高中数学竞赛集训训练题

合集下载

高中数学竞赛模拟题(十六套)

高中数学竞赛模拟题(十六套)

模拟试题一 2010年全国高中数学联赛模拟试题一 试一、填空题(每小题8分,共64分)1.方程错误!未找到引用源。

2.如图,在错误!未找到引用源。

错误!未找到引用源。

=错误!未找到引用源。

,则m+2n 的值为错误!未找到引用源。

3.错误!未找到引用源。

4.单位正方体错误!未找到引用源。

错误!未找到引用源。

这八个面截这个单位正方体,则含正方体中心的那一部分的体积为 .5.设数列错误!未找到引用源。

6.已知实数x ,y ,z 满足xyz=32,x+y+z=4,则|x|+|y|+|z|的最小值为错误!未找到引用源。

7.若错误!未找到引用源。

8.空间有100个点,任4点不共面,用若干条线段连结这些点,如果不存在三角形,最多可连错误!未找到引用源。

条线段. 二、解答题(共56分) 9.(16分)设错误!未找到引用源。

错误!未找到引用源。

之和为21,第2项、第3项、第4项之和为33.(1)求数列错误!未找到引用源。

的通项公式; (2)设集合错误!未找到引用源。

错误!未找到引用源。

, 求证:错误!未找到引用源。

. 10.(20分)过抛物线错误!未找到引用源。

错误!未找到引用源。

错误!未找到引用源。

的距离均不为整数.11.(20分)已知二次函数错误!未找到引用源。

有两个非整数实根,且两根不在相邻两整数之间.试求a , b 满足的条件,使得一定存在整数k ,有错误!未找到引用源。

成立.二 试一.(40分)如图,已知错误!未找到引用源。

错误!未找到引用源。

求证:错误!未找到引用源。

N DCAMBPEFA二.(40分)设错误!未找到引用源。

.三. (50分)已知n 个四元集合错误!未找到引用源。

错误!未找到引用源。

,试求n 的最大值.这里错误!未找到引用源。

四.(50分)设错误!未找到引用源。

为正整数错误!未找到引用源。

的二进制表示数的各位数字之和,错误!未找到引用源。

为数列错误!未找到引用源。

的前n 项和. 若存在无穷多个正整数n ,满足错误!未找到引用源。

高中数学竞赛试题及答案

高中数学竞赛试题及答案

高中数学竞赛试题及答案一、选择题(每题3分,共15分)1. 下列哪个数不是有理数?A. πB. √2C. 1/3D. -3.142. 若函数f(x) = 2x^2 + 3x + 1,求f(-2)的值。

A. -1B. 3C. 5D. 73. 一个圆的半径为5,它的面积是多少?A. 25πB. 50πC. 75πD. 100π4. 已知等差数列的首项为3,公差为2,求第5项的值。

A. 11B. 13C. 15D. 175. 以下哪个是二次方程x^2 - 5x + 6 = 0的根?A. 2B. 3C. -2D. -3二、填空题(每题4分,共20分)6. 一个三角形的内角和为______度。

7. 若a,b,c是三角形的三边,且a^2 + b^2 = c^2,则此三角形是______三角形。

8. 一个正六边形的内角为______度。

9. 将一个圆分成4个扇形,每个扇形的圆心角为______度。

10. 若sinθ = 1/2,且θ在第一象限,则cosθ = ______。

三、解答题(每题10分,共65分)11. 证明:对于任意实数x,等式e^x ≥ x + 1成立。

12. 解不等式:2x^2 - 5x + 3 > 0。

13. 已知数列{an}的通项公式为an = 3n - 2,求前n项和Sn。

14. 求函数y = x^3 - 3x^2 + 2x的极值点。

15. 已知椭圆的方程为x^2/a^2 + y^2/b^2 = 1(a > b > 0),求椭圆的焦点坐标。

四、附加题(10分)16. 一个圆内接正六边形的边长为a,求圆的半径。

答案一、选择题1. A2. B3. B4. C5. A二、填空题6. 1807. 直角8. 1209. 9010. √3/2三、解答题11. 证明:设g(x) = e^x - (x + 1),则g'(x) = e^x - 1。

当x < 0时,g'(x) < 0,当x > 0时,g'(x) > 0。

全国高中数学联赛集训试题及参考答案.docx

全国高中数学联赛集训试题及参考答案.docx

全国高中数学联赛集训试题及参考答案一、选择题(本题满分36分,每小题6分)函数f(x)=logi/2(x2-2x-3)的单调递增区间是(若实数x, y 满足(x+5)2+(y-12)2=142,则x?+y2的最小值为(直线x/4+y/3=l 与椭圆x 2/16+y 2/9=l 相交于A, B 两点,该椭圆上点P,使得APAB 面积等于3, 这样的点P 共有(6、由曲线x 2=4y,x 2=-4y,x=4,x=-4围成的图形绕y 轴旋转一周所得旋转体的体积为VI ;满足 x 2+y 2<16,x 2+(y-2)2>4,x 2+(y+2)2>4的点(x,y)组成的图形绕y 轴旋转一周所得旋转体的体积为V?,则(A) Vi= (1/2) V 2 (B)Vi= (2/3) V 2二、填空题(本题满分54分,每小题9分)7、已知复数Zi,Z2满足I Z[ | =2, | Z 2 | =3,若它们所对应向量的夹角为60。

,则I (Z 1+Z 2)/(Z 1+Z 2) 8、将二项式(Wx+1/ (2^x)) 11的展开式按x 的降'最排列,若前三项系数成等差数列,则该展开式 1、 (A) ( —co, —1)(B) (—8,1)(C) (1, + co) (D) (3, +s) 2、 (A) 2 (B) 1 (C)山 (D)也 3、 函数 f(x)=x/l-2%x/2 ( (A)是偶函数但不是奇函数 (B) 是奇函数但不是偶函数 (C)既是偶函数乂是奇函数(D)既不是偶函数也不是奇函数 (A) 1 个 (B) 2 个 (C) 3 个 (D) 4 个5、已知两个实数集合 A= {ai,a2,...,aioo )与 B= {bib,...bo}, 若从A 到B 的映射f 使得B 中每个元素都有原象,且f(ai )<f(a 2)<.. <f(a 1O o)MS 样的映射共有( )。

竞赛数学高中试题及答案

竞赛数学高中试题及答案

竞赛数学高中试题及答案试题一:多项式问题题目:已知多项式 \( P(x) = x^3 - 3x^2 + 2x - 5 \),求 \( P(2) \) 的值。

解答:将 \( x = 2 \) 代入多项式 \( P(x) \) 中,得到:\[ P(2) = 2^3 - 3 \times 2^2 + 2 \times 2 - 5 = 8 - 12 + 4 -5 = -5 \]试题二:几何问题题目:在直角三角形 ABC 中,角 C 是直角,若 \( AB = 10 \) 且\( AC = 6 \),求斜边 BC 的长度。

解答:根据勾股定理,直角三角形的斜边 \( BC \) 可以通过以下公式计算:\[ BC = \sqrt{AB^2 - AC^2} = \sqrt{10^2 - 6^2} = \sqrt{100 - 36} = \sqrt{64} = 8 \]试题三:数列问题题目:给定数列 \( a_n = 2n - 3 \),求数列的前 5 项。

解答:根据数列公式 \( a_n = 2n - 3 \),我们可以计算出前 5 项:\[ a_1 = 2 \times 1 - 3 = -1 \]\[ a_2 = 2 \times 2 - 3 = 1 \]\[ a_3 = 2 \times 3 - 3 = 3 \]\[ a_4 = 2 \times 4 - 3 = 5 \]\[ a_5 = 2 \times 5 - 3 = 7 \]数列的前 5 项为:-1, 1, 3, 5, 7。

试题四:概率问题题目:一个袋子里有 5 个红球和 3 个蓝球,随机抽取 2 个球,求抽到一个红球和一个蓝球的概率。

解答:首先计算总的可能组合数,即从 8 个球中抽取 2 个球的组合数:\[ \text{总组合数} = \binom{8}{2} = \frac{8 \times 7}{2} = 28 \]然后计算抽到一个红球和一个蓝球的组合数:\[ \text{有利组合数} = \binom{5}{1} \times \binom{3}{1} = 5 \times 3 = 15 \]所以,抽到一个红球和一个蓝球的概率为:\[ P = \frac{\text{有利组合数}}{\text{总组合数}} =\frac{15}{28} \]试题五:函数问题题目:若函数 \( f(x) = x^2 - 4x + 4 \),求 \( f(x) \) 的最小值。

【精品】数学奥林匹克竞赛高中训练题集【共36份】

【精品】数学奥林匹克竞赛高中训练题集【共36份】
两个数学奥林匹克高中训练题05按从小到大顺序排列数列各项的和记为s对于给定的自然数n若能从数列中选取一些不同位置的项使得这些项之和恰等于n便称为一种选项方案和数为n的所有选项方案的种数记为数学奥林匹克高中训练题05第一试一选择题本题满分42分每小题7分1
奥林匹克数学竞赛高中训练题集
目 录
数学奥林匹克高中训练题(01) ........................................................................................................................... 1 数学奥林匹克高中训练题(02) ........................................................................................................................... 3 数学奥林匹克高中训练题(03) .............................................................................................. 4 数学奥林匹克高中训练题(04) ........................................................................................................................... 6 数学奥林匹克高中训练题(05) ...................................................................................................

高中数学竞赛试题及答案

高中数学竞赛试题及答案

高中数学竞赛试题及答案一、选择题(本题共10小题,每小题3分,共30分)1. 下列哪个数不是无理数?A. πB. √2C. √3D. 0.33333(无限循环)答案:D2. 已知函数f(x) = x^2 - 4x + 4,求f(2x)的值。

A. 4x^2 - 16x + 16B. 4x^2 - 12x + 12C. 4x^2 - 8x + 4D. 4x^2 - 4x + 4答案:C3. 若a,b,c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定答案:B4. 一个圆的半径为3,求其内接正六边形的边长。

A. 3√3B. 6C. 2√3D. 3答案:A5. 已知等差数列的首项a1=2,公差d=3,求第10项a10的值。

A. 29B. 32C. 35D. 38答案:A6. 根据题目所给的函数f(x) = 2x - 1,求f(x+1)的值。

A. 2x + 1B. 2x + 3C. 2x - 1D. 2x - 3答案:A7. 若x^2 - 5x + 6 = 0,求x的值。

A. 2, 3B. -2, -3C. 2, -3D. -2, 3答案:A8. 已知一个等比数列的首项a1=3,公比q=2,求第5项a5的值。

A. 48B. 96C. 192D. 384答案:A9. 一个圆的直径为10,求其面积。

A. 25πB. 50πC. 100πD. 200π答案:B10. 已知一个二次方程x^2 + 8x + 16 = 0,求其根的判别式Δ。

A. 0B. 64C. -64D. 16答案:A二、填空题(本题共5小题,每小题4分,共20分)11. 若一个数列{an}是等差数列,且a3 = 7,a5 = 13,求a7的值。

答案:1912. 已知一个函数y = x^3 - 3x^2 + 2x,求其一阶导数dy/dx。

答案:3x^2 - 6x + 213. 一个长方体的长、宽、高分别是2,3,4,求其表面积。

全国高中数学竞赛试题及答案

全国高中数学竞赛试题及答案

全国高中数学竞赛试题及答案试题一:函数与方程1. 已知函数\( f(x) = 2x^3 - 3x^2 + x - 5 \),求\( f(x) \)的极值点。

2. 求解方程\( x^2 - 4x + 3 = 0 \)的所有实根。

3. 判断函数\( g(x) = \frac{1}{x} \)在区间\( (0, +\infty) \)上的单调性。

试题二:解析几何1. 已知椭圆\( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \),其中\( a > b > 0 \),求椭圆的焦点坐标。

2. 求圆\( (x - h)^2 + (y - k)^2 = r^2 \)的切线方程,已知切点坐标为\( (m, n) \)。

3. 证明点\( P(x_1, y_1) \)和点\( Q(x_2, y_2) \)的连线\( PQ \)的中点坐标为\( \left(\frac{x_1 + x_2}{2}, \frac{y_1 +y_2}{2}\right) \)。

