︒,O 为BC 的中点.(1)写出点O 到ABC 的三个顶点A 、B 、C 的距离的大小关系.(2)如果点M 、N 分别在线段AB 、AC 上移动,移动中保持AN BM =,请判断OMN 的形状,并证明你的结论.(3)当点M 、N 分别在AB 、AC 上运动时,四边形AMON 的面积是否发生变化?说明理由.26.如图,在Rt ABC ∆中,90ACB ∠=︒,30B ∠=︒,将ABC ∆绕点C 按照顺时针方向旋转m 度后得到DEC ∆,点D 刚好落在AB 边上.(1)求m 的值;(2)若F 是DE 的中点,判断四边形ACFD 的形状,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D 【分析】连AC,BD,根据三角形中位线的性质得到EF∥AC,EF=12AC;HG∥AC,HG=12AC,即有四边形EFGH为平行四边形,当AB∥DC和AB=DC,只能判断四边形EFGH为平行四边形;当AC⊥BD,只能判断四边形EFGH为矩形;当AC=BD,可判断四边形EFGH为菱形.【详解】解:连AC,BD,如图,∵E、F、G、H为四边形ABCD各中点,∴EF∥AC,EF=12AC;HG∥AC,HG=12AC,∴四边形EFGH为平行四边形,要使四边形EFGH为菱形,则EF=EH,而EH=12 AC,∴AC=BD.当AB∥DC和AB=DC,只能判断四边形EFGH为平行四边形,故A、B选项错误;当AC⊥BD,只能判断四边形EFGH为矩形,故C选项错误;当AC=BD,可判断四边形EFGH为菱形,故D选项正确.故选D.【点睛】本题考查了菱形的判定定理:邻边相等的平行四边形是菱形.也考查了平行四边形的判定以及三角形中位线的性质.2.A解析:A【分析】先根据矩形的性质得出AD∥BC,故可得出∠DAC的度数,由角平分线的定义求出∠EAF的度数,再由EF是线段AC的垂直平分线得出∠AEF的度数,根据三角形内角和定理得出∠AFE的度数,进而可得出结论.【详解】解:如图,∵四边形ABCD是矩形,∴AD∥BC,∴∠DAC=∠ACB=72°.∵由作法可知,AF是∠DAC的平分线,∠DAC=36°.∴∠EAF=12∵由作法可知,EF是线段AC的垂直平分线,∴∠AEF=90°,∴∠AFE=90°-36°=54°,∴∠α=54°.故选:A.【点睛】本题考查的是作图-基本作图,熟知角平分线及线段垂直平分线的作法是解答此题的关键.3.D解析:D【分析】先证明△ABE≌△ACF,推出AF=AE,∠EAF=60°,得到△AEF是等边三角形,即可解决问题.【详解】解:∵四边形ABCD是菱形,∴∠D=∠B=60°,AB=BC,∴△ABC是等边三角形,∴AB=AC,∵AC是菱形的对角线,∴∠ACF1∠DCB=60°,2∴∠B=∠ACF,∵AB=AC,BE=CF,∴△ABE≌△ACF,∴AF=AE,∠BAE=∠CAF,∴∠BAE+∠EAC=∠CAF+∠EAC,即∠EAF=∠BAC=60°,∴△AEF是等边三角形,∵EF =2,∴S △AEF =×22= 故选:D .【点睛】 本题考查了菱形的性质、等边三角形的判定与性质等知识,解题的关键是证明全等三角形得到△AEF 是等边三角形,牢记等边三角形面积公式是解题关键.4.B解析:B【分析】根据对角线互相平分的四边形是平行四边形可得四边形ABCD 是平行四边形,再根据菱形的判定定理和矩形的判定定理逐一分析即可.【详解】∵在四边形ABCD 中, OA OC =,OB OD =∴四边形ABCD 是平行四边形若添加60AOB ∠=︒,无法判断,故A 不符合题意;若添加AC BD =,则四边形ABCD 是矩形,故B 符合题意;若添加AC BD ⊥,则四边形ABCD 是菱形,故C 不符合题意;若添加AB BC =,则四边形ABCD 是菱形,故D 不符合题意;故选B .【点睛】此题考查的是平行四边形的判定、矩形的判定和菱形的判定,掌握平行四边形的判定定理、矩形的判定定理和菱形的判定定理是解决此题的关键.5.C解析:C【分析】利用菱形的性质即可计算得出BC 的长,再根据面积法即可得到AE 的长,最后根据勾股定理进行计算,即可得到BE 的长,进而得出结论.【详解】解:∵四边形ABCD 是菱形,∴CO =12AC =3,BO =12BD =4,AO ⊥BO , ∴BC5,∵S 菱形ABCD =12AC•BD =BC×AE , ∴AE =16825⨯⨯=245.在Rt△ABE中,BE75,∴CE=BC﹣BE=5﹣75=185,∴775==18185BECE的值为718,故选:C.【点睛】本题主要考查了菱形的性质以及勾股定理的运用,关键是掌握菱形性质:四条边都相等、对角线互相垂直平分.6.B解析:B【分析】直接利用勾股定理得出DC的长,再利用角平分线的定义以及等腰三角形的性质得出BE的长,进而得出答案.【详解】解:∵四边形ABCD是长方形,∴∠B=∠C=90°,AB=DC,∵ED=5,EC=3,∴DC4 ==,则AB=4,∵AE平分∠BAD交BC于点E,∴∠BAE=∠DAE,∵AD∥BC,∴∠DAE=∠AEB,∴∠BAE=∠BEA,∴AB=BE=4,∴长方形的周长为:2×(4+4+3)=22.故选:B.【点睛】本题考查了矩形的性质、等腰三角形的判定、勾股定理等,解题关键是把握已知,整合已知得出等腰三角形,依据勾股定理求出线段长.7.C解析:C【分析】过F作FQ⊥BC于Q,根据等边三角形的性质和判定和正方形的性质求出BE=2,∠BED=60°,∠DEF=90°,EF=2,求出∠FEQ,求出CE和FQ,即可求出答案.过F作FQ⊥BC于Q,则∠FQE=90°,∵△ABC是等边三角形,AB=6,∴BC=AB=6,∠B=60°,∵BD=BE,DE=2,∴△BED是等边三角形,且边长为2,∴BE=DE=2,∠BED=60°,∴CE=BC−BE=4,∵四边形DEFG是正方形,DE=2,∴EF=DE=2,∠DEF=90°,∴∠FEC=180°−60°−90°=30°,∴QF=12EF=1,∴△EFC的面积=12×CE×FQ=12×4×1=2,故选:C.【点睛】本题考查了等边三角形的性质和判定、正方形的性质等知识点,能求出CE和FQ的长度是解此题的关键.8.C解析:C【分析】利用正方形的判定、直角三角形全等的判定、平行四边形的判定定理对每个选项依次判定解答.【详解】①四条边相等的四边形是菱形,故①错误;②四边形具有不稳定性,故②正确;③两直角三角形隐含一个条件是两直角相等,两个锐角对应相等,因此构成了AAA,不能判定全等,故③错误;④一组对边平行且相等的四边形是平行四边形,故④错误;综上,错误的命题有①③④共3个.【点睛】本题考查了命题与定理的知识,解题的关键是了解正方形的判定、平行四边形的判定及直角三角形全等的判定.9.B解析:B【分析】求出4DF =,设BE x =,则5AE x =-,根据勾股定理列方程可得BE 的长.【详解】解:设BE x =,则5AE x =-,由折叠得:3CF BC ==,90B CFE ∠=∠=︒,90CFD ∴∠=︒,4DF ∴=,四边形ABCD 是矩形,3AD BC ∴==,90A ∠=︒,Rt AED ∆中,222AE AD ED +=,222(5)3(4)x x ∴-+=+,1x ∴=,1BE ∴=,故选:B .【点睛】本题考查了翻折变换的性质、矩形的性质、勾股定理;熟练掌握矩形的性质、折叠的性质,并能进行推理计算是解决问题的关键.10.D解析:D【分析】由折叠的性质知:∠EBC′、∠BC′F 都是直角,∠BEF=∠DEF ,因此BE ∥C′F ,那么∠EFC′和∠BEF 互补,这样可得出∠BEF 的度数,进而可求得∠AEB 的度数,则∠ABE 可在Rt △ABE 中求得.【详解】解:由折叠的性质知,∠BEF=∠DEF ,∠EBC′、∠BC′F 都是直角,∴BE ∥C′F ,∴∠EFC′+∠BEF=180°,又∵∠EFC′=122°,∴∠BEF=∠DEF=58°,∴∠AEB=180°-∠BEF-∠DEF=64°,在Rt △ABE 中,∠ABE=90°-∠AEB=26°.故选D .【点睛】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.11.C解析:C【分析】根据菱形性质在Rt△ABO中利用勾股定理求出AB=5,再根据菱形的面积可得AB×DH=12×6×8=24,即可求DH长.【详解】由已知可得菱形的面积为12×6×8=24.∵四边形ABCD是菱形,∴∠AOB=90°,AO=4cm,BO=3cm.∴AB=5cm.所以AB×DH=24,即5DH=24,解得DH=245cm.故选C.【点睛】主要考查了菱形的性质,解决菱形的面积问题一般运用“对角线乘积的一半”和“底×高”这两个公式.12.B解析:B【分析】连接AB交OC于点D,由菱形OACB中,根据菱形的性质可得OD=CD=4,BD=AD=2,由此即可求得点B的坐标.【详解】∵连接AB交OC于点D,∵四边形ABCD是菱形,∴AB⊥OC,OD=CD,AD=BD,∵点C的坐标是(8,0),点A的纵坐标是2,∴OC=8,BD=AD=2,∴OD=4,∴点B的坐标为:(4,-2).故选B.【点睛】本题考查了菱形的性质与点与坐标的关系.熟练运用菱形的性质是解决问题的关键,解题时注意数形结合思想的应用.二、填空题13.【分析】先根据正方形面积公式求出正方形的边长再根据第二象限点的坐标特征可求点A 的坐标【详解】解:正方形ABOC 的面积等于7正方形ABOC 的边长正方形ABOC 的顶点A 在第二象限顶点B 在x 轴上顶点C 在y解析:(【分析】先根据正方形面积公式求出正方形的边长,再根据第二象限点的坐标特征可求点A 的坐标.【详解】 解:正方形ABOC 的面积等于7,∴正方形ABOC ,正方形ABOC 的顶点A 在第二象限,顶点B 在x 轴上,顶点C 在y 轴上,∴点A 的坐标是(故答案为:(.【点睛】考查了正方形的性质,坐标与图形性质,解题的关键是根据正方形面积公式求出正方形的边长. 14.【分析】先证四边形BGDH 为平行四边形再证BG=BH 然后由勾股定理求B G四边形BGDH 的周长=4BH 即可【详解】由题意得矩形矩形∴四边形是平行四边形∴平行四边形的面积∴四边形是菱形设则在中由勾股定理 解析:34011【分析】先证四边形BGDH 为平行四边形,再证BG=BH ,然后由勾股定理求B G,四边形BGDH 的周长=4BH 即可.【详解】由题意得矩形ABCD ≌矩形BEDF ,90,7,//,//,11A AB BE AD BC BF DE AD ︒∴∠====,∴四边形BGDH 是平行四边形,∴平行四边形BGDH 的面积BG AB BH BE =⋅=⋅,BG BH ∴=,∴四边形BGDH 是菱形,BH DH DG BG ∴===.设BH DH x ==,则11AH x =-.在Rt ABH △中,由勾股定理得2227(11)x x +-=, 解得85,11x = 8511BG ∴=, ∴四边形BGDH 的周长340411BG ==. 【点睛】 本题考查四边形的周长问题,关键是证四边形BGDH 为菱形,用勾股定理求BH ,掌握矩形的性质,菱形的性质与判定,会用勾股定理解决问题.15.60【分析】由E 是AC 中点且DE=EF 据对角线互相平分的四边形是平行四边形知四边形ADCF 是平行四边形因此只需DF 和AC 相等据对角线相等的平行四边形是矩形就得四边形ADCF 是矩形所以只需∠ACB 的大解析:60【分析】由E 是AC 中点且DE=EF ,据“对角线互相平分的四边形是平行四边形”知四边形ADCF 是平行四边形.因此只需DF 和AC 相等据“对角线相等的平行四边形是矩形”就得四边形ADCF 是矩形,所以只需∠ACB 的大小能使DF=AC 就行了.【详解】当∠ACB=60°时,四边形ADCF 是矩形.理由如下:∵AB=AC ,∠ACB=60°∴△ABC 为正三角形∴AC=BC∵D 、E 是AB 、AC 的中点∴DE=12BC (三角形中位线定理) 又∵DE=EF∴DF=BC=AC①∵E 是AC 中点且DE=EF ∴四边形ADCF 是平行四边形(对角线互相平分的四边形是平行四边形)又由①知DF=AC∴四边形ADCF 是矩形即长方形.(对角线相等的平行四边形是矩形)故答案为:60.【点睛】本题综合考查平行四边形、矩形的判定,也运用了三角形中位线定理.其中关键是结合图形和题目所给条件选择合适判定方法.16.对角线互相平分且相等的四边形是矩形(答案不唯一)【分析】命题由题设和结论两部分组成题设是已知事项结论是由已知事项推出的事项;题设成立结论也成立的叫真命题而题设成立结论不成立的为假命题把一个命题的题设解析:对角线互相平分且相等的四边形是矩形(答案不唯一)【分析】命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项;题设成立,结论也成立的叫真命题,而题设成立,结论不成立的为假命题,把一个命题的题设和结论互换即可得到其逆命题.【详解】解:如命题:对角线互相平分且相等的四边形是矩形,真命题,逆命题是矩形的对角线互相平分且相等,真命题,故答案为:对角线互相平分且相等的四边形是矩形(答案不唯一).【点睛】本题考查了命题与定理:判断事物的语句叫命题;题设与结论互换的两个命题互为逆命题;正确的命题叫真命题,错误的命题叫假命题.17.65°【分析】根据折叠的性质和平角的定义即可得到结论【详解】解:根据翻折的性质可知∠AED=∠A′ED∠BEF=∠FEB′∵∠AED+∠A′ED+∠BEF+∠FEB′=180°∴∠AED+∠BEF=解析:65°【分析】根据折叠的性质和平角的定义即可得到结论.【详解】解:根据翻折的性质可知,∠AED=∠A′ED,∠BEF=∠FEB′,∵∠AED+∠A′ED+∠BEF+∠FEB′=180°,∴∠AED+∠BEF=90°,又∵∠AED=25°,∴∠BEF=65°.故答案为:65°.【点睛】本题主要考查翻折性质,正确理解翻折性质是本题解题关键.18.【分析】连接DFBD由DF>BD-BF知点F落在BD上时DF取得最小值且最小值为BD-BF的长再根据矩形和折叠的性质分别求得BDBF的长即可【详解】如图连接DFBD由图可知DF>BD-BF当点F落在解析:4【分析】连接DF、BD,由DF>BD-BF知点F落在BD上时,DF取得最小值,且最小值为BD-BF的长,再根据矩形和折叠的性质分别求得BD、BF的长即可.【详解】如图,连接DF、BD,由图可知,DF>BD-BF,当点F落在BD上时,DF取得最小值,且最小值为BD-BF的长,∵四边形ABCD是矩形,∴AB=CD=4、BC=6,∴2222BC CD+=6+4=213由折叠性质知AB=BF=4,∴线段DF长度的最小值为BD-BF134=,故答案为:134..【点睛】本题主要考查矩形和翻折变换的性质,解题的关键是根据三角形两边之差小于第三边得出DF长度取得最小值时点F的位置.19.AB=AD【分析】由条件OA=OCAB=CD根据对角线互相平分的四边形是平行四边形可得四边形ABCD为平行四边形再加上条件AB=AD可根据一组邻边相等的平行四边形是菱形进行判定【详解】添加AB=AD解析:AB=AD.【分析】由条件OA=OC,AB=CD根据对角线互相平分的四边形是平行四边形可得四边形ABCD为平行四边形,再加上条件AB=AD可根据一组邻边相等的平行四边形是菱形进行判定.【详解】添加AB=AD,∵OA=OC,OB=OD,∴四边形ABCD为平行四边形,∵AB=AD,∴四边形ABCD是菱形,故答案为AB=AD.【点睛】此题主要考查了平行四边形的判定,关键是掌握一组对边平行且相等的四边形是平行四边形.20.55°【分析】先由矩形的对边平行及平行线的性质知∠B′FC=∠2=70°再根据折叠的性质可得答案【详解】∵四边形ABCD是矩形∴AD∥BC∴∠B′FC=∠2=70°∴∠1+∠B′FE=180°-∠B解析:55°【分析】先由矩形的对边平行及平行线的性质知∠B′FC=∠2=70°,再根据折叠的性质可得答案.【详解】∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠B′FC=∠2=70°,∴∠1+∠B′FE=180°-∠B′FC=110°,由折叠知∠1=∠B′FE ,∴∠1=∠B′FE=55°,故答案为:55°.【点睛】本题主要考查折叠的性质和平行线的性质,解题的关键是掌握矩形的对边平行、两直线平行同位角相等性质.三、解答题21.(1)15,24,6;(2)见详解;(3)517t <<.【分析】(1)根据点P 的位置,利用三角形面积公式写出y 与t 的函数关系,把表中t 的值代入求解即可;(2)根据(1)中所得y 与t 的函数关系,在自变量t 取值范围内画出图像即可; (3)把15y =代入到y 与t 的函数关系式, t 即可求出t 的取值范围.【详解】解:在矩形ABCD 中,8AB =,6BC =,8,6CD AB AD BC ∴====,(1)当点P 在AB 上,即 08t ≤≤ 时,AP t = ,12APD S AP AD =△, 1632y t t ∴=⨯=, ∴当5t =时,156152y =⨯⨯=, 当点P 在BC 上,即814t <≤时,12ADP S AD AB =△, 168242y ∴=⨯⨯=, ∴当14t =时,24y =,当点P 在CD 上,即1422t <≤时,22DP t =- ,12ADP S AD DP =△ , ∴ 当20t =时,()1622663666062y t t =⨯⨯-=-=-=, 故答案为:15,24,6;(2)由(1)知:()()()308248143661422t t y t t t ≤≤⎧⎪=<≤⎨⎪-+<≤⎩, 画出y 与t 的图像,如图2所示(3)把15y =代入3y t =,得5t =,把15y =代入663y t =- 得,15663t =- ,解得17t =,∴当ADP △的面积超过15时,点P 运动的时间t 的取值范围为:517t <<.【点睛】本题考查了矩形的性质,一次函数的应用,一次函数的图像,解答本题时注意分类讨论思想、数形结合思想、方程思想的运用.22.(1)见解析;(2)307【分析】(1)延长EB 至点G ,使BG =DF ,连接AG ,根据题意易证△ADF ≌△ABG (SAS ),即可得到AG =AF ,∠GAB =∠FAD .即可证明△GAE ≌△FAE (SAS ),即得到EF =BE +DF .(2)作AM ⊥BC 点M ,连接BE ,易证四边形AMCD 是正方形,即可得到AD =CD =MC =10,MB =4.再由(1)的结论得BE =MB +DE ,设DE =x ,则EC =10x -,BE =4x +.在Rt △BCE 中,结合勾股定理即可列出关于x 的方程,求出x 即可.【详解】(1)如图,延长EB 至点G ,使BG =DF ,连接AG . 在△ADF 和△ABG 中,90AD AB ADF ABG DF BG =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ADF ≌△ABG (SAS ).∴AG =AF ,∠GAB =∠FAD ,∵45EAF ∠=︒,∴45FAD BAE ∠+∠=︒,∴45GAB BAE ∠+∠=︒,即45GAE EAF ∠=∠=︒.在△GAE 和△FAE 中,45AG AF GAE EAF AE AE =⎧⎪∠=∠=︒⎨⎪=⎩,∴△GAE ≌△FAE (SAS ),∴EG=EF ,即EF=BE+BG=BE+DF .(2)如图,作AM ⊥BC 点M ,连接BE ,由题意可知四边形AMCD 是正方形,∴AD =CD =MC =10,MB =4.由(1)知BE =MB +DE .设DE =x ,则EC =10x -,BE =4x +.在Rt △BCE 中,222BC EC BE +=,即()222610=(4)x x +-+, 解得:307x =,即DE = 307【点睛】本题考查三角形全等的判定和性质,正方形的判定和性质以及勾股定理.作出常用的辅助线是解答本题的关键.23.证明见解析【分析】根据三角形的中位线的性质和菱形的判定定理即可得到结论;【详解】证明:,,D E F 分别是,,AB AC BC 的中点,11//,,//,22DE CF DE BC DF CE DF AC ∴==, ∴四边形DECF 是平行四边形.AC BC =,DE DF ∴=,∴四边形DFCE 是菱形.【点睛】本题考查了菱形的判定和性质,三角形的中位线的性质,熟练掌握菱形的判定定理是解题的关键.24.(1)见解析;(2)【分析】(1)由矩形ABCD 可得OB=OC ,再由垂直可得两直角相等,再由“角角边”定理可证的△BEO ≌△CFO ,根据全等三角形的性质即可得BE=CF .(2)结合四边形ABCD 是矩形,∠AOB=60°,△AOB 是等边三角形,再根据勾股定理即可求解.【详解】(1)证明:∵四边形ABCD 是矩形,∴AC=BD ,OA=OC=12AC ,OB=OD=12BD , ∴OB=OC ,∵BE ⊥AC ,CF ⊥BD ,∴∠BEO=∠CFO=90°,在△BEO 和△CFO 中, BOE COF BEO CFO OB OC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BEO ≌△CFO (AAS ),∴BE=CF ;(2)解:∵四边形ABCD 是矩形,∴∠ABC=90°,AC=BD ,OA=OC=12AC ,OB=OD=12BD , ∴OB=OA ,∵∠AOB=60°,∴△AOB 是等边三角形,∴AB=AO=OB=8,∴AC=16,由勾股定理得:BC ==∴矩形的面积是8AB BC ⨯=⨯=【点睛】本题主要考查了全等三角形的判定与性质,掌握全等三角形的相关性质和等边三角形的性质,矩形的性质以及勾股定理是解决本题的关键.25.(1)OA OB OC ==;(2)OMN 是等腰直角三角形,证明见解析;(3)四边形AMON 的面积不变,理由见解析【分析】(1)连接OA,由O为BC的中点可得OC OB=,由直角三角形斜边上的中线的性质可得12 OABC=,即可得OA OB OC==.(2)由(1)不难证明45CAO B∠=∠=︒,结合已知条件进而证明OAN≌OBM,即可得OM ON=,NOA MOB∠=∠,即90NOM AOB∠=∠=︒,所以OMN是等腰直角三角形.(3)由(2)可得OANS=OBMS,进而将四边形AMON的面积转化为AOB的面积,AOB的面积保持不变,故四边形AMON的面积保持不变.【详解】(1)连接OA,Rt ABC△中,O为BC的中点,∴12OA BC=,OC OB=,∴122OA OB OB=⨯⨯=,∴OA OB OC==.(2)OMN是等腰直角三角形,证明如下:AB AC=,O为BC的中点,∴AO BC⊥,∴90AOB∠=︒,OA OB OC==,∴45CAO B∠=∠=︒,在OAN与OBM中,OA OBCAO BAN BM=⎧⎪∠=∠⎨⎪=⎩,∴OAN≌OBM,∴OM ON=,NOA MOB∠=∠,∴90NOM AOB∠=∠=︒,∴OMN是等腰直角三角形.(3)四边形AMON的面积保持不变,理由如下:由(2)可得: OAN S =OBM S , ∴OAN AOM OBM AOM AOB AMON S S S S S S =+=+=四边形. AOB 的面积保持不变∴四边形AMON 的面积保持不变.【点睛】本题主要考查直接三角形斜边上中线的性质以及全等三角形的判定与性质,掌握全等三角形的判定与性质定理并灵活运用是解题关键.26.(1)60︒;(2)菱形【分析】(1)由旋转的性质可得出AC CD =,再由三角形的内角和可求出=1809030=60A ︒-︒-︒︒∠,因此可证出ACD △是等边三角形,得到=60ACD ︒∠,即可解决问题;(2)根据题意,证明AD AC =,再证明DF CF AD ==,得到AD DF CF AC ===,即可解决问题.【详解】解:(1)由题意可得:AC CD =∵90ACB ∠=︒,30B ∠=︒∴=1809030=60A ︒-︒-︒︒∠∴ACD △是等边三角形∴=60m ACD ︒=∠(2)∵DAC △为等边三角形∴AD AC =∵2AB AD BD AC =+= ∴12AD BD AB ==由题意得:DE AB =,90DCE ACB ∠=∠=︒∵F 是DE 的中点 ∴1122DF CF DE AB === ∴AD DF CF AC === ∴四边形ACFD 是菱形【点睛】本题主要考查了旋转变换的性质,等边三角形的判定,直角三角形的性质,菱形的判定等几何知识点,熟悉掌握旋转变换的性质是解题的关键.。
北师大版九年级上册 第一章 单元练习题:《特殊的平行四边形》(含答案)
