高二数学培优课程第8讲-直线与圆锥曲线的位置关系

合集下载

直线与圆锥曲线的位置关系 课件

直线与圆锥曲线的位置关系  课件
3
3������
第八章
第八节 直线与圆锥曲线的位置关系
主干知识回顾 主干知识回顾 名师考点精讲 综合能力提升
-6-
3.(2015· 马鞍山质检)已知直线4x-y+4=0与抛物线y=ax2相切,则a= . 3.-1 【解析】将y=4x+4代入抛物线方程y=ax2中,整理得ax2-4x-4=0,由直线与抛物线相切可得判别式Δ=16+16a=0, 解得a=-1.
常见题型有求中点弦所在直线方程、求弦的中点的轨迹方程、求弦长为定值的弦的中点坐标等.常用方法为“点差法”: 设A(x1,y1),B(x2,y2),代入圆锥曲线的方程,两式相减可以构造出x1+x2,x1-x2,y1+y2,y1-y2,结合中点坐标和弦所在直线的斜率
简化运算.也可以联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后利用韦达定理、中点坐标公式求解.
第八章
第八节 直线与圆锥曲线的位置关系
主干知识回顾 名师考点精讲 综合能力提升
-8-
第八章
第八节 直线与圆锥曲线的位置关系
主干知识回顾 名师考点精讲 综合能Байду номын сангаас提升
-9-
第八章
第八节 直线与圆锥曲线的位置关系
主干知识回顾 名师考点精讲 综合能力提升
-10-
第八章
第八节 直线与圆锥曲线的位置关系
-5-
1.双曲线 9 − 16=1 的右顶点为 A,右焦点为 F.过点 F 且平行双曲线的一条渐近线的直线与双曲线交于点 B, 则△AFB 的面积为 A. 3
16
( B. 3
32
)
C.15
64
D.15
32 32
32 4 3 4 3

直线与圆锥曲线的位置关系(总结归纳)

直线与圆锥曲线的位置关系(总结归纳)

y=±
33x,
∴有- 33≤k≤ 33.
• 答案:C
• 【例1】 已知直线y=(a+1)x-1与曲线y2=ax恰有一 个公共点,求实数a的值.
解• 析分证:联结析立论:方程.先组用yy2==代(aax+数. 1)方x-法1,即联(1)立当 a方=0程时,组此解方程决组恰,有再一组从解几为何xy==上10.,验
两式相减可得yx11--yx22·yx11++yx22=-ba22,即 kAB=-ba22xy00
.
x2 y2 类似的可得圆锥曲线为双曲线a2-b2=1
时,有
kAB=ab22yx00.
2px0
圆锥曲线为抛物线 y2=2px(p>0)时,有 kAB= y0 .
求椭圆
x2 9
y2 4
1 被点
Q(2,1)平分的弦 AB
1.直线y=kx-k+1与椭圆 x2 y2 1 的位置关系为( A )
(A) 相交 (B) 相切 9 (C)4相离
(D) 不确定
2.已知双曲线方程x2-y2=1,过P(0,1)点的直线l与双曲线
只有一个公共点,则l的条数为( A )
(A)4
(B)3
(C)2
(D)1
3.过点(0,1)与抛物线y2=2px(p>0)只有一个公共点的直线
a

4 0,-1,-5时,
直线 y=(a+1)x-1 与曲线 y2=ax 恰有一个公共点.
三、弦的中点问题
x2 y2 设 A(x1,y1),B(x2,y2)是椭圆a2+b2=1 上不同的两点,
且 x1≠x2,x1+x2≠0,M(x0,y0)为 AB 的中点,则xaxa212222++ybyb212222==11,.

高二数学培优课程第8讲-直线与圆锥曲线的位置关系(8个考点+练习)

高二数学培优课程第8讲-直线与圆锥曲线的位置关系(8个考点+练习)

第八讲 直线与圆锥曲线的位置关系【知识梳理】1.直线与圆锥曲线C 的位置关系将直线l 的方程代入曲线C 的方程,消去y 或者消去x ,得到一个关于x (或y )的方程02=++c bx ax 进而转化为一元二次方程后利用判别式,应特别注意数形结合的办法.(1)交点个数①当 a =0或a ≠0,⊿=0时,曲线和直线只有一个交点;②当 a ≠0,⊿>0时,曲线和直线有两个交点;③ 当⊿<0 时,曲线和直线没有交点;(2) 弦长公式:斜率为k 的直线被曲线截得弦AB ,若A 、B 两点的坐标分别是A (x 1,y 1),B (x 2,y 2),则21|| AB x x -一定要注意斜率不存在的情况的讨论和焦半径公式的使用.2.求动点轨迹方程①轨迹类型已确定的,一般用待定系数法②动点满足的条件在题目中有明确的表述且轨迹类型未知的,一般用直接法③一动点随另一动点的变化而变化,一般用代入转移法【考点一:中点弦问题】【例1】已知直线1+-=x y 与椭圆)0(12222>>=+b a by a x 相交于A 、B 两点,且线段AB 的中点在直线02:=-y x l 上,求此椭圆的离心率.【课堂练习】(1)椭圆141622=+y x 的弦被点)1,2(P 所平分,求此弦所在直线的方程.【考点二:中点问题】【例2】已知点A 、B 的坐标分别是()()0,1-0,1,.直线BM AM ,相交于点M ,且它们的斜率之积为-2.(Ⅰ)求动点M 的轨迹方程;(Ⅱ)若过点⎪⎭⎫⎝⎛1,21N 的直线l 交动点M 的轨迹于C 、D 两点, 且N 为线段C D 的中点,求直线l 的方程.【课堂练习】(2)已知椭圆22221x y a b+=(a >b >0)的离心率e ,连接椭圆的四个顶点得到的菱形的面积为4. (Ⅰ)求椭圆的方程;(Ⅱ)设直线l 与椭圆相交于不同的两点A 、B ,已知点A 的坐标为(-a ,0).(i )若AB 5||=,求直线l 的倾斜角; (ii )若点Q y 0(0,)在线段AB 的垂直平分线上,且QA QB=4.求y 0的值.【考点三:弦长问题】【例3】已知椭圆14:22=+y x G .过点(m ,0)作圆122=+y x 的切线l 交椭圆G 于A ,B 两点.(Ⅰ)求椭圆G 的焦点坐标和离心率; (Ⅱ)将AB 表示为m 的函数,并求AB 的最大值.【课堂练习】3.已知椭圆1922=+y x ,过左焦点F 作倾斜角为6π的直线交椭圆于A 、B 两点,求弦AB 的长.【考点四:对称问题】曲线上存在两点关于已知直线对称的条件:①曲线上两点所在的直线与已知直线垂直(得出斜率)②曲线上两点所在的直线与曲线有两个公共点(⊿>0)③曲线上两点的中点在对称直线上【例4】已知椭圆C 的方程x y 22431+=,试确定m 的取值范围,使得对于直线y x m =+4,椭圆C 上有不同两点关于直线对称.【课堂练习】4.在抛物线x y 42=上恒有两点关于直线3+=kx y 对称,求k 的取值范围.【考点五:垂直问题】002211=+⇒⎪⎪⎩⎪⎪⎨⎧⊥=•y x y x AB 为直径的圆过原点以重心坐标公式:⎪⎭⎫ ⎝⎛++++3,3321321y y y x x x 【例5】已知m >1,直线2:02m l x my --=,椭圆222:1x C y m+=,1,2F F 分别为椭圆C 的左、右焦点. (Ⅰ)当直线l 过右焦点2F 时,求直线l 的方程;(Ⅱ)设直线l 与椭圆C 交于,A B 两点,12AF F ,12BF F 的重心分别为,G H .若原点O 在以线段GH 为直径的圆内,求实数m 的取值范围.【课堂练习】5.已知定点A (-1,0),F (2,0),定直线:12x =,不在轴上的动点P 与点F 的距离是它到直线的距离的2倍.设点P 的轨迹为E ,过点F 的直线交E 于B 、两点,直线AB 、A 分别交于点M 、(Ⅰ)求E 的方程; (Ⅱ)试判断以线段M 为直径的圆是否过点F ,并说明理由.【考点六:面积问题】点到直线的距离弦长⨯⨯=∆21AOB S【例6】已知椭圆22221(0)x y a b a b+=>>直线:l y kx m =+交椭圆于不同的两点A ,B(Ⅰ)求椭圆的方程 (Ⅱ)若坐标原点O 到直线l ,求AOB ∆面积的最大值【考点七:比例问题】【例7】设1F ,2F 分别为椭圆2222:1x y C a b+=(0)a b >>的左、右焦点,过2F 的直线l 与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60,1F 到直线l 的距离为(Ⅰ)求椭圆C 的焦距; (Ⅱ)如果222AF F B =,求椭圆C 的方程.【课堂练习】6.设0λ>,点A 的坐标为(1,1),点B 在抛物线2y x =上运动,点Q 满足λ=,经过Q 点与x 轴垂直的直线交抛物线于点M ,点P 满足λ=,求点P 的轨迹方程.【考点八:范围、最值问题】几何方法:充分利用图形的几何特征及意义,利用几何性质解决问题代数方法:建立目标函数,再求目标函数的最值.【例8】已知椭圆)0(1:22221>>=+b a by a x C 与直线01=-+y x 相交于两点B A ,.当椭圆的离心率e 满足2233≤≤e ,且0OA OB ⋅=(O 为坐标原点)时,求椭圆长轴长的取值范围.【课堂练习】7.已知P 是椭圆124:221=+y x C 的动点,点⎪⎭⎫ ⎝⎛0,21A 关于原点O 的对称点是B ,若|PB |的最小值为23,求点P 的横坐标的取值范围.【巩固练习】基础训练(A 类)1.已知抛物线y =x 2+3上存在关于直线x +y =0对称的相异两点A 、B ,则|AB |等于( )A .3B .4C .32 D.42 2.椭圆1936:221=+y x C 的一条弦被)2,4(A 平分,那么这条弦所在的直线方程是 ( ) A .02=-y x B .0102=+-y x C .022=--y x D.08-2=+y x3.设斜率为2的直线l 过抛物线2(0)y ax a =≠的焦点F ,且和y 轴交于点A ,若△O AF (O 为坐标原点)的面积为4,则抛物线方程为( ). A .24y x =± B .28y x =± C . 24y x = D. 28y x =4.设抛物线2y =2x 的焦点为F ,过点M 3,0)的直线与抛物线相交于A ,B 两点,与抛物线的准线相交于C ,BF =2,则∆BCF 与∆ACF 的面积之比BCF ACF S S ∆∆=( ) A .45 B .23 C .47 D.125.设双曲线()222200x y a b a b-=1>,>的渐近线与抛物线21y =x +相切,则该双曲线的离心率等于( )A 3B .2C 5 66.设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足.如果直线AF 的斜率为3那么|PF |=( )A .3B .8C .3 D. 167.过抛物线22(0)y px p =>的焦点F 作倾斜角为45的直线交抛物线于A 、B 两点,若线段AB 的长为8,则p =________________。