试题三:数列与级数1. 已知等差数列的首项\( a_1 = 3 \),公差\( d = 2 \),求第10项\( a_{10} \)。

2. 求等比数列\( b_1, b_2, b_3, \ldots \)的前\( n \)项和,其中\( b_1 = 1 \),公比\( r = 3 \)。

3. 判断数列\( c_n = \frac{1}{n(n + 1)} \)的收敛性。

试题四:概率与统计1. 从5个红球和3个蓝球中随机抽取3个球,求至少有2个红球的概率。

2. 抛掷一枚均匀硬币4次,求正面朝上的次数为2的概率。

3. 某工厂生产的产品中有2%是次品,求从一批产品中随机抽取10个产品,至少有1个是次品的概率。

试题五:组合与逻辑1. 有5个不同的球和3个不同的盒子,将球分配到盒子中,每个盒子至少有一个球,求不同的分配方法总数。

2. 证明:对于任意的正整数\( n \),\( 1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n + 1)(2n + 1)}{6} \)。

【高中数学竞赛专题大全】 竞赛专题1 集合(50题竞赛真题强化训练)解析版+原卷版

【高中数学竞赛专题大全】 竞赛专题1 集合(50题竞赛真题强化训练)解析版+原卷版

【高中数学竞赛专题大全】竞赛专题1 集合 (50题竞赛真题强化训练)一、单选题1.(2018·天津·高三竞赛)如果集合{}1,2,3,,10A =,{}1,2,3,4B =,C 是A 的子集,且C B ≠∅,则这样的子集C 有( )个.A .256B .959C .960D .961【答案】C 【解析】 【详解】满足C B ⋂=∅的子集C 有62个,所以满足C B ⋂≠∅的子集C 有10622960-=个. 故答案为C2.(2020·浙江温州·高一竞赛)已知集合{}{}2|2,230A x x B x x x =>=--<∣,则A B =( ).A .{23}xx <<∣ B .{12}xx -<<∣ C .{21xx -<<-∣或2}x > D .{2∣<-xx 或3}x > 【答案】A 【解析】 【详解】(,2)(2,)A =-∞-+∞,又223(3)(1)0(1,3)x x x x B --=-+<⇒=-, 所以(2,3)A B =. 故选:A.3.(2018·黑龙江·高三竞赛)已知集合(){}2,60A x y x a y =++=,集合()(){},2320B x y a x ay a =-++=.若AB =∅,则a 的值是( ).A .3或-1B .0C .-1D .0或-1【答案】D 【解析】 【详解】A B ⋂=∅,即直线21:60l x a y ++=与()2:2320l a x ay a -++=平行.令()2132a a a ⨯=-,解得0a =或-14.(2019·全国·高三竞赛)已知{}1,2,,216,S A S =⋅⋅⋅⊆.若集合A 中任两个元素的和都不能被6整除,则集合A 中元素的个数最多为( ). A .36 B .52 C .74 D .90【答案】C 【解析】 【详解】记{}()6,0,1,,5k S x S x n k n N k =∈=+∈=⋅⋅⋅,且50k k S S ==⋃.易知()36k card S =.则集合A 中既不能同时有1S 与5S 或2S 与4S 中元素,也不能有6S 中两个元素、3S 中两个元素.要使A 中元素最多,可选1S 与2S 中全部元素,0S 与3S 中各一个元素.故最多共有36361174+++=个元素. 故答案为C5.(2019·吉林·高三竞赛)集合A ={2,0,1,3},集合B ={x |-x ∈A ,2-x 2∉A },则集合B 中所有元素的和为 A .4- B .5- C .6- D .7-【答案】B 【解析】 【详解】由题意可得B ={-2,-3},则集合B 中所有元素的和为-5. 故选:B. 二、填空题6.(2018·四川·高三竞赛)设集合{}1,2,3,4,5,6,7,8I =,若I 的非空子集AB 、满足A B =∅,就称有序集合对(),A B 为I 的“隔离集合对”,则集合I 的“隔离集合对”的个数为______.(用具体数字作答) 【答案】6050 【解析】 【详解】设A 为I 的()17k k ≤≤元子集,则B 为I 的补集的非空子集.所以,“隔离集合对”的个数为()()()()7778880880808898888888111212122223216050k kk kk k k k CC C C C C C --===-=-=+-+---=-+=∑∑∑. 故答案为6050.7.(2018·湖南·高三竞赛)设集合2{|},{31021|}01A x x x B x m x m =-≤=+≤≤--,若A B B =,则实数m 的取值范围为__________. 【答案】3m ≤ 【解析】 【详解】由A B B ⋂=知,B A ⊆,而2{|3100}{|25}A x x x x x =--≤=-≤≤.当B =∅时,121m m +>-,即2m <,此时B A ⊆成立. 当B ≠∅时,121m m +≤-,即2m ≥,由B A ⊆,得21,21 5.m m -≤+⎧⎨-≤⎩ 解得33m -≤≤.又2m ≥,故得23m ≤≤. 综上,有3m ≤. 故答案为3m ≤8.(2021·全国·高三竞赛)已知,a b ∈R ,集合{}2{1,,},,M a b N a ab ==,若N M ⊆,则a b+的值为_________. 【答案】1- 【解析】 【分析】 【详解】依题意,1,0,1,a a b b a ≠≠≠≠.若21a =,则1,{1,1,},{1,}a M b N b =-=-=-,所以,0b b b -==. 若2a a =,则0a =或1,矛盾.若2a b =,则{}{}2231,,,,M a a N a a ==,于是31a =或a ,得0a =或±1,舍去.综上所述,1a b +=-. 故答案为:1-.9.(2018·山东·高三竞赛)集合A 、B 满足{}1,2,3,,10A B =,A B =∅,若A 中的元素个数不是A 中的元素,B 中的元素个数不是B 中的元素,则满足条件的所有不同的集合A 的个数为______. 【答案】186 【解析】 【详解】设A 中元素个数为()1,2,,9k k =,则B 中元素个数为10k -,依题意k A ∉,441122m k m ⎛⎫⎛⎫-<<+ ⎪ ⎪⎝⎭⎝⎭.10k B -∉,10k A -∈,此时满足题设要求的A 的个数为1102k C --.其中,当5k =时,不满足题意,故5k ≠.所以A 的个数为018484888882186C C C C C +++-=-=.10.(2018·福建·高三竞赛)将正偶数集合{}2,4,6,从小到大按第n 组有32n -个数进行分组:{}2,{}4,6,8,10,{}12,14,16,18,20,22,24,…,则2018位于第______组. 【答案】27 【解析】 【详解】设2018在第n 组,由2018为第1009个正偶数,根据题意得()()11132100932n ni i i i -==-<≤-∑∑,即()()223113100922n n n n ----<≤.解得正整数27n =.所以2018位于第27组.11.(2021·全国·高三竞赛)在{1,2,,12}的非空真子集中,满足最大元素与最小元素之和为13的集合个数为___________. 【答案】1364 【解析】 【详解】考虑1,12;2,11;3,10;4,9;5,8;6,7这5组数,每一组可作为集合的最大元素和最小元素,故所求集合的个数为()10864221222211364-+++++=,故答案为:136412.(2021·全国·高三竞赛)已知集合{1,2,3,,1995}M =,A 是M 的子集,当x A ∈时,19x A ∉,则集合A 元素个数的最大值为_______. 【答案】1895 【解析】 【详解】解析:先构造抽屉:{6,114},{7,133},,{105,1995},{1,2,3,4,5,106,107,,1994}.使前100个抽屉中恰均只有2个数,且只有1个数属于A ,可从集合M 中去掉前100个抽屉中的数,剩下199510021795-⨯=个数,作为第101个抽屉.现从第1至100个抽屉中取较大的数,和第101个抽屉中的数,组成集合A ,于是{1,2,3,4,5,106,107,,1995}A =,满足A 包含于M ,且当x A ∈时,19x A ∉. 所以card()A 的最大值为199********-=. 故答案为:1895.13.(2021·全国·高三竞赛)设111,,,23100X ⎧⎫=⎨⎬⎩⎭,子集G X ⊆之积数定义为G 中所有元素之乘积(空集的积数为零),求X 中所有偶数个元素之子集的积数的总和是_________. 【答案】4851200##5124200【解析】 【详解】解:设X 中所有偶数个元素之子集的积数的总和是A ,X 中所有奇数个元素之子集的积数之和是B ,则111991*********A B ⎛⎫⎛⎫⎛⎫+=+++-=⎪⎪⎪⎝⎭⎝⎭⎝⎭,11199111123100100A B ⎛⎫⎛⎫⎛⎫-=----=- ⎪⎪⎪⎝⎭⎝⎭⎝⎭. 解得4851200A =. 故答案为:485120014.(2020·江苏·高三竞赛)设*n N ∈,欧拉函数()n ϕ表示在正整数1,2,3,…,n 中与n 互质的数的个数,例如1,3都与4互质,2,4与4不互质,所以()42ϕ=,则()2020ϕ=__________.【答案】800 【解析】 【详解】解析:法一:因为2202025101=⨯⨯,故能被2整除的数有1010个,能被5整除的数有404个, 能被101整除的数有20个,既能被2整除又能被5整除的数有202个, 既能被2整除又能被101整除的数有10个, 既能被5整除又能被101整除的数有4个, 既能被2整除又能被5和101整除的数有2个.故与2020不互质的有10104042020210421220++---+=,则()2020800ϕ=. 故答案为:800.法二:()()()()2202025101=800ϕϕϕϕ=⨯⨯.故答案为:800.15.(2021·浙江·高二竞赛)给定实数集合A ,B ,定义运算{},,A B x x ab a b a A b B ⊗==++∈∈.设{}0,2,4,,18A =⋅⋅⋅,{}98,99,100B =,则A B ⊗中的所有元素之和为______. 【答案】29970 【解析】 【分析】【详解】由(1)(1)1x a b =++-, 则可知所有元素之和为(1319)30031029970+++⨯-⨯=.故答案为:29970.16.(2021·全国·高三竞赛)从自然数中删去所有的完全平方数与立方数,剩下的数从小到大排成一个数列{}n a ,则2020a =_________. 【答案】2074 【解析】 【分析】 【详解】注意到23366452025,121728,132197,3729,44096=====,我们考虑1到2025中n a 出现的次数.这里有45个平方数,12个立方数,3个6次方数, 所以n a 出现的次数为2025451231971--+=, 接下来直至2197前都没有平方数和立方数, 所以20202020197120252074a =-+=.17.(2021·全国·高三竞赛)设正整数m 、n ,集合{1,2,,}A n =,{1,2,,}B m =,{(,),}S u v u A v B ⊆∈∈,满足对任意的(,),(,)a b S x y S ∈∈,均有:()()0a x b y --≤,则max ||S =________.【答案】1n m +- 【解析】 【分析】 【详解】首先对S 中任意两个不同元素(,),(,)a b x y ,必有b a y x -≠-.事实上,若b a y x -=-,则b y ≠(否则a x =,这与(,)(,)a b x y ≠矛盾). 若b y <,则a x <,则()()0a x b y -->,这与题意矛盾, 同理,b y >亦与题意矛盾.这样S 中任意元素(,),a b b a -各不相同, 而{1,2,,0,1,,1}b a m m n -∈----共1n m +-种情形,则||1S n m ≤+-.再令{(,)S x y y m ==且1x n ≤≤,或x n =且1}y m ≤≤,此时||1S n m =+-. 故答案为:1n m +-.18.(2021·全国·高三竞赛)已知A 与B 是集合1,2,3,{},100的两个子集,满足:A 与B 的元素个数相同,且A B 为空集.若当n A ∈时总有22n B +∈,则集合A B 的元素个数最多为_______. 【答案】66 【解析】 【分析】 【详解】先证||66A B ≤,只须证33A ≤, 为此只须证若A 是{}1,2,,49的任一个34元子集,则必存在n A ∈,使得22n A +∈.证明如下: 将{}1,2,,49分成如下33个集合:{}{}{}{}1,4,3,8,5,12,,23,48共12个;{}{}{}{}2,6,10,22,14,30,18,38共4个;{}{}{}{}25,27,29,,49共13个;{}{}{}{}26,34,42,46共4个.由于A 是{}1,2,,49的34元子集,从而由抽屉原理可知上述33个集合中至少有一个2元集合中的数均属于A , 即存在n A ∈,使得22n A +∈. 如取{}1,3,5,,23,2,10,14,18,25,27,29,,49,26,34,42,46A =,22{|}B n n A =+∈,则A 、B 满足题设且||66A B =. 故答案为:66.19.(2021·全国·高三竞赛)设集合{1,2,3,,10},{(,,),,S A x y z x y z S ==∈∣,且()}3339x y z ++∣,则A 有_______个元素.【答案】243 【解析】 【分析】 【详解】将S 中元素按3x 模9余数分类得:123{1,4,7,10},{2,5,8},{3,6,9}S S S ===. 对每个(),,x y z A ∈,有,,x y z 分别属于123,,S S S ,或,,x y z 均属于3S .因此A 中共有()33!4333243⨯⨯⨯+=个元素.故答案为:243.20.(2021·全国·高三竞赛)设S 为集合{}0,1,2,,9的子集,若存在正整数N ,使得对任意整数n N >,总能找到正实数a b 、,满足a b n +=,且a b 、在十进制表示下的所有数字(不包括开头的0)都属于集合S ,则||S 的最小值为___(||S 表示集合S 的元素个数). 【答案】5 【解析】 【分析】 【详解】第一步,证明4S ≥,若4S =,则其中两数(可相同)相加共10个值(4个2i x 加上24C 6=个i j x x +),而n 的个位数由这10个值的个位数产生,因此,这10个值的个位数不能重复; 在0、1、2、…、9中有五个奇数,五个偶数, 若四个元中0或4个奇数,不能加出奇数; 若四个元中有1个奇数,只能产生3个奇数; 若四个元中有2个奇数,只能产生4个奇数; 若四个元中有3个奇数,只能产生3个奇数; 因此||4S >.第二步,构造一个五元组满足条件,稍加实验可得下表上表表明,0、1、2、…、9中的每个数字,都可以由{}0,1,2,3,6中的两个相加得到,则对任意正整数n ,从个位数开始依次向高位遍历,将每位数都按表格中表示分解为两个数,赋值给a b 、对应的位置,遍历完毕后自然得到a b 、. 综上min ||5S =. 故答案为:5.21.(2019·江西·高三竞赛)将集合{1,2,……,19}中每两个互异的数作乘积,所有这种乘积的和为_________ . 【答案】16815 【解析】 【详解】所求的和为()22221(1219)12192⎡⎤+++-+++⎣⎦1(361002470)2=-16815=.故答案为:16815.22.(2019·河南·高二竞赛)称{1,2,3,4,5,6,7,8,9}的某非空子集为奇子集:如果其中所有数之和为奇数,则奇子集的个数为____________ . 【答案】256 【解析】 【详解】全集{1,2,3,…,9}中含有5个奇数、4个偶数.根据奇子集的定义知,奇子集中只能含有1个奇数、3个奇数、5个奇数,而偶数的个数为0、1、2、3、4都有可能. 所以,奇子集共有:()()()101401450144444435454445C C C C C C C C C C C C +++++++++++()()135014555444C C C C C C =+++++()451012256=++⨯=个.