一次函数章节知识点+典型例题

合集下载

一次函数经典例题20题

一次函数经典例题20题

一次函数经典例题20题以下是一些关于一次函数的经典例题,共计20道。

每道题后面会给出解答和解析。

1.若函数y=2x+3,求当x等于5时的y值。

解答:将x=5代入函数,得到y=2(5)+3=13。

2.若函数y=-3x+2,求当y等于7时的x值。

解答:将y=7代入函数,得到-3x+2=7,解方程得到x=-1。

3.若函数y=4x-1,求函数在x轴上的截距。

解答:当y=0时,解方程4x-1=0,得到x=1/4。

所以函数在x轴上的截距为1/4。

4.若函数y=-2x+5,求函数的斜率。

解答:斜率即为函数中x的系数,所以斜率为-2。

5.若函数y=3x+2与函数y=-2x+1相交于点P,求点P的坐标。

解答:将两个函数相等,得到3x+2=-2x+1,解方程得到x=-1/5。

将x=-1/5代入其中一个函数,得到y=3(-1/5)+2=1/5。

所以点P的坐标为(-1/5,1/5)。

6.若函数y=kx+3与函数y=2x-1平行,求k的值。

解答:两个函数平行意味着它们的斜率相等。

所以k=2。

7.若函数y=5x+b与函数y=3x-2垂直,求b的值。

解答:两个函数垂直意味着它们的斜率之积为-1。

所以5*3=-1,解方程得到b=-17。

8.若函数y=ax+2与函数y=-bx+4平行且在点(1,3)相交,求a和b的关系。

解答:两个函数平行意味着它们的斜率相等。

所以a=-b。

将点(1,3)代入其中一个函数,得到a+2=3,解方程得到a=1。

所以b=-1。

9.若函数y=-2x+a与函数y=x-1垂直,求a的值。

解答:两个函数垂直意味着它们的斜率之积为-1。

所以-2*1=-1,解方程得到a=-1。

10.若函数y=4x+3与y轴平行,求函数在x轴上的截距。

解答:与y轴平行意味着函数的斜率为无穷大。

所以在x轴上的截距不存在。

11.若函数y=-3x+2与x轴平行,求函数在y轴上的截距。

解答:与x轴平行意味着函数的斜率为0。

所以在y轴上的截距为2。

一次函数的经典例题

一次函数的经典例题

一次函数的经典例题一次函数是数学中的基础概念之一,也是数学应用中常见的函数类型。

下面给出一些经典的一次函数例题,帮助读者更好地理解和掌握一次函数的相关概念和性质。

例题1:设直线L过点A(2,3)和B(5,7),求直线L的方程。

解析:根据直线上两点的坐标,我们可以先计算出直线的斜率k。

斜率的计算公式为k=(y2-y1)/(x2-x1)。

代入点A和B的坐标,得到斜率k=(7-3)/(5-2)=4/3。

接下来,我们可以使用点斜式的方程形式来求解,即y-y1=k(x-x1)。

代入点A的坐标和斜率,得到直线L的方程为y-3=(4/3)(x-2)。

例题2:已知直线L的方程为y=2x+1,求直线L与x轴和y轴的交点坐标。

解析:当直线与x轴相交时,y坐标为0;当直线与y轴相交时,x坐标为0。

因此,我们可以分别令y=0和x=0,解方程求出交点坐标。

首先,令y=0,代入直线方程得到0=2x+1,解方程可得x=-1/2。

所以,直线L与x轴的交点坐标为(-1/2,0)。

接下来,令x=0,代入直线方程得到y=2(0)+1,解方程可得y=1。

所以,直线L与y 轴的交点坐标为(0,1)。

例题3:已知一次函数y=3x-2,求函数图像与x轴和y轴的交点坐标,并画出函数图像。

解析:当函数与x轴相交时,y坐标为0;当函数与y轴相交时,x坐标为0。

因此,我们可以分别令y=0和x=0,解方程求出交点坐标。

首先,令y=0,代入函数方程得到0=3x-2,解方程可得x=2/3。

所以,函数图像与x轴的交点坐标为(2/3,0)。

接下来,令x=0,代入函数方程得到y=3(0)-2,解方程可得y=-2。

所以,函数图像与y轴的交点坐标为(0,-2)。

为了更好地理解该一次函数的特性,我们可以绘制其函数图像。

根据函数的斜率和截距,我们可以确定函数图像的走势。

斜率为正数3表示函数是一个上升的直线,而截距-2表示函数与y轴的交点坐标为(0,-2)。

通过这些信息,我们可以在坐标系中画出该一次函数的图像。

一次函数经典题型+习题(精华,含答案)

一次函数经典题型+习题(精华,含答案)