直线与圆锥曲线的位置关系知识梳理

直线与圆锥曲线的位置关系知识梳理

直线与圆锥曲线的位置关系知识梳理1.直线与圆锥曲线的位置关系的判定(1)代数法:把圆锥曲线方程C 1与直线方程l 联立消去y ,整理得到关于x 的方程ax 2+bx +c =0.说明:(2)几何法:在同一直角坐标系中画出圆锥曲线和直线,利用图象和性质可判定直线与圆锥曲线的位置关系.2.圆锥曲线的弦长设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A 、B 两点,A (x 1,y 1),B (x 2,y 2),则|AB |=1+k 2|x 2-x 1|=1+k 2(x 1+x 2)2-4x 1x 2=1+1k 2|y 2-y 1|=1+1k2(y 1+y 2)2-4y 1y 2, |x 2-x 1|=||a ∆,|y 2-y 1|=||a ∆ 3.中点弦问题:中点弦问题常用“根与系数的关系”或“点差法”求解.(1)点差法设而不求,借用中点公式即可求得斜率.(2)在椭圆x 2a 2+y 2b 2=1中,以P (x 0,y 0)为中点的弦所在直线的斜率k =-b 2x 0a 2y 0; 在双曲线x 2a 2-y 2b 2=1中,以P (x 0,y 0)为中点的弦所在直线的斜率k =b 2x 0a 2y 0; 在抛物线y 2=2px 中,以P (x 0,y 0)为中点的弦所在直线的斜率k =p y 0. 典型例题题型一 直线与圆锥曲线的位置关系的判断及应用例1 若过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,则这样的直线有( )条变式训练 若直线y =kx 与双曲线x 29-y 24=1相交,则k 的取值范围是________.题型二 中点弦问题例2 过椭圆x 216+y 24=1内一点P (3,1),且被这点平分的弦所在直线的方程是________.变式训练 已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A 、B 两点,且AB 的中点为N (-12,-15),则E 的方程为____________.题型三 弦长问题例3 已知倾斜角为60°的直线l 通过抛物线x 2=4y 的焦点,且与抛物线相交于A 、B 两点,则弦AB 的长为________.课堂练习1.已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线x +3y +4=0有且仅有一个交点,则椭圆的长轴长为________.2.已知F 1、F 2为椭圆x 225+y 2169=1的两个焦点,过F 1的直线交椭圆于A 、B 两点,若|F 2A |+|F 2B |=30,则|AB |=________.3. 已知椭圆x 2+2y 2=4,则以(1,1)为中点的弦的长度为________.4.(四川文)过双曲线x 2-y 23=1的右焦点与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则|AB |等于________.5.(课标全国I )已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为________.课下作业1.直线y =kx +2与抛物线y 2=8x 有且只有一个公共点,则k 的值为________.2.已知双曲线x 2-y 24=1,过点A (1,1)的直线l 与双曲线只有一个公共点,则l 的条数为________.3.已知直线l 过抛物线y 2=4x 的焦点F ,交抛物线于A ,B 两点,且点A ,B 到y 轴的距离分别为m ,n ,则m +n +2的最小值为________.4.椭圆的焦点为F 1,F 2,过F 1的最短弦PQ 的长为10,△PF 2Q 的周长为36,则此椭圆的离心率为________.5.直线l 过点(2,0)且与双曲线x 2-y 2=2仅有一个公共点,这样的直线有________.6.若直线y =kx +2与双曲线x 2-y 2=6的右支交于不同的两点,则k 的取值范围是________.7.已知斜率为-12的直线l 交椭圆C :x 2a 2+y 2b 2=1(a >b >0)于A ,B 两点,若点P (2,1)是AB 的中点,则C 的离心率等于________.8.直线l :y =x +3与曲线y 29-x ·|x |4=1交点的个数为________. 9.动直线l 的倾斜角为60°,若直线l 与抛物线x 2=2py (p >0)交于A 、B 两点,且A 、B 两点的横坐标之和为3,则抛物线的方程为________.10.已知对k ∈R ,直线y -kx -1=0与椭圆x 25+y 2m=1恒有公共点,则实数m 的取值范围是________.11.已知抛物线C 的顶点在坐标原点,焦点为F (0,-1),直线l 与抛物线C 相交于A 、B 两点,若AB 的中点为(2,-2),则直线l 的方程为________.12.已知椭圆M :x 2a 2+y 2b 2=1(a >b >0)的短半轴长b =1,且椭圆上一点与椭圆的两个焦点构成的三角形的周长为6+4 2. (1)求椭圆M 的方程;(2)设直线l :x =my +t 与椭圆M 交于A ,B 两点,若以AB 为直径的圆经过椭圆的右顶点C ,求t 的值.13.(陕西文)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0),经过点A (0,-1),且离心率为22.(1)求椭圆E 的方程;(2)过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为2.。