单元练习题:《特殊的平行四边形》一.选择题1.下列说法中错误的是()A.平行四边形的对边相等B.菱形的对角线平分一组对角C.对角线互相垂直的四边形是菱形D.矩形的对角线互相平分2.如图,已知四边形ABCD是平行四边形,下列说法正确的是()A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形3.如图,菱形ABCD对角线AO=4cm,BO=3cm,则菱形高DE长为()A.5cm B.10cm C.4.8cm D.9.6cm4.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AB的长为2.6km,则M,C两点间的距离为()A.0.8km B.1.2km C.1.3km D.5.2km5.已知平行四边形ABCD,下列条件中,能判定这个平行四边形为菱形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AC⊥BD6.如图,▱ABCD中的对角线AC,BD相交于点O,点E.F在BD上,且BE═DF,连接AE,EC,CF,FA,下列条件能判定四边形AECF为矩形的是()A.BE=EO B.EO=AC C.AC⊥BE D.AE=AF7.已知矩形的对角线长为10,两邻边之比为3:4,则矩形的面积为()A.50 B.48 C.24 D.128.如图,矩形ABCD的对角线AC,BD相交于点O,AD=3,∠AOD=60°,则AB的长为()A.3 B.2C.3D.69.如图,在菱形ABCD中,CE⊥AB于点E,E点恰好为AB的中点,则菱形ABCD的较大内角度数为()A.100°B.120°C.135°D.150°10.如图,在正方形ABCD中,E为对角线BD上一点,且BE=BC,则∠ACE=()A.20.5°B.30.5°C.21.5°D.22.5°11.如图,四边形ABCD是矩形,∠BDC的平分线交AB的延长线于点E,若AD=4,AE=10,则AB的长为()A.4.2 B.4.5 C.5.2 D.5.512.如图,在矩形ABCD中,AB=2,AD=1,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是()A.2 B.4 C.D.2二.填空题13.如果菱形的边长为17,一条对角线长为30,那么另一条对角线长为.14.如图,正方形ABCD的边长为5,点E在CD上,DE=2,∠BAE的平分线交BC于点F,则CF的长为.15.如图,在正方形ABCD中,对角线AC与BD相交于点O,点P为AD边上的一点,过点P 分别作PE⊥AC于点E,作PF⊥BD于点F.若PE+PF=5,则正方形ABCD的面积为.16.如图,已知正方形ABCD的边长为2,对角线AC、BD相交于点O,AE平分∠BAC交BD 于点E,则BE的长为.17.如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由△DAM平移得到,若过点E作EH⊥AC,H为垂足,则有以下结论:①点M位置变化,使得∠DHC=60°时,2BE=DM;②无论点M运动到何处,都有DM=HM;③在点M的运动过程中,四边形CEMD可能成为菱形;④无论点M运动到何处,∠CHM一定大于135°.以上结论正确的有(把所有正确结论的序号都填上).三.解答题18.如图,在菱形ABCD中,点E,F分别是边AD,AB的中点.(1)求证:△ABE≌△ADF;(2)若BE=,∠C=60°,求菱形ABCD的面积.19.如图,在菱形ABCD中,对角线AC,BD交于点O,AE⊥BC交CB延长线于E,CF∥AE交AD延长线于点F.(1)求证:四边形AECF是矩形;(2)连接OE,若AD=5,BE=3,求线段OE的长.20.如图,已知四边形ABCD和四边形CEFG都是正方形,且AB>CE,连接BG,DE.(1)求证:BG=DE;(2)连接BD,若CG∥BD,BG=BD,求∠BDE的度数.21.已知正方形ABCD,点F是射线DC上一动点(不与C、D重合).连接AF并延长交直线BC于点E,交BD于H,连接CH.在EF上取一点G,使∠ECG=∠DAH.(1)若点F在边CD上,如图1,①求证:CH⊥CG.②求证:△GFC是等腰三角形.(2)取DF中点M,连接MG.若MG=3,正方形边长为4,则BE=.22.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,D为AB边的中点,连接DC过D作DE ⊥DC交AC于点E.(1)求∠EDA的度数;(2)如图2,F为BC边上一点,连接DF,过D作DG⊥DF交AC于点G,请判断线段CF 与EG的数量关系,并说明理由.23.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图1,连接AF、CE.求证:四边形AFCE为菱形.(2)如图1,求AF的长.(3)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,点P的速度为每秒1cm,设运动时间为t秒.①问在运动的过程中,以A、P、C、Q四点为顶点的四边形有可能是矩形吗?若有可能,请求出运动时间t和点Q的速度;若不可能,请说明理由.②若点Q的速度为每秒0.8cm,当A、P、C、Q四点为顶点的四边形是平行四边形时,求t的值.参考答案一.选择题1.解:A.平行四边形的对边相等,正确,不符合题意;B.菱形的对角线平分一组对角,正确,不符合题意;C.对角线互相垂直的四边形是菱形,错误,符合题意;D.矩形的对角线互相平分,正确,不符合题意.故选:C.2.解:A、错误,有一个角为90°的平行四边形是矩形B、错误,对角线互相垂直的平行四边形是菱形;C、正确,对角线相等的平行四边形是矩形;D、错误,一组邻边相等的平行四边形是菱形;故选:C.3.解:∵四边形ABCD是菱形,∴AC⊥BD,AC=2OA=2×4cm=8cm,BD=2BO=2×3cm=6cm,在Rt△AOB中,由勾股定理得:AB===5(cm),菱形ABCD的面积=AC•BD=AB•DE,即×8×6=5DE,解得:DE=4.8(cm),故选:C.4.解:在Rt△ACB中,点M是AB的中点,∴CM=AB=×2.6=1.3(km),故选:C.5.解:A、∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+B=180°,∵∠A=∠B,∴∠A=∠B=90°,∴平行四边形ABCD是矩形;故选项A不符合题意;B、∵四边形ABCD是平行四边形,∴∠A=∠C;故选项B不符合题意;C、∵四边形ABCD是平行四边形,AC=BD,∴平行四边形ABCD1矩形;故选项C不符合题意;D、∵四边形ABCD是平行四边形,AC⊥BD,∴平行四边形ABCD是菱形;故选项D符合题意;故选:D.6.解:∵四边形ABCD是平行四边形,∴OA=OC=AC,OB=OD,∵BE=DF,∴OB﹣BE=OD﹣DF,即OE=OF,∴四边形AECF是平行四边形,A、BE=EO时,不能判定四边形AECF为矩形;故选项A不符合题意;B、EO=AC时,EF=AC,∴四边形AECF为矩形;故选项B符合题意;C、AC⊥BE时,四边形AECF为菱形;故选项C不符合题意;D、AE=AF时,四边形AECF为菱形;故选项D不符合题意;故选:B.7.解:∵矩形的两邻边之比为3:4,∴设矩形的两邻边长分别为:3x,4x,∵对角线长为10,∴(3x)2+(4x)2=102,解得:x=2,∴矩形的两邻边长分别为:6,8;∴矩形的面积为:6×8=48.故选:B.8.解:∵四边形AABCD是矩形,∴∠DAB=90°,OA=OD=OB,∵∠AOD=60°,∴△AOD是等边三角形,∴OA=OD=AD=3,∴BD=2OD=6,∴AB==3.故选:C.9.解:连接AC,如图:∵四边形ABCD是菱形,∴AB=BC,∠BAD=∠BCD,∠B=∠D,AD∥BC,∴∠BAD+∠B=180°,∵CE⊥AB,点E是AB中点,∴BC=AC=AB,∴△ABC是等边三角形,∴∠B=60°,∴∠D=60°,∠BAD=∠BCD=120°;即菱形ABCD的较大内角度数为120°;故选:B.10.解:设AC与BD交于点O,在四边形ABCD中,∠EOC=90°,∠1=∠2=45°.∵BE=BC,∴∠3=∠ECB=67.5°.∴∠ACE=OCE=90°﹣∠3=90°﹣67.5°=22.5°.故选:D.11.解:如图,∵四边形ABCD是矩形,∴CD∥AB,∴∠1=∠E.又∵∠BDC的平分线交AB的延长线于点E,∴∠1=∠2,∴∠2=∠E.∴BE=BD.∵AE=10,∴BD=BE=10﹣AB.在直角△ABD中,AD=4,BD=10﹣AB,则由勾股定理知:AB==.∴AB=4.2.故选:A.12.解:如图:当点F与点C重合时,点P在P1处,CP1=DP1,当点F与点E重合时,点P在P2处,EP2=DP2,∴P 1P 2∥CE 且P 1P 2=CE .当点F 在EC 上除点C 、E 的位置处时,有DP =FP .由中位线定理可知:P 1P ∥CE 且P 1P =CF .∴点P 的运动轨迹是线段P 1P 2,∴当BP ⊥P 1P 2时,PB 取得最小值.∵矩形ABCD 中,AB =2,AD =1,E 为AB 的中点,∴△CBE 、△ADE 、△BCP 1为等腰直角三角形,CP 1=1.∴∠ADE =∠CDE =∠CP 1B =45°,∠DEC =90°.∴∠DP 2P 1=90°.∴∠DP 1P 2=45°.∴∠P 2P 1B =90°,即BP 1⊥P 1P 2,∴BP 的最小值为BP 1的长.在等腰直角BCP 1中,CP 1=BC =1.∴BP 1=.∴PB 的最小值是. 故选:C .二.填空题(共5小题)13.解:在菱形ABCD 中,AB =17,BD =30,∵对角线互相垂直平分,∴∠AOB =90°,BO =15,在Rt △AOB 中,AO ===8,∴AC =2AO =16.即另一条对角线长为16,故答案为:16.14.解:延长CD 到N ,使DN =BF ,连接AN ,如图所示:∵四边形ABCD是正方形,∴AB=AD,∠BAD=∠ABF=∠ADN=90°,在△ABF和△ADN中,,∴△ABF≌△ADN(SAS),∴∠BAF=∠DAN,∴∠NAF=90°,∴∠EAN=90°﹣∠FAE,∠N=90°﹣∠DAN=90°﹣∠BAF,∵∠BAF=∠FAE,∴∠EAN=∠N,∴AE=EN,∵,∴,∴,∴,故答案为:7﹣.15.解:∵在正方形ABCD中,对角线AC与BD相交于点O,∴AC⊥BD,AO=CO=BO=DO,∠EAP=45°,∵PE⊥AC,∴△AEP是等腰直角三角形,∴PE=AE,∵PF⊥BD,∴四边形OEPF是矩形,∴PF=OE,∴PE+PF=AE+OE=OA=5,=,∴S△AOD=4×=50.∴S正方形ABCD故答案为:50.16.解:如图,过点E作EH⊥AB于H.∵四边形ABCD是正方形,∴AB=BC=CD=AD=2,BD=AC=2,OD=OB=,∵EA平分∠BAO,EH⊥AB,EO⊥AC,∴EH=EO,设EH=EO=a,则BE=a,∴a+a=,解得a=2﹣,∴BE=a=2﹣2.故答案为:2﹣2.17.解:如图,连接DH,HM.由题可得,AM=BE,∴AB=EM=AD,∵四边形ABCD是正方形,EH⊥AC,∴EM=AD,∠AHE=90°,∠MEH=∠DAH=45°=∠EAH,∴EH=AH,∴△MEH≌△DAH(SAS),∴∠MHE=∠DHA,MH=DH,∴∠MHD=∠AHE=90°,△DHM是等腰直角三角形,∴DM=2HM,故②正确;当∠DHC=60°时,∠ADH=60°﹣45°=15°,∴∠ADM=45°﹣15°=30°,∴Rt△ADM中,DM=2AM,即DM=2BE,故①正确;∵CD∥EM,EC∥DM,∴四边形CEMD是平行四边形,∵DM>AD,AD=CD,∴DM>CD,∴四边形CEMD不可能是菱形,故③错误,∵点M是边BA延长线上的动点(不与点A重合),且AM<AB,∴∠AHM<∠BAC=45°,∴∠CHM>135°,故④正确;由上可得正确结论的序号为①②④.故答案为①②④.三.解答题(共6小题)18.(1)证明:∵四边形ABCD是菱形,∴AB=AD,∵点E,F分别是边AD,AB的中点,∴AF=AE,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS);(2)解:连接BD,如图:∵四边形ABCD是菱形,∴AB=AD,∠A=∠C=60°,∴△ABD是等边三角形,∵点E是边AD的中点,∴BE⊥AD,∴∠ABE=30°,∴AE=BE=1,AB=2AE=2,∴AD=AB=2,∴菱形ABCD的面积=AD×BE=2×=2.19.(1)证明:∵四边形ABCD是菱形,∴AD∥BC,即AF∥EC,∵CF∥AE,∴四边形AECF是平行四边形,∵AE⊥BC,∴平行四边形AECF是矩形;(2)解:如图所示:∵四边形ABCD为菱形,四边形AECF为矩形,且BE=3,AD=5 ∴OA=OC,AB=BC=AD=5 DF=EB=3,∠AEC=90°,∴AE===4,CE=BC+BE=8,∴AC===4,∵OA=OC,∠AEC=90°,∴OE=OC=AC=×4=2.20.(1)证明:∵四边形ABCD和四边形CEFG为正方形,∴BC=DC,CG=CE,∠BCD=∠GCE=90°,∴∠BCG=∠DCE,∴△BCG≌△DCE(SAS),∴BG=DE;(2)连接BE,∵CG∥BD,∴∠DCG=∠BDC=45°,∴∠BCG=∠BCD+∠DCG=90°+45°=135°.∵∠GCE=90°,∴∠BCE=360°﹣∠BCG﹣∠GCE=360°﹣135°﹣90°=135°,∴∠BCG=∠BCE.∵CG=CE,BC=BC,∴△BCG≌△BCE(SAS),∴BG=BE.∵由(1)可知BG=DE,∴BD=BE=DE,∴△BDE为等边三角形,∴∠BDE=60°.21.(1)①证明:∵四边形ABCD是正方形,∴∠ADB=∠CDB=45°,DA=DC,在△DAH和△DCH中,,∴△DAH≌△DCH(SAS),∴∠DAH=∠DCH.∵∠ECG=∠DAH,∴∠ECG=∠DCH.∵∠ECG+∠FCG=∠FCE=90°,∴∠DCH+∠FCG=90°,∴CH⊥CG;②∵在Rt△ADF中,∠DFA+∠DAF=90°,由①得∠DCH+∠FCG=90°,∠DAH=∠DCH;∴∠DFA=∠FCG,又∵∠DFA=∠CFG,∴∠CFG=∠FCG,∴GF=GC,∴△GFC是等腰三角形;(2))①如图,当点F在线段CD上时,连接DE.∵∠GFC=∠GCF,∠GEC+∠GFC=90°,∠GCF+∠GCE=90°,∴∠GCE=∠GEC,∴EG=GC=FG,∵FG=GE,FM=MD,∴DE=2MG=6,在Rt△DCE中,CE===2,∴BE=BC+CE=4+2.②如图,当点F在线段DC的延长线上时,连接DE.同法可知GM是△DEC的中位线,∴DE=2GM=6,在Rt△DCE中,CE===2,∴BE=BC﹣CE=4﹣3=1.综上所述,BE的长为 4+或4﹣.22.(1)解:如图1,在Rt△ABC中,∠ACB=90°,∠B=60°,∴∠A=30°,∵D为AB边的中点,∴CD=BD=AD,∴△BCD是等边三角形,∠ACD=∠A=30°,∵∠CDE=90°,∴∠CED=60°,∴∠EDA=30°;(2)解:如图2,在Rt△CDE中,∠ACD=30°,∴tan30°=,∴=,∵∠FDG=∠CDE=90°,∴∠FDC=∠GDE,∴∠FCD=∠GED=60°,∴△FCD∽GED,∴=,∴FC=GE.23.(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠AEO=∠CFO,∵AC的垂直平分线EF,∴AO=OC,AC⊥EF,在△AEO和△CFO中∵,∴△AEO≌△CFO(AAS),∴OE=OF,∵OA=OC,∴四边形AECF是平行四边形,∵AC⊥EF,∴平行四边形AECF是菱形;(2)解:设AF=acm,∵四边形AECF是菱形,∴AF=CF=acm,∵BC=8cm,∴BF=(8﹣a)cm,在Rt△ABF中,由勾股定理得:42+(8﹣a)2=a2,a=5,即AF=5cm;(3)解:①在运动过程中,以A、P、C、Q四点为顶点的四边形有可能是矩形,只有当P运动到B点,Q运动到D点时,以A、P、C、Q四点为顶点的四边形有可能是矩形,P点运动的时间是:(5+3)÷1=8,Q的速度是:4÷8=0.5,即Q的速度是0.5cm/s;②分为三种情况:第一、P在AF上,∵P的速度是1cm/s,而Q的速度是0.8cm/s,∴Q只能在CD上,此时当A、P、C、Q四点为顶点的四边形不是平行四边形;第二、当P在BF上时,Q在DE上,如图,∵AQ=8﹣(0.8t﹣4),CP=5+(t﹣5),∴8﹣(0.8t﹣4)=5+(t﹣5),t=,第三情况:当P在AB上时,Q在DE或CE上,此时当A、P、C、Q四点为顶点的四边形不是平行四边形;即t=.。
九年级数学上册《第一章 特殊平行四边形》单元测试卷-附带答案(北师大版)
九年级数学上册《第一章特殊平行四边形》单元测试卷-附带答案(北师大版)一、选择题(12小题,每小题3分,共36分)1.下列命题中,真命题是()A.两条对角线垂直的四边形是菱形B.对角线垂直且相等的四边形是正方形C.两条对角线相等的四边形是矩形D.两条对角线相等的平行四边形是矩形2.菱形具有而矩形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补3.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形满足条件的是()①平行四边形②菱形③对角线相等的四边形④对角线互相垂直的四边形.A.①③ B.②③ C.③④ D.②④4.既是中心对称图形又是轴对称图形,且只有两条对称轴的四边形是()A.正方形B.矩形 C.菱形 D.矩形或菱形5.(2018•大连)如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是()A.8 B.7 C.4 D.36.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()A.16 B.17 C.18 D.197.在Rt△ABC中,∠ACB=90°,∠B=30°,AC=cm,则AB边上的中线为()A.1cm B.2cm C.1.5cm D.cm8.如图,在正方形ABCD外侧作等边三角形CDE,AE、BD交于点F,则∠AFB的度数为()A.45°B.55°C.60°D.75°9.如图,▱ABCD中,DE⊥AB,DF⊥BC,垂足分别为E、F,∠EDF=60°,AE=2cm,则AD=()A.4cm B.5cm C.6cm D.7cm10.如图:长方形纸片ABCD中,AD=4cm,AB=10cm,按如图的方式折叠,使点B与点D重合.折痕为EF,则DE长为()A.4.8 cm B.5 cm C.5.8 cm D.6 cm11.如图,将一个长为10cm,宽为8cm的矩形纸片先按照从左向右对折,再按照从下向上的方向对折,沿所得矩形两邻边中点的连线(虚线)剪下(如图(1)),再打开,得到如图(2)所示的小菱形的面积为()A.10cm2B.20cm2C.40cm2D.80cm212.(2018•威海)矩形ABCD与CEFG如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF 的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1 B.C.D.二、填空题(每小题3分,共12分)13.(2018•锦州)如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH,若OB=4,S菱形ABCD=24,则OH的长为.14.(2018•本溪)如图,矩形OABC的顶点A,C分别在坐标轴上,B(8,7),D(5,0),点P是边AB 或边BC上的一点,连接OP,DP,当△ODP为等腰三角形时,点P的坐标为.15.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为.16.如图,正方形ABCD的边长为4,E为BC上的一点,BE=1,F为AB上的一点,AF=2,P为AC上一个动点,则PF+PE的最小值为.三、解答题(共52分)17.(6分)已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:∠AEF=∠AFE.18.(7分)如图,矩形ABCD的对角线AC、BD交于点O,∠AOD=60°,AB=,AE⊥BD于点E,求OE的长.19.(7分)如图,在△ABC中,AB=BC,BD平分∠ABC.四边形ABED是平行四边形,DE交BC于点F,连接CE.求证:四边形BECD是矩形.20.(8分)如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.(1)求证:AE=DF;(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.21.(8分)如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=2,求AB的长.22.(8分)正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D 逆时针旋转90°,得到△DCM.(1)求证:EF=FM;(2)当AE=1时,求EF的长.23.(8分)已知,如图1,BD是边长为1的正方形ABCD的对角线,BE平分∠DBC交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G.(1)求证:△BCE≌△DCF;(2)求CF的长;(3)如图2,在AB上取一点H,且BH=CF,若以BC为x轴,AB为y轴建立直角坐标系,问在直线BD 上是否存在点P,使得以B、H、P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的P点坐标;若不存在,说明理由.参考答案一、选择题(12小题,每小题3分,共36分)1.下列命题中,真命题是()A.两条对角线垂直的四边形是菱形B.对角线垂直且相等的四边形是正方形C.两条对角线相等的四边形是矩形D.两条对角线相等的平行四边形是矩形【分析】本题要求熟练掌握平行四边形、菱形、矩形、正方形的性质以及之间的相互联系.【解答】解:A、两条对角线垂直并且相互平分的四边形是菱形,故选项A错误;B、对角线垂直且相等的平行四边形是正方形,故选项B错误;C、两条对角线相等的平行四边形是矩形,故选项C错误;D、根据矩形的判定定理,两条对角线相等的平行四边形是矩形,为真命题,故选项D正确;故选D.【点评】本题考查的是普通概念,熟练掌握基础的东西是深入研究的必要准备.2.菱形具有而矩形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补【考点】矩形的性质;菱形的性质.【专题】推理填空题.【分析】根据菱形对角线垂直平分的性质及矩形对交线相等平分的性质对各个选项进行分析,从而得到最后的答案.【解答】解:A、菱形对角线相互垂直,而矩形的对角线则不垂直;故本选项符合要求;B、矩形的对角线相等,而菱形的不具备这一性质;故本选项不符合要求;C、菱形和矩形的对角线都互相平分;故本选项不符合要求;D、菱形对角相等;但菱形不具备对角互补,故本选项不符合要求;故选A.【点评】此题主要考查了学生对菱形及矩形的性质的理解及运用.菱形和矩形都具有平行四边形的性质,但是菱形的特性是:对角线互相垂直、平分,四条边都相等.3.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形满足条件的是()①平行四边形②菱形③对角线相等的四边形④对角线互相垂直的四边形.A.①③ B.②③ C.③④ D.②④【考点】矩形的定义及性质.【分析】已知梯形四边中点得到的四边形是矩形,则根据矩形的性质及三角形的中位线的性质进行分析,从而不难求解.【解答】解:如图点E,F,G,H分别是梯形各边的中点,且四边形EFGH是矩形.∵点E,F,G,H分别是梯形各边的中点,且四边形EFGH是矩形.∴∠FEH=90°,EF∥BD∥HG,FG∥AC∥EH,EF≠GH.∴AC⊥BD.①平行四边形的对角线不一定互相垂直,故①错误;②菱形的对角线互相垂直,故②正确;③对角线相等的四边形,故③错误;④对角线互相垂直的四边形,故④正确.综上所述,正确的结论是:②④.故选:D.【点评】此题主要考查矩形的性质及三角形中位线定理的综合运用,正确掌握矩形的判定方法是解题关键.4.既是中心对称图形又是轴对称图形,且只有两条对称轴的四边形是()A.正方形B.矩形 C.菱形 D.矩形或菱形【考点】菱形的性质,矩形的定义及性质,正方形的定义及性质.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:正方形是轴对称图形,也是中心对称图形,有4条对称轴;矩形是轴对称图形,也是中心对称图形,有2条对称轴;菱形是轴对称图形,也是中心对称图形,有2条对称轴.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.(2018•大连)如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是()A.8 B.7 C.4 D.3【考点】L8:菱形的性质.【分析】根据菱形的对角线互相垂直,利用勾股定理列式求出OB即可;【解答】解:∵四边形ABCD是菱形∴OA=OC=3,OB=OD,AC⊥BD在Rt△AOB中,∠AOB=90°根据勾股定理,得:OB===4∴BD=2OB=8故选:A.【点评】本题考查了菱形性质,勾股定理的应用等知识,比较简单,熟记性质是解题的关键.6.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()A.16 B.17 C.18 D.19【考点】正方形的性质.【分析】由图可得,S2的边长为3,由AC=BC,BC=CE=CD,可得AC=2CD,CD=2,EC=2;然后,分别算出S1、S2的面积,即可解答.【解答】解:如图设正方形S1的边长为x∵△ABC和△CDE都为等腰直角三角形∴AB=BC,DE=DC,∠ABC=∠D=90°∴sin∠CAB=sin45°==,即AC=BC,同理可得:BC=CE=CD∴AC=BC=2CD又∵AD=AC+CD=6∴CD==2∴EC2=22+22,即EC=2;∴S1的面积为EC2=2×2=8;∵∠MAO=∠MOA=45°∴AM=MO∵MO=MN∴AM=MN∴M为AN的中点∴S2的边长为3∴S2的面积为3×3=9∴S1+S2=8+9=17.故选B.【点评】本题考查了正方形的性质,找到相等的量,再结合三角函数进行解答.7.在Rt△ABC中,∠ACB=90°,∠B=30°,AC=cm,则AB边上的中线为()A.1cm B.2cm C.1.5cm D.cm【考点】直角三角形斜边上的中线.【专题】计算题.【分析】由直角三角形的性质知:斜边上的中线等于斜边的一半;已知了直角三角形的两条直角边,由勾股定理可求得斜边的长,由此得解【解答】解:∵Rt△ABC中,AC=cm,且∠ACB=90°,∠B=30°∴AB=2∴AB边上的中线CD=AB=cm.故选D.【点评】此题主要考查直角三角形斜边上的中线等于斜边的一半等知识点的理解和掌握,难度不大,属于基础题.8.如图,在正方形ABCD外侧作等边三角形CDE,AE、BD交于点F,则∠AFB的度数为()A.45°B.55°C.60°D.75°【考点】正方形的性质.【分析】根据正方形以及等边三角形的性质可得出AD=DE,∠ADF=45°,∠ADC=90°,∠CDE=60°,根据等腰三角形的性质即可得出∠DAE=∠DEA=15°,再结合三角形外角性质即可算出∠AFB的值.【解答】解:∵四边形ABCD为正方形,△CDE为等边三角形∴AD=CD=DE,∠ADF=∠ABF=45°,∠ADC=90°,∠CDE=60°∴∠ADE=150°.∵AD=DE∴∠DAE=∠DEA=15°∴∠AFB=∠ADF+∠DAF=45°+15°=60°.故选C.【点评】本题考查了正方形的性质、等边三角形的性质以及三角形外角的性质,解题的关键是求出∠ADF=45°、∠DAF=15°.本题属于基础题,解决该题型题目时,通过正方形、等边三角形以及等腰三角形的性质计算出角的度数是关键.9.如图,▱ABCD中,DE⊥AB,DF⊥BC,垂足分别为E、F,∠EDF=60°,AE=2cm,则AD=()A.4cm B.5cm C.6cm D.7cm【考点】含30度角的直角三角形;多边形内角与外角;平行四边形的性质.【分析】根据四边形ABCD是平行四边形,得出AB∥CD,∠A=∠C,∠CDE=∠AED,根据DE⊥AB,得出∠AED和∠CDE是直角,求出∠CDF的度数,最后根据DF⊥BC,求出∠C、∠A的度数,最后根据∠ADE=30°,AE=2cm,即可求出答案.【解答】解:∵四边形ABCD是平行四边形∴AB∥CD,∠A=∠C∴∠CDE=∠AED∵DE⊥AB∴∠AED=90°∴∠CDE=90°∵∠EDF=60°∴∠CDF=30°∵DF⊥BC∴∠DFC=90°∴∠C=60°∴∠A=60°∴∠ADE=30°∴AD=2DE∵AE=2∴AD=2×2=4(cm);故选A.【点评】此题考查了平行四边形的性质和含30°角的直角三角形,用到的知识点是平行四边形的性质和垂直的定义30°角的直角三角形的性质,关键是求出∠ADE=30°.10.如图:长方形纸片ABCD中,AD=4cm,AB=10cm,按如图的方式折叠,使点B与点D重合.折痕为EF,则DE长为()A.4.8 cm B.5 cm C.5.8 cm D.6 cm【考点】矩形的定义及性质.【分析】在折叠的过程中,BE=DE,从而设BE=DE=x,即可表示AE,在直角三角形ADE中,根据勾股定理列方程即可求解.【解答】解:设DE=xcm,则BE=DE=x,AE=AB﹣BE=10﹣x在Rt△ADE中,DE2=AE2+AD2即x2=(10﹣x)2+16.解得:x=5.8.故选C.【点评】此题主要考查了翻折变换的问题,解答本题的关键是掌握翻折前后对应线段相等,另外要熟练运用勾股定理解直角三角形.11.如图,将一个长为10cm,宽为8cm的矩形纸片先按照从左向右对折,再按照从下向上的方向对折,沿所得矩形两邻边中点的连线(虚线)剪下(如图(1)),再打开,得到如图(2)所示的小菱形的面积为()A.10cm2B.20cm2C.40cm2D.80cm2【考点】菱形的性质.【分析】利用折叠的方式得出AC,BD的长,再利用菱形面积公式求出面积即可.【解答】解:由题意可得:图1中矩形的长为5cm,宽为4cm∵虚线的端点为矩形两邻边中点∴AC=4cm,BD=5cm∴如图(2)所示的小菱形的面积为:×4×5=10(cm2).故选:A.【点评】此题主要考查了菱形的性质以及剪纸问题,得出菱形对角线的长是解题关键.翻折变换(折叠问题)实质上就是轴对称变换.12.(2018•威海)矩形ABCD与CEFG如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF 的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1 B.C.D.【考点】KQ:勾股定理;LB:矩形的性质.【分析】延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=PG,再利用勾股定理求得PG=,从而得出答案.【解答】解:如图,延长GH交AD于点P∵四边形ABCD和四边形CEFG都是矩形∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1∴AD∥GF∴∠GFH=∠P AH又∵H是AF的中点∴AH=FH在△APH和△FGH中∵∴△APH≌△FGH(ASA)∴AP=GF=1,GH=PH=PG∴PD=AD﹣AP=1∵CG=2、CD=1∴DG=1则GH=PG=×=故选:C.【点评】本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.二、填空题(每小题3分,共12分)13.(2018•锦州)如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH,若OB=4,S菱形ABCD=24,则OH的长为3.【考点】L8:菱形的性质.【分析】根据菱形面积=对角线积的一半可求AC,再根据直角三角形斜边上的中线等于斜边的一半.【解答】解:∵ABCD是菱形∴BO=DO=4,AO=CO,S菱形ABCD==24∴AC=6∵AH⊥BC,AO=CO=3∴OH=AC=3.