故答案为:256.23.(2019·广西·高三竞赛)已知yz ≠0,且集合{2x ,3z ,xy }也可以表示为{y ,2x 2,3xz },则x =____________.【答案】1 【解析】 【详解】易知xyz ≠0,由两集合各元素之积得2366,1x yz x yz x ==. 经验证,x =1符合题意. 故答案为:1.24.(2019·山东·高三竞赛)已知(){}23|log 21,(,](,)A x x x B a b =-=-∞⋃+∞其中a <b ,如果A ∪B =R ,那么a -b 的最小值是_______ . 【答案】1- 【解析】 【详解】由已知得[1,0)(2,3]A =-⋃,故b -a ≤1,于是1a b --. 故答案为:1-.25.(2019·重庆·高三竞赛)设A 为三元集合(三个不同实数组成的集合),集合B ={x +y |x ,y ∈A ,x ≠y },若{}222log 6,log 10,log 15B =,则集合A =_______ . 【答案】{}221,log 3,log 5 【解析】 【详解】设{}222log ,log ,log A a b c =,其中0<a <b <c .则ab =6,ac =10,bc =15. 解得a =2,b =3,c =5,从而{}221,log 3,log 5A =. 故答案为:{}221,log 3,log 5.26.(2018·河北·高二竞赛)已知集合{},,A x xy x y =+,{}0,,B x y =且A=B ,那么20182018x y +=_______.【答案】2 【解析】 【详解】由B 中有三个元素知,0x ≠且0y ≠,故A 中0x y +=,即有x y =-,又{}{},,x xy x y =若x x xy y ⎧=⎨=⎩,则11x y =⎧⎨=-⎩.此时{}{}1,1,0,0,1,1A B =-=-. 若x t x xy =⎧⎨=⎩,则00x y =⎧⎨=⎩,或11x y =-⎧⎨=-⎩,或11x y =⎧⎨=⎩,不满足互异性,舍去.故1x =,1y =-,所以201820182x y +=. 27.(2019·全国·高三竞赛)集合{}1,2,,100S =,对于正整数m ,集合S 的任一m 元子集中必有一个数为另外m-1个数乘积的约数.则m 的最小可能值为__________. 【答案】26 【解析】 【详解】所有不大于100的素数共有25个,记其构成的组合为T={2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97}.注意到,集合T 中每一个元素均不能被T 中其余24个元素之积整除. 故2526m T m >=⇒≥.另一方面,用反证法证明:对于集合S 的任一26元子集,其中必有一个数为另外25个数乘积的约数.为叙述方便,对于素数p 和正整数x ,记()p x α表示x 中缩含p 的幂指数.若存在集合S 的某个26元子集A ,对每个x A ∈,x 均不整除集合A 中其余25个数乘积,则对每个x A ∈,存在x 的素因子p ,使得(){}\p p x A x x z αα∈⎛⎫> ⎪ ⎪⎝⎭∏,称这样的素数p 为x 的特异素因子,这种特异素因子不是唯一的.由于26A =,且所有特异素因子均属于集合S ,而集合S 中只有25个素数,故必有集合A 的两个不同元素x 、y 具有同一个特异素因子p. 由特异性及{}\y A x ∈,知(){}{}\p p p z A x x z y ααα∈⎛⎫>≥ ⎪⎪⎝⎭∏.类似地,(){}()\p p p z A y y z x ααα∈⎛⎫>≥⎪ ⎪⎝⎭∏,矛盾. 综上,m 的最小可能值为26.28.(2018·全国·高三竞赛)若实数集合{}2,3A x y =与{}6,B xy =恰有一个公共元素,则A B 中的所有元素之积为__________. 【答案】0 【解析】 【详解】将集合A 、B 的唯一公共元素记为a . 若0a ≠,则集合A 、B 的另一个元素均为6xya,矛盾. 进而,A B ⋃中的所有元素之积为0.29.(2021·全国·高三竞赛)已知非空集合{1,2,,2019,2020}X M ⊆=,用()f X 表示集合X中最大数和最小数的和,则所有这样的()f X 的和为_____. 【答案】()2020202121⋅-【解析】 【分析】 【详解】将M 中的非空子集两两进行配对,对每个非空子集X M ⊆,令{2021}X xx X '=-∈∣, 对M 的任意两个子集1X 和2X ,若12X X ≠时,12X X ''≠.则所有非空集合X 可以分成X X '≠和X X '=两类. 当X X '=时,必有()2021f X =,当X X '≠时,必有()()202124042f X f X +'=⨯=.又M 的非空子集共有202021-个,故所有这样的()f X 的和为()2020202121⋅-.故答案为:()2020202121⋅-.30.(2019·浙江·高三竞赛)在复平面上,任取方程10010z -=的三个不同的根为顶点组成三角形,则不同的锐角三角形的数目为____________.【答案】39200 【解析】 【详解】易知10010z -=的根在单位圆上,且相邻两根之间弧长相等,都为2100π,即将单位圆均匀分成100段小弧.首先选取任意一点A 为三角形的顶点,共有100种取法.按顺时针方向依次取顶点B 和顶点C ,设AB 弧有x 段小弧,CB 弧有y 段小弧,AC 弧有z 段小弧,则△ABC 为锐角三角形的等价条件为:1001,,49x y z x y z ++=⎧⎨⎩970,,48x y z x y z ++=⎧⇒⎨⎩ ① 计算方程组①的整数解个数,记1{|97,49}P x x y z x =++=,2{|97,49}P y x y z y =++=,3{|97,49}P z x y z z =++=,{(,,)|97,,,0}S x y z x y z x y z =++=,则123123||P P P S P P P ⋂⋂=-⋃⋃2991231C |i j i j P P P P P P <⎛=-++-∑⋂+ ⎝)23|P P ⋂⋂229950C 3C 1176=-=. 由于重复计算3次,所以所求锐角三角形个数为1001176392003⨯=. 故答案为:39200.31.(2019·浙江·高三竞赛)已知集合A ={k +1,k +2,…,k +n },k 、n 为正整数,若集合A 中所有元素之和为2019,则当n 取最大值时,集合A =________. 【答案】{334,335,336,337,338,339} 【解析】 【详解】由已知2136732k n n ++⨯=⨯. 当n =2m 时,得到(221)36733,6,333k m m m n k ++=⨯⇒===; 当n =2m +1时,得到(1)(21)36731,3k m m m n +++=⨯⇒==. 所以n 的最大值为6,此时集合{334,335,336,337,338,339}A =. 故答案为:{334,335,336,337,338,339} .32.(2021·全国·高三竞赛)设集合{1,2,3,4,5,6,7,8,9,10}A =,满足下列性质的集合称为“翔集合”:集合至少含有两个元素,且集合内任意两个元素之差的绝对值大于2.则A 的子集中有___________个“翔集合”. 【答案】49 【解析】 【分析】 设出集合{1,2,3,,}n 中满足题设性质的子集个数为n a ,写出2340,1a a a ===,在4n >时,要分情况把n a 的递推公式写出来,进而得到10a ,即答案. 【详解】 设集合{1,2,3,,}n 中满足题设性质的子集个数为n a ,则2340,1a a a ===.当4n >时,可将满足题设性质的子集分为如下两类:一类是含有n 的子集,去掉n 后剩下小于2n -的单元子集或者是{1,2,3,,3}n -满足题设性质的子集,前者有3n -个,后者有3n a -个;另一类是不含有n 的子集,此时恰好是{1,2,3,,1}n -满足题设性质的子集,有1n a -个.于是,31(3)n n n a n a a --=-++.又2340,1a a a ===,所以56789103,6,11,19,31,49a a a a a a ======.故答案为:49 【点睛】本题的难点是用数列的思想来考虑,设集合{1,2,3,,}n 中满足题设性质的子集个数为n a ,写出n a 的递推公式,再代入求值即可. 三、解答题33.(2021·全国·高三竞赛)已知非空正实数有限集合A ,定义集合{},,,x B x y A C xy x y A y ⎧⎫=∈=∈⎨⎬⎩⎭,证明:2A B C ⋅≤.【答案】证明见解析 【解析】 【详解】以集合B 作为突破口,取b B ∈,并设有()n b 个数对(),(1,2,,())i i x y i n b =满足:,,ii i ix b x y A y =∈. 由条件知,()i i ax ay C a A ∈∈,考虑集合(){}(),,1,2,,()i i X b ax ay a A i n b =∈=⋅⋅⋅,有()()(),(),X b A X b X b b B b b ''=∅∈'≥≠.于是,2||C ≥U ()b BX b ∈=b B∈∑|()|X b ≥||||B A ⋅得证. 34.(2021·浙江·高二竞赛)设数集{}12,,,m P a a a =,它的平均数12mp a a a C m+++=.现将{1,2,,}S n =分成两个非空且不相交子集A ,B ,求A B C C -的最大值,并讨论取到最大值时不同的有序数对(),A B 的数目. 【答案】最大值2n,数目为22n -.【解析】 【分析】不妨设A B C C >,记{}12,,,p A a a a =,12p T a a a =+++,可以得到A B C C -=12n T n n p p ⎛⎫+- ⎪-⎝⎭,考虑T 最大的情况是取最大的p 个数,此时可以发现A B C C -的结果正好是与p 无关的定值,从而也就得到了A B C C -的最大值,然后考察p 的可能的值,得到A B C C >时(),A B 的组数,并利用对称性得到A B C C <时(),A B 具有与之相等的组数,从而得到所有可能的(),A B 的组数. 【详解】 不妨设A B C C >, 记{}12,,,p A a a a =,12p T a a a =+++,所以(1)2A B A Bn n TT C C C C p n p+--=-=-- 11(1)12()2n n n T n T p n p n p n p p ⎛⎫⎛⎫++=+-=- ⎪ ⎪---⎝⎭⎝⎭,又有(21)(1)(2)2p n p T n p n p n -+≤-++-+++=,所以211222A B n n p n nC C n p -++⎛⎫-≤-= ⎪-⎝⎭当且仅当(21)2p n p T -+=时,取到等号,所以A B C C -的最大值2n.此时{1,,}A n p n =-+,由,A B 非空,可知1p =,2,…,1n -,有1n -种情况, 利用对称性得到A B C C <时(),A B 具有与之相等的组数, 由于A B C C -的最大值2n不可能有A B C C =的情况,所以有序数对(),A B 的数目为22n -. 35.(2020·全国·高三竞赛)设集合{1,2,,19}A =.是否存在集合A 的非空子集12,S S ,满足(1)1212,S S S S A ⋂=∅⋃=; (2)12,S S 都至少有4个元素;(3)1S 的所有元素的和等于2S 的所有元素的乘积?证明你的结论. 【答案】证明见解析. 【解析】 【分析】不妨设21,2,,,219S x y x y =<<≤,由条件可得2187xy x y ++=,即(21)(21)3751525x y ++==⨯,根据219x y <<≤,,x y N ∈,可得出其一组解,可证明.【详解】解:答案是肯定的.不妨设21,2,,,219S x y x y =<<≤,,x y N ∈ 则1219122x y xy +++----=,所以2187xy x y ++=,故(21)(21)3751525x y ++==⨯, 所以7,12x y ==是一组解故取13,4,5,6,7,8,10,11,13,14,15,16,17,18,19S =,21,2,7,12S =,则这样的12,S S 满足条件 36.(2021·全国·高三竞赛)设n 是正整数,我们说集合{1,2,,2}n 的一个排列()122,,,n x x x 具有性质P ,是指在{1,2,,21}n -当中至少有一个i ,使得1i i x x n +-=.求证:对于任何n ,具有性质P 的排列比不具有性质P 的排列的个数多. 【答案】证明见解析 【解析】 【详解】设A 为不具有性质P 的排列的集合,B 为具有性质P 的排列的集合,显然||||(2)!A B n +=.为了证明||||A B <,只要得到1||(2)!2B n >就够了.设()122,,,n x x x 中,k 与k n +相邻的排列的集合为,1,2,,k A k n =.则22(21)!,2(22)!,1k k j A n A A n k j n =⋅-=⋅-≤<≤,由容斥原理得121||||2(21)!4(22)||!k k kj n n k j nB A A A n nC n =≤<≤≥-=⋅⋅--⋅⋅-∑∑(2)!2(1)(22)!n n n n =--⋅- 2(22)!n n n =⋅⋅-212(22)!2n n n ->⋅⋅- 1(2)!2n = 37.(2021·全国·高三竞赛)平面上有一个(3)n n ≥阶完全图,对其边进行三染色,且每种颜色至少染一条边.现假设在完全图中至多选出k 条边,且把这k 条边的颜色全部变为给定三色中的某种颜色后,此图同时也可以被该种颜色的边连通.若无论初始如何染色,都可以达到目的,求k 的最小值. 【答案】3n ⎡⎤⎢⎥⎣⎦【解析】 【详解】先证明:3n k ⎡⎤≥⎢⎥⎣⎦.(这里3n ⎡⎤⎢⎥⎣⎦表示不超过3n 的最大的整数).假设三种颜色为1、2、3,n 阶完全图的n 个点分成三个点集A 、B 、C , 且||||3n A B ⎡⎤==⎢⎥⎣⎦.做如下染色:集合A 中的点之间连的边染1,集合B 中的点之间连的边染2,集合C 中的点之间连的边染3,集合A 与B 间的点连的边染2,集合B 与C 间的点连的边染3,集合C 与A 间的点连的边染1.从而,若变色后最终得到染1的颜色的边形成的连通图,由于集合B 中的点出发的边均染的是2或3,于是,变色边数不小于||3n B ⎡⎤=⎢⎥⎣⎦.类似地,若变色后最终得到染2或3的颜色的边形成的连通图,则变色边数不小于||A (或C )3n ⎡⎤≥⎢⎥⎣⎦.故3n k ⎡⎤≥⎢⎥⎣⎦.再证明:3n k ⎡⎤≤⎢⎥⎣⎦.对n 用数学归纳法. 当3n =时,结论成立.假设1(4)n n -≥时,结论成立.则n 个点时: (1)若完全图中由某点出发的边有三种不同颜色,由归纳假设,可通过改变其中13n -⎡⎤⎢⎥⎣⎦条边的颜色得到同色连通图.(2)若完全图中由所有点出发的边均最多两种不同颜色, 记A 为所有出发的边均染1或2的点组成的集合, 记B 为所有出发的边均染2或3的点组成的集合, 记C 为所有出发的边均染3或1的点组成的集合. 如果某些点连出的边都染颜色1,则把它归入集合A ; 如果某些点连出的边都染颜色2,则把它归入集合B ; 如果某些点连出的边都染颜色3,则把它归入集合C .不失一般性,不妨设||||A B C≤≤∣.则||3n A ⎡⎤≤⎢⎥⎣⎦.若B ≠∅,则C ≠∅,集合B 中的点连向集合C 中的点的边均染3.故B C ⋃由颜色3可以连通. 此时,任选集合B 中一点,集合A 中每个点与该点的连线的边颜色均变成3, 由||3n A ⎡⎤≤⎢⎥⎣⎦知成立.若B =∅,则A =∅,于是,完全图的边均染的是1或3. 这与条件“每种颜色至少染一条边”不符. 所以由归纳法知原结论成立.38.(2022·全国·高三专题练习)班级里共有()3n n ≥名学生,其中有A ,B ,C .已知A ,B ,C 中任意两人均为朋友,且三人中每人均与班级里中超过一半的学生为朋友.若对于某三个人,他们当中任意两人均为朋友,则称他们组成一个“朋友圈”. (1)求班级里朋友圈个数的最大值()F n . (2)求班级里朋友圈个数的最小值()G n .