直线与圆锥曲线的位置关系

直线与圆锥曲线的位置关系

直线与圆锥曲线的位置关系1.直线与圆锥曲线的位置关系(1)从几何角度看,可分为三类:无公共点,仅有一个公共点及有两个相异的公共点,具体如下:①直线与圆锥曲线的相离关系,常通过求二次曲线上的点到已知直线的距离的最大值或最小值来解决.②直线与圆锥曲线仅有一个公共点,对于圆或椭圆,表示直线与其相切;对于双曲线,表示与其相切或与双曲线的渐近线平行;对于抛物线,表示直线与其相切或直线与其对称轴平行.③直线与圆锥曲线有两个相异的公共点,表示直线与圆锥曲线相割,此时直线被圆锥曲线截得的线段称为圆锥曲线的弦.(2)从代数角度看,可通过将表示直线的方程,代入二次曲线的方程消元后所得的一元二次方程的解的情况来判断.直线l 方程为Ax +By +C =0,圆锥曲线方程为f (x ,y )=0.由⎩⎪⎨⎪⎧Ax +By +C =0,f (x ,y )=0消元(x 或y ), 如消去y 后得ax 2+bx +c =0.若f (x ,y )=0表示椭圆,上述方程中a ≠0,若f (x, y )=0表示双曲线或抛物线, 上述方程中a =0或a ≠0.①若a =0,当圆锥曲线是双曲线时,直线l 与双曲线的渐近线平行(或重合);当圆锥曲线是抛物线时,直线l 与抛物线的对称轴平行(或重合).②若a ≠0,设Δ=b 2-4ac .a .Δ>0时,直线和圆锥曲线相交于不同两点;b .Δ=0时,直线和圆锥曲线相切于一点;c .Δ<0时,直线和圆锥曲线没有公共点.直线与圆锥曲线的位置关系重点是相交:相交――→转化联立方程组有两组不等的实数解――→转化一元二次方程有两个不等实数解――→转化判别式大于零.2.弦长的求法求弦长――→转化求两点间的距离――→综合运用⎩⎪⎨⎪⎧消元,解方程组,一元二次方程根与系数的关系.(1)弦长:(直线与圆锥曲线相交于A (x 1,y 1),B (x 2,y 2)),直线斜率为k ,一般地,弦长公式|AB |=1+k 2|x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2]=1+1k2|y 1-y 2|=⎝⎛⎭⎫1+1k 2[(y 1+y 2)2-4y 1y 2]. (2)若弦过焦点:可用焦半径公式来表示弦长,简化运算. 如x 2a 2+y2b 2=1(a >b >0), |AB |=2a -e(x 1+x 2) (过右焦点), |AB |=2a +e(x 1+x 2) (过左焦点).如抛物线y 2=2px (p >0), |AB |=x 1+x 2+p .3.中点弦问题设A (x 1,y 1),B (x 2,y 2)是椭圆x 2a 2+y 2b 2=1上不同的两点,且x 1≠x 2,x 1+x 2≠0,M (x 0,y 0)为AB 的中点,则⎩⎨⎧x 21a 2+y 21b21,x 22a 2+y22b 21.两式相减可得y 1-y 2x 1-x 2·y 1+y 2x 1+x 2=-b 2a 2,即k AB ·y 0x 0=-b 2a2.类似地,可得圆锥曲线为双曲线x 2a 2-y 2b 2=1时,有k AB ·y 0x 0=b 2a2.圆锥曲线为抛物线y 2=2px (p >0)时,有k AB =py 0.探究点1 直线与圆锥曲线的交点问题例1 已知双曲线C :2x 2-y 2=2与点P (1, 2),求过点P 的直线l 的斜率的取值范围,使l 与C 分别有一个公共点,两个公共点,没有公共点.例1 [解答] (1)当l 垂直x 轴时,此时直线与双曲线相切,有一个公共点.(2)当l 不与x 轴垂直时,设直线l 的方程为y -2=k(x -1)代入双曲线C 的方程中,整理得(2-k 2)x 2+2(k 2-2k)x -k 2+4k -6=0, (*) 当k 2=2,即k =±2时, (*)为一次方程,显然只有一解; 当k 2≠2时,Δ=4(k 2-2k)2-4(2-k 2)(-k 2+4k -6)=48-32k.令Δ=0,可解得k =32;令Δ>0,即48-32k >0,此时k <32;令Δ<0,即48-32k <0,此时k >32.∴当k =±2或k =32或k 不存在时,l 与C 只有一个公共点;当k <-2或-2<k <2或2<k <32时,l 与C 有两个公共点;当k >32时,l 与C 没有公共点.[点评] (1)为了设出直线方程,先讨论斜率是否存在.当斜率存在时,设出方程并与双曲线方程组成方程组,消去y 得到关于x 的方程.当二次项系数为零时,直线与渐近线平行与双曲线只有一个交点;当二次项系数不为零时,若Δ=0,则有一个切点;若Δ>0,则有两个交点;Δ<0,则没有交点.(2)有关直线和圆锥曲线的范围问题,常常使用Δ来体现范围.探究点2 中点弦问题例2 椭圆x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,2),离心率e =63.(1)求椭圆的方程;(2)直线l :y =kx -2(k ≠0)与椭圆相交于不同的两点M 、N ,且满足MP →=PN →,AP →·MN →=0,求直线l 的方程.[解答] (1)设c =a 2-b 2,依题意得⎩⎪⎨⎪⎧b =2,e =c a =a 2-b 2a =63,即⎩⎪⎨⎪⎧b =2,6a 2=9a 2-9b 2,∴a 2=3b 2=12,即椭圆方程为x 212+y 24=1.(2)∵MP →=PN →,AP →·MN →=0,∴AP ⊥MN ,且点P 是线段MN 的中点, 由⎩⎪⎨⎪⎧y =kx -2,x 212+y 241,消去y ,得x 2+3(kx -2)2=12, 即(1+3k 2)x 2-12kx =0,(*),由k ≠0,得方程(*)中Δ=(-12k)2=144k 2>0,显然方程(*)有两个不相等的实数根.设M(x 1,y 1)、N(x 2,y 2),线段MN 的中点P(x 0,y 0),则x 1+x 2=12k 1+3k 2∴x 0=x 1+x 22=6k1+3k 2, ∴y 0=kx 0-2=6k 2-2(1+3k 2)1+3k 2=-21+3k 2即P ⎝⎛⎫6k 1+3k 2,-21+3k 2.∵k ≠0,∴直线AP 的斜率为k 1=-21+3k 2-26k1+3k2=-2-2(1+3k 2)6k.由MN →⊥AP →,得-2-2(1+3k 2)6k ·k =-1,∴2+2+6k 2=6,解得k =±33,故直线方程为y =±33x -2.探究点3 相交弦长与面积问题例3 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,焦点到相应准线的距离为22.(1)求椭圆C 的方程;(2)设直线l 与椭圆C 交于A 、B 两点,坐标原点到直线l 的距离为32,求△AOB 面积的最大值.例3 [解答] (1)∵e =c a =63,a 2c -c =22,解得a =3,c =2,∴b 2=3-2=1, 椭圆C 的方程为x 23+y 2=1.(2)当AB ⊥x 轴时,⎝⎛⎭⎫3223+y 2=1,得y 2=34,AB = 3. 当AB 不垂直x 轴时,设直线l 的方程为y =kx +m ,则|m|1+k2=32,得m 2=34k 2+34. 由⎩⎪⎨⎪⎧y =kx +m ,x 23+y 2=1,得(3k 2+1)x 2+6kmx +3m 2-3=0,∴x 1+x 2=-6km 3k 2+1,x 1x 2=3(m 2-1)3k 2+1, |AB|=1+k 2·(x 1+x 2)2-4x 1x 2=1+k 2·36k 2m 2(3k 2+1)2-12(m 2-1)3k 2+1=12(k 2+1)(3k 2+1-m 2)(3k 2+1)2=3(k 2+1)(9k 2+1)(3k 2+1)2=3+12k29k 4+6k 2+1 =3+129k 2+1k2+6≤3+122×3+6=2(k ≠0),当且仅当9k 2=1k 2,即k =±33时,|AB|max =2,当k =0时,AB =3,综上所述|AB|max =2.∴当|AB|最大时,△AOB 面积最大值S =12×32×2=32.变式题:从椭圆x 2a 2+y2b 2=1(a >b >0)上一点M 向x 轴作垂线,恰好通过椭圆的左焦点F 1,且它的长轴端点A 及短轴端点B 的连线AB 平行于OM .(1)求椭圆的离心率;(2)当QF 2⊥AB 时,延长QF 2与椭圆交于另一点P ,若△F 1PQ 的面积为203(Q是椭圆上的点),求此时椭圆的方程. [解答] (1)如图,由题意知x M =-c , 故y M =b 2a .又△F 1OM ∽△OAB ,c a =b 2a b ⇒b =c ⇒e =22. (2)设椭圆方程为x 2a 2+y2b 2=1(a>b>0),由(1)知a 2=2b 2,方程变为x 2+2y 2=2b 2.设直线PQ 方程为y -0=2(x -b),联立方程组,得5x 2-8bx +2b 2=0, x 1+x 2=8b 5,x 1x 2=2b 25.|PQ|=|x 1-x 2|=(x 1+x 2)2-4x 1x 2=26b5∵|y 2-y 1|=|2(x 2-x 1)|=2(x 1+x 2)2-4x 1x 2=43b5S △F 1PQ =12×||PQ ×||-22b 3=203⇒b 2=25,∴a 2=50,∴椭圆方程为x 250+y 225=1.探究点4 弦的定比分点问题例4 已知椭圆x 25+y 29=1,焦点F (0,2),又点A ,B 在椭圆上,而且AF →=2FB →,求直线AB 的斜率.例4 [解答] AF →=2FB →⇒A ,F ,B 三点共线. 设AB 方程为y =kx +2,与椭圆方程联立,得 (9+5k 2)x 2+20kx -25=0, x 1+x 2=-20k 9+5k 2,x 1x 2=-259+5k2.又AF →=2FB →⇒⎩⎪⎨⎪⎧x1=-2x 2,2-y 1=2y 2-4,所以-x 2=-20k 9+5k 2,-2x 22=-259+5k 2,消去x 2,解得k =±33. 探究点5 综合应用问题例5 已知双曲线C :x 21-λ-y 2λ=1(0<λ<1)的右焦点为B ,过点B 作直线交双曲线C的右支于M 、N 两点,试确定λ的范围,使OM →·ON →=0,其中点O 为坐标原点. [解答] 设M(x 1,y 1),N(x 2,y 2),由已知易求B(1,0). 当MN 垂直于x 轴时,MN 的方程为x =1.设M(1,y 0),N(1,-y 0)(y 0>0),由OM →·ON →=0,得y 0=1,∴M(1,1),N(1,-1). 又M(1,1),N(1,-1)在双曲线上, ∴11-λ-1λ=1⇒λ2+λ-1=0⇒λ=-1±52. ∵0<λ<1,∴λ=5-12. 当MN 不垂直于x 轴时,设MN 的方程为y =k(x -1).由⎩⎪⎨⎪⎧x 21-λ-y 2λ=1,y =k (x -1),得:[λ-(1-λ)k 2]x 2+2(1-λ)k 2x -(1-λ)(k 2+λ)=0. 由题意知λ-(1-λ)k 2≠0,∴x 1+x 2=-2k 2(1-λ)λ-(1-λ)k 2,x 1x 2=-(1-λ)(k 2+λ)λ-(1-λ)k 2,∴y 1y 2=k 2(x 1-1)(x 2-1)=k 2λ2λ-(1-λ)k 2,∵OM →·ON →=0,且M 、N 在双曲线右支上, ∴⎩⎪⎨⎪⎧x 1x 2+y 1y 2=0,x 1+x 2>0,x 1x 2>0⇒⎩⎨⎧k 2=λ(1-λ)λ2+λ-1,k 2>λ1-λ⇒⎩⎪⎨⎪⎧λ(1-λ)λ2+λ-1>λ1-λ,λ2+λ-1>0⇒5-12<λ<23.综上知5-12≤λ<23. 变式题:已知点P 1(x 0,y 0)为双曲线x 28b 2-y 2b 21(b 为正常数)上任一点,F 2为双曲线的右焦点,过P 1作右准线的垂线,垂足为A ,连结F 2A 并延长交y 轴于点P 2.(1)求线段P 1P 2的中点P 的轨迹E 的方程;(2)设轨迹E 与x 轴交于B 、D 两点,在E 上任取一点Q (x 1,y 1)(y 1≠0),直线QB 、QD 分别交y 轴于M 、N 两点.求证:以MN 为直径的圆过两定点.[解答] (1)由已知得F 2(3b,0),A ⎝⎛⎭⎫83b ,y 0,则直线F 2A 的方程为y =-3y0b (x -3b),令x=0,得y =9y 0,即P 2(0,9y 0).于是直线QB 的方程为:y =y 1x 1+2b(x +2b),直线QD 的方程为y =y 1x 1-2b(x -2b),可得M ⎝⎛⎭⎪⎫0,2by 1x 1+2b ,N ⎝ ⎛⎭⎪⎫0,-2by 1x 1-2b . 则以MN 为直径的圆的方程为: ⎩⎪⎨⎪⎧x 2+⎝ ⎛⎭⎪⎫y -2by 1x 1+2b ⎝ ⎛⎭⎪⎫y +2by 1x 1-2b =0.令y =0得x 2=2b 2y 21x 21-2b 2,而Q(x 1,y 1)在x 22b 2-y 225b 2=1上,则x 21-2b 2=225·y 21,于是x =±5b , 即以MN 为直径的圆过两定点(-5b,0),(5b,0).规律总结本节问题的研究集中体现了解析几何的基本思想和方法,要求有较强的分析问题和解决问题的能力,有些问题涉及代数、三角、几何等多方面的知识,因此在复习中要注意各部分之间的联系和综合利用知识解决问题的能力.1.直线与圆锥曲线有无公共点或有几个公共点的问题,实际上是研究它们的方程组成的方程组是否有实数解或实数解的个数问题,通过消元最终归结为讨论一个一元二次方程Ax 2+Bx +C =0的实数解的个数问题.应特别注意要分A =0和A ≠0的两种情况讨论,只有A ≠0时,才可用判别式来确定解的个数. 当直线平行于抛物线的对称轴时,直线与抛物线只有一个公共点.这些情况在解题中往往容易疏忽,要特别注意,对于选择、填空题,用数形结合往往快速简捷.2.斜率为k 的直线被圆锥曲线截得弦AB ,若A 、B 两点的坐标分别为A (x 1,y 1),B (x 2,y 2),则|AB |=|x 1-x 2|·1+k 2=|y 1-y 2|·1+1k 2(k ≠0),利用这个公式求弦长时,应注意应用韦达定理.3.与焦点弦长有关的问题,要注意应用圆锥曲线的定义.4.在给定的圆锥曲线f (x ,y )=0中,求中点为(m ,n )的弦AB 所在直线方程时,一般可设A (x 1,y 1)、B (x 2,y 2),利用A 、B 在曲线上,得f (x 1,y 1)=0,f (x 2,y 2)=0及x 1+x 2=2m ,y 1+y 2=2n ,故可求出斜率k AB =y 1-y 2x 1-x 2,最后由点斜式写出直线AB 的方程.5.求圆锥曲线的方程时,通常利用待定系数法.。