【点评】本题考查了菱形的性质,直角三角形斜边上的中线等于斜边的一半,关键是灵活运用这些性质解决问题.14.(2018•本溪)如图,矩形OABC的顶点A,C分别在坐标轴上,B(8,7),D(5,0),点P是边AB 或边BC上的一点,连接OP,DP,当△ODP为等腰三角形时,点P的坐标为(8,4)或(,7).【分析】分两种情形分别讨论即可解决问题;【解答】解:∵四边形OABC是矩形,B(8,7)∴OA=BC=8,OC=AB=7∵D(5,0)∴OD=5∵点P是边AB或边BC上的一点∴当点P在AB边时,OD=DP=5∵AD=3∴P A==4∴P(8,4).当点P在边BC上时,只有PO=PD,此时P(,7).综上所述,满足条件的点P坐标为(8,4)或(,7).故答案为(8,4)或(,7).【点评】本题考查矩形的性质、坐标与图形性质、等腰三角形的判定等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.15.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为()n﹣1.【分析】首先求出AC、AE、HE的长度,然后猜测命题中隐含的数学规律,即可解决问题.【解答】解:∵四边形ABCD为正方形∴AB=BC=1,∠B=90°∴AC2=12+12,AC=;同理可求:AE=()2,HE=()3…∴第n个正方形的边长a n=()n﹣1.故答案为()n﹣1.【点评】该题主要考查了正方形的性质、勾股定理及其应用问题;应牢固掌握正方形有关定理并能灵活运用.16.如图,正方形ABCD的边长为4,E为BC上的一点,BE=1,F为AB上的一点,AF=2,P为AC上一个动点,则PF+PE的最小值为.【考点】正方形的性质.【分析】作E关于直线AC的对称点E′,连接E′F,则E′F即为所求,过F作FG⊥CD于G,在Rt△E′FG 中,利用勾股定理即可求出E′F的长.【解答】解:作E关于直线AC的对称点E′,连接E′F,则E′F即为所求过F作FG⊥CD于G在Rt△E′FG中GE′=CD﹣BE﹣BF=4﹣1﹣2=1,GF=4所以E′F==.故答案为:.【点评】本题考查的是最短线路问题,熟知两点之间线段最短是解答此题的关键.三、解答题(共52分)17.(6分)已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:∠AEF=∠AFE.【考点】菱形的性质.【专题】证明题.【分析】在菱形中,由SAS求得△ABE≌△ADF,再由等边对等角得到∠AEF=∠AFE.【解答】证明:∵ABCD是菱形∴AB=AD,∠B=∠D.又∵EB=DF∴△ABE≌△ADF∴AE=AF∴∠AEF=∠AFE.【点评】本题利用了菱形的性质和全等三角形的判定和性质,等边对等角求解.18.(7分)如图,矩形ABCD的对角线AC、BD交于点O,∠AOD=60°,AB=,AE⊥BD于点E,求OE的长.【考点】矩形的性质.【专题】计算题.【分析】矩形对角线相等且互相平分,即OA=OD,根据∠AOD=60°可得△AOD为等边三角形,即OA=AD,∵AE⊥BD,∴E为OD的中点,即可求OE的值.【解答】解:∵对角线相等且互相平分∴OA=OD∵∠AOD=60°∴△AOD为等边三角形,则OA=ADBD=2DO,AB=AD∴AD=2∵AE⊥BD,∴E为OD的中点∴OE=OD=AD=1答:OE的长度为1.【点评】本题考查了勾股定理在直角三角形中的运用,考查了等边三角形的判定和等腰三角形三线合一的性质,本题中求得E为OD的中点是解题的关键.19.(7分)如图,在△ABC中,AB=BC,BD平分∠ABC.四边形ABED是平行四边形,DE交BC于点F,连接CE.求证:四边形BECD是矩形.【考点】矩形的判定.【专题】证明题.【分析】根据已知条件易推知四边形BECD是平行四边形.结合等腰△ABC“三线合一”的性质证得BD⊥AC,即∠BDC=90°,所以由“有一内角为直角的平行四边形是矩形”得到▱BECD是矩形.【解答】证明:∵AB=BC,BD平分∠ABC∴BD⊥AC,AD=CD.∵四边形ABED是平行四边形∴BE∥AD,BE=AD∴BE=CD∴四边形BECD是平行四边形.∵BD⊥AC∴∠BDC=90°∴▱BECD是矩形.【点评】本题考查了矩形的判定.矩形的定义:有一个角是直角的平行四边形是矩形.20.(8分)如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.(1)求证:AE=DF;(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.【考点】菱形的判定.【专题】证明题.【分析】(1)利用AAS推出△ADE≌△DAF,再根据全等三角形的对应边相等得出AE=DF;(2)先根据已知中的两组平行线,可证四边形DEFA是▱,再利用AD是角平分线,结合AE∥DF,易证∠DAF=∠FDA,利用等角对等边,可得AE=DF,从而可证▱AEDF实菱形.【解答】证明:(1)∵DE∥AC,∠ADE=∠DAF同理∠DAE=∠FDA∵AD=DA∴△ADE≌△DAF∴AE=DF;(2)若AD平分∠BAC,四边形AEDF是菱形∵DE∥AC,DF∥AB∴四边形AEDF是平行四边形∴∠DAF=∠FDA.∴AF=DF.∴平行四边形AEDF为菱形.【点评】考查了全等三角形的判定方法及菱形的判定的掌握情况.21.(8分)如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=2,求AB的长.【考点】矩形的性质.【分析】(1)根据矩形的对边平行可得AB∥CD,再根据两直线平行,内错角相等求出∠BAC=∠FCO,然后利用“角角边”证明△AOE和△COF全等,再根据全等三角形的即可得证;(2)连接OB,根据等腰三角形三线合一的性质可得BO⊥EF,再根据矩形的性质可得OA=OB,根据等边对等角的性质可得∠BAC=∠ABO,再根据三角形的内角和定理列式求出∠ABO=30°,即∠BAC=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AC,再利用勾股定理列式计算即可求出AB.【解答】(1)证明:在矩形ABCD中,AB∥CD∴∠BAC=∠FCO在△AOE和△COF中∴△AOE≌△COF(AAS)∴OE=OF;(2)解:如图,连接OB∵BE=BF,OE=OF∴BO⊥EF∴在Rt△BEO中,∠BEF+∠ABO=90°由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC∴∠BAC=∠ABO又∵∠BEF=2∠BAC即2∠BAC+∠BAC=90°解得∠BAC=30°∵BC=2∴AC=2BC=4∴AB===6.【点评】本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,直角三角形30°角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作辅助线并求出∠BAC=30°是解题的关键.22.(8分)正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D 逆时针旋转90°,得到△DCM.(1)求证:EF=FM;(2)当AE=1时,求EF的长.【考点】正方形的性质.【专题】计算题.【分析】(1)由旋转可得DE=DM,∠EDM为直角,可得出∠EDF+∠MDF=90°,由∠EDF=45°,得到∠MDF为45°,可得出∠EDF=∠MDF,再由DF=DF,利用SAS可得出三角形DEF与三角形MDF全等,由全等三角形的对应边相等可得出EF=MF;(2)由第一问的全等得到AE=CM=1,正方形的边长为3,用AB﹣AE求出EB的长,再由BC+CM求出BM的长,设EF=MF=x,可得出BF=BM﹣FM=BM﹣EF=4﹣x,在直角三角形BEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为EF的长.【解答】解:(1)证明:∵△DAE逆时针旋转90°得到△DCM∴∠FCM=∠FCD+∠DCM=180°∴F、C、M三点共线∴DE=DM,∠EDM=90°∴∠EDF+∠FDM=90°∵∠EDF=45°∴∠FDM=∠EDF=45°在△DEF和△DMF中∴△DEF≌△DMF(SAS)∴EF=MF;(2)设EF=MF=x∵AE=CM=1,且BC=3∴BM=BC+CM=3+1=4∴BF=BM﹣MF=BM﹣EF=4﹣x∵EB=AB﹣AE=3﹣1=2在Rt△EBF中,由勾股定理得EB2+BF2=EF2即22+(4﹣x)2=x2解得:x=则EF=.【点评】此题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,以及勾股定理,利用了转化及方程的思想,熟练掌握性质及定理是解本题的关键.23.(8分)已知,如图1,BD是边长为1的正方形ABCD的对角线,BE平分∠DBC交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G.(1)求证:△BCE≌△DCF;(2)求CF的长;(3)如图2,在AB上取一点H,且BH=CF,若以BC为x轴,AB为y轴建立直角坐标系,问在直线BD 上是否存在点P,使得以B、H、P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的P点坐标;若不存在,说明理由.【考点】正方形的性质.【分析】(1)利用正方形的性质,由全等三角形的判定定理SAS即可证得△BCE≌△DCF;(2)通过△DBG≌△FBG的对应边相等知BD=BF=;然后由CF=BF﹣BC=即可求得;(3)分三种情况分别讨论即可求得.【解答】(1)证明:如图1在△BCE和△DCF中∴△BCE≌△DCF(SAS);(2)证明:如图1∵BE平分∠DBC,OD是正方形ABCD的对角线∴∠EBC=∠DBC=22.5°由(1)知△BCE≌△DCF∴∠EBC=∠FDC=22.5°(全等三角形的对应角相等);∴∠BGD=90°(三角形内角和定理)∴∠BGF=90°;在△DBG和△FBG中∴△DBG≌△FBG(ASA)∴BD=BF,DG=FG(全等三角形的对应边相等)∵BD==∴BF=∴CF=BF﹣BC=﹣1;(3)解:如图2,∵CF=﹣1,BH=CF∴BH=﹣1①当BH=BP时,则BP=﹣1∵∠PBC=45°设P(x,x)∴2x2=(﹣1)2解得x=1﹣或﹣1+∴P(1﹣,1﹣)或(﹣1+,﹣1+);②当BH=HP时,则HP=PB=﹣1∵∠ABD=45°∴△PBH是等腰直角三角形∴P(﹣1,﹣1);③当PH=PB时,∵∠ABD=45°∴△PBH是等腰直角三角形∴P(,)综上,在直线BD上是否存在点P,使得以B、H、P为顶点的三角形为等腰三角形,所有符合条件的P点坐标为(1﹣,1﹣)、(﹣1+,﹣1+)、(﹣1,﹣1)、(,).【点评】本题是四边形的综合题,考查了正方形的性质,三角形全等的判定和性质,等腰三角形的判定,熟练掌握性质定理是解题的关键.。
2022-2023学年北师大版九年级数学上册《第1章特殊的平行四边形》单元综合达标测试题(附答案)
2022-2023学年北师大版九年级数学上册《第1章特殊的平行四边形》单元综合达标测试题(附答案)一.选择题(共9小题,满分36分)1.下列说法中,不正确的是()A.两组对边分别平行的四边形是平行四边形B.一组对边平行另外一组对边相等的四边形是平行四边形C.对角线互相平分且垂直的四边形是菱形D.有一组邻边相等的矩形是正方形2.已知四边形ABCD中,AC⊥BD,再补充一个条件使得四边形ABCD为菱形,这个条件可以是()A.AC=BD B.AB=BCC.AC与BD互相平分D.∠ABC=90°3.如图,平面直角坐标系中,菱形ABCD的顶点A(3,0),B(﹣2,0),顶点D在y轴正半轴上,则点C的坐标为()A.(﹣3,4)B.(﹣4,5)C.(﹣5,5)D.(﹣5,4)4.如图,在四边形ABCD中,AD=BC,点E、F、G、H分别是AB、BD、CD、AC的中点,则四边形EFGH是()A.矩形B.菱形C.正方形D.平行四边形5.如图,在△ABC中,∠C=90°,AC=8,BC=6,点P为斜边AB上一动点,过点P作PE⊥AC于E,PF⊥BC于点F,连接EF,则线段EF的最小值为()A.24B.3.6C.4.8D.56.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点C作CE⊥BD,垂足为E.已知∠BCE=4∠DCE,则∠COE的度数为()A.36°B.45°C.60°D.67.5°7.在正方形ABCD的外侧,作等边三角形ADE,则∠CBE的度数为()A.80°B.75°C.70°D.65°8.如图,正方形ABCD的边长为8,在各边上顺次截取AE=BF=CG=DH=5,则四边形EFGH的面积是()A.30B.34C.36D.409.如图,矩形ABCD和矩形BDEF,点A在EF边上,设矩形ABCD和矩形BDEF的面积分别为S1、S2,则S1与S2的大小关系为()A.S1=S2B.S1>S2 C.S1<S2D.3S1=2S2二.填空题(共8小题,满分32分)10.如图,菱形ABCD中,若BD=24,AC=10,则AB的长等于.菱形ABCD的面积等于.11.如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=30°,则∠E=度.12.如图,P是矩形ABCD的边AD上一个动点,矩形的两条边AB、BC的长分别为6和8,那么点P到矩形的两条对角线AC和BD的距离之和是.13.如图所示,在矩形ABCD中,DE平分∠ADC,且∠EDO等于15°,∠DOE=°.14.菱形OBCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为.15.将n个边长都为1cm的正方形按如图所示的方法摆放,点A1、A2…A n分别是各正方形的中心,则n个这样的正方形重叠部分(阴影部分)的面积的和为cm2.16.如图是阳光广告公司为某种商品设计的商标图案,图中阴影部分为红色.若每个小长方形的面积都是1,则红色的面积是.17.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是.三.解答题(共7小题,满分52分)18.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)求证:BD=DF;(2)求证:四边形BDFG为菱形;(3)若AG=13,CF=6,求四边形BDFG的周长.19.如图,点P是菱形ABCD中对角线AC上的一点,且PE=PB.(1)求证:PE=PD;(2)求证:∠PDC=∠PEB;(3)若∠BAD=80°,连接DE,试求∠PDE的度数,并说明理由.20.如图,过△ABC的顶点A分别作∠ACB及其外角的平分线的垂线,垂直分布为E、F,连接EF交AB于点M,交AC于点N,求证:(1)四边形AECF是矩形;(2)MN=BC.21.某校数学兴趣小组开展了一次课外活动,过程如下:如图①,正方形ABCD中,AB=4,将三角板放在正方形ABCD上,使三角板的直角顶点与D点重合.三角板的一边交AB 于点P,另一边交BC的延长线于点Q.(1)求证:AP=CQ;(2)如图②,小明在图1的基础上作∠PDQ的平分线DE交BC于点E,连接PE,他发现PE和QE存在一定的数量关系,请猜测他的结论并予以证明;(3)在(2)的条件下,若AP=1,求PE的长.22.如图,平行四边形ABCD中,AD=9cm,CD=3cm,∠B=45°,点M、N分别以A、C为起点,1cm/秒的速度沿AD、CB边运动,设点M、N运动的时间为t秒(0≤t≤6)(1)求BC边上高AE的长度;(2)连接AN、CM,当t为何值时,四边形AMCN为菱形;(3)作MP⊥BC于P,NQ⊥AD于Q,当t为何值时,四边形MPNQ为正方形.23.如图①,在正方形ABCD中,E为CD上一动点,连接AE交对角线BD于点F,过点F 作FG⊥AE交BC于点G.(1)求证:AF=FG;(2)如图②,连接EG,当BG=3,DE=2时,求EG的长.24.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且P A =PE,PE交CD于F.(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.参考答案一.选择题(共9小题,满分36分)1.解:A、正确.两组对边分别平行的四边形是平行四边形;B、错误.比如等腰梯形,满足条件,不是平行四边形;C、正确.对角线互相平分且垂直的四边形是菱形;D、正确.有一组邻边相等的矩形是正方形;故选:B.2.解:∵在四边形ABCD中,对角线AC,BD互相平分,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形.故选:C.3.解:∵菱形ABCD的顶点A(3,0),B(﹣2,0),∴CD=AD=AB=5,OA=3,∴OD===4∵AB∥CD,∴点C的坐标为(﹣5,4)故选:D.4.解:∵在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,∴EF∥AD,HG∥AD,∴EF∥HG,同理:HE∥GF,∴四边形EFGH是平行四边形,∵E、F、G、H分别是AB、BD、CD、AC的中点,∴GH=AD,GF=BC,∵AD=BC,∴GH=GF,∴平行四边形EFGH是菱形;故选:B.5.解:连接PC,∵PE⊥AC,PF⊥BC,∴∠PEC=∠PFC=∠C=90°,∴四边形ECFP是矩形,∴EF=PC,∴当PC最小时,EF也最小,即当CP⊥AB时,PC最小,∵AC=8,BC=6,∴AB=10,∴PC的最小值为:=4.8.∴线段EF长的最小值为4.8.故选:C.6.解:∵四边形ABCD为矩形,∴∠BCD=90°,OC=OB,∵∠BCE=4∠DCE,∴5∠DCE=90°,∴∠DCE=18°,∴∠BCE=72°,∵CE⊥BD,∴∠EBC=90°﹣∠BCE=18°,∵OB=OC,∴∠OCB=18°,∴∠COE=36°,故选:A.7.解:∵四边形ABCD是正方形,∴∠BAD=∠ABC=90°,AB=AD,∵△ADE是等边三角形,∴∠EAD=60°,AE=AD,∴∠BAE=150°,AB=AE,∴∠ABE=∠AEB=15°,∴∠CBE=90°﹣15°=75°,故选:B.8.解:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,∵AE=BF=CG=DH,∴AH=BE=CF=DG.在△AEH、△BFE、△CGF和△DHG中,,∴△AEH≌△BFE≌△CGF≌△DHG(SAS),∴EH=FE=GF=GH,∠AEH=∠BFE,∴四边形EFGH是菱形,∵∠BEF+∠BFE=90°,∴∠BEF+∠AEH=90°,∴∠HEF=90°,∴四边形EFGH是正方形,∵AB=BC=CD=DA=8,AE=BF=CG=DH=5,∴EH=FE=GF=GH==,∴四边形EFGH的面积是:×=34,故选:B.9.解:∵矩形ABCD的面积S1=2S△ABD,S△ABD=S矩形BDEF,∴S1=S2.故选:A.二.填空题(共8小题,满分32分)10.解:∵菱形ABCD中,BD=24,AC=10,∴BO=12,AO=5,AC⊥BD,∴AB==13,∴菱形ABCD的面积==120故答案为:13,12011.解:连接AC,∵四边形ABCD是矩形,∴AD∥BE,AC=BD,且∠ADB=∠CAD=30°,∴∠E=∠DAE,又∵BD=CE,∴CE=CA,∴∠E=∠CAE,∵∠CAD=∠CAE+∠DAE,∴∠E+∠E=30°,即∠E=15°,故答案为:15.12.解:连接OP,∵矩形的两条边AB、BC的长分别为6和8,∴S矩形ABCD=AB•BC=48,OA=OC,OB=OD,AC=BD==10,∴OA=OD=5,∴S△ACD=S矩形ABCD=24,∴S△AOD=S△ACD=12,∵S△AOD=S△AOP+S△DOP=OA•PE+OD•PF=×5×PE+×5×PF=(PE+PF)=12,解得:PE+PF=4.8.故答案为:4.8.13.解:∵四边形ABCD是矩形,∴∠ADC=∠BAD=90°,AO=CO,BO=DO,AC=BD,∴OA=OD,∵DE平分∠ADC∴∠CDE=∠ADE=45°,∴△ADE是等腰直角三角形,∴AD=AE,又∵∠EDO=15°,∴∠ADO=60°;∴△OAD是等边三角形,∴∠AOD=∠OAD=60°,∴AD=AO=DO,∴AO=AE,∴∠AOE=∠AEO,∵∠OAE=90°﹣∠OAD=30°,∴∠AOE=∠AEO=(180°﹣30°)=75°,∴∠DOE=60°+75°=135°,故答案为:135.14.解:连接ED,如图,∵点B关于OC的对称点是点D,∴DP=BP,∴ED即为EP+BP最短,∵四边形OBCD是菱形,顶点B(2,0),∠DOB=60°,∴点D的坐标为(1,),∴点C的坐标为(3,),∴可得直线OC的解析式为:y=x,∵点E的坐标为(0,﹣1),∴可得直线ED的解析式为:y=(1+)x﹣1,∵点P是直线OC和直线ED的交点,∴点P的坐标为方程组的解,解方程组得:,所以点P的坐标为(),故答案为:().15.解:由题意可得阴影部分面积等于正方形面积的,即是,5个这样的正方形重叠部分(阴影部分)的面积和为×4,n个这样的正方形重叠部分(阴影部分)的面积和为×(n﹣1)=cm2.故答案为:.16.解:设每个小长方形长为a,宽为b,则ab=1.用大长方形的面积减去三个空白部分的三角形面积,就等于阴影部分的面积.4a×4b﹣a×4b﹣3a×3b﹣×3a×3b=5ab=5.故填5.17.解:∵正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,∴AB=BC=1,CE=EF=3,∠E=90°,延长AD交EF于M,连接AC、CF,则AM=BC+CE=1+3=4,FM=EF﹣AB=3﹣1=2,∠AMF=90°,∵四边形ABCD和四边形GCEF是正方形,∴∠ACD=∠GCF=45°,∴∠ACF=90°,∵H为AF的中点,∴CH=AF,在Rt△AMF中,由勾股定理得:AF===2,∴CH=,故答案为:.三.解答题(共7小题,满分52分)18.(1)证明:∵∠ABC=90°,BD为AC的中线,∴BD=AC,∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CF⊥BD,∴CF⊥AG,又∵点D是AC中点,∴DF=AC,∴BD=DF;(2)证明:∵BD=DF,∴四边形BGFD是菱形,(3)解:设GF=x,则AF=13﹣x,AC=2x,∵在Rt△ACF中,∠CF A=90°,∴AF2+CF2=AC2,即(13﹣x)2+62=(2x)2,解得:x=5,∴四边形BDFG的周长=4GF=20.19.(1)解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,AB∥CD,∠DCP=∠BCP,在△DCP和△BCP中,,∴△CDP≌△CBP(SAS),∴PB=PD,∵PE=PB,∴PE=PD;(2)证明:∵PE=PB,∴∠PBC=∠PEB,∵△CDP≌△CBP,∴∠PDC=∠PBC,∴∠PDC=∠PEB;(3)解:如图所示:∠PDE=40°;理由如下:在四边形DPEC中,∵∠DPE=360°﹣(∠PDC+∠PEC+∠DCB)=360°﹣(∠PEB+∠PEC+∠DCB)=360°﹣(180°+80°)=100°,∴∠PDE=∠PED=40°.20.证明:(1)∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠BCE=∠ACB,∠ACF=∠ACD,∵∠ACB+∠ACD=180°,∴∠ACE+∠ACF=90°,即∠ECF=90°,又∵AE⊥CE,AF⊥CF,∴∠AEC=∠AFC=90°,∴四边形AECF是矩形;(2)∵四边形AECF是矩形,∴EN=FN,AN=CN=AC,∴CN=EF=EN,∴∠NEC=∠ACE=∠BCE,∴EN∥BC,∴==,∴MN=BC.21.(1)证明:∵四边形ABCD是正方形,∴∠ADC=∠A=∠B=∠BCD=∠DCQ=90°,AD=BC=CD=AB=4,∵∠PDQ=90°,∴∠ADP=∠CDQ,在△APD和△CQD中,,∴△APD≌△CQD(ASA),(2)解;PE=QE,理由如下:由(1)得:△APD≌△CQD,∴PD=QD,∵DE平分∠PDQ,∴∠PDE=∠QDE,在△PDE和△QDE中,,∴△PDE≌△QDE(SAS),∴PE=QE;(3)解:由(2)得:PE=QE,由(1)得:CQ=AP=1,∴BQ=BC+CQ=5,BP=AB﹣AP=3,设PE=QE=x,则BE=5﹣x,在Rt△BPE中,由勾股定理得:32+(5﹣x)2=x2,解得:x=3.4,即PE的长为3.4.22.解:(1)∵四边形ABCD是平行四边形,∴AB=CD=3cm.在直角△ABE中,∵∠AEB=90°,∠B=45°,∴AE=AB•sin∠B=3×=3(cm);(2)∵点M、N分别以A、C为起点,1cm/秒的速度沿AD、CB边运动,设点M、N运动的时间为t秒(0≤t≤6),∴AM=CN=t,∵AM∥CN,∴四边形AMCN为平行四边形,∴当AN=AM时,四边形AMCN为菱形.∵BE=AE=3,EN=6﹣t,∴AN2=32+(6﹣t)2,∴32+(6﹣t)2=t2,解得t=.故当t为时,四边形AMCN为菱形;(3)∵MP⊥BC于P,NQ⊥AD于Q,QM∥NP,∴四边形MPNQ为矩形,∴当QM=QN时,四边形MPNQ为正方形.∵AM=CN=t,BE=3,∴AQ=EN=BC﹣BE﹣CN=9﹣3﹣t=6﹣t,∴QM=AM﹣AQ=|t﹣(6﹣t)|=|2t﹣6|(注:分点Q在点M的左右两种情况),∵QN=AE=3,∴|2t﹣6|=3,解得t=4.5或t=1.5.故当t为4.5或1.5秒时,四边形MPNQ为正方形.23.(1)证明:如图①,连接CF,在正方形ABCD中,AB=BC,∠ABF=∠CBF=45°,在△ABF和△CBF中,,∴△ABF≌△CBF(SAS),∴AF=CF,∠BAF=∠BCF,∵FG⊥AE,∴在四边形ABGF中,∠BAF+∠BGF=360°﹣90°﹣90°=180°,又∵∠BGF+∠CGF=180°,∴∠BAF=∠CGF,∴∠CGF=∠BCF,∴AF=FG;(2)如图②,把△ADE顺时针旋转90°得到△ABH,则AH=AE,BH=DE,∠BAH=∠DAE,∵AF=FG,FG⊥AE,∴△AFG是等腰直角三角形,∴∠EAG=45°,∴∠HAG=∠BAG+∠DAE=90°﹣45°=45°,∴∠EAG=∠HAG,在△AHG和△AEG中,,∴△AHG≌△AEG(SAS),∴HG=EG,∵HG=BH+BG=DE+BG=2+3=5,∴EG=5.24.(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴P A=PC,∴PC=PE;(2)由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵P A=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)在菱形ABCD中,AB=BC,∠ABP=∠CBP=60°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴P A=PC,∠BAP=∠BCP,∵P A=PE,∴PC=PE,∴∠DAP=∠DCP,∵P A=PC,∴∠DAP=∠AEP,∴∠DCP=∠AEP∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠AEP,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,。
2022-2023学年北师大版九年级数学《第1章特殊的平行四边形》单元综合测试题(附答案)