【答案】(1)()()126n n n --;(2)()4,41,6,,21,2n nn n G n n n =⎧⎪⎪+≥=⎨⎪-⎪⎩为偶数为奇数 【解析】 【分析】(1)利用组合数可求()F n ; (2)利用容斥原理可求()G n . 【详解】(1)当班级中的任意3人中,任意两个人都是朋友时,班级里朋友圈个数的最大,此时()()()3126n n n n F n C --==.(2)当3n =时,()31G =,当4n =时,A ,B ,C 中的每个人都至少与班级的3个同学是好朋友,故4人彼此是好朋友,故()44G =,当5n ≥时,记a P 为班级中除去,,A B C 且与A 是朋友的同学的集合,b P 为班级中除去,,A B C 且与B 是朋友的同学的集合,Pc 为班级中除去,,A B C 且与C 是朋友的同学的集合,若2(3)n k k =≥,由题设可知,a P 、b P 、Pc 中的元素的个数不小于1k -,余下同学记为:452,,,k Y Y Y ,集合M 中元素的个数记为M ,因为余下人数为23k -,由容斥原理可得23a b c k P P P -≥a b c ab ac bc abc P P P P P P P P P P P P =++---+, 所以2333a b a c b c abc k k P P P P P P P P P -≥----+,即ab ac b c abc P P P P P P P P P k ++-≥,故此时()1G n k ≥+, 考虑一种特殊情况:{}{}4+2+22,,,,,a k c b k k P Y Y P P Y Y ===, 此时朋友圈个数为1111k k -++=+,故()112nG n k =+=+. 若21(2)n k k =+≥,由题设可知,a P 、b P 、Pc 中的元素的个数不小于1k -,余下同学记为:4521,,,k Y Y Y +,集合M 中元素的个数记为M ,因为余下人数为22k -,由容斥原理可得22a b c k P P P -≥a b c ab ac bc abc P P P P P P P P P P P P =++---+, 所以2233a b a c b c abc k k P P P P P P P P P -≥----+,即1ab ac b c abc P P P P P P P P P k ++-≥-,故此时()G n k ≥,考虑一种特殊情况:{}{}{}4+2+22+321,,,,,,,,a k b k k c k k P Y Y P Y Y P Y Y +===, 此时朋友圈个数为112k k ++-=,故()12n G n k -==. 综上,()4,41,6,,21,2n nn n G n n n =⎧⎪⎪+≥=⎨⎪-⎪⎩为偶数为奇数.39.(2021·浙江·高三竞赛)某班有10名同学计划在暑假举行若干次聚会,要求每名同学至多参加三次聚会,并且任意两名同学至少在一次聚会中相遇.求最大的正整数m ,使得无论如何安排符合上述要求的聚会,都一定存在某次聚会有至少m 名同学参加. 【答案】最大正整数m 是5 【解析】 【分析】 【详解】解:设有n 次聚会,聚会人数分别为1x ,2x ,…,n x (均为正整数).我们有: 1210330n x x x +++≤⨯=1210452222n x x x ⎛⎫⎛⎫⎛⎫⎛⎫++⋅⋅⋅+≥= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭记11n S x x =+⋅⋅⋅+,2221n S x x =+⋅⋅⋅+,则2190S S -≥可知214S S ≥,即{}22111max ,,4nn nx x x x x x +⋅⋅⋅+⋅⋅⋅≥≥+⋅⋅⋅+若上式等号成立,则必须14n x x =⋅⋅⋅==,并且1130n S x x =+⋅⋅⋅+=,这样可得7.5n =导致矛盾.所以我们有{}1max ,,5n x x ⋅⋅⋅≥,即一定存在某次聚会有至少5名同学参加,即5m =满足题意.另一方面,我们给出10名同学参加聚会的一种安排方式:共A ,B ,C ,D ,E ,F 六次聚会,每次聚会恰好有5名同学参加,下面的10个三元子集分别表示10名同学各参加哪三次聚会:{}ABC ,{}CDE ,{}AEF ,{}BDF ,{}ABD ,{}ADE ,{}BCE ,{}BEF ,{}CDF ,{}ACF .易知在所有6203⎛⎫= ⎪⎝⎭个三元子集中,互补的两个三元子集在上式中恰好出现一个.这保证了上面的10个三元子集中每两个都相交,即任意两名同学至少在一次聚会中相遇.此外,A ,B ,C ,D ,E ,F 中的每一个在上式的10个三元子集中恰好出现五次,即每次聚会都恰好有5名同学参加,这意味着6m ≥不符合题意. 因此所求的最大正整数m 是5.另一种构造:{}ABC ,{}ABC ,{}BEF ,{}BEF ,{}CDF ,{}CDF ,{}ABD ,{}AEF ,{}ADE ,{}CDE .40.(2021·全国·高三竞赛)设2n ≥为正数,122,,,n A A A 为1,2,{},n 的所有子集的任一个排列.求2111nii ii i A A A A ++=⋅∑的最大值,其中121n A A +=.【答案】()2222n n n -+-【解析】 【分析】 【详解】 先证两个引理. 引理1 设122,,,n A A A 是集合1,2,{},n 的所有子集,则存在122,,,n A A A 的一个排列122,,,n B B B ,使得对任意的1,2,,2n i =均满足i B 、1i B +中的一个是另一个的子集,且元素个数差1,其中约定121n B B +=. 引理1的证明:对n 用归纳法.当2n =时,集合{1,2}的4个子集排列为∅、{1}、{1,2}、{2}便满足要求. 假设当n k =时存在排列122,,,k B B B 满足要求,则当1n k =+时,考虑下面的排列:12211222,,,,{1},{1},,{1},{1}k kk B B B B k B k B k B k -⋅⋅⋅++⋅⋅⋅++,这显然是集合{1,2,,1}k ⋅⋅⋅+的所有子集满足要求的一个排列.引理1证毕. 引理2 设A 、B 是任意两个不同的有限集,则2221A B A B A B ⋅≤+-,(1) 当A 、B 中一个为另一个的子集,且元素个数差1时等号成立. 引理2的证明:设\,\,A B x B A y A B z ===.因为A B ≠,故x 、y 不能同时为0,于是x 、y 中至少有一个大于等于1. (1)22222()()()11x y z z x z y z x y ⇔++≤+++-⇔+≥,(2) 显然成立.又当A 、B 中一个为另一个的子集且元素个数差1时,x 、y 中有一个为0,一个为1.(2)中取等号,从而(1)也取等号.引理2证毕.回到原题.由引理2可得()22222211111111122nnnn ii i i i i i i i i AA A A A AB -+++===≤+-=-∑∑∑ ()212211C 222n k n n n n k k n n ---==-=+-∑ ()2222n n n -=+-.又如果将{1,2,,}n ⋅⋅⋅的所有子集按照引理1中的排法便知上式等号成立.故所求的最大值为()2222n n n -+-.41.(2021·全国·高三竞赛)设{}()1,2,3,,2,m M n m n +=⋅∈N 是连续2m n ⋅个正整数组成的集合,求最小的正整数k ,使得M 的任何k 元子集中都存在1m +个数121,,,m a a a +满足1(1,2,,)i i a a i m +=.【答案】21m n n ⋅-+. 【解析】 【分析】 【详解】 记{1,2,3,,}A n =,任何一个以i 为首项,2为公比的等比数列与A 的交集设为i A .一方面,由于M 中2m n n ⋅-个元的子集{}1,2,,2m n n n ++⋅中不存在题设的1m +个数,否则12112mm n a a a n ++≤<<<≤⋅,而1212m m nn a n ⋅+≤≤=,矛盾.故21m k n n ≥⋅-+.另一方面,21m k n n =⋅-+时,题设满足.若非如此,考虑以1212n i i -⎛⎫+≤ ⎪⎝⎭为首项,以2为公比的等比数列.其与M 的交集的元素个数为21i A m ++个.设M 任何k 元子集为T ,则上述等比数列与M 的交集中至少有21i A +个元素不在T 中,而i j ≠时,2121i j A A ++=∅.注意到21112||,i n iA A +-=所以21112|\|||ii n M T A A n +-≥==,可得2m T M n n n ≤⋅=⋅-与21mT k n n ==⋅-+矛盾.综上,所求k 为21m n n ⋅-+.42.(2021·全国·高三竞赛)对两个不全等的矩形A 、B ,称A B >,若A 的长不小于B 的长,且A 的宽也不小于B 的宽.现在若对任意的n 个两两不全等的,长和宽均为不超过2020的正整数的矩形,都必存在其中3个矩形A 、B 、C ,使得A B C >>,求n 的最小值. 【答案】2021 【解析】 【分析】 【详解】一方面,当2021n =时,若不存在满足要求的3个矩形,我们把所有的矩形如下分类: 对一个矩形A ,若在剩下2020个矩形中,存在一个矩形B ,使得A B >,则称A 为“父矩形”,否则称A 为“子矩形”.由抽屉原理,其中必有一类至少含有1011个矩形,设它们的宽为121011x x x ≤≤⋯≤. 但易知所有的“父矩形”之间两两不能比较大小,所有的“子矩形”之间也两两不能比较大小,于是必有121011x x x <<<且相应的它们的长121011y y y >>>,合在一起即121011*********x x x y y y <<<≤<<<,与它们均为不超过2020的正整数矛盾.另一方面,当2020n ≤时,考虑所有长宽满足要求的,周长为4040的矩形,共1010个,及周长为4042的矩形,也共1010个.由于周长相等的两个矩形无法比大小,因此这2020个矩形中不存在满足要求的3个矩形. 综上,n 的最小值为2021.43.(2021·全国·高三竞赛)已知X 是一个有限集.110110,X A A X B B =⋃⋃=⋃⋃是满足如下性质的两个分划:若,110i j A B i j ⋂=∅≤≤≤,则10i j A B ⋃≥.求X 的最小值. 【答案】50 【解析】 【分析】 【详解】X 的最小值为50.我们先证明||50X ≥. 考虑集合110110,,,,,A A B B 中元素个数最少的集合,不妨设为1A .记1A a =,则1A 至多与110,,B B 中a 个集合相交.不妨设1,1,,i A B i k ⋂≠∅=且1,1,,10i A B i k ⋂=∅=+,其中k a ≤.故110,1,,10i A B i k ⋃≥=+.从而对1i k ∀≥+有11010Bi A a ≥-=-. 由1A 的最小性知1,,k B B 的元素个数均不小于a .从而1101110||k k X B B B B B B +=⋃⋃=++++(10)(10)502(5)(5)k a k a k a ≥⋅+--=+--.(1)若5a ≤,则5k ≤,此时由上式知||50X ≥; (2)若5a >,由1A 是110,,A A 中元素个数最少的集合知||1050X a ≥>.故||50X ≥.另一方面,||X 能取到50,例如, 取11221010{1,2,3,4,5},{6,7,8,9,10},,{46,47,48,49,50}A B A B A B ======.显然它们满足条件,这时{}1,2,,50X =⋯.44.(2021·全国·高三竞赛)设集合S 是由平面上任意三点不共线的4039个点构成的集合,且其中2019个点为红色,2020个点为蓝色;在平面上画出一组直线,可以将平面分成若干区域,若一组直线对于点集S 满足下述两个条件,称这是一个“好直线组”: (1)这些直线不经过该点集S 中的任何一个点; (2)每个区域中均不会同时出现两种颜色的点.求k 的最小值,使得对于任意的点集S ,均存在由k 条直线构成的“好直线组”. 【答案】2019. 【解析】 【分析】 【详解】 先证明2019k ≥:在一个圆周上顺次交替标记2019个红点和2019个蓝点,在平面上另外任取一点染为蓝色,这个圆周就被分成了4038段弧,则每一段的两个端点均染了不同的颜色; 若要满足题目的要求,则每一段弧均与某条画出的直线相交; 因为每条直线和圆周至多有两个交点,所以,至少要有403820192=条直线. 再证明:用2019条直线可以满足要求.对于任意两个同色点AB 、,均可用两条直线将它们与其他的点分离. 作法:在直线AB 的两侧作两条与AB 平行的直线,只要它们足够接近AB ,它们之间的带状区域里就会只有A 和B 这两个染色点. 设P 是所有染色点的凸包,有以下两种情形:(1)假设P 有一个红色顶点,不妨记为A .则可作一条直线,将点A 和所有其他的染色点分离,这样,余下的2018个红点可以组成1009对,每对可以用两条平行直线将它们与所有其他的染色点分离.所以,总共用2019条直线可以达到要求.(2)假设P 的所有顶点均为蓝色.考虑P 上的两个相邻顶点,不妨记为AB 、.则用一条直线就可以将这两个点与所有其他染色点分离.这样,余下的2018个蓝点可以组成1009对,每对可以用两条直线将它们与所有其他染色点分离. 所以,总共也用了2019条直线可以达到要求. 综上:k 的最小值为2019.45.(2021·全国·高三竞赛)设函数:f ++→Z Z 满足对于每个n +∈Z ,均存在一个k +∈Z ,使得2()k f n n k =+,其中,m f 是f 复合m 次.设n k 是满足上述条件的k 中的最小值,证明:数列12,,k k 无界.【答案】证明见解析. 【解析】 【分析】 【详解】设{}21,(1),(1),S f f =,对于每个正整数n S ∈,存在正整数k ,使得2()kfn n k S =+∈.因此,集合S 是无界的,且函数f 将S 映射到S .此外,函数f 在集合S 上是单射. 事实上,若(1)(1)()i j f f i j =≠,则m f (1)从某个值开始周期性地进行重复.于是,集合S 是有界的,矛盾.定义:g S S →为2()()n kn g n f n n k ==+.首先证明:g 也是单射.假设()()()g a g b a b =<,则22()()a b k ka b a k f a f b b k +===+,于是,>a b k k .因为函数f 在集合S 上是单射,所以()()2()a b k k a b fa b a k k -==+-.又0a b a k k k <-<,与a k 的最小性矛盾.设T 是集合S 中非形如()()g n n S ∈的元素构成的集合.由于对每个n S ∈,均有()g n n >,则1T ∈.于是,T 是非空集合.对每个t T ∈,记{}2,(),(),t C t g t g t =,且称tC 为从t 开始的“链”.因为g 是单射,所以,不同的链不交.对每个n S T ∈,均有()n g n =',其中,n n '<,n S '∈.重复上述过程,知存在t T ∈,使得t n C ∈,从而,集合S 是链t C 的并.若(1)n f 是从(1)i nt f =开始的链t C 中的元素,则122t j n n a a =+++,其中,()()()()112221(1)(1)(1)(1)jj i t ta a a n n n n j j f g f ff f f fa a -===+++.故(1)(1)22t n nt tn n n n f f t --=+=+. ① 其次证明:集合T 是无限的.假设集合T 中只有有限个元素则只有有限个链()1212,,,t t t t t C C C t t t <<<.固定N .若(1)(1)n f n N ≤≤是链t C 中的元素,则由式①知:(1)22nt r n n Nf t t -=+≤+. 由于1N +个不同的正整数1,(1),,(1)N f f 均不超过2r N t +,则12r NN t +≤+. 当N 足够大时,这是不可能的.因此,集合,T 是无限的.选取任意正整数k ,考虑从集合T 中前1k +个数开始的1k +个链.设t 是这1k +个数中最大的一个.则每个链中均包含一个元素不超过t ,且至少有一个链中不含1,2,,t t t k +++中的任何一个数.于是,在这个链中存在一个元素n ,使得()g n n k ->,即n k k >.。