直线和圆锥曲线的位置关系

直线和圆锥曲线的位置关系

直线和圆锥曲线的位置关系知识点一:直线与圆锥曲线的位置关系直线与圆锥曲线的位置关系有三种:相交、相切、相离.判断的方法均是把直线方程代入曲线方程中,判断方程解的个数,从而得到直线与曲线公共点的个数,最终得到直线与曲线的位置关系.一般利用二次方程判别式来判断有无解,有几个解.1.直线0=++C By Ax 椭圆)0(12222>>=+b a by a x 的位置关系: 将直线的方程与椭圆的方程联立成方程组,消元转化为关于x 或y 一元二次方程,其判别式为∆.(1)⇔>∆0直线和椭圆相交⇔直线和椭圆有两个交点(或两个公共点);(2)⇔=∆0直线和椭圆相切⇔直线和椭圆有一个切点(或一个公共点);(3)⇔<∆0直线和椭圆相离⇔直线和椭圆无公共点.2.直线0=++C By Ax 和双曲线)0,0(12222>>=-b a by a x 的位置关系: 将直线的方程与双曲线的方程联立成方程组,消元转化为关于x 或y 的方程.(一)若为一元一次方程,则直线和双曲线的渐近线平行,直线和双曲线只有一个交点,但不相切不是切点;(二)若为一元二次方程,则(1)若0>∆,则直线和双曲线相交,有两个交点(或两个公共点);(2)若0=∆,则直线和双曲线相切,有一个切点;(3)若0<∆,则直线和双曲线相离,无公共点.注意:(1)⇒>∆0直线与双曲线相交,但直线与双曲线相交不一定有0>∆,当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点,故0>∆是直线与双曲线相交的充分条件,但不是必要条件;(2)当直线与双曲线的渐近线不平行时,⇔=∆0直线与双曲线相切;(3)如说直线和双曲线有一个公共点,则要考虑两种情况:一个切点和一个交点;当直线与双曲线的渐近线平行时,直线与双曲线相交,但只有一个交点;(4)过双曲线)0,0(12222>>=-b a by a x 外一点),(00y x P 的直线与双曲线只有一个公共点的情况如下:①P 点在两条渐近线之间且不含双曲线的区域内时,有两条与渐近线平行的直线和分别与双曲线两支相切的两条切线,共四条;②P 点在两条渐近线之间且包含双曲线的区域内时,有两条与渐近线平行的直线和只与双曲线一支相切的两条切线,共四条;③P 在两条渐近线上但非原点,只有两条:一条是与另一渐近线平行的直线,一条是切线;④P 为原点时不存在这样的直线;3.直线0=++C By Ax 和抛物线)0(22>=p px y 的位置关系:将直线的方程与抛物线的方程联立成方程组,消元转化为关于x 或y 方程.(一)若方程为一元一次方程,则直线和抛物线的对称轴平行,直线和抛物线有一个交点,但不相切不是切点;(二)若为一元二次方程,则(1)若0>∆,则直线和抛物线相交,有两个交点(或两个公共点);(2)若0=∆,则直线和抛物线相切,有一个切点;(3)若0<∆,则直线和抛物线相离,无公共点.注意:(1)⇒>∆0直线与抛物线相交,但直线与抛物线相交不一定有0>∆,当直线与抛物线的对称轴重合或平行时,直线与抛物线相交且只有一个交点,故0>∆也仅是直线与抛物线相交的充分条件,但不是必要条件.(2)当直线与抛物线的对称轴不重合或平行时,⇔=∆0直线与抛物线相切;(3)如说直线和抛物线有一个公共点,则要考虑两种情况:一个切点和一个交点;当直线与抛物线的轴平行时,直线与抛物线相交,也只有一个交点;(4)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条平行于对称轴的直线.知识点二:圆锥曲线的弦1.直线被圆锥曲线截得的线段称为圆锥曲线的弦.当直线的斜率k 存在时,直线b kx y +=与圆锥曲线相交于),(),,(2211y x B y x A ,两点,把直线方程代入曲线方程中,消元后所得一元二次方程为02=++c bx ax .则弦长公式:2121x x k AB -+=其中aa c ab x x x x x x ∆=--=-+=-4)(4)(22122121 当k 存在且不为零时, 弦长公式还可以写成:21211y y k AB -+=. 注意:当直线的斜率不存在时,不能用弦长公式解决问题,21y y AB -=.2.焦点弦:若弦过圆锥曲线的焦点叫焦点弦;抛物线)0(22>=p px y 的焦点弦公式α221sin 2p p x x AB =++=,其中α为过焦点的直线的倾斜角.3.通径:若焦点弦垂直于焦点所在的圆锥曲线的对称轴,此时焦点弦也叫通径.椭圆和双曲线的通径为ab AB 22=,抛物线的通径p AB 2=. 知识点三:圆锥曲线的中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解. ①在椭圆12222=+b y a x 中,以),(00y x P 为中点的弦所在直线的斜率0202y a x b k -=;②在双曲线12222=-b y a x 中,以),(00y x P 为中点的弦所在直线的斜率0202y a x b k =; ③在抛物线)0(22>=p px y 中,以),(00y x P 为中点的弦所在直线的斜率0y p k =. 注意:因为0>∆是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,务必别忘了检验0>∆!知识点四:求曲线的方程1. 定义:在直角坐标系中,用坐标表示点,把曲线看成满足某种条件的点的集合或轨迹,用曲线上点的坐标),(y x 所满足的方程0),(=y x f 表示曲线,通过研究方程的性质间接地来研究曲线的性质.这就是坐标法.2. 坐标法求曲线方程的步骤:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中涉及的几何因素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:把代数运算结果“翻译”成几何结论.通过坐标法,把点和坐标、曲线和方程联系起来,实现了形和数的统一.用坐标法解决几何问题时,先用坐标和方程表示相应的几何对象,然后对坐标和方程进行代数讨论;最后再把代数运算结果“翻译”成相应的几何结论.这就是用坐标法解决平面几何问题的“三步曲”. 3.求轨迹方程的常用方法:直接法、定义法、代入法、参数法等.规律方法指导1.直线与圆锥曲线的位置关系的研究方法可通过代数方法即解方程组的办法来研究.因为直线与圆锥曲线有无公共点或有几个公共点的问题,实际上是研究它们的方程组成的方程是否有实数解或实数解的个数问题,此时要注意用好分类讨论和数形结合的思想方法.2.直线与圆锥曲线的位置关系,是高考考查的重中之重.主要涉及弦长、弦中点、对称、参量的取值范围、求曲线方程等问题.解题中要充分重视韦达定理和判别式的应用.3.当直线与圆锥曲线相交时涉及弦长问题,常用“韦达定理法”设而不求计算弦长(即应用弦长公式);涉及弦长的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来相互转化,同时还应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.解题的主要规律可以概括为“联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能忘”.4.解决直线与圆锥曲线的位置关系问题时,对消元后的一元二次方程,必须讨论二次项的系数和判别式,有时借助于图形的几何性质更为方便.。