2022-2023学年北师大版九年级数学《第1章特殊的平行四边形》单元综合测试题(附答案)一、选择题(本题共计10小题,共计40分,)1.在菱形ABCD中,AC、BD为对角线,若AC=4,BD=8,则菱形ABCD的面积是()A.12B.16C.24D.322.能判定一个四边形是菱形的是()A.有一组邻边相等B.对角线互相垂直C.对角线相等D.四条边都相等3.下面真命题的是()A.矩形的对角线互相垂直B.菱形是中心对称图形,不是轴对称图形C.对角线互相垂直且相等的四边形是正方形D.依次连接等腰梯形各边的中点,所得四边形是菱形4.如图,四边形ABCD是正方形,以CD为边作等边三角形CDE,BE与AC相交于点M,则∠AMD的度数是()A.75°B.60°C.54°D.67.5°5.如图,四边形ABCD是边长为5cm的菱形,其中对角线BD与AC交于点O,BD=6cm,则对角线AC的长度是()A.8cm B.4cm C.3cm D.6cm6.如图,矩形ABCD中,BE、CF分别平分∠ABC和∠DCB,点E、F都在AD上,下列结论不正确的是(A.△ABE≌△DCF B.△ABE和△DCF都是等腰直角三角形C.四边形BCFE是等腰梯形D.E、F是AD的三等分点7.如图,在△ABC中,BD,CE分别是边AC,AB上的中线,BD⊥CE于点O,点M,N 分别OB,OC的中点,若OB=8,OC=6,则四边形DEMN的周长是()A.14B.20C.22D.288.如图,小华剪了两条宽为1的纸条,交叉叠放在一起,且它们较小的交角为60°,则它们重叠部分的面积为()A.1B.2C.D.9.如图,在平面直角坐标系xOy,四边形OABC为正方形,若点A(3,1),则点C的坐标为()A.(﹣1,2)B.(﹣1,3)C.(﹣2,3)D.(1,﹣3)10.如图,已知正方形ABCD的边长为4,P是对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接AP,EF.给出下列结论:①PD=EC;②四边形PECF的周长为8;③AP=EF;④EF的最小值为2.其中正确结论有几个()A.1B.2C.3D.4二、填空题(本题共计8小题,共计32分,)11.在平行四边形ABCD中,请你添加一个条件,使它成为矩形,则你添加的条件是.12.矩形的一个内角平分线把矩形的一条边分成长为3和5两部分,则该矩形的面积是.13.如图,线段AB⊥BC,以C为圆心,BA为半径画弧,然后再以A为圆心,BC为半径画弧,两弧交于点D,则四边形ABCD是矩形,其依据是.14.如图,边长为2的正方形ABCD的对角线相交于点O,过点O的直线分别交AD、BC 于E、F,则阴影部分的面积是.15.如图,菱形ABCD的对角线相交于点O,请你添加一个条件:,使得该菱形为正方形.16.如图,在菱形ABCD中,AC、BD交于点O,AC=6,BD=8,若DE∥AC,CE∥BD,则OE的长为.17.如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是.18.如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC、BD,若S四边=18,则BD的最小值为.形ABCD三、解答题(本题共计6小题,共计48分,)19.如图,在▱ABCD中,点E、F分别在AB,CD上,且AE=CF,DF=BF,求证:四边形DEBF为菱形.20.如图,O为△ABC边AC的中点,AD∥BC交BO的延长线于点D,连接DC,DB平分∠ADC,作DE⊥BC,垂足为E.(1)求证:四边形ABCD为菱形;(2)若BD=8,AC=6,求DE的长.21.如图,菱形ABCD中,E,F分别为AD,AB上的点,且AE=AF,连接EF并延长,交CB的延长线于点G,连接BD.(1)求证:四边形EGBD是平行四边形;(2)连接AG,若∠FGB=30°,GB=AE=1,求AG的长.22.如图所示,矩形ABCD中,AB=30,AD=40,P为BC上的一动点,过点P作PM⊥AC于点M,PN⊥BD于点N,试问当P点在BC上运动时,PM+PN的值是否发生变化?若不变,请求出定值.23.如图,正方形ABCD,点E、F分别为BC、CD边上的点,连接EF,点M为EF上一点,且使AE平分∠BAM,AF平分∠DAM,证明:∠EAF=45°.24.如图,在菱形ABCD中,对角线AC、BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若BF=8,DF=4,求CD的长.参考答案一、选择题(本题共计10小题,共计40分,)1.解:∵菱形ABCD的面积=AC×BD∴菱形ABCD的面积=×4×8=16故选:B.2.解:四条边都相等四边形是菱形,对角线互相平分且垂直的四边形是菱形,故选:D.3.解:A、矩形的对角线相等但不垂直,故本选项错误;B、菱形是中心对称也是轴对称图形,故本选项错误;C、对角线互相垂直平分且相等的四边形是正方形,故本选项错误;D、因为等腰梯形的对角线相等,所以依次连接等腰梯形各边的中点,所得四边形是菱形,故本选项正确.故选:D.4.解:如图,连接BD,∵∠BCE=∠BCD+∠DCE=90°+60°=150°,BC=EC,∴∠EBC=∠BEC=(180°﹣∠BCE)=15°∵∠BCM=∠BCD=45°,∴∠BMC=180°﹣(∠BCM+∠EBC)=120°,∴∠AMB=180°﹣∠BMC=60°∵AC是线段BD的垂直平分线,M在AC上,∴∠AMD=∠AMB=60°故选:B.5.解:∵四边形ABCD是菱形,∴BO=DO,AC⊥DB,AO=CO,∵BD=6cm,∴BO=3cm,∵AB=5cm,∴AO==4(cm),∴AC=8cm.故选:A.6.解:如图,∵四边形ABCD是矩形ABCD,∴∠A=∠D=∠DCB=∠ABC=90°.又BE、CF分别平分∠ABC和∠DCB,∴∠ABE=∠DCF=45°,∴∠AEB=∠ABE=45°,∠DFC=∠DCF=45°,∴AB=AE,DF=DC,∴△ABE和△DCF都是等腰直角三角形.故B正确;在△ABE与△DCF中,.则△ABE≌△DCF(AAS),故A正确;∵△ABE≌△DCF,∴BE=CF.又BE与FC不平行,且EF∥BC,EF≠BC,∴四边形BCFE是等腰梯形.故C正确;∵△ABE≌△DCF,∴AE=DF.但是不能确定AE=EF=FD成立.即点E、F不一定是AD的三等分点.故D错误.故选:D.7.解:∵BD和CE分别是△ABC的中线,∴DE=BC,DE∥BC,∵M和N分别是OB和OC的中点,OB=8,OC=6,∴MN=BC,MN∥BC,OM=OB=4,ON=OC=3,∴四边形MNDE为平行四边形,∵BD⊥CE,∴平行四边形MNDE为菱形,∴BC==10,∴DE=MN=EM=DN=5,∴四边形MNDE的周长为20,故选:B.8.解:过点B作BE⊥AD于点E,BF⊥CD于点F,根据题意得:AD∥BC,AB∥CD,BE=BF=1cm,∴四边形ABCD是平行四边形,∵∠BAD=∠BCD=60°,∴∠ABE=∠CBF=30°,∴AB=2AE,BC=2CF,∵AB2=AE2+BE2,∴AB=,同理:BC=,∴AB=BC,∴四边形ABCD是菱形,∴AD=,∴S菱形ABCD=AD•BE=.故选:D.9.解:过C作CD⊥x轴于D,过A作AE⊥x轴于E,如图:∵四边形OABC是正方形,∴∠AOC=90°,OA=OC,∴∠AOE=90°﹣∠COD=∠DCO,又∠CDO=90°=∠AEO,∴△COD≌△OAE(AAS),∴CD=OE,OD=AE,∵A(3,1),∴CD=3,OD=1,∴C(﹣1,3),故选:B.10.解:如图,连接PC,①∵正方形ABCD的边长为4,P是对角线BD上一点,∴∠ABC=∠ADC=∠BCD=90°,∠PDC=∠DBC=45°,AB=BC=CD=AD=4,又∵PE⊥BC,PF⊥CD,∴∠PEC=∠PEB=∠PFC=∠PFD=90°=∠BCD,∴∠DPF=∠PDF=∠BPE=∠DBC=45°,∴PF=DF,PE=BE,即△PDF和△BPE均为等腰直角三角形,∴PD=PF,∵∠PEC=∠PFC=∠BCD=90°,∴四边形PECF是矩形,∴CE=PF=DF,PE=FC,∴PD=CE,故①正确;②由①知:PE=BE,且四边形PECF为矩形,∴四边形PECF的周长=2CE+2PE=2CE+2BE=2(CE+BE)=2BC=2×4=8,故②正确;③∵四边形PECF为矩形,∴PC=EF,∵四边形ABCD为正方形,∴AD=CD,∠ADP=∠CDP,在△ADP和△CDP中,,∴△ADP≌△CDP(SAS),∴AP=PC,∴AP=EF,故③正确;④由③得:EF=PC=AP,∴当AP最小时,EF最小,∴当AP⊥BD时,垂线段最短,即AP=BD=2时,EF的最小值等于2;故④错误;综上,①②③正确.故选:C.二、填空题(本题共计8小题,共计32分,)11.解:答案不唯一,∵四边形ABCD是平行四边形,∴可添加:∠A=90°、AC=BD等.故答案为:∠A=90°.12.解:∵矩形的一个内角平分线把矩形的一条边分成长为3和5两部分,∴矩形的长为8,宽为5或3.∴面积为40或24.故答案为:40或24.13.解:∵AB=CD,CB=AD,∴四边形ABCD为平行四边形(两组对边相等的四边形是平行四边形),又∵∠ABC=90°,∴平行四边形ABCD为矩形(有一个角是直角的平行四边形是矩形),故答案为:有一个角是直角的平行四边形是矩形.14.解:由题意可知△DEO≌△BFO,∴S△DEO=S△BFO,阴影面积=三角形BOC面积=×2×1=1.故答案为:1.15.解:根据对角线相等的菱形是正方形,可添加:AC=BD;根据有一个角是直角的菱形是正方形,可添加的:AB⊥BC;故添加的条件为:AC=BD或AB⊥BC.16.证明:∵四边形ABCD为菱形,∴AC⊥BD,OA=AC=3,OD=BD=4,∴∠AOD=90°,∴AD==5=CD∵DE∥AC,CE∥BD∴四边形OCED为平行四边形,又∵AC⊥BD∴四边形OCED为矩形∴CD=OE=5故答案为:517.解:∵四边形ABCD是菱形,∴AO=AC=3,DO=BD=2,AC⊥BD,在Rt△AOD中,AD==,∴菱形ABCD的周长为4.故答案为:4.18.解:∵AB=AD,∠BAD=∠BCD=90°,∴AB2+AD2=BD2,BC2+CD2=BD2,∴2AB2=BD2,∵S四边形ABCD=S△ABD+S△BCD,∴18=+S△BCD,∴当S△BCD值最大时,BD最小,∵(CD﹣BC)2≥0∴CD2+BC2≥2BC×CD,∴BC×CD≤,∴S△BCD≤,∴当CD=BC时,S△BCD有最大值,∴当S△BCD=时,BD的长度最小,∴18=∴BD=6故答案为:6三、解答题(本题共计6小题,共计48分,)19.证明:∵四边形ABCD是平行四边形,∴DC=AB,DC∥AB,∵AE=CF,∴AB﹣AE=DC﹣CF,即DF=BE,∴四边形DFBE是平行四边形,∵DF=BF,∴四边形DEBF为菱形.20.(1)证明:∵O为△ABC边AC的中点,AD∥BC,∴OA=OC,∠OAD=∠OCB,∠ADB=∠CBD,在△OAD和△OCB中,,∴△OAD≌△OCB(ASA),∴OD=OB,∴四边形ABCD是平行四边形,∵DB平分∠ADC,∴∠ADB=∠CDB,∴∠CBD=∠CDB,∴BC=DC,∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形,∴OB=BD=4,OC=AC=3,AC⊥BD,∴∠BOC=90°,∴BC==5,∵DE⊥BC,∴∠E=90°=∠BOC,∵∠OBC=∠EBD,∴DE=.21.(1)证明:连接AC,如图1:∵四边形ABCD是菱形,∴AC平分∠DAB,且AC⊥BD,∵AF=AE,∴AC⊥EF,∴EG∥BD.又∵菱形ABCD中,ED∥BG,∴四边形EGBD是平行四边形.(2)解:过点A作AH⊥BC于H.∵∠FGB=30°,∴∠DBC=30°,∴∠ABH=2∠DBC=60°,∵GB=AE=1,∴AB=AD=2,在Rt△ABH中,∠AHB=90°,∴AH=,BH=1.∴GH=2,在Rt△AGH中,根据勾股定理得,AG=.22.解:当P点在BC上运动时,PM+PN的值不发生变化,理由是:连接PO,∵在矩形ABCD中,AB=30,BC=AD=40,∴AC=BD,∠ABC=90°,AO=OC=BO=OD,由勾股定理得:AC=50,∴AO=OC=OB=OD=25,∴S△ABC=AB×BC=×30×40=600,∴S△BOC=S△ABC=300,∴×BO×PN+CO×PM=300,∴PM+PN=24,即当P点在BC上运动时,PM+PN的值不发生变化,永远是24.23.证明:∵四边形ABCD是正方形,∴∠BAD=90°,∵AE平分∠BAM,AF平分∠DAF,∴∠EAM=∠BAM,∠MAF=∠DAM,∴∠EAM+∠MAF=∠BAM+∠DAM=(∠BAM+∠DAM)=∠BAD=×90°=45°,即∠EAF=∠EAM+∠MAF=45°.24.(1)证明:∵在菱形ABCD中,∴AD∥BC且AD=BC,∵BE=CF,∴BC=EF,∴AD=EF,∵AD∥EF,∴四边形AEFD是平行四边形,∵AE⊥BC,∴∠AEF=90°,∴四边形AEFD是矩形;(2)解:设BC=CD=x,则CF=8﹣x在Rt△DCF中,∵x2=(8﹣x)2+42 ,∴x=5,∴CD=5.。
最新北师大版九年级上册数学第一章特殊的平行四边形测试试题以及答案
最新九年级上册特殊的平行四边形单元测试试题一、选择题。
(共12道选择题,每道选择题只有一个正确答案)1、如图,在矩形ABCD中,E、F、G、H分别是AB、BC、CD、AD的中点,AB=4,BC=6,则图中阴影部分的面积是()。
A、24B、12C、8D、62、如图,在菱形ABCD中,O是对角线的交点,∠BCD=120°,菱形周长是20,则BD的长是()。
A、55B、32C、35D、3103、正方形具有而矩形不具有的性质是()。
A、每个角相等B、对角线相等C、对角线互相平分D、对角线垂直4、如图,在平行四边形ABCD中,下列条件中能说明四边形ABCD 是菱形的()。
A、AC=BDB、∠ABC=∠BCDC、∠1=∠2D、AD=BC5、如图,四边形ABCD是平行四边形,下列条件中能判定平行四边形ABCD是菱形的()。
A、AD=BCB、连接AC,AC=BDC、∠A=∠CD、∠ADB=∠BDC6、如图,在矩形ABCD中,O为对角形的交点,过点O作EF⊥AC,OG等于()。
∠AOG=30°,G为AE的中点,则CD1A、21B、31C、41D、57、如图,在平行四边形ABCD中,AB:BC=1:2,A、B是MN的三等分点,则MC与DN的关系是()。
A、相等B、垂直C、垂直且相等D、相等但不垂直8、如图,O是矩形ABCD的对角线交点,过点C、D分别作CE∥BD,DE∥AC,若BC=4,DC=8,则四边形OCED的周长是()。
A、54B、58C、516D、5329、下列图形中,既是中心对称又是轴对称图形的是()。
A、正方形、菱形、矩形B、菱形、矩形、平行四边形C、正方形、矩形、平行四边形D、正方形、菱形、矩形、平行四边形10、如图,正方形ABCD的周长是12,EG⊥AB,EI⊥AD,FH ⊥AB,FJ⊥AD,则图中阴影部分的面积是()。
A、9B、4.5C、2.25D、1811、如图,矩形ABCD中,O是对角线的交点,过O作EF⊥AC,AB= 2,∠AFC=120°,则EF的长是()。
北师大新版九年级数学上册:第1章《特殊的平行四边形》单元复习试题 (含答案)
第1章特殊的平行四边形一.选择题(共15小题)1.已知四边形ABCD中,AB=BC=CD=DA,对角线AC,BD相交于点O.下列结论一定成立的是()A.AC⊥BD B.AC=BD C.∠ABC=90°D.∠ABC=∠BAC 2.菱形的边长是2cm,一条对角线的长是2cm,则另一条对角线的长约是()A.4cm B.1 cm C.cm D.2cm3.如图,四边形ABCD是菱形,AC=12,BD=16,AH⊥BC于H,则AH等于()A.B.C.4 D.54.菱形的两条对角线分别为8和6,则菱形的周长和面积分别是()A.20,48 B.14,48 C.24,20 D.20,245.如图,菱形ABCD的顶点C在直线MN上,若∠1=50°,∠2=20°,则∠ABD的度数为()A.20°B.35°C.40°D.50°6.如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,连结OE.若OE=3,则菱形ABCD的周长是()A.6 B.12 C.18 D.247.如图,在菱形ABCD中,AE,AF分别垂直平分BC,CD,垂足分别为E,F,则∠EAF的度数是()A.90°B.60°C.45°D.30°8.如图,在菱形ABCD中,∠BAD=100°,AB的垂直平分线交AC于点F,点E为垂足,连接DF,则∠CDF=()A.50°B.40°C.30°D.15°9.如图,要使平行四边形ABCD成为菱形,添加一个条件不正确的是()A.AC⊥BD B.AB=AD C.AC=BD D.AC平分∠BAD 10.在平面直角坐标系内,点O是原点,点A的坐标是(3,4),点B的坐标是(3,﹣4),要使四边形AOBC是菱形,则满足条件的点C的坐标是()A.(﹣3,0)B.(3,0)C.(6,0)D.(5,0)11.如图,AC是平行四边形ABCD的对角线,当它满足以下:①∠1=∠2;②∠2=∠3;③∠B=∠3;④∠1=∠3中某一条件时,平行四边形ABCD是菱形,这个条件是()A.①或②B.②或③C.③或④D.①或④12.平面直角坐标系中,四边形ABCD的顶点坐标分别是A(﹣3,0),B(0,2),C(3,0),D(0,﹣2),则四边形ABCD是()A.矩形B.菱形C.正方形D.平行四边形13.如图,矩形ABCD的两条对角线相交于点O,AB=2,∠ACB=30°,则矩形的面积为()A.4B.2 C.4 D.214.如图,矩形ABCD中,对角线AC,BD交于点O.若∠AOD=120°,AC=4,则CD的长为()A.2 B.3 C.2D.215.如图,在矩形ABCD中,点A的坐标是(﹣1,0),点C的坐标是(2,4),则BD的长是()A.6 B.5 C.3D.4二.填空题(共9小题)16.工人师博常常通过测量平行四边形零件的对角线是否相等来检验零件是否为矩形,请问工人师博此种检验方法依据的道理是.17.如图,在平行四边形ABCD中,延长AD到点E,使DE=AD,连接EB,EC,DB请你添加一个条件,使四边形DBCE是矩形.18.如图,平行四边形ABCD,添加一个条件使它成为一个矩形,你会加上.19.如图,P是正方形ABCD内一点,且PA=PD,PB=PC.若∠PBC=60°,则∠PAD=.20.如图,将边长为6cm的正方形ABCD先向下平移2cm,再向左平移1cm,得到正方形A'B'C'D',则这两个正方形重叠部分的面积为cm2.21.已知正方形的对角线长为2,则它的面积.22.如图,菱形ABCD中,∠B=60°,AB=3,四边形ACEF是正方形,则EF的长为.23.如图在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE =BF,请你添加一个条件,使四边形BECF是正方形.24.如图,菱形ABCD中,对角线AC、BD相交于点O,不添加任何辅助线,请添加一个条件,使四边形ABCD是正方形(填一个即可).三.解答题(共5小题)25.如图,菱形ABCD对角线交于点O,BE∥AC,AE∥BD,EO与AB交于点F.(1)试判断四边形AEBO的形状,并说明你的理由;(2)求证:EO=DC.26.如图,在四边形ABCD中,AD∥BC,∠D=90°,E为边BC上一点,且EC=AD,连结AC.(1)求证:四边形AECD是矩形;(2)若AC平分∠DAB,AB=5,EC=2,求AE的长,27.如图,在四边形ABCD中,AD∥BC,∠A=90°,AB=BC,∠D=45°,CD的垂直平分线交CD于E,交AD于F,交BC的延长线于G,若AD=a.(1)求证:四边形ABCF是正方形;(2)求BG的长.28.如图,在正方形ABCD中,对角线AC和BD相交于O,点E、F、G、H分别是OA、OB、OC、OD上,且AE=BF=CG=DH,求证:四边形EFGH是正方形.29.如图,在正方形ABCD中,E,F,G,H分别是边AB,BC,CD,DA上的点,且AE=BF=CG=DH,试判定四边形EFGH的形状,并证明你的结论.参考答案与试题解析一.选择题(共15小题)1.【解答】解:∵四边形ABCD中,AB=BC=CD=DA,∴四边形ABCD是菱形,∴AC⊥BD;故选:A.2.【解答】解:如图,设AC=2cm,∵四边形ABCD是菱形,∴AO=CO=1cm,BO=DO,AC⊥BD,∵BO===cm,∴BD=2cm,故选:D.3.【解答】解:∵四边形ABCD是菱形,AC=12,BD=16,∴CO=AC=6,BO=BD=8,AO⊥BO,∴BC==10,∴S菱形ABCD=AC•BD=×16×12=96,∵S菱形ABCD=BC×AH,∴BC×AH=96,∴AH==故选:B.4.【解答】解:如图,菱形ABCD中,AC=8,BD=6,∴OA=AC=4,OB=BD=3,AC⊥BD,∴AB===5,∴此菱形的周长是:5×4=20,面积是:×6×8=24.故菱形的周长是20,面积是24,故选:D.5.【解答】解:∵四边形ABCD是菱形,∴∠A=∠BCD,AB=AD,∵∠1=50°,∠2=20°,∴∠BCD=180°﹣50°﹣20°=110°,∴∠A=110°,∵AB=AD,∴∠ABD=∠ADB==35°,故选:B.6.【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,AB=BC=CD=DA,∴△AOD为直角三角形.∵OE=3,且点E为线段AD的中点,∴AD=2OE=6.C菱形ABCD=4AD=4×6=24.故选:D.7.【解答】解:连接AC,∵AE垂直平分边BC,∴AB=AC,又∵四边形ABCD是菱形,∴AB=BC,∴AB=AC=BC,∴△ABC是等边三角形,∴∠B=60°,∴∠BCD=120°,又∵AF垂直平分边CD,∴在四边形AECF中,∠EAF=360°﹣180°﹣120°=60°.故选:B.8.【解答】解:如图,连接BF,在△BCF和△DCF中,∵CD=CB,∠DCF=∠BCF,CF=CF∴△BCF≌△DCF(SAS)∴∠CBF=∠CDF∵FE垂直平分AB,∠BAF=×100°=50°∴∠ABF=∠BAF=50°∵∠ABC=180°﹣100°=80°,∠CBF=80°﹣50°=30°∴∠CDF=30°.故选:C.9.【解答】解:A、对角线互相垂直的平行四边形是菱形,此选项不符合题意;B、邻边相等的平行四边形是菱形,此选项不符合题意;C、由对角线相等不能证明平行四边形ABCD是菱形,此选项符合题意;D、对角线平分对角的平行四边形是菱形,此选项不符合题意;故选:C.10.【解答】解:如图,连接AB交OC于D,∵四边形AOBC是菱形,∴AD⊥OC,OD=CD,∵点A的坐标是(3,4),点B的坐标是(3,﹣4),∴OD=3,∴OC=6,∴C(6,0),故选:C.11.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴AB=BC,∴平行四边形ABCD是菱形;故①④能判定.故选:D.12.【解答】解:如图所示:∵A(﹣3,0)、B(0,2)、C(3,0)、D(0,﹣2),∴OA=OC,OB=OD,∴四边形ABCD为平行四边形,∵BD⊥AC,∴四边形ABCD为菱形,故选:B.13.【解答】解:∵四边形ABCD是矩形∴∠ABC=90°,且∠ACB=30°∴BC=AB=2,∴矩形ABCD的面积=AB×BC=2×2=4故选:A.14.【解答】解:∵∠AOD=120°,∴∠COD=180°﹣∠AOD=180°﹣120°=60°,∵四边形ABCD是矩形,∴AO=BO=CO=DO=2,∴△COD是等边三角形,∴CD=DO=2,故选:A.15.【解答】解:∵点A的坐标是(﹣1,0),点C的坐标是(2,4),∴线段AC==5,∵四边形ABCD是矩形,∴BD=AC=5,故选:B.二.填空题(共9小题)16.【解答】解:∵四边形ABCD是平行四边形,AC=BD,∴平行四边形ABCD是矩形,故答案为:对角线相等的平行四边形是矩形.17.【解答】解:添加EB=DC.理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∴DE∥BC,又∵DE=AD,∴DE=BC,∴四边形DBCE为平行四边形.又∵EB=DC,∴四边形DBCE是矩形.故答案是:EB=DC.18.【解答】解:答案不唯一,∵四边形ABCD是平行四边形,∴可添加:∠A=90°、AC=BD等.故答案为:∠A=90°.19.【解答】解:∵四边形ABCD是正方形,∴AD=AB=BC=CD,∠DAB=∠CBA=90°,∵PB=PC,∠PBC=60°,∴△PAB是等边三角形,∴∠APB=∠PBA=60°,PA=PB=AB,∴∠DAP=∠CBP=30°,∵PA=PD,∴∠PDA==75°.∴∠PAD=15°,故答案为:15°.20.【解答】解:如图,向下平移2cm,即AE=2,则DE=AD﹣AE=6﹣2=4cm 向左平移1cm,即CF=1,则DF=DC﹣CF=6﹣1=5cm则S矩形DEB'F=DE•DF=4×5=20cm2故答案为:2021.【解答】解:∵正方形的一条对角线的长2,∴这个正方形的面积==4,故答案为422.【解答】解:∵四边形ABCD是菱形∴AB=BC,且∠B=60°,∴△ABC是等边三角形,∴AB=AC=3,∵四边形ACEF是正方形,∴AC=EF=3故答案为:323.【解答】解:添加条件:AC=BC.理由如下:∵EF垂直平分BC,∴BE=EC,BF=CF,∵BF=BE,∴BE=EC=CF=BF,∴四边形BECF是菱形;当BC=AC时,∵∠ACB=90°,则∠A=45°时,菱形BECF是正方形.∵∠A=45°,∠ACB=90°,∴∠EBC=45°∴∠EBF=2∠EBC=2×45°=90°∴菱形BECF是正方形.故答案为AC=BC.24.【解答】解:∵四边形ABCD为菱形,∴当∠BAD=90°时,四边形ABCD为正方形.故答案为∠BAD=90°.三.解答题(共5小题)25.【解答】解:(1)四边形AEBO是矩形.证明:∵BE∥AC,AE∥BD∴四边形AEBO是平行四边形.又∵菱形ABCD对角线交于点O∴AC⊥BD,即∠AOB=90°.∴四边形AEBO是矩形.(2)∵四边形AEBO是矩形∴EO=AB,在菱形ABCD中,AB=DC.∴EO=DC.26.【解答】解:(1)证明:∵AD∥BC,EC=AD,∴四边形AECD是平行四边形.又∵∠D=90°,∴四边形AECD是矩形.(2)∵AC平分∠DAB.∴∠BAC=∠DAC.∵AD∥BC,∴∠DAC=∠ACB.∴∠BAC=∠ACB.∴BA=BC=5.∵EC=2,∴BE=3.∴在Rt△ABE中,AE===4.27.【解答】解:(1)∵CD的垂直平分线交CD于E,交AD于F,∴FC=FD,∴∠D=∠FCD=45°,∴∠CFD=90°,即∠AFC=90°,又∵AD∥BC,∠A=90°,∴∠B=90°,∴四边形ABCF是矩形,又∵AB=BC,∴四边形ABCF是正方形;(2)∵FG垂直平分CD,∴CE=DE,∠CEG=∠DEF=90°,∵BG∥AD,∴∠G=∠EFD,在△CEG和△DEF中,,∴△CEG≌△DEF(AAS),∴CG=FD,又∵正方形ABCF中,BC=AF,∴AF+FD=BC+CG,∴AD=BG=a.28.【解答】证明:∵四边形ABCD是正方形,∴OA=OB=OC=OD,AC⊥BD,∵AE=BF=CG=DH,∴OE=OF=OG=OH,EG⊥FH,∴四边形EFGH是正方形.29.【解答】答:四边形EFGH的形状是正方形,证明:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD,∵AE=BF=CG=DH,∴BE=CF=DG=AH,∴△EBF≌△FCG≌△GDH≌△HAB,∴EF=FG=GH=HE,∠AEH=∠EFB,∵∠B=90°,∴∠EFB+∠FEB=90°,∴∠AEH+∠FEB=90°,∴∠HEF=90°,∵EF=FG=GH=HE,∴四边形EFGH的形状是正方形.。
北师大版九年级数学上册第一章特殊平行四边形单元综合测试题及答案