高中数学竞赛模拟测试练习试题及参考答案

高中数学竞赛模拟测试练习试题及参考答案

高中数学竞赛模拟测试练习试题及参考答案一、选择题(本题满分30分,每小题5分)已知关于x 的方程|x|=ax+1有一个负根而且没有正根,则实数a 的取值范围(A )(A )(B )(C )(D ) 解.利用数形结合,容易得出实数a 的取值范围a 1故选A 2.当直线所围成的图形的面积是(D)(A) (B)4 (C)9 (D)16解:直线方程可变为(x-1)cos +(y-1)sin =4于是求出点A (1,1)到直线的距离d=,所以当直线=+所围成的图形是以点A 为圆心,以4为半径的圆,从而所围成的图形的面积是16.故选D 3.数列{a n }中,相邻两项a n ,a n+1是方程x 2+3nx+b n =0的两根,已知a 10=-17.则b 51的值等于(B) (A )5800(B )5840(C )5860(D )6000解:∵a n +a n+1=-3n ,∴a n+2-a n =(a n+2+a n+1)-(a n+1+a n )=-3(n+1)-(-3n)=-3∴a 1,a 3,…,a 2n+1和a 2,a 4,…,a n 都是公差为-3的等差数列,∴{}1≥a a {}11-≤≥a a a 或{}11>-<a a a 或{}10<<a a ≥,取遍全体实数时ϑ)4sin(24sin cos πϑϑϑ++=+y x ππππϑϑ4sin cos 422=+ϑϑ,时R ∈ϑϑϑsin cos y x +4)4sin(2πϑ+πa 52=a 10+21(-3)=-80a 51=a 11+20(-3)∵a 10+a 11=-30∴a 11=-13∴a 51=-73,b 51=a 51·a 52=5840故选B4.已知a 、b 、c 、d 是四个不同的有理数,且,,则的值等于(D)(A )2(B )1(C )0(D )解:由题意:, ∴a 、b 是方程的两根,∴,∴∴=.故选D5.设函数f(x)=,如果f()=,那么的值等于(C)(A )3(B )7(C )(D )解:取x=,有f()= 而当=时有x=所以故选C6、已知p,p+14,p+q 都是质数,并且p 有唯一的值和它对应,则q 只能取(A) A40B44C74D86解:q 只能取40。

高中数学竞赛赛题精选(带答案)

高中数学竞赛赛题精选(带答案)