直线与圆锥曲线的位置关系直线与圆锥曲线相交的弦长公式

直线与圆锥曲线的位置关系直线与圆锥曲线相交的弦长公式

直线与圆锥曲线的位置关系(1)从几何角度看:要特别注意当直线与双曲线的渐进线平行时,直线与双曲线只有一个交点;当直线与抛物线的对称轴平行或重合时,直线与抛物线也只有一个交点。

(2)从代数角度看:设直线L的方程与圆锥曲线的方程联立得到ax°+bx+c=0.①.若a=0,当圆锥曲线是双曲线时,直线L与双曲线的渐进线平行或重合;当圆锥曲线是抛物线时,直线L与抛物线的对称轴平行或重合。

1、圆锥曲线的范围问题有两种常用方法:(1)寻找合理的不等式,常见有△>0和弦的中点在曲线内部;(2)所求量可表示为另一变量的函数,求函数的值域。

2、圆锥曲线的最值、定值及过定点等难点问题。

直线与圆锥曲线的位置关系:(1)从几何角度来看,直线和圆锥曲线有三种位置关系:相离、相切和相交,相离是直线和圆锥曲线没有公共点,相切是直线和圆锥曲线有唯一公共点,相交是直线与圆锥曲线有两个不同的公共点,并特别注意直线与双曲线、抛物线有唯一公共点时,并不一定是相切,如直线与双曲线的渐近线平行时,与双曲线有唯一公共点,但这时直线与双曲线相交;直线平行(重合)于抛物线的对称轴时,与抛物线有唯一公共点,但这时直线与抛物线相交,故直线与双曲线、抛物线有唯一公共点时可能是相切,也可能是相交,直线与这两种曲线相交,可能有两个交点,也可能有一个交点,从而不要以公共点的个数来判断直线与曲线的位置关系,但由位置关系可以确定公共点的个数.(2)从代数角度来看,可以根据直线方程和圆锥曲线方程组成的方程组解的个数确定位置关系.设直线l的方程与圆锥曲线方程联立得到ax2+bx+c=0.①若a=0,当圆锥曲线是双曲线时,直线l与双曲线的渐近线平行或重合;当圆锥曲线是抛物线时,直线l与抛物线的对称轴平行或重合.②若当Δ>0时,直线和圆锥曲线相交于不同两点,相交.当Δ=0时,直线和圆锥曲线相切于一点,相切.当Δ<0时,直线和圆锥曲线没有公共点,相离.直线与圆锥曲线相交的弦长公式:若直线l与圆锥曲线F(x,y)=0相交于A,B两点,求弦AB的长可用下列两种方法:(1)求交点法:把直线的方程与圆锥曲线的方程联立,解得点A,B 的坐标,然后用两点间距离公式,便得到弦AB的长,一般来说,这种方法较为麻烦.(2)韦达定理法:不求交点坐标,可用韦达定理求解.若直线l的方程用y=kx+m或x=n表示.。

直线与圆锥曲线位置关系知识梳理

直线与圆锥曲线位置关系知识梳理

直线(点)与圆锥曲线的位置关系知 识 梳 理一、 点与圆锥曲线的位置关系设点P 坐标为00(,)x y ,约定:含焦点的区域称为圆锥曲线的内部。

1. 椭圆:若2200221x y a b+=,则P 在椭圆上;若2200221x y a b +<,则P 在椭圆内;若2200221x y a b+>,则P 在椭圆外. 2.双曲线:若2200221x y a b -=,则P 在双曲线上;若2200221x y a b-<,则P 在双曲线外;若2200221x y a b->,则P 在双曲线内. 3.抛物线:若2002y px =,则P 在抛物线上;若2002y px <,则P 在抛物线内;若2002y px >,则P 在抛物线外.说明:当圆锥曲线的焦点在其他轴上时,有类似于上述的结论,此处从略。

二、 直线与圆锥曲线的位置关系1. 椭圆000=000≠∆>⇔⎧⎧⎪⇒≠∆⇔⎨⎨⎩⎪≠∆<⇔⎩二次项系数且交于两点直线一元二次方程二次项系数且切于一点(图示从略)椭圆二次项系数且无公共点(相离)说明:△>0是直线与椭圆相交的充要条件;△=0是直线与椭圆有且只有一个公共点的充要条件。

2. 双曲线说明:(1)△>0是直线与双曲线相交的充分条件,但不是必要条件(因为相交包括交于一000=0=000≠∆>⇔⎧⎪⎪⎪≠∆⇔⎧⎪⇒⎨⎨⎩⎪⇔⇔⎪⎪⎪≠∆<⇔⎩ 二次项系数且交于两点二次项系数且切于一点直线一元方程双曲线二次系数(一次方程)交于一点直线渐近线二次项系数且无公共点(相离)12120000x x x x ⎧⎪∆>>⎨⎪∆><⎩既可与两支相交又可与一支相交只与一支交于两点:且与两支交于两点:且⎫⎬⎭有一个公共点点或两点);但直线与双曲线交于两点时必有△>0。

△=0是直线与双曲线有一个公共点的充分不必要条件(因为对双曲线来说,有一个公共点包括切于一点和交于一点);但切于一点时,必有△=0。

直线与圆锥曲线的位置关系

直线与圆锥曲线的位置关系

规律提示:通过直线的代数形式,可以看出直线的特点::101l y kx =+⇒过定点(,):(1)1l y k x =+⇒-过定点(,0):2(1)1l y k x -=+⇒-过定点(,2)证明直线过定点,也是将满足条件的直线整理成以上三种形式之一,再得出结论。

练习:1、过点P(3,2) 和抛物线232--=x x y 只有一个公共点的直线有( )条。

A .4B .3C .2D .1分析:作出抛物线232--=x x y ,判断点P(3,2)相对抛物线的位置。

解:抛物线232--=x x y 如图,点P (3,2)在抛物线的内部,根据过抛物线内一点和抛物线的对称轴平行或重合的直线和抛物线只有一个交点,可知过点P(3,2) 和抛物线232--=x x y 只有一个公共点的直线有一条。

故选择D规律提示:含焦点的区域为圆锥曲线的内部。

(这里可以用公司的设备画图)一、过一定点P 和抛物线只有一个公共点的直线的条数情况:(1)若定点P 在抛物线外,则过点P 和抛物线只有一个公共点的直线有3条:两条切线,一条和对称轴平行或重合的直线;(2)若定点P 在抛物线上,则过点P 和抛物线只有一个公共点的直线有2条:一条切线,一条和对称轴平行或重合的直线;(3)若定点P 在抛物线内,则过点P 和抛物线只有一个公共点的直线有1条:和抛物线的对称轴平行或重合的直线和抛物线只有一个交点。

二、过定点P 和双曲线只有一个公共点的直线的条数情况:(1)若定点P 在双曲线内,则过点P 和双曲线只有一个公共点的直线有2条:和双曲线的渐近线平行的直线和双曲线只有一个公共点;(2)若定点P 在双曲线上,则过点P 和双曲线只有一个公共点的直线有3条:一条切线,2条和渐近线平行的直线;(3)若定点P 在双曲线外且不在渐近线上,则过点P 和双曲线只有一个公共点的直线有4条:2条切线和2条和渐近线平行的直线;(4)若定点P 在双曲线外且在一条渐近线上,而不在另一条渐近线上,则过点P 和双曲线只有一个公共点的直线有2条:一条切线,一条和另一条渐近线平行的直线;(5)若定点P 在两条渐近线的交点上,即对称中心,过点P 和双曲线只有一个公共点的直线不存在。

直线与圆锥曲线的位置关系

直线与圆锥曲线的位置关系

直线与圆锥曲线的位置关系一、基本知识概要:1.直线与圆锥曲线的位置关系:相交、相切、相离。

从代数的角度看是直线方程和圆锥曲线的方程组成的方程组,无解时必相离;有两组解必相交;一组解时,若化为x 或y 的方程二次项系数非零,判别式⊿=0时必相切,若二次项系数为零,有一组解仍是相交。

2. 弦:直线被圆锥曲线截得的线段称为圆锥曲线的弦。

焦点弦:若弦过圆锥曲线的焦点叫焦点弦;通径:若焦点弦垂直于焦点所在的圆锥曲线的对称轴,此时焦点弦也叫通径。

3.①当直线的斜率存在时,弦长公式:2121x x k l -+==[]2122124)()1(x x x x k -+⋅+或当k 存在且不为零时21211y y kl -+=,(其中(11,y x ),(22,y x )是交点坐标)。