第一章:特殊的平行四边形单元测试卷(典型题汇总)一、选择题(本大题共6小题,共24分)1.下列关于▱ABCD的叙述中,正确的是( )A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形2.如图1,在△ABC中,D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF ∥AB,分别交AB,AC于E,F两点,下列说法正确的是( )A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形123.如图2,在菱形ABCD中,对角线AC,BD相交于点O,作OE⊥AB,垂足为E,若∠ADC =130°,则∠AOE的度数为( )A.75° B.65° C.55° D.50°4.如图3,P是矩形ABCD的边AD上的一个动点,矩形的两条边AB,BC的长分别为3和4,那么点P到矩形的两条对角线AC和BD的距离之和是( )A.125B.65C.245 D.不确定345.如图4,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是( )A.2.5 B.5 C.322 D.26.如图5,在平面直角坐标系中,四边形OABC是正方形,点A的坐标是(4,0),P为边AB上一点,∠CPB=60°,沿CP折叠正方形OABC,折叠后,点B落在平面内的点B′处,则点B′的坐标为( )图5A.(2,2 3) B.(32,2-3)C.(2,4-2 3) D.(32,4-2 3)二、填空题(本大题共6小题,共30分)7.已知菱形的边长为6,一个内角为60°,则菱形的较短对角线的长是________.8.如图6所示,在矩形纸片ABCD中,AB=2 cm,点E在BC上,且AE=EC.若将纸片沿AE折叠,点B恰好与AC上的点B′重合,则AC=________ cm.679.如图7所示,若菱形ABCD的边长为2,∠ABC=45°,则点D的坐标为________.10.如图8,在正方形ABCD的外侧作等边三角形ADE,则∠BED的度数是________.8911.如图9所示,在四边形ABCD中,对角线AC⊥BD,垂足为O,E,F,G,H分别为AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为________.图1012.如图10,在矩形ABCD中,已知AB=6,BC=8,BD的垂直平分线交AD于点E,交BC于点F,则△BOF的面积为________.三、解答题(共46分)13.(10分)如图11,E,F是正方形ABCD的对角线AC上的两点,且AE=CF.(1)求证:四边形BEDF是菱形;(2)若正方形ABCD的边长为4,AE=2,求菱形BEDF的面积.图1114.(10分)如图12,已知平行四边形ABCD的对角线AC,BD相交于点O,AC=20 cm,BD=12 cm,两动点E,F同时以2 cm/s的速度分别从点A,C出发在线段AC上相对运动,点E到点C,点F到点A时停止运动.(1)求证:当点E,F在运动过程中不与点O重合时,以点B,E,D,F为顶点的四边形为平行四边形;(2)当点E,F的运动时间t为何值时,四边形BEDF为矩形?图1215.(12分)如图13,△ABC是以BC为底的等腰三角形,AD是边BC上的高,E,F分别是AB,AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.图1316.(14分)如图14,四边形ABCD是正方形,E是直线CD上的点,将△ADE沿AE对折得到△AFE,直线EF交边BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)当DE是线段CD的一半时,请你在备用图中利用尺规作图画出符合题意的图形(保留作图痕迹,不写作法);(3)在(2)的条件下,求∠EAG的度数.图141.C 2.D 3.B 4.A5.B .6.C7.6 .8.49.(2+2,2)10.45°.11.12 12.75813.解:(1)证明:连接BD交AC于点O,∵四边形ABCD为正方形,∴BD⊥AC,OD=OB=OA=OC.∵AE=CF,∴OA-AE=OC-CF,即OE=OF,∴四边形BEDF为平行四边形,且BD⊥EF,∴四边形BEDF为菱形.(2)∵正方形ABCD的边长为4,∴BD=AC=4 2.∵AE=CF=2,∴EF=AC-2 2=2 2,∴S菱形BEDF=12BD·EF=12×4 2×2 2=8.14.解:(1)证明:连接DE,EB,BF,FD.∵两动点E,F同时以2 cm/s的速度分别从点A,C出发在线段AC上相对运动,∴AE=CF.∵平行四边形ABCD的对角线AC,BD相交于点O,∴OD=OB,OA=OC(平行四边形的对角线互相平分),∴OA-AE=OC-CF或AE-OA=CF-OC,即OE=OF,∴四边形BEDF为平行四边形(对角线互相平分的四边形是平行四边形),即以点B,E,D,F为顶点的四边形是平行四边形.(2)当点E在OA上,点F在OC上,EF=BD=12 cm时,四边形BEDF为矩形.∵运动时间为t,∴AE=CF=2t,∴EF=20-4t=12,∴t=2;当点E在OC上,点F在OA上时,EF=BD=12 cm,EF=4t-20=12,∴t=8.因此,当点E,F的运动时间t为2 s或8 s时,四边形BEDF为矩形.15.解:(1)证明:∵AD⊥BC,E,F分别是AB,AC的中点,∴在Rt△ABD中,DE=12AB=AE,在Rt△ACD中,DF=12AC=AF.又∵AB=AC,∴AE=AF=DE=DF,∴四边形AEDF是菱形.(2)如图,∵菱形AEDF的周长为12,∴AE=3.设EF=x,AD=y,则x+y=7,∴x2+2xy+y2=49.①由四边形AEDF是菱形得AD⊥EF,∴在Rt△AOE中,AO2+EO2=AE2,∴(12y)2+(12x)2=32,即x2+y2=36.②把②代入①,可得2xy=13,∴xy=132,∴菱形AEDF的面积S=12xy=134.16.解:(1)证明:∵四边形ABCD为正方形,∴AB=AD,∠B=∠D=90°.∵将△ADE沿AE对折得到△AFE,∴AF=AD=AB,∠AFE=∠D=90°.在Rt△ABG和Rt△AFG中,AB=AF,AG=AG,)∴Rt△ABG≌Rt△AFG(HL).(2)如图所示:(3)∵△AFE≌△ADE,△ABG≌△AFG,∴∠EAF=∠EAD,∠GAF=∠GAB.∵在正方形ABCD中,∠BAD=90°,∴∠EAG=∠EAF+∠GAF=12×90°=45°.第一章:特殊的平行四边形单元测试卷(典型题汇总)(100分钟,120分)一、选择题1.下列给出的条件中,不能判断四边形ABCD是平行四边形的是()A.AB∥CD,AD=BC B.∠A=∠C,∠B=∠D C.AB∥CD,AD∥BC D.AB=CD,AD=BC 2.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,若BD、AC的和为18cm,CD:DA=2:3,△AOB的周长为13cm,那么BC的长是()A.6cm B.9cm C.3cm D.12cm3.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于()A.50° B.55° C.60° D.65°4.给出以下三个命题:①对角线相等的四边形是矩形;②对角线互相垂直的四边形是菱形;③对角线互相垂直的矩形是正方形;④菱形对角线的平方和等于边长平方的4倍.其中真命题的是()A.③B.①② C.②③D.③④5.如图,矩形ABCD中,E在AD上,且EF⊥EC,EF=EC,DE=2,矩形的周长为16,则AE的长是()A.3B.4 C.5 D.76.已知一矩形的两边长分别为10cm和15cm,其中一个内角的平分线分长边为两部分,这两部分的长为()A.6 cm和9 cm B.5 cm和10 cm C.4 cm和11 cm D.7 cm和8 cm7.如图,四边形ABCD的对角线互相平分,要使它成为矩形,那么需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD8.如图为菱形ABCD与△ABE的重叠情形,其中D在BE上.若AB=17,BD=16,AE=25,则DE的长度为何?()A.8 B.9 C.11 D.129.如图,边长为1的正方形ABCD绕点A逆时针旋转45度后得到正方形AB′C′D′,边B′C′与DC交于点O,则四边形AB′OD的周长是()A.2B.3 C.D.1+10.如图,正方形ABCD的面积为4,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.2B.3 C.D.二、填空题11.等边三角形、平行四边形、矩形、正方形四个图形中,既是轴对称图形又是中心对称图形的是矩形、正方形.12.已知菱形的两条对角线长分别为2cm,3cm,则它的面积是3cm2.【解答】解:∵菱形的两条对角线长分别为2cm,3cm,∴它的面积是:×2×3=3(cm2).13.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是45°.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°.∵等边三角形ADE,∴AD=AE,∠DAE=∠AED=60°.∠BAE=∠BAD+∠DAE=90°+60°=150°,AB=AE,∠AEB=∠ABE=(180°﹣∠BAE)÷2=15°,∠BED=∠DAE﹣∠AEB=60°﹣15°=45°,故答案为:45°.14.如图,在菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于 3.5 .【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∴∠AOD=90°,∵AB+BC+CD+DA=28,∴AD=7,∵H为AD边中点,∴OH=AD=3.5;15.如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为5.【解答】解:过E作EM⊥AB于M,∵四边形ABCD是正方形,∴AD=BC=CD=AB,∴EM=AD,BM=CE,∵△ABE的面积为8,∴×AB×EM=8,解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:BE===5,三、解答题(15题12分,16题12分,17题16分)16.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,求△AEF的周长。
2022-2023学年北师大版九年级数学上册第1章《特殊的平行四边形》单元测试卷含答案
第1章特殊的平行四边形一.选择题(共8小题,满分32分)1.如图,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,动点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将△PQC 沿BC翻折,点P的对应点为点P′.设Q点运动的时间为t秒,若四边形QP′CP为菱形,则t的值为()A.B.2C.D.32.如图.若要使平行四边形ABCD成为菱形.则需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD3.如图,Rt△ABC中,DC是斜边AB上的中线,EF过点C且平行于AB.若∠BCF=35°,则∠ACD的度数是()A.35°B.45°C.55°D.65°4.如图,在矩形ABCD中,AB=3,AD=4,点P在AB上,PE⊥AC于E,PF⊥BD于F,则PE+PF等于()A.B.C.D.5.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF的最小值为()A.2B.2.2C.2.4D.2.56.四边形ABCD的对角线AC,BD相交于点O,能判定它为正方形的条件是()A.AO=CD B.AO=CO=BO=DOC.AO=CO,BO=DO,AC⊥BD D.AO=BO=CO=DO,AC⊥BD7.顺次连接等腰梯形四边中点得到一个四边形,再顺次连接所得四边形四边中点得到的图形是()A.等腰梯形B.正方形C.菱形D.矩形8.如图,在边长为2的等边三角形ABC的外侧作正方形ABED,过点D作DF⊥BC,垂足为F,则DF的长为()A.2+2B.5﹣C.3﹣D.+1二.填空题(共10小题,满分30分)9.如图,以边长为1的正方形的四边中点为顶点作四边形,再以所得四边形四边中点为顶点作四边形,…依次作下去,图中所作的第三个四边形的周长为;所作的第n个四边形的周长为.10.如图,菱形ABCD的对角线相交于点O,请你添加一个条件:,使得该菱形为正方形.11.如图,△ABC是以AB为斜边的直角三角形,AC=4,BC=3,P为AB上一动点,且PE⊥AC于E,PF⊥BC于F,则线段EF长度的最小值是.12.如图是一个矩形桌子,一小球从P撞击到Q,反射到R,又从R反射到S,从S反射回原处P,入射角与反射角相等(例如∠PQA=∠RQB等),已知AB=8,BC=15,DP=3.则小球所走的路径的长为.13.如图,在Rt△ABC中,∠C=90°,AB=10,若以点C为圆心,CB长为半径的圆恰好经过AB的中点D,则AC的长等于.14.如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB 的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD其中正确结论的为(请将所有正确的序号都填上).15.如图,在菱形ABCD中,对角线AC、BD相交于点O.AC=8cm,BD=6cm,点P为AC上一动点,点P以1cm/s的速度从点A出发沿AC向点C运动.设运动时间为ts,当t=s时,△PAB为等腰三角形.16.如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE .过点A 作AE 的垂线交DE 于点P .若AE =AP =1,PB =.下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为;③EB ⊥ED ;④S △APD +S △APB =1+;⑤S 正方形ABCD =4+.其中正确结论的序号是 .17.如图,在3×4的矩形方格图中,不包含阴影部分的矩形个数是 个.18.如图,在四边形ABCD 中,AC =BD =6,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,则EG 2+FH 2= .三.解答题(共7小题,满分88分)19.在等腰△ABC 中,AB =AC =8,∠BAC =100°,AD 是∠BAC 的平分线,交BC 于D ,点E 是AB 的中点,连接DE .(1)求∠BAD 的度数;(2)求∠B 的度数;(3)求线段DE 的长.20.如图,在▱ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.21.如图,△ABC中,∠BAC=90°,点D是BC的中点,AE∥DC,EC∥AD,连接DE交AC于点O,(1)求证:四边形ADCE是菱形;(2)若AB=AO,求tan∠OCE的值.22.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACD的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.23.已知▱ABCD的对角线AC、BD相交于点O,△AOB是等边三角形,AB=4cm,求这个平行四边形的面积.24.如图,四边形ABCD是矩形,E是BD上的一点,∠BAE=∠BCE,∠AED=∠CED.求证:四边形ABCD 是正方形.25.已知,如图,矩形ABCD中,AD=6,DC=7,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,DA上,AH=2,连接CF.(1)若DG=2,求证四边形EFGH为正方形;(2)若DG=6,求△FCG的面积;(3)当DG为何值时,△FCG的面积最小.参考答案与试题解析一.选择题(共8小题,满分32分)1.解:连接PP′交BC于O,∵若四边形QPCP′为菱形,∴PP′⊥QC,∴∠POQ=90°,∵∠ACB=90°,∴PO∥AC,∴=,∵设点Q运动的时间为t秒,∴AP=t,QB=t,∴QC=6﹣t,∴CO=3﹣,∵AC=CB=6,∠ACB=90°,∴AB=6,∴=,解得:t=2,故选:B.2.解:因为一组邻边相等的平行四边形是菱形,对角线互相垂直平分的四边形是菱形,那么可添加的条件是:AB=BC.故选:C.3.解:∵EF∥AB,∴∠BCF=∠B,∵∠BCF=35°,∴∠B=35°,∵DC是斜边AB上的中线,∴AD=BD=CD,∴∠B=∠BCD,∠ACD=∠CAD,∵∠ADC =∠B +∠BCD ,∴∠ADC =70°,∴∠ACD =(180°﹣70°)=55°,故选:C .4.解:方法一:设AP =x ,PB =3﹣x .∵∠EAP =∠EAP ,∠AEP =∠ABC ;∴△AEP ∽△ABC ,故=①; 同理可得△BFP ∽△DAB ,故=②.①+②得=, ∴PE +PF =. 方法二:(面积法)如图,作BM ⊥AC 于M ,则BM ==,∵S △AOB =S △AOP +S △POB ,∴•AO •BM =•AO •PE +•OB •PF ,∵OA =OB ,∴PE +PF =BM =.故选:B .5.解:∵在△ABC 中,AB =3,AC =4,BC =5,∴AB 2+AC 2=BC 2,即∠BAC =90°.又∵PE ⊥AB 于E ,PF ⊥AC 于F ,∴四边形AEPF 是矩形,∴EF =AP .因为AP 的最小值即为直角三角形ABC 斜边上的高,即2.4,∴EF 的最小值为2.4,故选:C.6.解:A、不能判定为特殊的四边形;B、只能判定为矩形;C、只能判定为菱形;D、能判定为正方形;故选:D.7.解:∵等腰梯形的两条对角线相等,∴顺次连接等腰梯形四边中点得到的四边形是菱形,∵菱形的对角线互相垂直,∴再顺次连接所得四边形四边的中点得到的图形是矩形.故选:D.8.解:方法一:如图,延长DA、BC交于点G,∵四边形ABED是正方形,∴∠BAD=90°,AD=AB,∴∠BAG=180°﹣90°=90°,∵△ABC是边长为2的等边三角形,∴AB=2,∠ABC=60°,∴AG=AB•tan∠ABC=2×tan60°=2,∴DG=AD+AG=2+2,∵∠G=90°﹣60°=30°,DF⊥BC,∴DF=DG=×(2+2)=1+,故选D.方法二:如图,过点E作EG⊥DF于点G,作EH⊥BC于点H,则∠BHE=∠DGE=90°,∵△ABC是边长为2的等边三角形,∴AB=2,∠ABC=60°,∵四边形ABED是正方形,∴BE=DE=2,∠ABE=∠BED=90°,∴∠EBH=180°﹣∠ABC﹣∠ABE=180°﹣60°﹣90°=30°,∴EH=BE•sin∠EBH=2•sin30°=2×=1,BH=BE•cos∠EBH=2cos30°=,∵EG⊥DF,EH⊥BC,DF⊥BC,∴∠EGF=∠EHB=∠DFH=90°,∴四边形EGFH是矩形,∴FG=EH=1,∠BEH+∠BEG=∠GEH=90°,∵∠DEG+∠BEG=90°,∴∠BEH=∠DEG,在△BEH和△DEG中,,∴△BEH≌△DEG(AAS),∴DG=BH=,∴DF=DG+FG=+1,故选:D.二.填空题(共10小题,满分30分)9.解:根据三角形中位线定理得,第一个四边形的边长为=,周长为2,第二个四边形的周长为=4,第三个四边形的周长是:4()3=,第n个四边形的周长为4()n,故答案为,4()n.10.解:根据对角线相等的菱形是正方形,可添加:AC=BD;根据有一个角是直角的菱形是正方形,可添加的:AB⊥BC;故添加的条件为:AC=BD或AB⊥BC.11.解:连接PC.∵PE⊥AC,PF⊥BC,∴∠PEC=∠PFC=∠C=90°;又∵∠ACB=90°,∴四边形ECFP是矩形,∴EF=PC,∴当PC最小时,EF也最小,即当CP⊥AB时,PC最小,∵AC=4,BC=3,∴AB=5,∴AC•BC=AB•PC,∴PC=.∴线段EF长的最小值为;故答案是:.12.解:∵入射角与反射角相等,∴∠BQR=∠AQP,∠APQ=∠SPD,∠CSR=∠DSP,∠CRS=∠BRQ,∵四边形ABCD是矩形,∴∠A=∠B=∠C=∠D=90°,∴∠DPS+∠DSP=90°,∠AQP+∠APQ=90°,∴∠DSP=∠AQP=∠CSR=∠BQR,∴∠RSP=∠RQP,同理∠SRQ=∠SPQ,∴四边形SPQR是平行四边形,∴SR=PQ,PS=QR,在△DSP和△BQR中∴△DSP≌△BQR,∴BR=DP=3,BQ=DS,∵四边形ABCD是矩形,∴AB=CD=8,BC=AD=15,∴AQ=8﹣DS,AP=15﹣3=12,∵∠SPD=∠APQ,∴△SDP∽△QAP,∴=∴=,DS=,在Rt△DSP中,由勾股定理得:PS=QR==,同理PQ=RS=,∴QP+PS+SR+QR=2×+2×=34,故答案为:34.13.解:如图,∵∠C=90°,点D为AB的中点,∴AB=2CD=10,∴CD=5,∴BC=CD=5,在Rt△ABC中,AC===5.故答案为:5.14.解:∵△ACE是等边三角形,∴∠EAC=60°,AE=AC,∵∠BAC=30°,∴∠FAE=∠ACB=90°,AB=2BC,∵F为AB的中点,∴AB=2AF,∴BC=AF,∴△ABC≌△EFA,∴FE=AB,∴∠AEF=∠BAC=30°,∴EF⊥AC,故①正确,∵EF⊥AC,∠ACB=90°,∴HF∥BC,∵F是AB的中点,∴HF=BC,∵BC=AB,AB=BD,∴HF=BD,故④说法正确;∵AD=BD,BF=AF,∴∠DFB=90°,∠BDF=30°,∵∠FAE=∠BAC+∠CAE=90°,∴∠DFB=∠EAF,∵EF⊥AC,∴∠AEF=30°,∴∠BDF=∠AEF,∴△DBF≌△EFA(AAS),∴AE=DF,∵FE=AB,∴四边形ADFE为平行四边形,∵AE≠EF,∴四边形ADFE不是菱形;故②说法不正确;∴AG=AF,∴AG=AB,∵AD=AB,则AD=4AG,故③说法正确,故答案为:①③④.15.解:∵四边形ABCD是菱形,AC=8cm,BD=6cm,∴AC⊥BD,AO=OC=4cm,BO=OD=3cm,由勾股定理得:BC=AB=AD=CD=5cm,分为三种情况:①如图1,当PA=AB=5cm时,t=5÷1=5;②如图2,当P和C重合时,PB=AB=5cm,t=8÷1=8;③如图3,作AB的垂直平分线交AC于P,此时PB=PA,连接PB,在Rt△BOP中,由勾股定理得:BP2=BO2+OP2,AP2=32+(4﹣AP)2,AP=;t=÷1=,故答案为:5或8或.16.解:①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠EAB=∠PAD,又∵AE=AP,AB=AD,∵在△APD和△AEB中,,∴△APD≌△AEB(SAS);故此选项成立;③∵△APD≌△AEB,∴∠APD=∠AEB,∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,∴∠BEP=∠PAE=90°,∴EB ⊥ED ;故此选项成立;②过B 作BF ⊥AE ,交AE 的延长线于F ,∵AE =AP ,∠EAP =90°,∴∠AEP =∠APE =45°,又∵③中EB ⊥ED ,BF ⊥AF ,∴∠FEB =∠FBE =45°,又∵BE ===,∴BF =EF =, 故此选项不正确;④如图,连接BD ,在Rt △AEP 中,∵AE =AP =1,∴EP =, 又∵PB =, ∴BE =,∵△APD ≌△AEB ,∴PD =BE =,∴S △ABP +S △ADP =S △ABD ﹣S △BDP =S正方形ABCD ﹣×DP ×BE =×(4+)﹣××=+.故此选项不正确.⑤∵EF =BF =,AE =1, ∴在Rt △ABF 中,AB 2=(AE +EF )2+BF 2=4+,∴S 正方形ABCD =AB 2=4+, 故此选项正确.故答案为:①③⑤.17.解:第一行有1个矩形,第二行有1个矩形,第三行有6个,第一列有3个,第二列有1个,第四列有3个,那么共有1+1+6+3+1+3=15个,图中还有11个正方形,因为正方形也是矩形的一种,因此共有26个矩形.故答案为26.18.解:如右图,连接EF,FG,GH,EH,∵E、H分别是AB、DA的中点,∴EH是△ABD的中位线,∴EH=BD=3,同理可得EF,FG,GH分别是△ABC,△BCD,△ACD的中位线,∴EF=GH=AC=3,FG=BD=3,∴EH=EF=GH=FG=3,∴四边形EFGH为菱形,∴EG⊥HF,且垂足为O,∴EG=2OE,FH=2OH,在Rt△OEH中,根据勾股定理得:OE2+OH2=EH2=9,等式两边同时乘以4得:4OE2+4OH2=9×4=36,∴(2OE)2+(2OH)2=36,即EG2+FH2=36.故答案为:36.三.解答题(共7小题,满分88分)19.解:(1)∵AD是∠BAC的平分线,∴∠BAD=∠CAD,∵∠BAC=100°,∴∠BAD=50°;(2)∵AB=AC,∴∠B=∠C,∴∠;(3)∵AB=AC,AD平分∠BAC,∴AD是等腰△ABC底边BC上的高,即∠ADB=90°在直角三角形ABD中,点E是AB的中点,∴DE为斜边AB边上的中线,∴DE=.20.(1)证明:∵在▱ABCD中,AB=CD,∴BC=AD,∠ABC=∠CDA.又∵BE=EC=BC,AF=DF=AD,∴BE=DF.∴△ABE≌△CDF.(2)解:∵四边形AECF为菱形,∴AE=EC.又∵点E是边BC的中点,∴BE=EC,即BE=AE.又∵BC=2AB=4,∴AB=BC=BE,∴AB=BE=AE,即△ABE为等边三角形,如图,过点A作AH⊥BC于H,∴BH=BE=1,根据勾股定理得,AH=∴菱形AECF的面积为2.21.(1)证明:∵AE∥DC,EC∥AD,∴四边形ADCE是平行四边形,∵∠BAC=90°,点D是BC的中点,∴AD=BD=CD,∴平行四边形ADCE是菱形;(2)解:∵四边形ADCE是菱形,∴∠EOC=90°,AO=CO,∠ACE=∠ACD,∴tan∠ACB==,∴tan∠OCE=.22.(1)证明:∵MN交∠ACB的平分线于点E,交∠ACD的外角平分线于点F,∴∠2=∠5,∠4=∠6,∵MN∥BC,∴∠1=∠5,∠3=∠6,∴∠1=∠2,∠3=∠4,∴EO=CO,FO=CO,∴OE=OF;(2)解:∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°,∵CE=12,CF=5,∴EF==13,∴OC=EF=6.5;(3)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形.证明:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.23.解:∵四边形ABCD是平行四边形,∴AO=OC=AC,BO=OD=BD,∵△AOB是等边三角形,∴AO=BO.∴AC=BD.∴平行四边形ABCD是矩形,在Rt△ABC中,∵AB=4cm,AC=2AO=8cm,∴BC==4cm,=AB×BC=4cm×4cm=16cm2.∴S平行四边形ABCD24.证明:∵∠CED是△BCE的外角,∠AED是△ABE的外角,∴∠CED=∠CBE+∠BCE,∠AED=∠BAE+∠ABE,∵∠BAE=∠BCE,∠AED=∠CED,∴∠CBE=∠ABE,∵四边形ABCD是矩形,∴∠ABC=∠BCD=∠BAD=90°,AB=CD,∴∠CBE=∠ABE=45°,∴△ABD与△BCD是等腰直角三角形,∴AB=AD=BC=CD,∴四边形ABCD是正方形.25.解:(1)∵四边形ABCD为矩形,四边形HEFG为菱形,∴∠D=∠A=90°,HG=HE,又AH=DG=2,∴Rt△AHE≌Rt△DGH(HL),∴∠DHG=∠HEA,∵∠AHE+∠HEA=90°,∴∠AHE+∠DHG=90°,∴∠EHG=90°,∴四边形HEFG为正方形;(2)过F作FM⊥DC,交DC延长线于M,连接GE,∵AB∥CD,∴∠AEG=∠MGE,∵HE∥GF,∴∠HEG=∠FGE,∴∠AEH=∠MGF,在△AHE和△MFG中,∠A=∠M=90°,HE=FG,∴△AHE≌△MFG,∴FM=HA=2,即无论菱形EFGH如何变化,点F到直线CD的距离始终为定值2,因此;(3)设DG=x,则由第(2)小题得,S=7﹣x,在△AHE中,AE≤AB=7,△FCG∴HE2≤53,∴x2+16≤53,∴x≤,∴S的最小值为,此时DG=,△FCG∴当DG=时,△FCG的面积最小为().。
第一章 特殊平行四边形 单元测试卷(含答案) 北师大版九年级上册数学
共有( )
A.1 对
B.2 对
C.3 对
D.4 对
3.如图,AC、BD 是四边形 ABCD 的两条对角线,顺次连接四边形 ABCD 各边中点得到四边形 EFGH,要使四边
形 EFGH 为矩形,应添加的条件是( )
A.AC⊥BD
B.AB=CD
C.AB∥CD
D.AC=BD
4.如图,在正方形 ABCD 中, CE MN , MCE 36 ,那么 ANM 等于( )
的最小值为
.