高中数学竞赛赛题精选一、选择题(共12题)1.定义在R 上的函数()y f x =的值域为[m,n ],则)1(-=x f y 的值域为( ) A .[m,n ]B .[m-1,n-1]C .[)1(),1(--n f m f ]D .无法确定解:当函数的图像左右平移时,不改变函数的值域.故应选A.2.设等差数列{n a }满足13853a a =,且n S a ,01>为其前n 项之和,则)(*∈N n S n 中最大的是( ) A. 10S B. 11S C. 20S D. 21S 解:设等差数列的公差为d,由题意知3(1a +7d)=5(1a +12d),即d=-3921a , ∴n a = 1a +( n-1)d= 1a -3921a (n-1)= 1a (3941-392n),欲使)(*∈N n S n 最大,只须n a ≥0,即n ≤20.故应选C.3.方程log 2x=3cosx 共有( )组解.A .1B .2C .3D .4解:画出函数y=log 2x 和y=3cosx 的图像,研究其交点情况可知共有3组解.应选C .4.已知关于x 的一元二次方程()02122=-+-+a x a x 的一个根比1大,另一个根比1小,则()A.11<<-a B.1-<a 或1>aC.12<<-aD.2-<a 或1>a解:令f(x)= ()2122-+-+a x a x ,其图像开口向上,由题意知f(1)<0,即 ()211122-+⨯-+a a <0,整理得022<-+a a ,解之得12<<-a ,应选C .5.已知βα,为锐角,,cos ,sin y x ==βα53)cos(-=β+α,则y 与x 的函数关系为( ) A .1)x 53( x 54x 153y 2<<+--= B .1)x (0 x 54x 153y 2<<+--=C .)53x (0 x 54x 153y 2<<---= D .1)x (0 x 54x 153y 2<<---= []xx y 54153sin )sin(cos )cos()(cos cos 2+-⋅-=⋅+++=-+==αβααβααβαβ解: 而)1,0(∈y 15415302<+-⋅-<∴x x , 得)1,53(∈x .故应选A. 6.函数sin y x =的定义域为[],a b ,值域为11,2⎡⎤-⎢⎥⎣⎦,则b a-的最大值是( )A. πB. π2C.34πD. 35π解:如右图,要使函数sin y x =在定义域[],a b 上,值域为11,2⎡⎤-⎢⎥⎣⎦,则b a -的最大值是74()663πππ--=.故应选C. 7.设锐角使关于x 的方程x 2+4x cos+cot =0有重根,则的弧度数为 ( )A .6B .12或512C .6或512D .12解:由方程有重根,故14=4cos 2-cot =0,∵ 0<<2,2sin2=1,=12或512.选B . 8.已知M={(x ,y )|x 2+2y 2=3},N={(x ,y )|y=mx+b }.若对于所有的m ∈R ,均有M ∩N ,则b 的取值范围是 ( )A .[-62,62] B .(-62,62) C .(-233,233] D .[-233,233] 解:点(0,b )在椭圆内或椭圆上,2b 2≤3,b ∈[-62,62].选A .9.不等式log 2x -1+12log 12x 3+2>0的解集为A .[2,3)B .(2,3]C .[2,4)D .(2,4] 解:令log 2x=t ≥1时,t -1>32t -2.t ∈[1,2),x ∈[2,4),选C .10.设点O 在ABC 的内部,且有+2+3=,则ABC 的面积与AOC 的面积的比为( )A .2B .32C .3D .53解:如图,设AOC=S ,则OC 1D=3S ,OB 1D=OB 1C 1=3S ,AOB=OBD=1.5S .OBC=0.5S ,ABC=3S .选C .11.设三位数n=,若以a ,b ,c 为三条边长可以构成一个等腰(含等边)三角形,则这样的三位数n 有( )A .45个B .81个C .165个D .216个 解:⑴等边三角形共9个;⑵ 等腰但不等边三角形:取两个不同数码(设为a ,b ),有36种取法,以小数为底时总能构成等腰三角形,而以大数为底时,b <a <2b .a=9或8时,b=4,3,2,1,(8种);a=7,6时,b=3,2,1(6种);a=5,4时,b=2,1(4种);a=3,2时,b=1(2种),共有20种不能取的值.共有236-20=52种方法,而每取一组数,可有3种方法构成三位数,故共有523=156个三位数即可取156+9=165种数.选C .12.顶点为P 的圆锥的轴截面是等腰直角三角形,A 是底面圆周上的点,B 是底面圆内的点,O 为底面圆圆心,AB ⊥OB ,垂足为B ,OH ⊥PB ,垂足为H ,且PA=4,C 为PA 的中点,则当三棱锥O -HPC 的体积最大时,OB 的长为 ( )A .53 B .253 C .63 D .263解:AB ⊥OB ,PB ⊥AB ,AB ⊥面POB ,面PAB ⊥面POB .OH ⊥PB ,OH ⊥面PAB ,OH ⊥HC ,OH ⊥PC ,又,PC ⊥OC ,PC ⊥面OCH .PC 是三棱锥P -OCH 的高.PC=OC=2.而OCH 的面积在OH=HC=2时取得最大值(斜边=2的直角三角形).当OH=2时,由PO=22,知∠OPB=30,OB=PO tan30=263.又解:连线如图,由C 为PA 中点,故V O -PBC =12V B -AOP ,S B 11OABCABPO H C而V O -PHC ∶V O -PBC =PH PB =PO 2PB2(PO 2=PH ·PB ).记PO=OA=22=R ,∠AOB=,则V P —AOB =16R 3sin cos =112R 3sin2,V B -PCO =124R 3sin2. PO 2PB 2=R 2R 2+R 2cos 2=11+cos 2=23+cos2.V O -PHC =sin23+cos2112R 3. ∴ 令y=sin23+cos2,y=2cos2(3+cos2)-(-2sin2)sin2(3+cos2)2=0,得cos2=-13,cos =33, ∴ OB=263,选D .二、填空题(共10题)13. 设n S 为等差数列{}n a 的前n 项和,若510S =,105S =-,则公差为 解:设等差数列{}n a 的首项为1a ,公差为d .由题设得⎩⎨⎧-=+=+,,545101010511d a d a 即 ⎩⎨⎧-=+=+,,1922211d a d a 解之得1-=d .14. 设()log ()a f x x b =+(0a >且1)a ≠的图象经过点(21),,它的反函数的图象经过点(28),,则b a +等于 4 .解:由题设知 log (2)1log (8)2a a b b +=⎧⎨+=⎩,, 化简得 2(2)(8).b a b a +=⎧⎨+=⎩,解之得 1131a b =⎧⎨=⎩,; 2224.a b =-⎧⎨=-⎩,(舍去). 故a b +等于4.15.已知函数()y f x =的图象如图,则满足22221()(lg(620))021x x f f x x x x --⋅-+≤-+的 x 的取值范围为 [21)x ∈-, .解: 因为 ()()22lg 620lg (3)11lg111x x x -+=-+≥>,所以()2lg 6200x x -+<. 于是,由图象可知,2111x x +≤-,即 201x x +≤-,解得 21x -≤<. 故x 的取值范围为 [21)x ∈-,.16.圆锥曲线0|3|102622=+--+-++y x y x y x 的离心率是 2 .解:原式变形为|3|)1()3(22+-=-++y x y x ,即=2|3|2+-y x .所以动点),(y x 到定点(31)-,的距离与它到直线03=+-y x 的距离之比为2.故此动点轨迹为双曲线,离心率为2.17.在ABC ∆中,已知3tan =B ,322sin =C ,63=AC ,则ABC ∆的面积为ABC S ∆=解:在ABC ∆中,由3tan =B 得︒=60B .由正弦定理得sin 8sin AC CAB B⋅==.因为︒>60322arcsin,所以角C 可取锐角或钝角,从而31cos ±=C .sin sin()sin cos cos sin A B C B C B C =+=+=sin 2ABC AC ABS A ∆⋅== 18. 设命题P :2a a <,命题Q : 对任何x ∈R ,都有2410x ax ++>. 命题P 与Q 中有 且仅有一个成立,则实数a 的取值范围是 021≤<-a 或 121<≤a . 解:由a a <2得10<<a .由0142>++ax x 对于任何x ∈R 成立,得04162<-=∆a ,即2121<<-a .因为命题P 、Q 有且仅有一个成立,故实数 a 的取值范围是 021≤<-a 或 121<≤a .19.22cos 75cos 15cos75cos15++⋅的值是 . 解:22cos 75cos 15cos75cos15++⋅ =cos²75°+sin²75°+sin15°·cos15° =1+°30sin 21=5420.定义在R 上的函数()f x 满足(1)2f =,且对任意的x R ∈,都有1()2f x '<,则不等式22log 3(log )2x f x +>的解集为 . 解:令g ﹙x ﹚=2f ﹙x ﹚-x ,由f '(x ) <1/2得,2f '(x ) -1<0,即'g ﹙x ﹚<0,g(x)在R 上为减函数,且g(1)=2f(1)-1=3,不等式f(log2X)>2log 2X化为2f(log2X)—log2X≥3,即g(log2X)>g(1),由g(x)的单调性得:log2X<1,解得,0<x<2. 21.圆O 的方程为221x y +=,(1,0)A ,在圆O 上取一个动点B ,设点P 满足()AP OB R λλ=∈且1AP AB ⋅=.则P 点的轨迹方程为 .解:设P(x,y), AB =λOB (λϵR)得B(k(x —1),ky),(λ=k1)。