②抛物线px y 22=的焦点弦长公式|AB|=α221sin 2pp x x =++,其中α为过焦点的直线的倾斜角。

4.重点难点:直线与圆锥曲线相交、相切条件下某些关系的确立及其一些字母范围的确定。

5.思维方式: 方程思想、数形结合的思想、设而不求与整体代入的技巧。

6.特别注意:直线与圆锥曲线当只有一个交点时要除去两种情况,些直线才是曲线的切线。

一是直线与抛物线的对称轴平行;二是直线与双曲线的渐近线平行。

二、例题:【例1】直线y=x+3与曲线14||92=-x x y ( ) A 。

没有交点 B 。

只有一个交点 C 。

有两个交点 D 。

有三个交点〖解〗:当x>0时,双曲线14922=-x y 的渐近线为:x y 23±=,而直线y=x+3的斜率为1,1<3/2,因此直线与双曲线的下支有一交点,又y=x+3过椭圆14922=+x y 的顶点,k=1>0因此直线与椭圆左半部分有一交点,共计3个交点,选D [思维点拔]注意先确定曲线再判断。

【例2】已知直线)22tan(:+=x y l 交椭圆9922=+y x 于A 、B 两点,若α为l 的倾斜角,且AB 的长不小于短轴的长,求α的取值范围。

直线与圆锥曲线的位置关系教案

直线与圆锥曲线的位置关系教案

直线与圆锥曲线的位置关系教案一、教学目标1. 理解直线与圆锥曲线的位置关系,掌握相关概念和性质。

2. 能够运用直线与圆锥曲线的位置关系解决实际问题。

3. 培养学生的逻辑思维能力和数学解决问题的能力。

二、教学内容1. 直线与圆锥曲线的基本概念和性质。

2. 直线与圆锥曲线的相切、相离和相交情况。

3. 直线与圆锥曲线的交点个数与判别式。

4. 直线与圆锥曲线的应用问题。

三、教学方法1. 采用讲解、案例分析、练习相结合的教学方法。

2. 通过图形演示和实际例子,引导学生直观理解直线与圆锥曲线的位置关系。

3. 鼓励学生进行自主学习和合作学习,提高解决问题的能力。

四、教学准备1. 教学课件和教学素材。

2. 直尺、圆规等绘图工具。

3. 练习题和答案。

五、教学过程1. 引入:通过简单的例子,引导学生思考直线与圆锥曲线的位置关系。

2. 讲解:讲解直线与圆锥曲线的基本概念和性质,解释相切、相离和相交情况的定义。

3. 案例分析:分析具体的直线与圆锥曲线的位置关系案例,引导学生通过判别式判断交点个数。

4. 练习:让学生进行相关的练习题,巩固所学知识。

6. 作业布置:布置相关的练习题,巩固所学知识。

六、教学拓展1. 探讨直线与圆锥曲线的位置关系在实际问题中的应用,如光学、工程等领域。

2. 介绍直线与圆锥曲线位置关系在现代数学中的研究进展和应用。

七、课堂小结1. 回顾本节课所学内容,直线与圆锥曲线的位置关系及其应用。

2. 强调重点概念和性质,提醒学生注意在实际问题中的应用。

八、作业布置1. 完成课后练习题,巩固所学知识。

2. 选择一道与直线与圆锥曲线位置关系相关的综合应用题,进行练习。

九、课后反思1. 学生对本节课内容的掌握程度,哪些方面需要加强。

2. 教学方法的适用性,是否达到预期教学效果。

十、教学评价1. 学生作业、练习题和课堂表现的评价。

2. 对学生掌握直线与圆锥曲线位置关系知识的程度的评价。

3. 教学反馈,了解学生对教学内容的满意度和建议。

(word完整版)圆锥曲线 直线与圆锥曲线的位置关系

(word完整版)圆锥曲线 直线与圆锥曲线的位置关系

直线与圆锥曲线位置关系一、基础知识:(一)直线与椭圆位置关系1、直线与椭圆位置关系:相交(两个公共点),相切(一个公共点),相离(无公共点)2、直线与椭圆位置关系的判定步骤:通过方程根的个数进行判定,下面以直线y kx m =+和椭圆:()222210x y a b a b+=>>为例(1)联立直线与椭圆方程:222222y kx mb x a y a b=+⎧⎨+=⎩ (2)确定主变量x (或y )并通过直线方程消去另一变量y (或x ),代入椭圆方程得到关于主变量的一元二次方程:()222222b x a kx m a b ++=,整理可得:()22222222220a kb x a kxm a m a b +++-=(3)通过计算判别式∆的符号判断方程根的个数,从而判定直线与椭圆的位置关系 ① 0∆>⇒方程有两个不同实根⇒直线与椭圆相交 ② 0∆=⇒方程有两个相同实根⇒直线与椭圆相切 ③ 0∆<⇒方程没有实根⇒直线与椭圆相离3、若直线上的某点位于椭圆内部,则该直线一定与椭圆相交 (二)直线与双曲线位置关系1、直线与双曲线位置关系,相交,相切,相离2、直线与双曲线位置关系的判定:与椭圆相同,可通过方程根的个数进行判定以直线y kx m =+和椭圆:()222210x y a b a b -=>>为例:(1)联立直线与双曲线方程:222222y kx m b x a y a b=+⎧⎨-=⎩,消元代入后可得:()()22222222220ba k x a kxm a m ab ---+=(2)与椭圆不同,在椭圆中,因为2220a k b +>,所以消元后的方程一定是二次方程,但双曲线中,消元后的方程二次项系数为222b a k -,有可能为零。

所以要分情况进行讨论 当2220bb a k k a-=⇒=±且0m ≠时,方程变为一次方程,有一个根.此时直线与双曲线相交,只有一个公共点当2220b bb a k k a a ->⇒-<<时,常数项为()22220a m a b -+<,所以0∆>恒成立,此时直线与双曲线相交 当2220b b a k k a -<⇒>或bk a <-时,直线与双曲线的公共点个数需要用∆判断:① 0∆>⇒方程有两个不同实根⇒直线与双曲线相交 ② 0∆=⇒方程有两个相同实根⇒直线与双曲线相切 ③ 0∆<⇒方程没有实根⇒直线与双曲线相离注:对于直线与双曲线的位置关系,不能简单的凭公共点的个数来判定位置。

教案直线和圆锥曲线的位置关系

教案直线和圆锥曲线的位置关系

课题:直线和圆锥曲线的位置关系【教学目标】1. 知识目标:能从“数”和“形”角度判断直线和圆锥曲线的位置关系。

2. 能力目标:培养学生提出问题和解决问题的能力;培养学生的自主探索精神和创新能力。

3. 情感目标:通过课堂中和谐、民主的师生关系,让学生在平等、尊重、信任、理解和宽容的氛围中受到激励和鼓舞,培养学生严谨的科学态度。

【教学重点、难点与关键】1. 重点:利用“代数”或“几何”的方法解决直线和圆锥曲线的位置关系。

2. 难点:在开放式教学中让学生自己发现问题,提出问题。

3. 关键点:帮助学生寻找“数”、“形”之间的联系。

【教学方法与手段】教学方法:开放式、探究式教学。

教学手段:利用教学软件几何画板辅助教学。

【教学过程及说明】:一、引例:已知椭圆C :12422=+y x ,直线l :y =ax +b ①请你具体给出a ,b 的一组值,使直线l 和椭圆C 相交。

②直线l 和椭圆C 相交时,a ,b 应满足什么关系?③若a +b =1,试判定直线l 和椭圆C 的位置关系。

分析: ②:联立方程:22142y ax b x y =+⎧⎪⎨+=⎪⎩,消去y ,得:(1+2a 2)x 2+4ab x+2b 2-4=0 (*) 则△=(4ab )2-4(1+2a 2)(2b 2-4)>0,整理得:b 2-4a 2<2③:思路一:(1-a )2-4a 2=-3a 2-2a +1=-3(a +21433)+<2恒成立。