三、解答题(共 6 小题,每题 8 分,满分 48 分) 19.如图,小亮将升旗的绳子拉到杆底端,绳子末刚好接触地面,然后将绳子末端拉到距离旗杆 8m 处,发现此时 绳子末端距离地面 2m .请你求出杆的高度(滑轮上方的高度忽略不计,解题时请在图中标注字母)
20.如图,将一张长方形纸片 ABCD 沿 CE 折叠,使点 B 与 AD 边上的点 B′重合.过点 B′作 B′F//EB 交 CE 于点 F, 连接 EB′与 BF.
24.(1)
y1
2t 0
16 2t
t 4 4 t
8
;
y2
t
0
t
8
(2)①当 0 t 4 时, y1 随时间 t 的增大而增大,当 4 t 8 时, y1 随时间 t 的增大而减小;② 0 t 16
3
周长多 4,则 AC 的长是(
A.2 3
B.4 3
C.2 7
D. 4 7
8.如图,边长为 4 和 10 的两个正方形 ABCD 与 CEFG 并排在一起,连接 BD 并延长交 EF 于 H,交 EG 于 I,则 GI 的长为( )
A.3
B.7
C.3 2
北师大版九年级数学上册《第一章特殊平行四边形》单元测试卷(带答案)
北师大版九年级数学上册《第一章特殊平行四边形》单元测试卷(带答案)一、选择题1.菱形的周长为20cm,一条对角线长为8cm,则菱形的面积为()2cm.A.48B.24C.12D.202.菱形具有而矩形不一定具有的性质是()A.对角线相等B.对角线互相垂直C.对角相等D.对边平行3.要检验一个四边形画框是否为矩形,可行的测量方法是()A.测量四边形画框的两个角是否为90︒B.测量四边形画框的对角线是否相等且互相平分C.测量四边形画框的一组对边是否平行且相等D.测量四边形画框的四边是否相等4.如图,在矩形ABCD中,已知AE BD⊥于E,∠BDC=60°,BE=1,则AB的长为()A.3B.2C.3D35.下列条件中,能判定四边形是正方形的是()A.对角线相等的平行四边形B.对角线互相平分且垂直的四边形C.对角线互相垂直且相等的四边形D.对角线相等且互相垂直的平行四边形6.如图,将图1的正方形剪成四块,恰能拼成图2的矩形,则ba=()A 51-B 53+C 51+D 217.如图,在菱形ABCD 中 50ABC ∠=︒ ,对角线AC ,BD 交于点O ,E 为CD 的中点,连接OE ,则 AOE ∠ 的度数是( )A .110°B .112°C .115°D .120°8.如图,在四边形ABCD 中,AB =1,BC =4,CD =6,∠A =90°,∠B =∠C =120°,则AD 的长度为( )A .3B .3C .3D .3+39.如图,点E 、F 在矩形ABCD 的对角线BD 所在的直线上,BE =DF ,则四边形AECF 是( )A .平行四边形B .矩形C .菱形D .正方形10.如图,在边长为2的正方形ABCD 中,点E ,F 分别是边BC ,CD 上的动点,且BE CF =,连接BF ,DE ,则BF DE +的最小值为( )A 3B 5C .3D .512.如图,将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD ,∠A =120°,则A .13.如图,在矩形ABCD 中,E 是BC 边上一点90AED ∠=︒,∠EAD=30°,F 是AD 边的中点2cm EF =则BE = cm .14.如图,在边长为4的正方形ABCD 中,E 是AB 边上的一点,且AE=3,点Q 为对角线AC 上的动点,则∠BEQ 周长的最小值为 .三、解答题15.如图,在矩形ABCD 中,AC ,BD 相交于点O ,AE//BD ,BE//AC .(1)求证:四边形AEBO 是菱形;(2)若2AB =,OB=3,求AD 的长及四边形AEBO 的面积.16.如图,平行四边形ABCD 中,AC=6,BD=8,点P 从点A 出发以每秒1cm 的速度沿射线AC 移动,点Q 从点C 出发以每秒1cm 的速度沿射线CA 移动.(1)经过几秒,以P ,Q ,B ,D 为顶点的四边形为矩形?(2)若BC∠AC 垂足为C ,求(1)中矩形边BQ 的长.17. 如图,在正方形ABCD 中,点E 、F 分别在边BC 、CD 上,且∠EAF =45°,分别连接EF 、BD ,BD 与AF 、AE 分别相交于点M 、N.(1)求证:EF =BE +DF .为了证明“EF =BE +DF ”,小明延长CB 至点G ,使BG =DF ,连接AG ,请画出辅助线并按小明的思路写出证明过程. (2)若正方形ABCD 的边长为6,BE =2,求DF 的长.18.已知:如图,在 Rt ABC 中 90ACB ∠=︒ , CD 是 ABC 的角平分线,DE ⊥BC ,DF ⊥AC ,垂足分別为E 、F.求证:四边形 CEDF 是正方形.四、综合题19.如图,在ABC 中,AB=AC=2,∠BAC=45°,AEF 是由ABC 绕点A 按逆时针方向旋转得到的,连接BE ,CF 相交于点D .(1)求证:BE CF =;(2)当四边形ABDF 为菱形时,求CD 的长.20.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D 作DE∠AC ,且12DE AC =,连接CE(1)求证:四边形OCED为矩形;(2)连接AE,若DB=6,AC=8,求AE的长.21.已知正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.(1)如图1,连接DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断∠“在旋转的过程中线段DF与BF的长始终相等.”是否正确,若正确请说明理由,若不正确请举反例说明;(2)若将正方形AEFG绕点A按顺时针方向旋转,连结DG,在旋转的过程中,你能否找到一条线段的长与线段DG的长始终相等.并以图2为例说明理由.22.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图(1),连接AF、CE.①四边形AFCE是什么特殊四边形?说明理由;②求AF的长;(2)如图(2),动点P、Q分别从A、C两点同时出发,沿∠AFB和∠CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,已知点P的速度为每秒5cm,点Q 的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.答案解析部分1.【答案】B【解析】【解答】解:∵菱形周长为20cm∴一条边的边长a=5cm又∵一条对角线长为8cm根据勾股定理可得另一条对角线长的一半22543 b-=∴另一条对角线长为6cm∴2186242m=⨯⨯=菱形的面积故答案为:B.【分析】本题考查菱形的性质、菱形的面积公式以及勾股定理,首先根据菱形的四边相等可知边长为5,又因为菱形的对角线垂直,所以结合一条已知的对角线求出另一条对角线的长度为6,两条对角线长度已知即可求出菱形的面积.2.【答案】B【解析】【解答】矩形的对角线相等,菱形的对角线不一定相等,故A不符合题意;矩形的对角线互相不垂直,菱形的对角线互相垂直,故B符合题意;因为矩形与菱形都是特殊的平行四边形,所以矩形与菱形的对角都相等,故C不符合题意;因为矩形与菱形都是特殊的平行四边形,所以矩形与菱形的对边都平行,故D不符合题意;故答案为:B.【分析】菱形和矩形具有平行四边形的一切性质,菱形特有:四条边都相等,对角线互相垂直且平分一组对角,矩形特有:四个角都是直角,对角线相等,据此逐一判断即可.3.【答案】B【解析】【解答】解:A、测量四边形画框的两个角是否为90°,不能判定为矩形,故选项A不符合题意;B、测量四边形画框的对角线是否相等且互相平分,能判定为矩形,故选项B符合题意;C、测量四边形画框的一组对边是否平行且相等,能判定为平行四边形,不能判定是否为矩形,故选项C 不符合题意;D、测量四边形画框的四边是否相等,能判断四边形是菱形,故选项D不符合题意.【分析】一组对边平行且相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;对角线相等的平行四边形是矩形;有一个角是直角的平行四边形是矩形;四边相等的四边形是菱形,据此一 一判断得出答案.4.【答案】B【解析】【解答】解:四边形ABCD 为矩形60BDC ∠=︒=60ABD ∴∠︒AE BD ⊥30BAE ∴∠=︒AB 2∴=故答案为:B .【分析】由矩形的性质求出∠ABD=90°,利用三角形内角和求出∠BAE=30°,再根据含30°角的直角三角形的性质即可求解.5.【答案】D【解析】【解答】解:A 、对角线相等的平行四边形是矩形,故此选项不符合题意;B 、对角线互相平分且垂直的四边形是菱形,故此选项不符合题意;C 、对角线相等且互相垂直的平行四边形是正方形,故C 选项不符合题意,D 选项符合题意.故答案为:D.【分析】利用对角线互相平分,垂直且相等的四边形是正方形;对角线相等且互相垂直的平行四边形 是正方形,一一判断可得答案.6.【答案】C【解析】【解答】解:依题意得()2()a b b b a b +=++整理得:22222a b ab b ab ++=+则220a b ab -+= 方程两边同时除以2a 2()10b b a a --=152b a +∴=(负值已经舍去)【分析】根据左图可以知道图形是一个正方形,边长为(a+b),右图是一个长方形,长宽分别为(b+a+b)、b,并且它们的面积相等,由此即可列出等式(a+b)2=b(b+a+b),解方程即可求出ba的值.7.【答案】C【解析】【解答】解:∵四边形ABCD是菱形∴AC∠BD,∠CDO= 12∠ADC=12∠ABC=25°∴∠DOC=90°∵点E是CD的中点∴OE=DE= 12CD∴∠DOE=∠CDO=25°∴∠AOE=∠AOD+∠DOE=90°+25°=115°故答案为:C.【分析】根据菱形的性质得出AC∠BD,∠CDO=25°,然后根据直角三角形斜边中线的性质求出OE=DE,则由等腰三角形的性质求出∠DOE=25°,最后根据角的和差关系求∠AOE的度数即可. 8.【答案】A【解析】【解答】解:延长DC、AB,DC、AB的延长线相交于点E∵∠ABC=∠BCD=120°∴∠EBC=∠ECB=60°∴∠BCE是等边三角形∵BC=4,∴EC=BE=BC=4∵AB=1,CD=6∴AE=1+4=5,DE=CD+CE=4+6=10∵∠A=90°∴22221057553DE AE-=-=故答案为:53.【分析】延长DC、AB,DC、AB的延长线相交于点E,结合已知易得∠BCE是等边三角形,由等边三角形的性质可得EC=BE=BC,由线段的构成可求出AE、DE的值,然后在直角三角形ADE中,用勾股定理可求得AD的值.9.【答案】A∴AO=CO BO=DO又BE=DF∴ BO+BE=DO+DF即EO=FO∴ 四边形AECF 是平行四边(对角线互相平分的四边形是平行四边形)故选:A【分析】根据矩形性质得到平行四边形的判定条件。
第一章 特殊的平行四边形 单元检测 2022-2023学年北师大版数学 九年级上册(含答案)
2022-2023北师大版数学九年级上册第一章特殊的平行四边形单元检测一.选择题(共12小题)1.如图,在菱形ABCD中,AC与BD相交于点O,BC的垂直平分线EF分别交BC,AC于点E、F,连接DF,若∠BCD=70°,则∠ADF的度数是()A.60°B.75°C.80°D.110°2.已知四边形ABCD是平行四边形,下列条件:①AB=BC;②∠ABC=90°;③AC=BD;④AC⊥BD.从中选择两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①②B.选②③C.选①③D.选③④3.下列判断错误的是()A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.两条对角线互相垂直且相等的四边形是正方形D.四条边都相等的四边形是菱形4.如图,在平面直角坐标系中,四边形OABC是矩形,OA=6,将△ABC沿直线AC翻折,使点B落在点D处,AD交x轴于点E,若∠BAC=30°,则点D的坐标为()A.B.C.D.5.菱形具有而矩形不一定有的性质是()A.对角线互相平分B.四条边都相等C.对角相等D.对边平行6.如图,正方形ABCD中,AC与BD相交于点O,F是AB上的任意一点,过点F分别作FE∥BD、FG∥AC,FE交AD于E点,FG交BC于G点.则下列结论错误的是()A.BD垂直平分FFG∥ACG B.EF+FG=ACC.△AFE是等腰直角三角形D.GC+FG=AC7.如图,已知正方形ABCD的边长为2,点O为正方形的中心,点G为AB边上一动点,直线GO交CD于点H,过点D作DE⊥GO,垂足为点E,连接CE,则CE的最小值为()A.2 B.4﹣C.D.﹣18.如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=6,则菱形ABCD的周长为()A.48 B.36 C.24 D.189.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF;②∠DAF=15°,③AC垂直平分EF,④,其中正确结论有()个.A.1 B.2 C.3 D.410.如图,Rt△ABC≌Rt△DCB,其中∠ABC=90°,AB=3,BC=4,O为BC中点,EF过点交AC、BD于点E、F,连接BE、CF,则下列结论错误的是()A.四边形BECF为平行四边形B.当BF=3.5时,四边形BECF为矩形C.当BF=2.5时,四边形BECF为菱形D.四边形BECF不可能为正方形11.如图,将正方形OABC放在平面直角坐标系中,O是原点,点A的坐标为(1,),则点C的坐标为()A.(﹣,1)B.(﹣1,)C.(,1)D.(﹣,﹣1)12.如图,在矩形ABCD中,AC、BD相交于点O,AE平分∠BAD交BC于点E,若∠CAE=15°,则∠BOE 的度数为()A.60°B.75°C.72°D.90°二.填空题(共6小题)13.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=18°,则∠AED等于度.。
北师大版九年级数学上册第一章特殊的平行四边形练习题(有答案)
第一章特殊的平行四边形一.选择题1.小明用四根长度相同的木条制作了能够活动的菱形学具,他先活动学具成为图1所示菱形,并测得∠B=60°,对角线AC=20cm,接着活动学具成为图2所示正方形,则图2中对角线AC的长为()A.20cm B.30cm C.40cm D.20cm2.如图,在菱形ABCD中,∠ABC=80°,E是线段BD上一动点(点E不与点B,D重合),当△ABE是等腰三角形时,∠DAE=()A.30°B.70°C.30°或60°D.40°或70°3.如图,菱形ABCD中,∠D=135°,BE⊥CD于E,交AC于F,FG⊥BC于G.若△BFG的周长为4,则菱形ABCD的面积为()A.4B.8C.16D.164.如图所示,在平行四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定平行四边形ABCD为矩形的是()A.∠ABC=90°B.AC=BD C.AD=AB D.∠BAD=∠ADC5.如图,在矩形ABCD中,对角线AC,BD交于点O,若∠COD=50°,那么∠CAD的度数是()A.20°B.25°C.30°D.40°6.如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE⊥AC,交AD于点E,过点E 作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.7.如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=4,AF=6,则AC 的长为()A.4B.6C.2D.8.如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O.AE垂直平分OB于点E,则AD的长为()A.4B.3C.5D.59.如图,矩形ABCD中,连接AC,延长BC至点E,使BE=AC,连接DE.若∠BAC=40°,则∠E的度数是()A.65o B.60o C.50o D.40°10.如图,∠MON=90°,矩形ABCD在∠MON的内部,顶点A,B分别在射线OM,ON上,AB=4,BC=2,则点D到点O的最大距离是()A.2﹣2B.2+2C.2﹣2D.11.如图,正方形ABCD中,点E是对角线AC上的一点,且AE=AB,连接BE,DE,则∠CDE的度数为()A.20°B.22.5°C.25°D.30°12.下列是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是()A.由②推出③,由③推出①B.由①推出②,由②推出③C.由③推出①,由①推出②D.由①推出③,由③推出②二.填空题13.有两个全等矩形纸条,长与宽分别为11和7,按如图所示的方式交叉叠放在一起,则重合部分构成的四边形BGDH的周长为.14.如图,F是菱形ABCD的边AD的中点,AC与BF相交于E,EG⊥AB于G,已知∠1=∠2,则下列结论:①AE=BE;②BF⊥AD;③AC=2BF;④CE=BF+BG.其中正确的结论是.15.如图,已知Rt△ABC中,∠ACB=90°,D是AB的中点,CD=3cm,则AB=.16.如图,在△ABC中,AB=AC,BC=6,AF⊥BC于点F,BE⊥AC于点E,且点D是AB的中点,△DEF的周长是11,则AB=.17.如图,在矩形ABCD中,AD=3,CD=4,点P是AC上一个动点(点P与点A,C不重合),过点P分别作PE⊥BC于点E,PF∥BC交AB于点F,连接EF,则EF的最小值为.18.如图,在Rt△ABC中,∠BAC=90°,且BA=9,AC=12,点D是斜边BC上的一个动点,过点D分别作DE⊥AB于点E,DF⊥AC于点F,点G为四边形DEAF对角线交点,则线段GF的最小值为.19.如图,在Rt△ABC中,∠BAC=90°,且BA=6,AC=8,点D是斜边BC上的一个动点,过点D分别作DM⊥AB于点M,DN⊥AC于点N,连接MN,则线段MN的最小值为.20.如图,在一个正方形被分成三十六个面积均为1的小正方形,点A与点B在两个格点上.在格点上存在点C,使△ABC的面积为2,则这样的点C有个.21.在▱ABCD中,对角线AC,BD交于点O,E是边AD上的一个动点(与点A,D不重合),连接EO并延长,交BC于点F,连接BE,DF.下列说法:①对于任意的点E,四边形BEDF都是平行四边形;②当∠ABC>90°时,至少存在一个点E,使得四边形BEDF是矩形;③当AB<AD时,至少存在一个点E,使得四边形BEDF是菱形;④当∠ADB=45°时,至少存在一个点E,使得四边形BEDF是正方形.所有正确说法的序号是.22.如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是.三.解答题23.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由.24.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形.25.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=AC,连接CE、OE,连接AE交OD于点F.(1)求证:OE=CD;(2)若菱形ABCD的边长为2,∠ABC=60°.求AE的长.26.如图,在平行四边形ABCD中,线段AC的垂直平分线交AC于O,分别交BC,AD于E,F,连接AE,CF.(1)证明:四边形AECF是菱形;(2)在(1)的条件下,如果AC⊥AB,∠B=30°,AE=2,求四边形AECF的面积.27.如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F.(1)求证:四边形BEDF为菱形;(2)如果∠A=100°,∠C=30°,求∠BDE的度数.28.如图,AM∥BN,C是BN上一点,BD平分∠ABN且过AC的中点O,交AM于点D,DE⊥BD,交BN于点E.(1)求证:△ADO≌△CBO.(2)求证:四边形ABCD是菱形.(3)若DE=AB=2,求菱形ABCD的面积.29.如图,AC、BD相交于点O,且O是AC、BD的中点,点E在四边形ABCD外,且∠AEC=∠BED=90°,求证:四边形ABCD是矩形.30.如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB上,EF⊥AB,OG∥EF.(1)求证:四边形OEFG是矩形;(2)若AD=10,EF=4,求OE和BG的长.31.如图,▱ABCD中,点E,F分别在边BC,AD上,BE=DF,∠AEC=90°.(1)求证:四边形AECF是矩形;(2)连接BF,若AB=4,∠ABC=60°,BF平分∠ABC,求AD的长.32.在平行四边形ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形EBFD是矩形.(2)若AE=3,DE=4,DF=5,求证:AF平分∠DAB.33.如图,点A在∠MON的边ON上,AB⊥OM于B,AE=OB,DE⊥ON于E,AD=AO,DC⊥OM于C.(1)求证:四边形ABCD是矩形;(2)若DE=3,OE=9,求AB、AD的长;34.如图,点M是正方形ABCD的边BC上一点,连接AM,点E是线段AM上一点,∠CDE的平分线交AM延长线于点F.(1)如图1,若点E为线段AM的中点,BM:CM=1:2,BE=,求AB的长;(2)如图2,若DA=DE,求证:BF+DF=AF.35.如图,在正方形ABCD中,点E是BC的中点,连接DE,过点A作AG⊥ED交DE于点F,交CD于点G.(1)证明:△ADG≌△DCE;(2)连接BF,求证:AB=FB.36.在四边形ABCD中,对角线AC、BD相交于点O,过点O的两条直线分别交边AB、CD、AD、BC于点E、F、G、H.【感知】如图①,若四边形ABCD是正方形,且AG=BE=CH=DF,则S四边形AEOG=S正方形ABCD;【拓展】如图②,若四边形ABCD是矩形,且S四边形AEOG=S矩形ABCD,设AB=a,AD=b,BE=m,求AG 的长(用含a、b、m的代数式表示);【探究】如图③,若四边形ABCD是平行四边形,且AB=3,AD=5,BE=1,试确定F、G、H的位置,使直线EF、GH把四边形ABCD的面积四等分.37.如图,正方形ABCD中,AB=4,点E是对角线AC上的一点,连接DE.过点E作EF⊥ED,交AB于点F,以DE、EF为邻边作矩形DEFG,连接AG.(1)求证:矩形DEFG是正方形;(2)求AG+AE的值;(3)若F恰为AB中点,连接DF交AC于点M,请直接写出ME的长.38.如图1,在正方形ABCD中,点P是对角线BD上的一点,点E在AD的延长线上,且P A=PE,PE交CD 于点F,(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°,连接CE,试探究线段AP 与线段CE的数量关系,并说明理由.39.如图,已知正方形ABCD的边长是2,∠EAF=m°,将∠EAF绕点A顺时针旋转,它的两边分别交BC、CD于点E、F,G是CB延长线上一点,且始终保持BG=DF.(1)求证:△ABG≌△ADF;(2)求证:AG⊥AF;(3)当EF=BE+DF时:①求m的值;②若F是CD的中点,求BE的长.40.如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF 于点F,交∠ACB内角平分线CE于E.(1)试说明EO=FO;(2)当点O运动到何处时,四边形AECF是矩形并证明你的结论;(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论.参考答案一.选择题1.【解答】解:如图1,图2中,连接AC.图1中,∵四边形ABCD是菱形,∴AB=BC,∵∠B=60°,∴△ABC是等边三角形,∴AB=BC=AC=20cm,在图2中,∵四边形ABCD是正方形,∴AB=BC,∠B=90°,∴△ABC是等腰直角三角形,∴AC=AB=20cm;故选:D.2.【解答】解:∵在菱形ABCD中,∠ABC=80°,∴∠ABD=ABC=40°,AD∥BC,∴∠BAD=180°﹣∠ABC=100°,∵△ABE是等腰三角形,∴AE=BE,或AB=BE,当AE=BE时,∴∠ABE=∠BAE=40°,∴∠DAE=100°﹣40°=60°;当AB=BE时,∴∠BAE=∠AEB=(180°﹣40°)=70°,∴∠DAE=100°﹣70°=30°,综上所述,当△ABE是等腰三角形时,∠DAE=30°或60°,故选:C.3.【解答】解:∵菱形ABCD中,∠D=135°,∴∠BCD=45°,∵BE⊥CD于E,FG⊥BC于G,∴△BFG与△BEC是等腰直角三角形,∵∠GCF=∠ECF,∠CGF=∠CEF=90°,CF=CF,∴△CGF≌△CEF(AAS),∴FG=FE,CG=CE,设BG=FG=EF=x,∴BF=x,∵△BFG的周长为4,∴x+x+x=4,∴x=4﹣2,∴BE=2,∴BC=BE=4,∴菱形ABCD的面积=4×2=8,故选:B.4.【解答】解:A.根据有一个角是直角的平行四边形是矩形能判定平行四边形ABCD为矩形,故此选项不符合题意;B.根据对角线相等的平行四边形是矩形能判定平行四边形ABCD为矩形,故此选项不符合题意;C.不能判定平行四边形ABCD为矩形,故此选项符合题意;D.平行四边形ABCD中,AB∥CD,∴∠BAD+∠ADC=180°,又∵∠BAD=∠ADC,∴∠BAD=∠ADC=90°,根据有一个角是直角的平行四边形是矩形能判定平行四边形ABCD为矩形,故此选项不符合题意.故选:C.5.【解答】解:∵矩形ABCD中,对角线AC,BD相交于点O,∴DB=AC,OD=OB,OA=OC,∴OA=OD,∴∠CAD=∠ADO,∵∠COD=50°=∠CAD+∠ADO,∴∠CAD=25°,故选:B.6.【解答】解:∵AB=6,BC=8,∴矩形ABCD的面积为48,AC==10,∴AO=DO=AC=5,∵对角线AC,BD交于点O,∴△AOD的面积为12,∵EO⊥AO,EF⊥DO,∴S△AOD=S△AOE+S△DOE,即12=AO×EO+DO×EF,∴12=×5×EO+×5×EF,∴5(EO+EF)=24,∴EO+EF=,故选:C.7.【解答】解:如图,连接AE,设EF与AC交点为O,∵EF是AC的垂直平分线,∴OA=OC,AE=CE,∵四边形ABCD是矩形,∴∠B=90°,AD∥BC,∴∠OAF=∠OCE,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴AF=CE=6,∴AE=CE=6,BC=BE+CE=4+6=10,∴AB===2,∴AC===2,故选:C.8.【解答】解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵AE垂直平分OB,∴AB=AO,∴OA=AB=OB=3,∴BD=2OB=6,∴AD===3;故选:B.9.【解答】解:如图,连接BD,∵矩形ABCD中,∠BAC=40°,OA=OB,∴∠ABD=40°,∠DBE=90°﹣40°=50°,∵AC=BD,AC=BE,∴BD=BE,∴△BDE中,∠E=(180°﹣∠DBE)=(180°﹣50°)=65°,故选:A.10.【解答】解:取AB中点E,连接OE、DE、OD,∵∠MON=90°,∴OE=AB=2.在Rt△DAE中,利用勾股定理可得DE=2.