4.5_高中数学竞赛训练题

4.5_高中数学竞赛训练题

高中数学竞赛训练题深圳中学 余祖良第一试一、选择题1、方程cos x = x + sin x 的实根个数为 ( ) A 、1 B 、2 C 、3 D 、42、设函数f (x )=(βαsin cos )x +(αβsin cos )x ,α,β为锐角;如果对任何x > 0 ,都有f (x )<2,则 ( ) A 、0<α+β<4π B 、0<α+β<2πC 、4π<α+β<2πD 、α+β>2π3、复数z 满足条件 | z | =1,则 | z 2 + i z 2 +1 | 的范围是 ( ) A 、[1—22,1+22] B 、[2—1,2+1]C 、[22—1,22+1]D 、[2—2,2+1]4、过球的中心的10个平面,其中任何三个平面都不交于同一直线,它们将球面分成m 个部分,则m 的值为 ( ) A 、92 B 、1024 C 、516 D 、1005、一直角三角形的两直角边与坐标轴平行,两直角边上的中线为y = 3 x + 1和y = m x + 2,则满足条件的m 的个数为 ( ) A 、0 B 、1 C 、2 D 、36、若a n =[(2173+)n ],n = 1,2,…;则数列{a n } ( )A 、各项均为奇数B 、奇数项为奇数,偶数项为偶数C 、各项均为偶数D 、奇数项为偶数,偶数项为奇数 二、填空题7、三棱台ABC—A 1B 1C 1的任意两个侧面所成的二面角都是直二面角,高为17344 ,且底面ABC 中,AB=AC=5,BC=42,则此棱台的体积为 ; 8、双曲线 xy = 1的内接三角形的垂心的轨迹方程是 ; 9、若0<a <3sin θ ,θ∈[4π,65π];则f (a , θ)= sin 3θ +32sin 34a a -θ 的最小值是 ;10、设实数x ,y 满足x 3—3x 2 + 5x = 1 , y 3—3y 2 + 5y = 5 ,则x + y= ;11、用红、黄、蓝三种颜色的纸各做一套卡片,每套中有A 、B 、C 、D 、E 字母卡片各一张;若从这15张卡片中每次取出5张,要求字母各不相同且三色齐全,则不同的取法共有 种;12、正整数m 和n 互质,2000n+m 与2000m+n 的最大公约数为d ,则d 的最大值是 ; 三、解答题 13、关于 x 的函数12222)(+-+⋅=x x a a x f (a 为常数);∈ 若f ( x ) 没有反函数,求出a 的值;∈ 若f ( x ) 存在反函数 ()x f 1-,a <0,且对任意 x∈R ,都有f (- x ) =-f ( x ) 成立 . 解不等式()()0,log 221≠∈>--k R k x fkx且 . 14、抛物线 y 2= 5p ( x + 5 ) ( p >0 ) 与椭圆1801622=+y x 在x 轴上方交于A 、B 两点,且以AB 为直径的圆恰好过椭圆的中心O ,椭圆左顶点为F ; 求 ∈ 实数 p 的值; ∈ | AF | + | BF | 的值 ; 15、设a 是实数且方程x 4+3ax 3+a (1-5a 2)x -3a 4+a 2+1=0 有实根且不同的实根至多有两个,求a ;第二试一、⊙O 为△ABC 的外接圆,⊙O 1在△ABC 的外面,在⊙O 的里面且与⊙O 相切,切点为D ,且D 在»BC 上;过A 、B 、C 分别作⊙O 1的切线,切线长分别为p , q , r ;设三边长分别为a , b , c ,求证:a p = b q + c r ;二、一个正整数为项的等差数列中,如果有一项是完全平方数,又有一项是完全立方数;证明:这数列中必有项是正整数的六次方.三、n 个队进行足球单循环赛,规定胜一场得3分,平一场得1分,负一场得0分;已知有一队得分最多,比其余任一队都多;但它胜的场次最少,比任何一队都少;试求n 的最小值;答案:第一试一、A D B A C B二、7、20827 8、x y = 1 9、3 10、2 11、150 12、3999999三、13、解:12222)(+-+⋅=x x a a x f()()0,log 221≠∈>--k R k x fkx且 ①,当 a 2-a -2 ≠ 0 时,f ( x ) 单调必有反函数,故 a 2-a -2 = 0 ,a = 2 或 a =-1 . ② 由f (- x ) =-f ( x ) ,a <0,则a =-2 .())22(,log 2221<<-=+--x x fx x22,0222<<->>-+-x kx xx故不等式的解集为: ⑴ k <0 , 空集 ⑵ 0<k <4 , (-2 , k -2 ) ⑶ k≥4 , (-2 , 2 )14、解:⑴ 5 x 2 + y 2 = 8 0 , y 2 = 5 p ( x + 5 ) ; x 2 + p x + 5 p -16 = 0 , x 1 + x 2 =-p , x 1 x 2 = 5 p -16 ,ax f x a a +=+--1222)(22122221259)5)(5(25p x x p y y ⨯=++= ,y 1 y 2 = 1 5 p ,12121-=x x y y ,54=p ;⑵ 抛物线y 2 = 4 ( x + 5 ) 的焦点 (-4 , 0 ) 为椭圆左顶点F , 准线为 x =-6 ;由抛物线的定义,| AF | + | BF | = ( x 1 + 6 ) + ( x 2 + 6 ) = 556 ;15、解:令x = y -a ,代入原方程,有: y 4-ay 3-3a 2y 2+ay +1=0,又y≠0,故 y 2+21y -a (y -y 1)-3a 2=0,(y -y1)2-a (y -y1)-3a 2+2=0,对任t ∈R ,y -y1= t ,y 2-ty -1=0,△>0,如果方程t 2-at -3a 2+2=0无实根,则原方程无实根,而这方程一实根对应原方程两不同实根,故有: a 2-4(-3a 2+2)=0,即a = ±13262;第二试一、证:分别连AD 、BD 、CD 与⊙O 1分别交于点A 1、B 1、C 1,过D 作两圆的公切线DE ,则∠EDC=∠D A 1C 1=∠DAC ,A 1C 1∥AC ,同理:B 1C 1∥BC ,A 1B 1∥AB ,则1112AA BB CC ADBDCDk===,p 2 =AA 1·AD = k 2·AD 2 , p = k AD, 同理:q = k AD , r = k CD ;由托勒密定理:a AD = b BD + c CD , 两边除以k, 则a p = b q + c r ; 二、证明:设等差数列首项为a ,公差为d ,且 ( a , d ) = b . 先证明引理:必存在正整数p >1,使a p ≡ a ( mod d ) . 设d = k b , 则 ( a , k ) = 1 ;在数列 a , a 2 , … , a k ,a k + 1中,必有两项关于k 同余,设a i ≡a j ( mod k ) ( i >j ) , 则a j ( a i - j -1) ≡ 0 ( mod k )由于( a , k ) = 1 ,所以a i-j ≡ 1( mod k )∴a i-j + 1≡ a ( mod d ) .即引理成立.故存在非负整数s , t ,使 3 s + 2 t = p .又依题意,存在正整数m , n ,使m 2 ≡ a ( mod d ) ,n 3 ≡ a ( mod d ) .所以( m 2 ) 3 s · ( n 3 ) 2 t ≡ a 3 s + 2 t ≡ a p ≡ a ( mod d ) .即( m s · n t ) 6 ≡ a ( mod d ) .故此数列中存在一项为正整数的六次方.三、解:设得分最多的是A队;(1)A队比其它队至少多得1分,至少少胜一场,故A队比其它队至少多平4场;而其它队至少平一场,A队至少平5场,即至少有6队;(2)若只有6队,则6队至少得2C26=30分,但A恰好平5场得5分,不可能比其它队都多,即n>6;(3)若n=7,A最多得8分,这7队最多得8+7×6=50分,故至少有3×C27—50=13场比赛打平;A至多平6场,其余各队至少有一队平了[]66213-⨯+1= 4场;则A至少平8场,矛盾;(4)可举例说明,n=8成立;。

数学竞赛高中试题入门及答案

数学竞赛高中试题入门及答案

数学竞赛高中试题入门及答案一、选择题(每题5分,共20分)1. 下列哪个数不是整数?A. -3B. 0C. 5D. 2.52. 如果函数\( f(x) = 3x^2 - 5x + 2 \),那么\( f(-1) \)的值是多少?A. 10B. 8C. 6D. 43. 圆的半径为3,圆心在原点,那么圆上任意一点到圆心的距离是多少?A. 1B. 2C. 3D. 44. 已知三角形ABC的三个内角A、B、C,且A + B + C = 180°,如果角A = 60°,角B = 50°,那么角C是多少度?A. 70°B. 80°C. 90°D. 100°二、填空题(每题5分,共20分)5. 若\( a \),\( b \),\( c \)为三角形的三边,且\( a^2 + b^2 = c^2 \),则该三角形是________。

6. 一个数的平方根是4,那么这个数是________。

7. 一个圆的面积为28.26平方厘米,那么它的半径是________厘米。

8. 已知等差数列\( 3, 7, 11, ... \),第5项的值是________。

三、解答题(每题15分,共30分)9. 证明:如果\( a \),\( b \),\( c \)是正实数,且\( a + b +c = 1 \),那么\( \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \geq9 \)。

10. 一个直角三角形的两条直角边长分别为6厘米和8厘米,求斜边的长度。

(使用勾股定理)四、证明题(每题15分,共15分)11. 证明:对于任意正整数\( n \),\( 1^3 + 2^3 + ... + n^3 = (1 + 2 + ... + n)^2 \)。

五、结束语本试题旨在为高中数学竞赛入门者提供一个基础的练习平台,通过这些题目,学生可以检验自己的数学基础知识和解题技巧。

高中数学竞赛试题及答案

高中数学竞赛试题及答案

高中数学竞赛试题及答案一、选择题1.若直线l1:y = -2x + 3,直线l2过点(1,5)且与l1垂直,则l2的方程是:A. y = x + 4B. y = -x + 6C. y = x - 4D. y = -x + 4答案:C2.已知集合A = {x | |x - 3|< 2},则A的值是: A. (-∞, 1) U (5, ∞) B. (-∞,1) U (3, ∞) C. (1, 5) D. (1, 5] U (5, ∞)答案:D二、填空题1.若a、b满足a+b=5,且ab=6,则a和b的值分别是____。

答案:2和32.若某几何体的体积V和表面积S满足S=3V,且V>0,则该几何体的体积V的值为____。

答案:1/3三、解答题1.设数列{an}满足a1=1,a2=2,an+2 = an + 2n,求数列的通项公式。

解答:首先给出数列的前几项: a1 = 1 a2 = 2 a3 = 1 + 2 × 1 = 3 a4 = 2 + 2 × 2 =6 a5 = 3 + 2 × 3 = 9 … 从数列的前几项可以观察到,第n项的值为n^2 - 1。

所以数列的通项公式为an = n^2 - 1。

2.已知函数f(x) = x^3 - 3x^2 + 4x - 2,求f(x)的最小值及取得最小值时的x值。

解答:对于任意x,有f’(x) = 3x^2 - 6x + 4。

令f’(x) = 0,可以解得x = 1。

再求f’‘(x) = 6x - 6,当x = 1时,f’’(x) = 0。

所以x = 1是f(x)的极小值点。

代入f(x) = x^3 - 3x^2 + 4x - 2计算得最小值为-2。

所以f(x)的最小值是-2,取得最小值时的x值为1。

四、简答题1.数列的极限是什么?如何判断一个数列的极限存在?答:数列的极限是指当项数趋向无穷大时,数列的项的值趋向的一个确定的数。

数学竞赛高中试题及答案

数学竞赛高中试题及答案

数学竞赛高中试题及答案一、选择题(每题5分,共20分)1. 若函数f(x) = 2x^2 - 4x + 1,那么f(2)的值是多少?A. 1B. 3C. 5D. 7答案:B2. 已知等差数列{an}的前三项分别为1, 4, 7,求该数列的第五项。

A. 10B. 13C. 16D. 19答案:A3. 一个圆的直径为10cm,那么它的半径是多少?A. 5cmB. 10cmC. 15cmD. 20cm答案:A4. 在直角坐标系中,点P(3, -4)关于x轴的对称点坐标是多少?A. (3, 4)B. (-3, 4)C. (3, -4)D. (-3, -4)答案:A二、填空题(每题5分,共20分)5. 计算:\(\sqrt{49} - \sqrt{16} = \)______。

答案:56. 一个等腰三角形的两边长分别为5cm和8cm,那么它的周长是_______cm。

答案:187. 已知函数g(x) = x^3 - 3x^2 + 2,求g(2)的值。

答案:-28. 一个数的平方加上它的两倍等于17,设这个数为n,则n的值为______。

答案:3或-4三、解答题(每题10分,共60分)9. 已知函数h(x) = x^3 - 6x^2 + 11x - 6,求函数的零点。

答案:函数h(x)的零点为x = 1, 2, 3。

10. 一个长方体的长、宽、高分别为a、b、c,且a > b > c,求证:长方体对角线的长度d满足\(d^2 = a^2 + b^2 + c^2\)。

答案:证明略。

11. 已知数列{bn}满足:b1 = 2,bn+1 = 2bn + 1,求数列的前五项。

答案:2, 5, 11, 23, 4712. 一个圆的内接三角形的三个顶点分别在圆上,且三角形的周长为12cm,求圆的半径。

答案:2cm13. 已知函数f(x) = x^2 - 6x + 9,求函数的最小值。

答案:函数的最小值为0。

高中数学竞赛试题及答案

高中数学竞赛试题及答案

高中数学竞赛试题及答案试题(一)一、 ABC ∆为等边三角形,P 为其内一动点,且120APC ∠=。

AP 交BC 于N 、CP交AB 于M 。

求BMN ∆外心O 的轨迹。

(12分)二、 任意选24个相异且小于88的正奇数,试证:其中必有两个数它们的和是90。

(12分)三、 试证:对实数,,,0a b c d ≥,()()()()()()()()222222224a b c d a b b c c d d a ++++≥++++。

(12分) 四、定义:设A 是二阶整系数方阵,若存在二阶整系数方阵B ,使得1001AB BA I ⎡⎤===⎢⎥⎣⎦,则称A 可逆。

(13分) (1) A 是二阶整系数方阵。

试证:A 可逆的充要条件为A 的行列式||1A =±。

(2) 设A , B 均为二阶整系数方阵,且,,2,3,4A A B A B A B A B ++++均可逆,试证:5A B +亦可逆。

试题(二) 一、设(1)2(,,)(1)2,,,(1)2x x yz A x y y z z x y y zx x y z z z xy ⎧⎫-+⎪⎪=---=-+∈⎨⎬⎪⎪=-+⎩⎭,试求A 。

(5分)二、记不大于t 的整数中最大的整数为[]t 。

求方程 22[2]2[][]x x x x -+=在03x ≤<内所有实数解。

(5分)三、设a 和b 为实数,且使方程43210x ax bx ax ++++=至少有一个实根,对所有这种数对(,)a b ,求出22a b +的最小可能值。

(6分)四、令N 为自然数集,若函数:f N N →满足(1)()f n f n +>且(())3f f n n =,求(54)f 。

(5分)试题(一)解答一、 【解】令G 为ABC ∆的外心。

因120MPN APC ∠=∠=与B ∠互补,P 在BMN ∆的外接圆上。

因120APC AGC ∠=∠=,A 、P 、G 、C 共圆,且30CPG CAG ∠=∠=。

高中数学竞赛集训试卷一

高中数学竞赛集训试卷一

高中数学竞赛集训试卷一一、选择题(本题满分36分,每小题6分)1.已知数列{a n }满足3a n+1+a n =4(n ≥1),且a 1=9,其前n 项之和为S n 。