所以直线和椭圆相交。

思路二:直线y=a x+(1-a )过定点(1,1),而点(1,1)在椭圆内部,所以直线和椭圆相交。

引例设计说明:问题①是个开放题,结果不唯一。

学生可以分别从形与数这两个角度考虑这个问题,给出一组符合题意的a ,b 的值。

问题②是在问题①基础上的提升,探求直线和椭圆相交时的一般情况。

切入本节课的主题。

也为后面比较直线和双曲线位置关系的代数处理的异同点,做个铺垫。

高二数学直线与圆锥曲线的位置关系

高二数学直线与圆锥曲线的位置关系

直线与圆锥曲线的位置关系一、基础知识:(1)位置关系的判定:将直线方程和圆锥曲线方程联立。

消去一个未知数,进而转化为一元二次方程,利用____________判断直线与圆锥曲线________、________、________的情况。

(2)判断直线与圆的位置关系时,最常用的方法是利用圆心到直线的距离和________的大小关系。

(3)弦长公式:斜率为k 的直线被圆锥直线截得的弦AB ,若),(11y x A 、),(22y x B ,则:①||AB =_______________=_______________②||AB =_______________=_______________二、基础练习:1、双曲线A 、B两点,则∆(A )6 (D )2333+2(A )1条 )4条 3AB (A )316 384、设F (A )4+34±5、4x 直线6(A )1 个例1 3圆E 于A 、B两点,且C A 2BC =,求当A O B∆的面积达到最大值时直线和椭圆E 的方程.则A O B1S 2∆=,当2m =,即t 10=,.【答案】2x例2:k 1,k 2的两条直满足12=+λk k 围.求解.解:ay 4(Ⅱ)证明:设直线PA 的方程为)(010x x k y y -=-,直线PB 的方程为)(020x x k y y -=-.点),(00y x P 和点),(11y x A 的坐标是方程组0102()y y k x x y ax -=-⎧⎪⎨=⎪⎩ ①②的解.将②式代入①式得000112=-+-y x k x k ax ,于是ak x x 101=+,故011x ak x -=③又点),(00y x P 和点),(22y x B 的坐标是方程组0202()y y k x x y ax -=-⎧⎪⎨=⎪⎩ ④⑤的解.将⑤式代入④式得000222=-+-y x k x k ax .于是220k x x a+=,故220k x x a=-.由已知得,12k k λ-=,则012x k ax --=λ. ⑥设点M 的坐标为),(M M y x ,由MA BM λ=,则λλ++=112x x x M .将③式和⑥式代入上式得0001x x x x M -=+--=λλ,即00=+x x M .∴线段PM 的中点在y 轴上.(Ⅲ)因为点)1,1(-P 在抛物线2ax y =上,所以1-=a ,抛物线方程为2x y -=. 由③式知111--=k x ,代入2x y -=得211)1(+-=k y .将=λ1(A k -于是AP ⋅ 因∠求得k 21)+,故当1k <-11,)4-例3A 、B l 对称,试求直线l 设椭圆方程为x 2+2y 2=2b 2,A (x 1,y 1),B (x 2,y 2)在椭圆上则x 12+2y 12=2b 2,x 22+2y 22=2b 2,两式相减得,(x 12-x 22)+2(y 12-y 22)=0,.)(221212121y y x x x x y y ++-=--设AB 中点为(x 0,y 0),则k AB =-02y x ,又(x 0,y 0)在直线y =21x 上,y 0=21x 0,于是-002y x =-1,k AB =-1,设l 的方程为y =-x +1.右焦点(b ,0)关于l 的对称点设为(x ′,y ′),⎩⎨⎧-='='⎪⎪⎩⎪⎪⎨⎧++'-='=-''b y x b x y bx y 11 1221解得则由点(1,1-b )在椭圆上,得1+2(1-b )2=2b 2,b 2=9,1692=a∴所求椭圆C 的方程为2291698y x +=1,l 的方程为y =-x +1解法二 由e =21,22222=-=ab a ac 得,从而a 2=2b 2,c =b设椭圆C 的方程为x 2+2y 2=2b 2,l 的方程为y =k (x -1),将l 的方程代入C 的方程,得(1+2k 2)x 2-4k 2x +2k 2-2b 2=0,则x 1+x 2=22214kk+,y 1+y 2=k (x 1-1)+k (x 2-1)=k (x 1+x 2)-2k =22kC 上,所以k基础性强 待.注意 (1) D 、(2) , 则t ( (3) l 的(4) 已知抛物线y=2x 2上两点A(x 1,y 1), B(x 2,y 2)关于直线y=x+m 对称, 且x 1x 2=-2, 那么m 的值等于 ( B )A 、25 B 、23 C 、2 D 、3(5)过双曲线2x 2-y2-8x+6=0的由焦点作直线l 交双曲线于A 、B 两点, 若|AB|=4, 则这样的直线有 ( B )A 、4条B 、 3条C 、 2条D 、1条(6) 对于抛物线y 2=2x 上任意一点Q, 点P(a, 0)都满足|PQ|≥|a |, 则a 的取值范围是( C )A 、 [0, 1]B 、 (0, 1)C 、 (]1,∞-D 、(-∞, 0)(7) 直线l 交椭圆4x 2+5y 2=80于M 、N 两点, 椭圆与y 轴交于B 点, 若△BMN 的重心恰好落在椭圆的右焦点上, 则直线l 的方程是 ( D )A 、5x+6y-28=0B 、5x+6y-28=0C 、6x+5y-28=0D 、6x-5y-28=0(8) 过椭圆的左焦点F 且倾斜角为60°的直线交椭圆于A 、B 两点, 若|FA|=2|FB|,则椭圆的离心率是 ( C )A 、23 B 、22 C 、32 D 、21(9) 已知F 1, F 2是双曲线的两个焦点, Q 是双曲线上任意一点, 从某一焦点引∠F 1QF 2平分线的垂线, 垂足为P , 则点P 的轨迹是 ( B )A 直线B 圆C 椭圆D 双曲线 (10)(11)2|的最大的横坐点 . 记⎪⎩⎪⎨⎧2x y ⎪⎪⎩⎪⎪⎨⎧+42211k y x 设点P 的坐标为),,(y x 则⎪⎪⎩⎪⎪⎨⎧+=+-=.44,422k y k k x 消去参数k 得0422=-+y y x ③ 当k 不存在时,A 、B 中点为坐标原点(0,0),也满足方程③,所以点P 的轨迹方程为.0422=-+y y x 解法二:设点P 的坐标为),(y x ,因),(11y x A 、),(22y x B 在椭圆上,所以,142121=+y x ④.142222=+y x ⑤. ④—⑤得0)(4122212221=-+-y y x x ,所以.0))((41))((21212121=+-++-y y y y x x x x当21x x ≠时,有.0)(4121212121=--⋅+++x x y y y y x x ⑥并且⎪⎪⎪⎩⎪⎪⎪⎨⎧--=-+=+=.1,2,221212121x x y y xy y y y x x x ⑦ 将⑦代入⑥并整理得.0422=-+y y x ⑧. 当21x x =时,点A 、B 的坐标为(0,2)、(0,-2),这时点P 的坐标为(0,0)也满足⑧,所以点P 的轨迹方程为.141)21(16122=-+y x(Ⅱ)解:由点P 的轨迹方程知.4141,1612≤≤-≤x x 即所以71111)1|222222.621AP 的距∴范围是[-),0由M 所以∠1-=AQ P 的坐标,112)32(22=++-yx即.1)122(22=--yx(15)椭圆的中心是原点O ,它的短轴长为22,相应于焦点F (c ,0)(0>c )的准线l 与x轴相交于点A ,|OF|=2|FA|,过点A 的直线与椭圆相交于P 、Q 两点. (Ⅰ)求椭圆的方程及离心率;(Ⅱ)若0=⋅OQ OP ,求直线PQ 的方程; (Ⅲ)设AQ AP λ=(1>λ),过点P 且平行于准线l 的直线与椭圆相交于另一点M ,证明:FQFMλ-=.(15)(Ⅰ)解:由题意,可设椭圆的方程为)2(12222>=+a yax .由已知得⎪⎩⎪⎨⎧-==-).(2,2222c c ac c a 解得2,6==c a 所以椭圆的方程为12622=+yx,离心率36=e .(Ⅱ)解:由(1)可得A (3,0).设直线PQ 的方程为)3(-=x k y .由方程组⎪⎩⎪⎨⎧-==+)3(,12622x k y yx 得62718)13(2222=-+-+kx k xk依题意)32(122>-=∆k ,得3636<<-k .设),(),,(2211y x Q y x P ,则13182221+=+kk x x , ①36272221-=kk x x . ② 由直线PQ 的方程得)3(),3(2211-=-=x k y x k y .于是(221=k y y 0,∴121+y y x x 所以直线注意1>λ故(1x FM =而(2x FQ-=。