在△ODE中,根据三角形三边关系可知DE+OE>OD,∴当O、E、D三点共线时,OD最大为OE+DE=2 +2.故选:B.11.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠ADC=90°,∠DAC=45°,∵AE=AB,∴AD=AE,∴∠ADE=∠AED=67.5°,∴∠CDE=90°﹣67.5°=22.5°,故选:B.12.【解答】解:对角线相等的四边形推不出是正方形或矩形,故①→②,①→③错误,故选项B,C,D错误,故选:A.二.填空题13.【解答】解:由题意得:矩形ABCD≌矩形BEDF,∴∠A=90°,AB=BE=7,AD∥BC,BF∥DE,AD=11,∴四边形BGDH是平行四边形,∴平行四边形BGDH的面积=BG×AB=BH×BE,∴BG=BH,∴四边形BGDH是菱形,∴BH=DH=DG=BG,设BH=DH=x,则AH=11﹣x,在Rt△ABH中,由勾股定理得:72+(11﹣x)2=x2,解得:x=,∴BH=,∴四边形BGDH的周长=4BH=,故答案为:.14.【解答】解:连接DB交AC于O,∵四边形ABCD为菱形,∴AD∥CB,AD=AB,AC⊥BD,AO=CO,∠DAC=∠CAB,∴∠1=∠DAC,∠1=∠2,∴∠CAB=∠2,∴AE=BE,故①正确;∵AE=BE,EG⊥AB,∴AG=GB=AB,∵F是AD中点,∴AF=AD,∴AF=AG,在△AEF与△AEG中,,∴△AEF≌△AEG(SAS),∴∠AFE=∠AEG=90°,∴BF⊥AD,故②正确;在△AFB与△ABO中,,∴△AFB≌△ABO(AAS),∴BF=AO=AC,∴AC=2BF,故③正确;∵∠2+∠CAB+∠CAD=90°,∠2=∠CAB=∠CAD,∴∠2=∠CAB=∠CAD=30°,∴BO=AB=BG,在Rt△EGB与Rt△EOB中,,∴Rt△EGB≌Rt△EOB(HL),∴EG=EO,∴CE=CO+EO=BF+EG,故④错误.故答案为:①②③.15.【解答】解:∵∠ACB=90°,D是AB的中点,CD=3cm,∴AB=2CD=6cm.故答案为:6cm.16.【解答】解:∵AF⊥BC,BE⊥AC,D是AB的中点,∴DE=DF=AB,∵AB=AC,AF⊥BC,∴点F是BC的中点,∴BF=FC=3,∵BE⊥AC,∴EF=BC=3,∴△DEF的周长=DE+DF+EF=AB+3=11,∴AB=8,故答案为:8.17.【解答】(1)证明:如图,连接BP.∵∠B=∠D=90°,AD=3,CD=4,∴AC=5,∵PE⊥BC于点E,PF∥BC,∠B=90°,∴四边形PEBF是矩形;∴EF=BP,由垂线段最短可得BP⊥AC时,线段EF的值最小,此时,S△ABC=BC•AB=AC•CP,即×4×3=×5•CP,解得CP=.故答案为:.18.【解答】解:连接AD、EF,∵∠BAC=90°,且BA=9,AC=12,∴BC==15,∵DE⊥AB,DF⊥AC,∴∠DEA=∠DF A=∠BAC=90°,∴四边形DEAF是矩形,∴EF=AD,∴当AD⊥BC时,AD的值最小,此时,△ABC的面积=AB×AC=BC×AD,∴AD===,∴EF的最小值为,∵点G为四边形DEAF对角线交点,∴GF=EF=;故答案为:.19.【解答】解:∵∠BAC=90°,且BA=6,AC=8,∴BC==10,∵DM⊥AB,DN⊥AC,∴∠DMA=∠DNA=∠BAC=90°,∴四边形DMAN是矩形,∴MN=AD,∴当AD⊥BC时,AD的值最小,此时,△ABC的面积=AB×AC=BC×AD,∴AD==,∴MN的最小值为;故答案为:.20.【解答】解:图中标出的5个点均为符合题意的点.故答案为5.21.【解答】解:(1)如图1,∵四边形ABCD为平行四边形,对角线AC与BD交于点O,∴AD∥BC,AD=BC,OA=OC,OB=OD,∴∠ODE=∠OBF,∵∠DOE=∠BOF,∴△DOE≌△BOF(ASA),∴DE=BF,又∵DE∥BF,∴四边形BEDF为平行四边形,即E在AD上任意位置(不与A、D重合)时,四边形BEDF恒为平行四边形,故选项①正确.(2)当BE⊥BC时,四边形BEDF是矩形,故选项②正确.(3)如图3,当EF⊥BD时,四边形BEDF为菱形,由于AB<AD,即AB<AE+BE,可以保证E点AD上,故一定存在点E满足要求,故选项③正确.(4)由②可知,∠ADB=45°,四边形BEDF是正方形,故选项④正确.故答案为:①②③④.22.【解答】解:如图,连接BD交AC于点O,∵四边形ABCD为正方形,∴BD⊥AC,OD=OB=OA=OC,∵AE=CF=2,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形BEDF为平行四边形,且BD⊥EF,∴四边形BEDF为菱形,∴DE=DF=BE=BF,∵AC=BD=8,OE=OF==2,由勾股定理得:DE==2,∴四边形BEDF的周长=4DE=4×2=8,故答案为:8.三.解答题23.【解答】(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由如下:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴四边形BECD是菱形.24.【解答】证明:(1)∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS);(2)由(1)知,△AFE≌△DBE,则AF=DB.∵DB=DC,∴AF=CD.∵AF∥BC,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,E是AD的中点,∴AD=DC=BC,∴四边形ADCF是菱形.25.【解答】(1)证明:在菱形ABCD中,OC=AC.∴DE=OC.∵DE∥AC,∴四边形OCED是平行四边形.∵AC⊥BD,∴平行四边形OCED是矩形.∴OE=CD.(2)在菱形ABCD中,∠ABC=60°,∴AC=AB=2.∴在矩形OCED中,CE=OD=.在Rt△ACE中,AE=.26.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠OAF=∠OCE,∵EF是线段AC的垂直平分线,∴OA=OC,EF⊥AC,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴AF=CE,∴四边形AECF是平行四边形,又∵EF⊥AC,∴四边形AECF是菱形;(2)解:由(1)得:四边形AECF是菱形,EF⊥AC,∴CE=AE=2,OA=OC,OB=OD,∵AC⊥AB,∴EF∥AB,∴∠OEC=∠B=30°,∴OC=CE=1,OE=OC=,∴AC=2OC=2,EF=2OE=2,∴四边形AECF的面积=AC×EF=×2×2=2.27.【解答】(1)证明:∵DE∥BC,DF∥AB∴四边形DEBF是平行四边形∵DE∥BC∴∠EDB=∠DBF ∵BD平分∠ABC∴∠ABD=∠DBF=∠ABC∴∠ABD=∠EDB∴DE=BE且四边形BEDF为平行四边形∴四边形BEDF为菱形;(2)解:∵∠A=100°,∠C=30°,∴∠ABC=180°﹣100°﹣30°=50°,∵四边形BEDF为菱形,∴∠EDF=∠ABC=50°,∠BDE=∠EDF=25°.28.【解答】解:(1)证明:∵点O是AC的中点,∴AO=CO,∵AM∥BN,∴∠DAC=∠ACB,在△AOD和△COB中,,∴△ADO≌△CBO(ASA);(2)证明:由(1)得△ADO≌△CBO,∴AD=CB,又∵AM∥BN,∴四边形ABCD是平行四边形,∵AM∥BN,∴∠ADB=∠CBD,∵BD平分∠ABN,∴∠ABD=∠CBD,∴∠ABD=∠ADB,∴AD=AB,∴平行四边形ABCD是菱形;(3)解:由(2)得四边形ABCD是菱形,∴AC⊥BD,AD=CB,又DE⊥BD,∴AC∥DE,∵AM∥BN,∴四边形ACED是平行四边形,∴AC=DE=2,AD=EC,∴EC=CB,∵四边形ABCD是菱形,∴EC=CB=AB=2,∴EB=4,在Rt△DEB中,由勾股定理得BD==,∴.29.【解答】证明:连接EO,如图所示:∵O是AC、BD的中点,∴AO=CO,BO=DO,∴四边形ABCD是平行四边形,在Rt△EBD中,∵O为BD中点,∴EO=BD,在Rt△AEC中,∵O为AC中点,∴EO=AC,∴AC=BD,又∵四边形ABCD是平行四边形,∴平行四边形ABCD是矩形.30.【解答】解:(1)∵四边形ABCD是菱形,∴OB=OD,∵E是AD的中点,∴OE是△ABD的中位线,∴OE∥FG,∵OG∥EF,∴四边形OEFG是平行四边形,∵EF⊥AB,∴∠EFG=90°,∴平行四边形OEFG是矩形;(2)∵四边形ABCD是菱形,∴BD⊥AC,AB=AD=10,∴∠AOD=90°,∵E是AD的中点,∴OE=AE=AD=5;由(1)知,四边形OEFG是矩形,∴FG=OE=5,∵AE=5,EF=4,∴AF==3,∴BG=AB﹣AF﹣FG=10﹣3﹣5=2.31.【解答】(1)证明:∵四边形ABCD是平行四边形,∴BC=AD,BC∥AD,又∵BE=DF,∴BC﹣BE=AD﹣DF,即EC=AF,∴EC=AF,∴四边形AECF为平行四边形,又∵∠AEC=90°,∴四边形AECF是矩形;(2)解:在Rt△ABE中,∠AEB=90°,∠ABE=60°,AB=4,∴BE=2,AE=,∵四边形AECF是矩形,∴FC⊥BC,FC=AE=.∵BF平分∠ABC,∴∠FBC=∠ABC=30°,在Rt△BCF中,∠FCB=90°,∠FBC=30°,FC=,∴BC=6,∴AD=BC=6.32.【解答】证明:(1)∵四边形ABCD为平行四边形,∴DC∥AB,即DF∥BE,又∵DF=BE,∴四边形DEBF为平行四边形,又∵DE⊥AB,∴∠DEB=90°,∴四边形DEBF为矩形;(2)∵四边形DEBF为矩形,∴∠DEB=90°,∵AE=3,DE=4,DF=5∴AD==5,∴AD=DF=5,∴∠DAF=∠DF A,∵AB∥CD,∴∠F AB=∠DF A,∴∠F AB=∠DF A,∴AF平分∠DAB.33.【解答】证明:(1)∵AB⊥OM于B,DE⊥ON于E,∴∠ABO=∠DEA=90°.在Rt△ABO与Rt△DEA中,∵∴Rt△ABO≌Rt△DEA(HL)∴∠AOB=∠DAE.∴AD∥BC.又∵AB⊥OM,DC⊥OM,∴AB∥DC.∴四边形ABCD是平行四边形,∵∠ABC=90°,∴四边形ABCD是矩形;(2)由(1)知Rt△ABO≌Rt△DEA,∴AB=DE=3,设AD=x,则OA=x,AE=OE﹣OA=9﹣x.在Rt△DEA中,由AE2+DE2=AD2得:(9﹣x)2+32=x2,解得x=5.∴AD=5.即AB、AD的长分别为3和5.34.【解答】解:(1)设BM=x,则CM=2x,BC=3x,∵BA=BC,∴BA=3x.在Rt△ABM中,E为斜边AM中点,∴AM=2BE=2.由勾股定理可得AM2=MB2+AB2,即40=x2+9x2,解得x=2.∴AB=3x=6.(2)延长FD交过点A作垂直于AF的直线于H点,过点D作DP⊥AF于P点.∵DF平分∠CDE,∴∠1=∠2.∵DE=DA,DP⊥AF∴∠3=∠4.∵∠1+∠2+∠3+∠4=90°,∴∠2+∠3=45°.∴∠DFP=90°﹣45°=45°.∴AH=AF.∵∠BAF+∠DAF=90°,∠HAD+∠DAF=90°,∴∠BAF=∠DAH.又AB=AD,∴△ABF≌△ADH(SAS).∴AF=AH,BF=DH.∵Rt△F AH是等腰直角三角形,∴HF=AF.∵HF=DH+DF=BF+DF,∴BF+DF=AF.35.【解答】证明:(1)∵四边形ABCD是正方形,∴∠ADG=∠C=90°,AD=DC,又∵AG⊥DE,∴∠DAG+∠ADF=90°=∠CDE+∠ADF,∴∠DAG=∠CDE,∴△ADG≌△DCE(ASA);(2)如图所示,延长DE交AB的延长线于H,∵E是BC的中点,∴BE=CE,又∵∠C=∠HBE=90°,∠DEC=∠HEB,∴△DCE≌△HBE(ASA),∴BH=DC=AB,即B是AH的中点,又∵∠AFH=90°,∴Rt△AFH中,BF=AH=AB.36.【解答】解:【感知】如图①,∵四边形ABCD是正方形,∴∠OAG=∠OBE=45°,OA=OB,在△AOG与△BOE中,,∴△AOG≌△BOE(SAS),∴S四边形AEOG=S△AOB=S正方形ABCD;故答案为:;【拓展】如图②,过O作ON⊥AD于N,OM⊥AB于M,∵S△AOB=S矩形ABCD,S四边形AEOG=S矩形ABCD,∴S△AOB=S四边形AEOG,∵S△AOB=S△BOE+S△AOE,S四边形AEOG=S△AOG+S△AOE,∴S△BOE=S△AOG,∵S△BOE=BE•OM=m b=mb,S△AOG=AG•ON=AG•a=AG•a,∴mb=AG•a,∴AG=;【探究】如图③,过O作KL⊥AB,PQ⊥AD,则KL=2OK,PQ=2OQ,∵S平行四边形ABCD=AB•KL=AD•PQ,∴3×2OK=5×2OQ,∴=,∵S△AOB=S平行四边形ABCD,S四边形AEOG=S平行四边形ABCD,∴S△AOB=S四边形AEOG,∴S△BOE=S△AOG,∵S△BOE=BE•OK=×1×OK,S△AOG=AG•OQ,∴×1×OK=AG•OQ,∴=AG=,∴当AG=CH=,BE=DF=1时,直线EF、GH把四边形ABCD的面积四等分.37.【解答】解:(1)如图,作EM⊥AD于M,EN⊥AB于N.∵四边形ABCD是正方形,∴∠EAD=∠EAB,∵EM⊥AD于M,EN⊥AB于N,∴EM=EN,∵∠EMA=∠ENA=∠DAB=90°,∴四边形ANEM是矩形,∵EF⊥DE,∴∠MEN=∠DEF=90°,∴∠DEM=∠FEN,∵∠EMD=∠ENF=90°,∴△EMD≌△ENF,∴ED=EF,∵四边形DEFG是矩形,∴四边形DEFG是正方形.(2)∵四边形DEFG是正方形,四边形ABCD是正方形,∴DG=DE,DC=DA=AB=4,∠GDE=∠ADC=90°,∴∠ADG=∠CDE,∴△ADG≌△CDE(SAS),∴AG=CE,∴AE+AG=AE+EC=AC=AD=4.(3)如图,作EH⊥DF于H.∵四边形ABCD是正方形,∴AB=AD=4,AB∥CD,∵F是AB中点,∴AF=FB∴DF==2,∵△DEF是等腰直角三角形,EH⊥AD,∴DH=HF,∴EH=DF=,∵AF∥CD,∴AF:CD=FM:MD=1:2,∴FM=,∴HM=HF﹣FM=,在Rt△EHM中,EM==.38.【解答】(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴P A=PC,∵P A=PE,∴PC=PE;(2)解:由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵P A=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPE=∠EDF=90°;(3)解:AP=CE;理由如下:在菱形ABCD中,AB=BC,∠ABP=∠CBP=60°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴P A=PC,∠BAP=∠BCP,∵P A=PE,∴PC=PE,∴∠DAP=∠DCP,∵P A=PC,∴∠DAP=∠AEP,∴∠DCP=∠AEP ∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠AEP,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,∴AP=CE.39.【解答】解:(1)证明:在正方形ABCD中,AB=AD=BC=CD=2,∠BAD=∠C=∠D=∠ABC=∠ABG=90°.∵BG=DF,在△ABG和△ADF中,,∴△ABG≌△ADF(SAS);(2)证明:∵△ABG≌△ADF,∴∠GAB=∠F AD,∴∠GAF=∠GAB+∠BAF=∠F AD+∠BAF=∠BAD=90°,∴AG⊥AF;(3)①解:△ABG≌△ADF,∴AG=AF,BG=DF.∵EF=BE+DF,∴EF=BE+BG=EG.∵AE=AE,在△AEG和△AEF中.,∴△AEG≌△AEF(SSS).∴∠EAG=∠EAF,∴∠EAF=∠GAF=45°,即m=45;②若F是CD的中点,则DF=CF=BG=1.设BE=x,则CE=2﹣x,EF=EG=1+x.在Rt△CEF中,CE2+CF2=EF2,即(2﹣x)2+1 2=(1+x)2,得x=.∴BE的长为.40.【解答】解:(1)∵CE平分∠ACB,∴∠ACE=∠BCE,∵MN∥BC,∴∠OEC=∠ECB,∴∠OEC=∠OCE,∴OE=OC,同理OC=OF,∴OE=OF.(2)当点O运动到AC中点处时,四边形AECF是矩形.如图AO=CO,EO=FO,∴四边形AECF为平行四边形,∵CE平分∠ACB,∴∠ACE=∠ACB,同理,∠ACF=∠ACG,∴∠ECF=∠ACE+∠ACF=(∠ACB+∠ACG)=×180°=90°,∴四边形AECF是矩形.(3)△ABC是直角三角形∵四边形AECF是正方形,∴AC⊥EN,故∠AOM=90°,∵MN∥BC,∴∠BCA=∠AOM,∴∠BCA=90°,∴△ABC是直角三角形.。
北师大版九年级数学上册第一章特殊平行四边形单元测试题(含答案) (9)
第一章:特殊的平行四边形单元测试卷(典型题汇总)一、选择题(每小题3分,共30分)1.下列说法中错误的是()A.平行四边形的对角线互相平分B.两组对边分别相等的四边形是平行四边形C.矩形的对角线相等D.有一组邻边相等且有一个角是直角的四边形是正方形2.已知△ABC,AB=AC,将△ABC沿边BC翻折,得到的△DBC与原△ABC拼成四边形ABDC,则能直接判定四边形ABDC是菱形的依据是()A.一组邻边相等的平行四边形是菱形B.四条边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.对角线互相垂直平分的四边形是菱形3.如图1,在矩形ABCD中(AD>AB),E是BC上一点,且DE=DA,AF⊥DE,垂足为F.在下列结论中,不一定正确的是()图1A.△AFD≌△DCE B.AF=12ADC.AB=AF D.BE=AD-DF4.平面直角坐标系中,四边形ABCD的顶点坐标分别是A(-3,0),B(0,2),C(3,0),D(0,-2),则四边形ABCD是()A.矩形B.菱形C.正方形D.平行四边形5.如图2,在矩形ABCD中,E,F,G,H分别为边AB,DA,CD,BC的中点.若AB=2,AD=4,则图中阴影部分的面积为()A.3 B.4 C.6 D.86.如图3,在△ABC中,D是BC上一点,AB=AD,E,F分别是AC,BD的中点,EF=2,则AC的长是()图3A.3 B.4 C.5 D.67.如图4,矩形ABCD的对角线AC与BD相交于点O,CE∥BD,DE∥AC,AD=2 3,DE=2,则四边形OCED的面积为()图4A.2 3B.4 C.4 3D.88.如图5,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E 处,折痕为GH,若BE∶EC=2∶1,则线段CH的长是()图5A.3 B.4 C.5 D.69.如图6,矩形纸片ABCD中,AB=4,BC=6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是()A.6 B.3 C.2.5 D.210.如图7,P是矩形ABCD的边AD上的一动点,矩形的两条边AB,BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是()图7A.4.8 B.5 C.6 D.7.2请将选择题答案填入下表:第Ⅱ卷(非选择题共90分)二、填空题(每小题3分,共18分)11.如图8,在菱形ABCD中,AB=4,线段AD的垂直平分线交AC于点N,△CND 的周长是10,则AC的长为________.图812.如图9,四边形ABCD是正方形,延长AB到点E,使AE=AC,则∠BCE的度数是________.图913.已知在四边形ABCD中,∠A=∠B=∠C=90°,若添加一个条件即可判定该四边形是正方形,则这个条件可以是________.14.如图10,在平行四边形ABCD中,对角线AC,BD相交于点O,动点E以每秒1个单位长度的速度从点A出发沿AC方向运动,点F同时以每秒1个单位长度的速度从点C 出发沿CA方向运动,若AC=12,BD=8,则经过________秒后,四边形BEDF是矩形.图1015.如图11,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H,将△ADF绕点A顺时针旋转90°得到△ABG,若BE=2,DF=3,则AH的长为________.图1116.如图12,已知菱形OABC的边OA在x轴上,点B的坐标为(8,4),P是对角线OB 上的一个动点,点D(0,1)在y轴上,当PC+PD最短时,点P的坐标为________.图12三、解答题(共72分)17.(6分)如图13,在▱ABCD中,以点A为圆心,AB的长为半径画弧交AD于点F,再分别以点B,F为圆心,大于12BF的长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.(1)四边形ABEF是什么四边形?并说明理由;(2)AE,BF相交于点O,若四边形ABEF的周长为40,BF=10,求AE的长和∠ABC 的度数.图1318.(6分)如图14,E是正方形ABCD外一点,F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE,CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.图1419.(8分)如图15,在△ABC中,∠BAC=90°,AD是斜边上的中线,E是AD的中点,过点A作AF∥BC交BE的延长线于点F,连接CF.(2)判断四边形ADCF的形状,并证明你的结论.图1520.(8分)如图16,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于点E.(1)求证:△AFE≌△CDE;(2)若AB=4,BC=8,求图中阴影部分的面积.图1621.(10分)如图17所示,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC相交于点O,且BE=BF,∠BEF=2∠BAC.(2)若BC=2 3,求AB的长.图1722.(10分)如图18,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,BC=CD,延长CA至点E,使AE=AC,延长CB至点F,使BF=BC,连接AD,AF,DF,EF,延长DB交EF于点N.(1)求证:AD=AF;(2)试判断四边形ABNE的形状,并说明理由.图1823.(12分)阅读下面材料:在数学课上,老师请同学们思考如下问题:如图19,我们把一个四边形ABCD的四边中点E,F,G,H依次连接起来得到的四边形EFGH是平行四边形吗?小敏在思考问题时,有如下思路:连接AC.结合小敏的思路作答:(1)若只改变图(a)中四边形ABCD的形状(如图(b)),则四边形EFGH还是平行四边形吗?并说明理由.参考小敏思考问题的方法,解决以下问题:(2)如图(b),在(1)的条件下,若连接AC,BD.①当AC与BD满足什么条件时,四边形EFGH是菱形?写出结论并证明;②当AC与BD满足什么条件时,四边形EFGH是矩形?直接写出结论.图1924.(12分)背景阅读早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五.它被记载于我国古代著名数学著作《周髀算经》中,在本题中,我们把三边的比为3∶4∶5的三角形称为(3,4,5)型三角形,例如:三边长分别为9,12,15的三角形就是(3,4,5)型三角形,用矩形纸片按下面的操作方法可以折出这种类型的三角形.实践操作如图20①,在矩形纸片ABCD中,AD=8 cm,AB=12 cm.第一步:如图②,将图①中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB 上的点E处,折痕为AF,再沿EF折叠,然后把纸片展平.第二步:如图③,将图②中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.第三步:如图④,将图③中的矩形纸片沿AH折叠,得到△AD′H,再沿AD′折叠,折痕为AM,AM与折痕EF交于点N,然后展平.问题解决(1)请在图②中证明四边形AEFD是正方形;(2)请在图④中判断NF与ND′的数量关系,并加以证明;(3)请在图④中证明△AEN是(3,4,5)型三角形.图20详解详析1.D2.B3.B.4.B5.B6.B7.A8.B.9.C10.A11.612.22.5°13.AB=BC或AC⊥BD等(答案不唯一)14.2或1015.616.(107,57)17.解:(1)四边形ABEF是菱形.理由:从尺规作图中得出AB=AF,∠BAE=∠F AE.∵AF∥BC,∴∠F AE=∠BEA(两直线平行,内错角相等),∴∠BAE=∠BEA(等量代换),∴AB=BE(等角对等边),∴BE=AF.又∵BE∥AF,∴四边形ABEF是平行四边形,即四边形ABEF是菱形.(2)从作图中得出AE为∠BAF的平分线,而四边形ABEF的周长为40,∴边长AF=AB=10.又∵BF=10,∴△ABF是等边三角形,∴∠BAF=60°.∵四边形ABEF是菱形,∴AE⊥BF,OF=12BF=5,∴AO=AF2-OF2=5 3,∴AE=2AO=10 3.∵AF∥BC,∴∠ABC=180°-∠BAF=120°.18.解:(1)证明:∵四边形ABCD是正方形,∴BA=BC,∠ABC=90°.∵△EBF是等腰直角三角形,∠EBF=90°,∴BF=BE,∠ABC=∠EBF,∴∠ABC-∠FBC=∠EBF-∠FBC,即∠ABF=∠CBE,∴△ABF≌△CBE(SAS).(2)△CEF是直角三角形.理由:∵△BEF为等腰直角三角形,∴∠EFB=∠FEB=45°,∴∠AFB=135°.又∵△ABF≌△CBE,∴∠CEB=∠AFB=135°,∴∠FEC=∠CEB-∠FEB=90°,即△CEF是直角三角形.19.解:(1)证明:∵AF∥BC,∴∠AFE=∠DBE.∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD.在△AFE和△DBE中,∠AFE=∠DBE,∠FEA=∠BED,AE=DE,∴△AFE≌△DBE,∴BD=AF.(2)四边形ADCF是菱形.证明:由(1)知,AF=BD.∵BD=CD,∴AF=CD.又∵AF∥BC,∴四边形ADCF是平行四边形.∵∠BAC=90°,D是BC的中点,∴AD=CD=12BC,∴四边形ADCF是菱形.20.解:(1)证明:∵四边形ABCD是矩形,∴AB=CD,∠B=∠D=90°.∵将矩形ABCD沿对角线AC翻折,点B落在点F处,∴∠F=∠B,AB=AF,∴AF=CD,∠F=∠D.在△AFE和△CDE中,∵∠F=∠D,∠AEF=∠CED,AF=CD,∴△AFE≌△CDE.(2)∵AB=4,BC=8,∴CF=AD=8,AF=CD=AB=4.∵△AFE≌△CDE,∴AE=CE,EF=DE,在Rt△CDE中,DE2+CD2=CE2,即DE2+42=(8-DE)2,∴DE=3,∴EF=3,∴图中阴影部分的面积=S△ACF-S△AEF=12×4×8-12×4×3=10. 21.解:(1)证明:∵四边形ABCD是矩形,∴AB∥CD,∴∠OAE=∠OCF.又∵AE=CF,∠AOE=∠COF,∴△AEO≌△CFO,∴OE=OF.