则满足不等式 |S n -n -6|<1251的最小整数n 是 ( )A .5B .6C .7D .82.设O 是正三棱锥P —ABC 底面是三角形ABC 的中心,过O 的动平面与PC 交于S ,与 PA 、PB 的延长线分别交于Q 、R ,则和式PSPR PQ 111++ ( ) A .有最大值而无最小值B .有最小值而无最大值C .既有最大值又有最小值,两者不等D .是一个与面QPS 无关的常数3.给定数列{x n },x 1=1,且x n+1=nn x x -+313,则∑=20051n nx= ( )A .1B .-1C .2+3D .-2+34.已知=(cos32π, sin 32π), -=, +=,若△OAB 是以O 为直角顶点的等腰直角三角形,则△OAB 的面积等于( )A .1B .21 C .2D .23 5.过椭圆C :12322=+y x 上任一点P ,作椭圆C 的右准线的垂线PH (H 为垂足),延长 PH 到点Q ,使|HQ|=λ|PH|(λ≥1)。

当点P 在椭圆C 上运动时,点Q 的轨迹的离心率 的取值范围为 ( )A .]33,0(B .]23,33(C .)1,33[D .)1,23(6.在△ABC 中,角A 、B 、C 的对边分别记为a 、b 、c(b ≠1),且A C ,ABsin sin 都是方程 logbx =log b (4x -4)的根,则△ABC( )A .是等腰三角形,但不是直角三角形B .是直角三角形,但不是等腰三角形C .是等腰直角三角形D .不是等腰三角形,也不是直角三角形 二、填空题(本题满分54分,每小题9分)7.若log 4(x +2y)+log 4(x -2y)=1,则|x |-|y|的最小值是_________. 8.如果:(1)a, b, c, d 都属于{1, 2, 3, 4}(2)a ≠b, b ≠c, c ≠d, d ≠a3)a 是a, b, c, d 中的最小数那么, 可以组成的不同的四位数abcd 的个数是________.9.设n 是正整数,集合M={1,2,…,2n}.求最小的正整数k ,使得对于M 的任何一个 k 元子集,其中必有4个互不相同的元素之和等于10.若对|x |≤1的一切x ,t+1>(t 2-4)x 恒成立,则t 的取值范围是_______________. 11.我们注意到6!=8×9×10,试求能使n!表示成(n -3)个连续自然三数之积的最大正整数n 为__________.12.对每一实数对(x , y),函数f (t)满足f (x +y)=f (x )+f (y)+f (x y)+1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学竞赛集训训练题1.b a ,是两个不相等的正数,且满足2233b a b a -=-,求所有可能的整数c ,使得ab c 9=.2.已知不等式24131...312111an n n n >++++++++对一切正整数a 均成立,求正整数a 的最大值,并证明你的结论。

3.设{}n a 为14a =的单调递增数列,且满足22111168()2n n n n n n a a a a a a +++++=++,求{n a }的通项公式。

4.(1)设,0,0>>y x 求证:;432yx y x x -≥+ (2)设,0,0,0>>>z y x求证:.2333zxyz xy x z z z y y y x x ++≥+++++5. 设数列ΛΛΛ,1,,12,1,,13,22,31,12,21,11kk k -,问:(1)这个数列第2010项的值是多少;(2)在这个数列中,第2010个值为1的项的序号是多少.6. 设有红、黑、白三种颜色的球各10个。

现将它们全部放入甲、乙两个袋子中,要求每个袋子里三种颜色球都有,且甲乙两个袋子中三种颜色球数之积相等。

问共有多少种放法。

7.已知数列{}n a 满足1a a =(0,1a a ≠≠且),前n 项和为n S ,且(1)1n n aS a a=--,记lg ||n n n b a a =(n *∈N ),当a =时,问是否存在正整数m ,使得对于任意正整数n ,都有m n b b ≥?如果存在,求出m 的值;如果不存在,说明理由.8. 在ABC ∆中,已9,sin cos sin AB AC B A C ==u u u r u u u rg ,又ABC ∆的面积等于6.(Ⅰ)求ABC ∆的三边之长;(Ⅱ)设P 是ABC ∆(含边界)内一点,P 到三边AB 、BC 、AB 的距离为1d 、2d 和3d ,求123d d d ++的取值范围.9.在数列{}n a 中,1a ,2a 是给定的非零整数,21n n n a a a ++=-. (1)若152a =,161a =-,求2008a ;(2)证明:从{}n a 中一定可以选取无穷多项组成两个不同的常数数列.10. 已知椭圆)1(1222>=+a y ax ,Rt ABC ∆以A (0,1)为直角顶点,边AB 、BC 与椭圆交于两点B 、C 。

若△ABC 面积的最大值为278,求a 的值。

11. 如图,椭圆C :22221(0)x y a b ab+=>>,1A 、2A 、1B 、2B 为椭圆C 的顶点.(Ⅰ)设点)0,(0x M ,若当且仅当椭圆C 上的点P 在椭圆的顶点时, ||PM 取得最大值与最小值,求0x 的取值范围;(Ⅱ)若椭圆C 上的点P 到焦点距离的最大值为3,最小值为1,且与直线:l y kx m =+相交于A ,B 两点(A B ,不是椭圆的左右顶点),并满足22BA AA ⊥.试研究:直线l 是否过定点?若过定点,请求出定点坐标,若不过定点,请说明理由.12.如图,在四棱锥ABCD S -中,底面ABCD 是边长为a 的正方形,侧面SAD 为正三角形,且垂直于底面ABCD .(1)求四棱锥ABCD S -的体积;(2)在边CD 上是否存在一点E ,使得AE SB ⊥?请说明理由.13.(本小题满分15分) 关于y x 、的方程C :04222=+--+m y x y x .(1)若方程C 表示圆,求实数m 的取值范围;(2)在方程C 表示圆时,若该圆与直线l :042=-+y x 相交于N M 、两点,且554||=MN ,求实数m 的值; (3)在(2)的条件下,若定点A 的坐标为(1,0),点P 是线段MN 上的动点,求直线AP 的斜率的取值范围.S A B CDBACEA 1B 1C 1P nP n+114.已知椭圆C :22221x y a b +=(0a b >≥),其离心率为45,两准线之间的距离为252。

(1)求,a b 之值;(2)设点A 坐标为(6, 0),B 为椭圆C 上的动点,以A 为直角顶点,作等腰直角△ABP (字母A ,B ,P 按顺时针方向排列),求P 点的轨迹方程。

15. 如图,正三棱柱111ABC A B C -中,E 是AC 中点. (Ⅰ)求证:1AB //平面1BEC ; (Ⅱ)若12,2AB AA =A 到平面1BEC 的距离; (Ⅲ)当ABA A 1为何值时,二面角E —BC 1—C 的正弦值为510?16.(本小题满分15分)在xoy 平面上有一系列点),,(),,(222111y x P y x P …,Λ),,(n n n y x P .对每个正整数n ,点n P 位于函数)0(2≥=x x y 的图象上.以点n P 为圆心的⊙n P 与x 轴都相切,且⊙n P 与⊙1+n P 彼此外切.若11=x ,且n n x x <+1 (*N n ∈).(1)求证:数列}1{nx 是等差数列; (2)设⊙n P 的面积为n S ,n n S S S T +⋅⋅⋅++=21,求证:对任意*N n ∈,均有23π<n T .17. (本小题满分18分)二次函数r qx px x f ++=2)(中,实数r q p 、、满足mrm q m p ++++12=0,其中0>m . 求证: (1)0)1(<+m mpf ;(2)方程0)(=x f 在(0,1)内恒有解.18.如图,斜三棱柱111C B A ABC -的所有棱长均为a , 侧面⊥CB C B 11底面ABC ,且BC AC ⊥1. (1) 求异面直线1AA 与11C B 间的距离;(2) 求侧面BA B A 11与底面ABC 所成二面角的度数.19.设向量,为直角坐标平面内x 轴,y 轴正方向上的单位向量.若向量y x ++=2(,j y i x b +-=)2(,且a b ||-||=2r r .(1)求满足上述条件的点),(y x P 的轨迹方程; (2)设(1,0),(2,0)A F -,问是否存在常数)0(>λλ,使得PAF PFA ∠=∠λ恒成立?证明你的结论.ABC1A1B 1C20.已知抛物线2128y x x =-+-和111(,)48A 。

过11(,)48F -任作直线,交抛物线于B 、C 两点。

⑴求△ABC重心的轨迹方程,并表示成()y f x =形式;⑵数列{}k x 中,1102x <<,且满足1()k k x f x +=。

试证:1135nkk k x +=<∑21.椭圆C :2222by a x += 1 ( a >b >0 )的两个焦点为F 1 ( – c , 0 ),M 是椭圆上一点,且满足F F 21⋅= 0。

(Ⅰ)求离心率e 的取值范围;(Ⅱ)设斜率为k ( k ≠ 0 )的直线l 与椭圆C 相于不同的两点A 、B ,Q 为AB 的中点,问A 、B 两点能否关于过点P ⎪⎪⎭⎫ ⎝⎛33,0、Q 的直线对称?若能,求出k 的范围,若不能,请说明理由。

22.已知定义在R 上的函数f (x ) 同时满足:(1)21212122()()2()cos24sin f x x f x x f x x a x ++-=+(12,x x ∈R ,a 为常数);(2)(0)()14f f π==; (3)当0,4x π∈[]时,()f x ≤2. 求:(Ⅰ)函数()f x 的解析式; (Ⅱ)常数a 的取值范围.23.把正奇数数列{}21n -中的数按上小下大、左小右大的原则排成如下三角形数表:1 3 5 7 9 11— — — —— — — — —设*)(N j i a ij ∈,是位于这个三角形数表中从上往下数第i 行、从左往右数第j 个数。

(I ) 若a mn =2005,求m n ,的值; (II )已知函数f x ()的反函数为fx x n -=138() ()x >0,若记三角形数表中从上往下数第n 行各数的和为b n ,求数列{()}f b n 的前n 项和S n 。

24.若a 、b 、+∈R c ,且满足22)4()(c b a b a cb a kabc++++≤++,求k 的最大值。

25. 设定义在[0,2]上的函数()f x 满足下列条件:①对于[0,2]x ∈,总有(2)()f x f x -=,且()1f x ≥,(1)3f =; ②对于,[1,2]x y ∈,若3x y +≥,则()()(2)1f x f y f x y +≤+-+. 证明:(1)12()133n nf ≤+(*n N ∈);(2)[1,2]x ∈时,1()136f x x ≤≤-.2611x --。

27.设非负等差数列{}n a 的公差0d ≠,记n S 为数列{}n a 的前n 项和,证明: (1)若*,,m n p N ∈,且2m n p +=,则112m n pS S S +≥; (2)若5031,1005a ≤则2007112008n nS =>∑。

28.已知数列{}n a 满足411=a ,()),2(2111N n n a a a n nn n∈≥--=--.(Ⅰ)求数列{}n a 的通项公式n a ; (Ⅱ)设21nna b=,求数列{}n b 的前n 项和n S ;(Ⅲ)设2)12(sin π-=n a c nn ,数列{}n c 的前n 项和为n T .求证:对任意的*∈N n ,74<n T .高中数学竞赛训练题答案1.b a ,是两个不相等的正数,且满足2233b a b a -=-,求所有可能的整数c ,使得ab c 9=. 1.解:由2233b a b a -=-得b a b ab a +=++22,所以0)()(2>+-+=b a b a ab ,由此得到1>+b a .又因为)()()(4122b a b a ab b a +-+=>+,故341<+<b a .………………………4分 又因为)()(2b a b a ab +-+=, 令 )34,1(∈+=b a t 则t t ab -=2.……………6分当1t ≥时,2t t -关于t 单调递增,所以409ab <<,094ab <<.因此 c 可以取1,2,3. …………………………………………………………………10分2:先证f(n)= 131...312111++++++++n n n n 单调递增,则f(1)=1213最小 故1213>25,26,24=<a a a 所以即.3解:22111168()2n n n n n n a a a a a a +++++=++2111()8()164n n n n n n a a a a a a +++⇔+-++=211(4)4n n n n a a a a ++⇔+-=14n n a a +⇔+-=)24⇔=2⇔=因此,2n =。

相关文档
最新文档