直线与圆锥曲线的位置关系教案

直线与圆锥曲线的位置关系教案

直线与圆锥曲线的位置关系教案一、教学目标1. 知识与技能:(1)理解直线与圆锥曲线的位置关系;(2)学会运用直线与圆锥曲线的性质解决相关问题。

2. 过程与方法:(1)通过观察、分析、推理等方法,探索直线与圆锥曲线的位置关系;(2)培养学生的逻辑思维能力和解决问题的能力。

3. 情感态度与价值观:(1)激发学生对数学的兴趣和好奇心;(2)培养学生的团队合作精神,提高学生的表达沟通能力。

二、教学重点与难点1. 教学重点:(1)直线与圆锥曲线的位置关系;(2)运用直线与圆锥曲线的性质解决相关问题。

2. 教学难点:(1)直线与圆锥曲线的位置关系的判断;(2)灵活运用直线与圆锥曲线的性质解决实际问题。

三、教学过程1. 导入:(1)复习相关知识点,如直线、圆锥曲线的定义及性质;(2)提出问题,引导学生思考直线与圆锥曲线的位置关系。

2. 探究:(1)分组讨论,让学生观察直线与圆锥曲线的位置关系,总结规律;(2)每组派代表分享探究成果,师生共同总结直线与圆锥曲线的位置关系。

3. 讲解:(1)讲解直线与圆锥曲线的位置关系的判断方法;(2)举例说明如何运用直线与圆锥曲线的性质解决实际问题。

4. 练习:(1)布置课堂练习题,让学生巩固所学知识;(2)挑选部分练习题进行讲解,解答学生疑问。

5. 总结:(1)回顾本节课所学内容,让学生梳理知识体系;(2)强调直线与圆锥曲线位置关系在实际问题中的应用。

四、课后作业1. 完成课堂练习题;2. 选取一个实际问题,运用直线与圆锥曲线的性质进行解答;3. 预习下一节课内容。

五、教学反思1. 反思教学效果:(1)学生对直线与圆锥曲线的位置关系的掌握程度;(2)学生运用直线与圆锥曲线的性质解决实际问题的能力。

2. 改进措施:(1)针对学生掌握不足的地方,进行有针对性的讲解和练习;(2)提供更多实际问题,让学生锻炼运用所学知识解决问题的能力。

六、教学评价1. 学生自评:(1)评价自己在课堂学习中的表现,如参与度、理解程度等;(2)反思自己在课后作业中的表现,如完成情况、解决问题能力等。

直线与圆锥曲线的位置关系

直线与圆锥曲线的位置关系
端点的线段长.
解:联立直线与椭圆的方程,可得方程组
= 2 − 2
2 2
+
=1
5
4
解方程组可得
5
=
=0
3

= −2
4
=
3
5 4
因此直线与椭圆有两个公共点,且公共点坐标为(0, −2), ( , ).
3 3
从而可知所求线段长
5
(
3

4
2
0) +[
3
5 5
2
− (−2)] =
.
3
例2
2
:
4
+
2
2
,分别求直线
=1
与椭圆 有两个公共点、只有一个公共点和没有公共点时的
取值范围.
当 = 0即 = ±3 2时,方程①有两个相等的实数解,此时原方程的实数解
集中只有一个元素,直线 与椭圆 有且只有一个公共点;
当 < 0即 < −3 2或 > 3 2时,方程①无实数解,此时原方程组的解集
两式相减,得(x 1+x 2)(x1-x2)=-4(y1+y2)(y1-y2).
1-2
故 k AB=
1-2
(1)由 kAB=-
=-
1+2
4(1+ 2)

1
4


=- .
4
= ,得所求轨迹方程为 x-2y-4=0.
2
(2)由 kAB=-4=2,得所求轨迹方程为 x+8y=0(-4≤x≤4).
2.8 直线与圆锥曲线的位置关系
学习任务
1.清楚直线与圆锥曲线的三种位置关系.(数学抽象)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八讲 直线与圆锥曲线的位置关系
【知识梳理】
1.直线与圆锥曲线C 的位置关系
将直线l 的方程代入曲线C 的方程,消去y 或者消去x ,得到一个关于x (或y )的方程02
=++c bx ax 进而转化为一元二次方程后利用判别式,应特别注意数形结合的办法.
(1)交点个数
①当 a =0或a ≠0,⊿=0时,曲线和直线只有一个交点;
②当 a ≠0,⊿>0时,曲线和直线有两个交点;
③ 当⊿<0 时,曲线和直线没有交点;
(2) 弦长公式:
斜率为k 的直线被曲线截得弦AB ,若A 、B 两点的坐标分别是A (x 1,y 1),B (x 2,y 2),则
21|| AB x x =-
一定要注意斜率不存在的情况的讨论和焦半径公式的使用.
2.求动点轨迹方程
①轨迹类型已确定的,一般用待定系数法
②动点满足的条件在题目中有明确的表述且轨迹类型未知的,一般用直接法
③一动点随另一动点的变化而变化,一般用代入转移法
【考点一:中点弦问题】
【例1】已知直线1+-=x y 与椭圆)0(122
22>>=+b a b
y a x 相交于A 、B 两点,且线段AB 的中点在直线02:=-y x l 上,求此椭圆的离心率.
【课堂练习】
(1)椭圆14
162
2=+y x 的弦被点)1,2(P 所平分,求此弦所在直线的方程.
【考点二:中点问题】
【例2】已知点A 、B 的坐标分别是()()0,1-0,1,
.直线BM AM ,相交于点M ,且它们的斜率之积为-2. (Ⅰ)求动点M 的轨迹方程; (Ⅱ)若过点⎪⎭

⎝⎛1,21N 的直线l 交动点M 的轨迹于C 、D 两点, 且N 为线段C D 的中点,求直线l 的方程.
【课堂练习】
(2)已知椭圆22
221x y a b
+=(a >b >0)的离心率e 4.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线l 与椭圆相交于不同的两点A 、B ,已知点A 的坐标为(-a ,0).
(i )若AB 5
||=,求直线l 的倾斜角; (ii )若点Q y 0(0,)在线段AB 的垂直平分线上,且QA QB=4.求y 0的值.
【考点三:弦长问题】
【例3】已知椭圆14
:22
=+y x G .过点(m ,0)作圆122=+y x 的切线l 交椭圆G 于A ,B 两点.
(Ⅰ)求椭圆G 的焦点坐标和离心率; (Ⅱ)将AB 表示为m 的函数,并求AB 的最大值.
【课堂练习】
3.已知椭圆1922=+y x ,过左焦点F 作倾斜角为6
π的直线交椭圆于A 、B 两点,求弦AB 的长.
【考点四:对称问题】
曲线上存在两点关于已知直线对称的条件:①曲线上两点所在的直线与已知直线垂直(得出斜率)②曲线上两点所在的直线与曲线有两个公共点(⊿>0)③曲线上两点的中点在对称直线上
【例4】已知椭圆C 的方程x y 22
43
1+=,试确定m 的取值范围,使得对于直线y x m =+4,椭圆C 上有不同两点关于直线对称.
【课堂练习】
4.在抛物线x y 42=上恒有两点关于直线3+=kx y 对称,求k 的取值范围.
【考点五:垂直问题】
002211=+⇒⎪⎪⎩
⎪⎪⎨⎧⊥=•y x y x AB OB
OA 为直径的圆过原点以 重心坐标公式:⎪⎭
⎫ ⎝⎛++++3,3321321y y y x x x 【例5】已知m >1,直线2:02m l x my --=,椭圆2
22:1x C y m
+=,1,2F F 分别为椭圆C 的左、右焦点. (Ⅰ)当直线l 过右焦点2F 时,求直线l 的方程;
(Ⅱ)设直线l 与椭圆C 交于,A B 两点,12AF F ,12BF F 的重心分别为,G H .若原点O 在以线段GH 为直径
的圆内,求实数m 的取值范围.
【课堂练习】
5.已知定点A (-1,0),F (2,0),定直线:12
x =,不在轴上的动点P 与点F 的距离是它到直线的距离的2倍.设点P 的轨迹为E ,过点F 的直线交E 于B 、两点,直线AB 、A 分别交于点M 、
(Ⅰ)求E 的方程; (Ⅱ)试判断以线段M 为直径的圆是否过点F ,并说明理由.
【考点六:面积问题】
点到直线的距离弦长⨯⨯=∆2
1AOB S
【例6】已知椭圆22
221(0)x y a b a b
+=>>的离心率为3,直线:l y kx m =+交椭圆于不同的两点A ,B
(Ⅰ)求椭圆的方程 (Ⅱ)若坐标原点O 到直线l 的距离为
2
,求AOB ∆面积的最大值
【考点七:比例问题】
【例7】设1F ,2F 分别为椭圆22
22:1x y C a b
+=(0)a b >>的左、右焦点,过2F 的直线l 与椭圆C 相交于A ,B 两
点,直线l 的倾斜角为60,1F 到直线l 的距离为(Ⅰ)求椭圆C 的焦距; (Ⅱ)如果222AF F B =,求椭圆C 的方程.
【课堂练习】
6.设0λ>,点A 的坐标为(1,1),点B 在抛物线2y x =上运动,点Q 满足QA BQ λ=,经过Q 点与x 轴垂直的直线交抛物线于点M ,点P 满足λ=,求点P 的轨迹方程.
【考点八:范围、最值问题】
几何方法:充分利用图形的几何特征及意义,利用几何性质解决问题
代数方法:建立目标函数,再求目标函数的最值.
【例8】已知椭圆)0(1:22
221>>=+b a b
y a x C 与直线01=-+y x 相交于两点B A ,.当椭圆的离心率e 满足2
233≤≤e ,且0OA OB ⋅=(O 为坐标原点)时,求椭圆长轴长的取值范围.
【课堂练习】
7.已知P 是椭圆124:221=+y x C 的动点,点⎪⎭
⎫ ⎝⎛0,21A 关于原点O 的对称点是B ,若|PB |的最小值为23,求点P 的横坐标的取值范围.
【巩固练习】
基础训练(A 类) 1.已知抛物线y =x 2+3上存在关于直线x +y =0对称的相异两点A 、B ,则|AB |等于( )
A .3
B .4
C .32 D.42
2.椭圆19
36:2
21=+y x C 的一条弦被)2,4(A 平分,那么这条弦所在的直线方程是 ( ) A .02=-y x B .0102=+-y x C .022=--y x D.08-2=+y x
3.设斜率为2的直线l 过抛物线2
(0)y ax a =≠的焦点F ,且和y 轴交于点A ,若△O AF (O 为坐标原点)的面积为4,则抛物线方程为( ). A .24y x =± B .28y x =± C . 24y x = D. 2
8y x =
4.设抛物线2y =2x 的焦点为F ,过点M (3,0)的直线与抛物线相交于A ,B 两点,与抛物线的准线相交于C ,BF =2,则∆BCF 与∆ACF 的面积之比BCF ACF
S S ∆∆=( ) A .45 B .23 C .47 D.12
5.设双曲线()22
2200x y a b a b
-=1>,>的渐近线与抛物线21y =x +相切,则该双曲线的离心率等于( ) A .3 B .2 C .5 D.6
6.设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足.如果直线AF 的斜率为-3,那么|PF |= ( )
A .43
B .8
C .83 D. 16
7.过抛物线2
2(0)y px p =>的焦点F 作倾斜角为45的直线交抛物线于A 、B 两点,若线段AB 的长为8,则p =________________。

相关文档
最新文档