(2)如图,连接BO.∵BE=BF,∴△BEF是等腰三角形.又∵OE=OF,∴BO⊥EF,且∠EBO=∠FBO,∴∠BOF=90°.∵四边形ABCD是矩形,∴∠BCF=90°.又∵∠BEF=2∠BAC,∠BEF=∠BAC+∠AOE,∴∠BAC=∠AOE,∴AE=OE.∵AE=CF,OE=OF,∴OF=CF.又∵BF=BF,∴Rt△BOF≌Rt△BCF(HL),∴∠FBO=∠CBF,∴∠CBF=∠FBO=∠EBO.∵∠ABC=90°,∴∠OBE=30°,∴∠BEO=60°,∴∠BAC=30°.在Rt△BAC中,∵BC=2 3,∴AC=2BC=4 3,AB=AC2-BC2=(4 \r(3))2-(2 \r(3))2=6. 22.解:(1)证明:∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∴∠ABF=135°.又∵∠BCD=90°,∴∠ABF=∠ACD=135°.∵BC=CD,BC=BF,∴BF=CD.在△ABF和△ACD中,∵AB=AC,∠ABF=∠ACD,BF=CD,∴△ABF≌△ACD,∴AD=AF.(2)四边形ABNE是正方形.理由如下:由已知可得AB是△CEF的中位线,∴AB∥EF,∴∠AEF=∠BAC=90°.由(1)知,AF=AD,△ABF≌△ACD,∴∠F AB=∠DAC.∵∠BAC=90°,∴∠EAB=∠BAC=90°,∴∠EAF=∠BAD.∵AB=AC,AE=AC,∴AE=AB.在△AEF和△ABD中,∵AE=AB,∠EAF=∠BAD,AF=AD,∴△AEF≌△ABD,∴∠AEF=∠ABD=90°.又∵∠EAB=90°,∴四边形ABNE是矩形.又∵AE=AB,∴四边形ABNE是正方形.23.解:(1)四边形EFGH还是平行四边形.理由如下:连接AC.∵E,F分别是AB,BC的中点,∴EF∥AC,EF=12AC.∵G,H分别是CD,AD的中点,∴GH∥AC,GH=12AC,∴EF∥GH,EF=GH,∴四边形EFGH是平行四边形.(2)①当AC=BD时,四边形EFGH是菱形.证明如下:由(1)可知四边形EFGH是平行四边形,当AC=BD时,FG=12BD,EF=12AC,∴FG=EF,∴平行四边形EFGH是菱形.②当AC⊥BD时,四边形EFGH是矩形.24.解:(1)证明:∵四边形ABCD是矩形,∴∠D=∠DAE=90°.由折叠的性质得AE=AD,∠AEF=∠D=90°,∴∠D=∠DAE=∠AEF=90°,∴四边形AEFD是矩形.又∵AE=AD,∴矩形AEFD是正方形.(2)NF=ND′.证明:连接HN,由折叠的性质得∠AD′H=∠D=90°,HF=HD=HD′.由(1)知四边形AEFD是正方形,∴∠EFD=90°.∵∠AD′H=90°,∴∠HD′N=90°.在Rt△HNF和Rt△HND′中,∵HN=HN,HF=HD′,∴Rt△HNF≌Rt△HND′,∴NF=ND′.(3)证明:由(1)知四边形AEFD是正方形,∴AE=EF=AD=8 cm,由折叠的性质得AD′=AD=8 cm.设NF=x cm,则ND′=x cm.在Rt△AEN中,∵AN2=AE2+EN2,∴(8+x)2=82+(8-x)2,解得x=2,∴AN=8+x =10 cm,EN=6 cm,∴EN∶AE∶AN=3∶4∶5,∴△AEN是(3,4,5)型三角形.第一章:特殊的平行四边形单元测试卷(典型题汇总)(时间:100分钟满分:120分)一、选择题(本大题10小题,每小题3分,共30分)1. 下列性质中菱形不一定具有的性质是(C)A.对角线互相平分B.对角线互相垂直C.对角线相等D.既是轴对称图形又是中心对称图形2. 下列命题中,真命题是(D)A.两条对角线垂直的四边形是菱形B.对角线垂直且相等的四边形是正方形C.两条对角线相等的四边形是矩形D.两条对角线相等的平行四边形是矩形3. 菱形的周长为4,一个内角为60°,则较短的对角线长为(C)A.2 B.3 C.1 D.124. 如图,将一张长方形纸片对折两次,然后剪下一个角,打开.如果要剪出一个正方形,那么剪口线与折痕成(C)A.22.5°角B.30°角C.45°角D.60°角第5题图第6题图第7题图5. 如图,点E,F,G,H分别为四边形ABCD的四边AB,BC,CD,DA的中点,则关于四边形EFGH,下列说法正确的是(C)A.一定不是平行四边形B.一定不是中心对称图形C.可能是轴对称图形D.当AC=BD时它是矩形6. 如图,菱形ABCD的对角线AC,BD的长分别是6 cm,8 cm,AE⊥BC于点E,则AE的长是(B)A.485 cmB.245 cmC.125 cm D.53 cm7. 如图,在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是(D)A.若AD⊥BC,则四边形AEDF是矩形B.若BD=CD,则四边形AEDF是菱形C.若AD垂直平分BC,则四边形AEDF是矩形D.若AD平分∠BAC,则四边形AEDF是菱形8. 如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD,AC 于点E,O,连接CE,则CE的长为(C)A.3 B.3.5 C.2.5 D.2.8第8题图第9题图第10题图9. 如图,边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转45°,则这两个正方形重叠部分的面积是(D)A.12B.3)3 C.1-3)3 D.2-110. 如图,点E为边长为2的正方形ABCD的对角线上一点,BE=BC,点P为CE上任意一点,PQ⊥BC于点Q,PR⊥BE于R,则PQ+PR的值为(D)A.2)2B.12C.3)2D.2二、填空题(本大题6小题,每小题4分,共24分)11. 已知菱形的周长是20 cm,一条对角线长为8 cm,则菱形的另一条对角线长为6cm.12. 矩形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件AB=BC(答案不唯一),使其成为正方形.(只填一个即可)13. 如图,点E为正方形ABCD外一点,AE=AD,∠ADE=75°,则∠AEB=30°.第13题图第15题图第16题图14. 直角三角形斜边上的高与中线分别是5 cm和6 cm,则它的面积是30cm2.15. 如图,矩形ABCD的对角线BD的中点为O,过点O作OE⊥BC于点E,连接OA,已知AB=5,BC=12,则四边形ABEO的周长为20.16. 如图,∠MON=45°,OA1=1,作正方形A1B1C1A2,周长记作C1;再作第二个正方形A2B2C2A3,周长记作C2;继续作第三个正方形A3B3C3A4,周长记作C3;点A1,A2,A3,A4…在射线ON上,点B1,B2,B3,B4…在射线OM上,依此类推,则第n个正方形的周长C n=2n+1.三、解答题(一)(本大题3小题,每小题6分,共18分)17. 如图,在正方形ABCD中,点E是对角线BD上的点,求证:AE=CE.证明:∵四边形ABCD为正方形,∴AB=CB,∠ABE=∠CBE.在△ABE和△CBE中,AB=CB,∠ABE=∠CBE,BE=BE,,∴△ABE≌△CBE(SAS),∴AE=CE18. 如图,已知菱形ABCD两条对角线BD与AC的长度之比为3∶4,周长为40 cm,求菱形的高及面积.解:∵BD∶AC=3∶4,∴设BD=3x,AC=4x,∴BO=3x2,AO=2x,又∵AB2=BO2+AO2,∴AB=52x,∵菱形的周长是40 cm,∴AB=40÷4=10(cm),即52x=10,∴x=4,∴BD=12 cm,AC=16 cm,∴S菱形ABCD=12BD·AC=12×12×16=96(cm2),又∵S菱形ABCD=AB·h,∴h=9610=9.6(cm),菱形的高是9.6 cm,面积是96 cm219. 如图,在矩形ABCD中,点E为AD边上一点,EF⊥CE,交AB于点F,若DE=2,矩形的周长为16,且CE=EF,求AE的长.解:∵EF⊥EC,∴∠1+∠3=90°.∵在矩形ABCD中,∠A=∠D=90°,∴∠3+∠2=90°,∴∠1=∠2.又∵EF=EC,∴△EF A≌△CED(AAS),∴AE=C D.设AE=x,则DC=x.由矩形的周长为16得2x+2=8,∴x=3,即AE的长为3四、解答题(二)(本大题3小题,每小题7分,共21分)20. 如图,已知平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OC B.(1)求证:平行四边形ABCD是矩形;(2)请添加一个条件使矩形ABCD为正方形.解:(1)∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵∠OBC=∠OCB,∴OB =OC,∴AC=BD,∴平行四边形ABCD是矩形(2)AB=AD(或AC⊥BD答案不唯一).理由:∵四边形ABCD是矩形,又∵AB=AD,∴四边形ABCD是正方形(或:∵四边形ABCD是矩形,又∵AC⊥BD,∴四边形ABCD是正方形)21. 如图,已知BA=AE=DC,AD=EC,CE⊥AE,垂足为E.(1)求证:△DCA≌△EAC;(2)只需添加一个条件,即AD=BC(答案不唯一),可使四边形ABCD为矩形,请加以证明.解:(1)在△DCA和△EAC中,DC=EA,AD=CE,AC=CA,∴△DCA≌△EAC(SSS) (2)添加AD=BC,可使四边形ABCD为矩形.理由:∵AB=DC,AD=BC,∴四边形ABCD 是平行四边形.∵CE⊥AE,∴∠E=90°,由(1)知△DCA≌△EAC,∴∠D=∠E=90°,∴四边形ABCD为矩形22. 如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE的延长线上,且AF=CE=AE.(1)求证:四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.解:(1)由题意知∠FDC=∠DCA=90°,∴EF∥CA,∴∠AEF=∠EA C.∵AF=CE=AE,∴∠F=∠AEF=∠EAC=∠EC A.又∵AE=EA,∴△AEC≌△EAF,∴EF=CA,∴四边形ACEF是平行四边形(2)当∠B=30°时,四边形ACEF是菱形.理由:∠B=30°,∠ACB=90°,∴AC=12A B.∵DE垂直平分BC,∴BE=CE.∵AE=CE,∴AE=BE=CE=12AB,∴AC =CE,由(1)得四边形ACEF是平行四边形,∴四边形ACEF是菱形五、解答题(三)(本大题3小题,每小题9分,共27分)23. 如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF.(1)求证:BE=BF;(2)若∠ABE=20°,求∠BFE的度数;(3)若AB=6,AD=8,求AE的长.解:(1)由题意得∠BEF=∠DEF.∵四边形ABCD为矩形,∴DE∥BF,∴∠BFE=∠DEF,∴∠BEF=∠BFE,∴BE=BF(2)∵四边形ABCD为矩形,∴∠ABF=90°;而∠ABE=20°,∴∠EBF=90°-20°=70°;又∵∠BEF=∠BFE,∴∠BFE的度数为55°(3)由题意知BE =DE;设AE=x,则BE=DE=8-x,由勾股定理得(8-x)2=62+x2,解得x=74,即AE的长为7424. 如图,在Rt△ABC中,∠B=90°,AC=60 cm,∠A=60°,点D从点C出发沿CA 方向以4 cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2 cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t s(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.解:(1)∵∠DFC=90°,∠C=30°,DC=4t,∴DF=2t,又∵AE=2t,∴AE=DF(2)能,理由:∵AB⊥BC,DF⊥BC,∴AE∥DF,又∵AE=DF,∴四边形AEFD为平行四边形,当AE=AD时,四边形AEFD为菱形,即60-4t=2t,解得t=10,∴当t=10秒时,四边形AEFD为菱形(3)①当∠DEF=90°时,由(1)知四边形AEFD为平行四边形,∴EF∥AD,∴∠ADE=∠DEF=90°,∵∠A=60°,∴∠AED=30°,∴AD=12AE=t,又AD=60-4t,即60-4t=t,解得t=12;②当∠EDF=90°时,四边形EBFD为矩形,在Rt△AED中∠A=60°,则∠ADE=30°,∴AD=2AE,即60-4t=4t,解得t=152;③若∠EFD =90°,则E与B重合,D与A重合,此种情况不存在.综上所述,当t=152 s或12 s时,△DEF为直角三角形25. 已知正方形ABCD中,点E,F分别为BC,CD上的点,连接AE,BF相交于点H,且AE⊥BF.(1)如图1,连接AC交BF于点G,求证:∠AGF=∠AEB+45°;(2)如图2,延长BF到点M,连接MC,若∠BMC=45°,求证:AH+BH=BM;(3)如图3,在(2)的条件下,若点H为BM的三等分点,连接BD,DM,若HE=1,求△BDM的面积.解:(1)∵四边形ABCD是正方形,∴∠ABC=∠BCD=90°,∴∠ACB=∠ACD=45°,∵AE⊥BF,∴∠AEB+∠FBC=90°,∵∠FBC+∠BFC=90°∴∠AEB=∠BFC,∵∠AGF =∠BFC+∠ACF,∴∠AGF=∠AEB+45°(2)过C作CK⊥BM于K,∴∠BKC=∠AHB =90°,∵∠BMC=45°,∴CK=MK,∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠BCD =90°,∴∠ABH=∠BCK,∴△ABH≌△BCK(AAS),∴BH=CK=MK,AH=BK,∴BM=BK+MK=AH+BH(3)由(2)得,BH=CK=MK,∵H为BM的三等分点,∴BH=HK=KM,过E作EN⊥CK于N,∴四边形HENK是矩形,∴HK=EN=BH,∠BHE=∠ENC,∴△BHE≌△ENC(ASA),∴HE=CN=NK=1,∴CK=BH=2,∴BM=6,连接CH,∵HK =MK,CK⊥MH,∠BMC=45°,∴CH=CM,∠MCH=90°,∴∠BCH=∠DCM,∴△BHC≌△DMC(SAS),∴BH=DM=2,∠BHC=∠DMC=135°,∴∠DMB=90°,∴△BDM的面积为12DM·BM=6.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学上册第一章特殊的平行四边形单元测试题班级:姓名:成绩:一.选择题(共10小题,每小题3分,共30分)1.下列属于菱形性质的是()A.对角线相等 B.对角线互相垂直C.对角互补 D.四个角都是直角2.如图,AC=AD,BC=BD,则正确的结论是()A.AB 垂直平分CD B.CD垂直平分ABC.AB与CD互相垂直平分D.四边形ABCD是菱形3.如图,四边形ABCD的对角线相交于点O,且点O是BD的中点,若AB=AD=5,BD=8,∠ABD=∠CDB,则四边形ABCD的面积为()A.40 B.24 C.20 D.154.如图,O为矩形ABCD的对角线AC的中点,过点O作AC的垂线EF分别交AD、BC于点E、F,连结CE.若该矩形的周长为20,则△CDE的周长为()A.10 B.9 C.8 D.55.如图,在▱ABCD中,对角线AC与BD 交于点O,添加下列条件不能判定▱ABCD为矩形的只有()A.AC=BD B.AB=6,BC=8,AC=10 C.AC⊥BD D.∠1=∠26.如图,在▱ABCD中,对角线AC、BD相交于点O,且OA=OD,∠OAD=55°,则∠OAB的度数为()A.35°B.40°C.45°D.50°7.如图,在正方形ABCD中,分别以点B,C为圆心,BC长为半径画弧,两弧相交于点E,连接AE,BE得到△ABE,则△ABE与正方形ABCD的面积比为()A.1:2 B.1:3 C.1:4 D.8.已知四边形ABCD中,∠A=∠B=∠C=90°,如添加一个条件,使得该四边形成为正方形,那么所添加的这个条件可以是()A.∠D=90°B.AB=CD C.AB=BC D.AC=BD9.如图,在平面直角坐标系中,菱形ABCD的边长为6,它的一边AB在x轴上,且AB的中点是坐标原点,点D在y轴正半轴上,则点C的坐标为()A.(3,3)B.(3,3)C.(6,3)D.(6,3)二.填空题(共8小题,每小题3分,共24分)10.矩形(非正方形)四个内角的平分线围成的四边形是形.(填特殊四边形)11.如图,E是菱形ABCD的对角线BD上一点,过点E作EF⊥BC于点F.若EF =4,则点E到边AB的距离为.12.在菱形ABCD中,AC=12cm,若菱形ABCD的面积是96cm2,则AB=.13.如图,矩形ABCD的对角线AC与BD相交点O,∠AOB=60°,AB=10,E、F 分别为AO、AD的中点,则EF的长是.14.如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,则∠BCE的度数是.15.如图,菱形ABCD的周长是20,对角线AC、BD相交于点O.若BO=3,则菱形ABCD的面积为.16.已知:如图,在长方形ABCD中,AB=2,AD=3.延长BC到点E,使CE=1,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为时,△ABP和△DCE全等.17.如图,在正方形ABCD和正方形CEFG中,BC=1,CE=3,点D是CG边上一点,H是AF 的中点,那么CH的长是.三.解答题(共7小题,共66分)18.已知:如图所示,菱形ABCD中,DE⊥AB于点E,且E为AB的中点,已知BD=4,求菱形ABCD的周长和面积.19.如图,已知四边形ABCD是平行四边形,AE⊥BC,AF⊥DC,垂足分别是E,F,并且BE =DF.求证;四边形ABCD是菱形.20.如图,在矩形ABCD中,AE⊥BD于点E,∠DAE=2∠BAE,求∠EAC的度数.21.如图,在四边形ABCD中,AD∥BC,∠D=90°,E为边BC上一点,且EC=AD,连结AC.(1)求证:四边形AECD是矩形;(2)若AC平分∠DAB,AB=5,EC=2,求AE的长,22.如图,在边长12的正方形ABCD中,点E是CD的中点,点F在边AD上,且AF=3DF,连接BE,BF,EF,请判断△BEF的形状,并说明理由.23.如图,正方形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC.(1)求证:四边形OCED是正方形.(2)若AC =,则点E到边AB 的距离为.24.如图,已知四边形ABCD为正方形,AB=4,点E为对角线AC上一动点,连接DE、过点E作EF⊥DE.交BC点F,以DE、EF为邻边作矩形DEFC,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.参考答案一.选择题1.解:A、菱形的对角线互相垂直,但不一定相等,故原命题错误,不符合题意;B、菱形的对角线互相垂直,故原命题正确,符合题意;C、菱形的对角相等,故原命题错误,不符合题意;D、矩形的四个角都是直角,菱形不一定是,故原命题错误,不符合题意,故选:B.2.解:∵AC=AD,BC=BD,∴AB垂直平分CD,故选:A.3.解:∵AB=AD,点O是BD的中点,∴AC⊥BD,∠BAO=∠DAO,∵∠ABD=∠CDB,∴AB∥CD,∴∠BAC=∠ACD,∴∠DAC=∠ACD,∴AD=CD,∴AB=CD,∴四边形ABCD是菱形,∵AB=5,BO =BD=4,∴AO=3,∴AC=2AO=6,∴四边形ABCD 的面积=×6×8=24,故选:B.4.解:∵O为矩形ABCD的对角线AC的中点,∴AO=OC,∵过点O作AC的垂线EF分别交AD、BC于点E、F,∴AE=CE,∵矩形的周长为20,∴AD+DC=AB+BC=10,∴△CDE的周长为CD+DE+CE=CD+DE+AE=CD+AD=10,故选:A.5.解:A、正确.对角线相等的平行四边形是矩形.B、正确.∵AB=6,BC=8,AC=10,∴AB2+BC2=62+82=102,∴∠ABC=90°,∴平行四边形ABCD为矩形.C、错误.对角线垂直的平行四边形是菱形,D、正确,∵∠1=∠2,∴AO=BO,∴AC=BD,∴平行四边形ABCD是矩形.故选:C.6.解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OD,∴AC=BD,∴四边形ABCD是矩形,∴∠DAB=90°,∵∠OAD=55°,∴∠OAB=∠DAB﹣∠OAD=35°故选:A.7.解:过E作EF⊥AB于F,由题意得,△BCE是等边三角形,∴∠EBC=60°,∵四边形ABCD是正方形,∴∠ABC=90°,∴∠ABE=30°,∴EF =BE,设正方形的边长为a,则AB=BE=BC=a,∴EF =a,∴S△ABE =AB•EF =•a a =a,S正方形ABCD=a2,∴△ABE与正方形ABCD的面积比为1:4,故选:C.8.解:由∠A=∠B=∠C=90°可判定四边形ABCD为矩形,因此再添加条件:一组邻边相等,即可判定四边形ABCD为正方形,故选:C.9.解:过点D作BC的垂线,交BC的延长线于F,∵∠ADC=∠ABC=90°,∴∠A+∠BCD=180°,∵∠FCD+∠BCD=180°,∴∠A=∠FCD,又∠AED=∠F=90°,AD=DC,∴△ADE≌△CDF,∴DE=DF,S四边形ABCD=S正方形DEBF=16,∴DE=4.故选:C.10.解:∵四边形ABCD是菱形∴AB=AD=CD=6,AB∥CD∵AB的中点是坐标原点,∴AO=BO=3,∴DO ==3∴点C坐标(6,3)故选:D.二.填空题11.解:∵AF,BE是矩形的内角平分线.∴∠ABF=∠BAF﹣90°.故∠1=∠2=90°.同理可证四边形GMON四个内角都是90°,则四边形GMON为矩形.又∵有矩形ABCD且AF、BE、DK、CJ为矩形ABCD四角的平分线,∴有等腰直角△DOC,等腰直角△AMD,等腰直角△BNC,AD=BC.∴OD=OC,△AMD≌△BNC,∴NC=DM,∴NC﹣OC=DM﹣OD,即OM=ON,∴矩形GMON为正方形,故答案为:正方.12.解:∵四边形ABCD为菱形,∴BD平分∠ABC,∵E为BD上的一点,EF=4,∴点E到AB的距离=EF=4,故答案为:4.13.解:如图,∵四边形ABCD是菱形∴AO=CO=6cm,BO=DO,AC⊥BD ∵S菱形ABCD =×AC×BD=96∴BD=16cm∴BO=DO=8cm∴AB ==10cm故答案为:10cm14.解:∵四边形ABCD是矩形,∴AO=OC,DO=BO,AC=BD,∴DO=CO=AO=BO,∵∠AOB=60°,∴△AOB是等边三角形,∵AB=10,∴AO=OB=DO=10,∵E、F分别为AO、AD的中点,∴EF =DO ==5,故答案为:5.15.解:∵四边形ABCD是正方形,∴∠CAE=45°=∠ACB.∵AE=AC,∴∠ACE=(180°﹣45°)÷2=67.5°.∴∠BCE=∠ACE﹣∠ACB=67.5°﹣45°=22.5°.故答案为22.5°.16.解:∵菱形ABCD的周长是20,∴AB=5,AC⊥BD,AO=CO,BO=DO=3,∴AO ==4∴AC=8,BD=6∴菱形ABCD 的面积=AC×BD=24,故答案为:2417.解:因为AB=CD,若∠ABP=∠DCE=90°,BP=CE=1,根据SAS证得△ABP≌△DCE,由题意得:BP=2t=1,所以t=0.5,因为AB=CD,若∠BAP=∠DCE=90°,AP=CE=1,根据SAS证得△BAP≌△DCE,由题意得:AP=8﹣2t=1,解得t=3.5.所以,当t的值为0.5或3.5秒时.△ABP和△DCE全等.故答案为:0.5秒或3.5秒.18.解:∵四边形ABCD和四边形CEFG都是正方形,∴∠ACD=45°,∠FCG=45°,AC =BC =,CF =CE=3,∴∠ACF=45°+45°=90°,在Rt△ACF中,由勾股定理得:AF ===2,∵H是AF的中点,∴CH =AF =.故答案为:.三.解答题19.解:∵DE⊥AB于E,且E为AB的中点,∴AD=BD,∵四边形ABCD是菱形,∴AD=BA,∴AB=AD=BD,∴△ABD是等边三角形,∴∠DAB=60°;∵BD=4,∴DO=2,AD=4,∴AO ==2,∴AC=4;∴AB ===4,∴菱形ABCD的周长为4×4=16;菱形ABCD 的面积为:BD•AC =×4×4=8.20.证明:∵四边形ABCD是平行四边形,∴∠B=∠D,∵AE⊥BC,AF⊥DC∴∠AEB=∠AFD=90°.又∵BE=DF,∴△ABE≌△ADF(AAS)∴DA=AB,∴平行四边形ABCD是菱形.21.解:∵四边形ABCD是矩形,∴AC=BD,AO=OC,OD=OB,∠BAD=90°,∴OA=OB,∵∠BAD=90°,∠DAE=2∠BAE,∴∠BAE=30°,∵AE⊥BD,∴∠AEB=90°,∴∠ABO=90°﹣30°=60°,∵OA=OB,∴△OAB是等边三角形,∴∠BAO=60°,∴∠EAC=∠BAO﹣∠BAE=60°﹣30°=30°.22.解:(1)证明:∵AD∥BC,EC=AD,∴四边形AECD是平行四边形.又∵∠D=90°,∴四边形AECD是矩形.(2)∵AC平分∠DAB.∴∠BAC=∠DAC.∵AD∥BC,∴∠DAC=∠ACB.∴∠BAC=∠ACB.∴BA=BC=5.∵EC=2,∴BE=3.∴在Rt△ABE中,AE ===4.23.解:△BEF是直角三角形,理由如下:∵四边形ABCD是正方形,∴∠A=∠C=∠D=90°.∵点E是CD的中点,∴DE=CE =CD=6.∵AF=3DF,∴DF =AD=3.∴AF=3DF=9.在Rt△ABF中,由勾股定理可得BF2=AB2+AF2=144+81=225,在Rt△BCE中,由勾股定理可得BE2=CB2+CE2=144+36=180,在Rt△DEF中,由勾股定理可得EF2=DF2+DE2=9+36=45,∵BE2+EF2=180+45=225,BF2=225,∴BE2+EF2=BF2.∴△BEF是直角三角形.24.(1)证明:∵CE∥BD,DE∥AC,∴四边形OCED是平行四边形,在正方形ABCD中,AC⊥BD,OD=OC,∴∠COD=90°,∴四边形OCED是正方形.(2)解:如图,连接EO并延长,交AB于G,交CD于H,由(1)知:四边形OCED是正方形,∴CD⊥OE,∵四边形ABCD是正方形,∴AB∥CD,∴EG⊥AB,∵AC =,∴AB=BC=1=GH,Rt△DCE中,∵DE=CE,EH⊥CD,∴DH=CH,∴EH =CD=0.5,∴EG=1+0.5=1.5,∴点E到边AB的距离为1.5;故答案为:1.5.25.解:(1)如图所示,过E作EM⊥BC于M点,过E作EN⊥CD于N点,∵正方形ABCD,∴∠BCD=90°,∠ECN=45°,∴∠EMC=∠ENC=∠BCD=90°,且NE=NC,∴四边形EMCN为正方形,∵四边形DEFG是矩形,∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,∴∠DEN=∠MEF,又∠DNE=∠FME=90°,在△DEN和△FEM中,,∴△DEN≌△FEM(ASA),∴ED=EF,∴矩形DEFG为正方形,(2)CE+CG的值为定值,理由如下:∵矩形DEFG为正方形,∴DE=DG,∠EDC+∠CDG=90°,∵四边形ABCD是正方形,∵AD=DC,∠ADE+∠EDC=90°,∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴AE=CG,∴AC=AE+CE=AB=×4=8,∴CE+CG=8是定值.。