一次函数题型一、点的坐标方法: x 轴上的点纵坐标为0,y 轴上的点横坐标为0;若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数; 若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数; 若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数;1、 若点A (m,n )在第二象限,则点(|m|,-n )在第____象限;2、 若点P (2a-1,2-3b )是第二象限的点,则a,b 的范围为______________________;3、 已知A (4,b ),B (a,-2),若A ,B 关于x 轴对称,则a=_______,b=_________;若A,B 关于y 轴对称,则a=_______,b=__________;若若A ,B 关于原点对称,则a=_______,b=_________;4、 若点M (1-x,1-y )在第二象限,那么点N (1-x,y-1)关于原点的对称点在第______象限。

题型二、关于点的距离的问题方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示;若AB ∥x 轴,则(,0),(,0)A B A x B x 的距离为A B x x -; 若AB ∥y 轴,则(0,),(0,)A B A y B y 的距离为A B y y -;点B (2,-2)到x 轴的距离是_________;到y 轴的距离是____________; 1、 点C (0,-5)到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________;2、 点D (a,b )到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________; 3、 已知点P (3,0),Q(-2,0),则PQ=__________,已知点110,,0,22M N ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,则MQ=________; ()()2,1,2,8E F --,则EF 两点之间的距离是__________;已知点G (2,-3)、H (3,4),则G 、H 两点之间的距离是_________;4、 两点(3,-4)、(5,a )间的距离是2,则a 的值为__________;5、 已知点A (0,2)、B (-3,-2)、C (a,b ),若C 点在x 轴上,且∠ACB=90°,则C 点坐标为___________.题型三、一次函数与正比例函数的识别方法:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0时,一次函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。

一次函数经典题及答案

一次函数经典题及答案

一次函数经典题一.定义型例1. 已知函数是一次函数,求其解析式。

解:由一次函数定义知,,故一次函数的解析式为y=-6x+3。

注意:利用定义求一次函数y=kx+b解析式时,要保证k≠0。

如本例中应保证m-3≠0。

二. 点斜型例2. 已知一次函数y=kx-3的图像过点(2, -1),求这个函数的解析式。

解:一次函数的图像过点(2, -1),,即k=1。

故这个一次函数的解析式为y=x-3。

变式问法:已知一次函数y=kx-3 ,当x=2时,y=-1,求这个函数的解析式。

三. 两点型例3.已知某个一次函数的图像与x轴、y轴的交点坐标分别是(-2, 0)、(0, 4),则这个函数的解析式为_____。

解:设一次函数解析式为y=kx+b,由题意得,故这个一次函数的解析式为y=2x+4四. 图像型例4. 已知某个一次函数的图像如图所示,则该函数的解析式为__________。

解:设一次函数解析式为y=kx+b由图可知一次函数的图像过点(1, 0)、(0, 2)有故这个一次函数的解析式为y=-2x+2五. 斜截型例5. 已知直线y=kx+b与直线y=-2x平行,且在y轴上的截距为2,则直线的解析式为___________。

解析:两条直线;。

当k1=k2,b1≠b2时,直线y=kx+b与直线y=-2x平行,。

又直线y=kx+b在y轴上的截距为2,故直线的解析式为y=-2x+2六. 平移型例6. 把直线y=2x+1向下平移2个单位得到的图像解析式为___________。

解析:设函数解析式为y=kx+b,直线y=2x+1向下平移2个单位得到的直线y=kx+b与直线y=2x+1平行直线y=kx+b在y轴上的截距为b=1-2=-1,故图像解析式为七. 实际应用型例7. 某油箱中存油20升,油从管道中匀速流出,流速为0.2升/分钟,则油箱中剩油量Q(升)与流出时间t(分钟)的函数关系式为___________。

解:由题意得Q=20-0.2t ,即Q=-0.2t+20故所求函数的解析式为Q=-0.2t+20()注意:求实际应用型问题的函数关系式要写出自变量的取值范围。

(完整版)初中一次函数及相关典型例题

(完整版)初中一次函数及相关典型例题

一次函数复习课知识点1 一次函数和正比例函数的概念若两个变量x ,y 间的关系式可以表示成y=kx+b (k ,b 为常数,k ≠0)的形式,则称y 是x 的一次函数(x 为自变量),特别地,当b=0时,称y 是x 的正比例函数.例如:y=2x+3,y=-x+2,y=21x 等都是一次函数,y=21x ,y=-x 都是正比例函数.【说明】 (1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定.(2)一次函数y=kx+b (k ,b 为常数,b ≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x 的次数为1,一次项系数k 必须是不为零的常数,b 可为任意常数.(3)当b=0,k ≠0时,y= kx 仍是一次函数.(4)当b=0,k=0时,它不是一次函数.知识点2 函数的图象把一个函数的自变量x 与所对应的y 的值分别作为点的横坐标和纵坐标在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.画函数图象一般分为三步:列表、描点、连线.知识点 3一次函数的图象由于一次函数y=kx+b (k ,b 为常数,k ≠0)的图象是一条直线,所以一次函数y=kx+b 的图象也称为直线y=kx+b .由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y 轴的交点(0,b ),直线与x 轴的交点(-kb ,0).但也不必一定选取这两个特殊点.画正比例函数y=kx 的图象时,只要描出点(0,0),(1,k )即可.知识点4 一次函数y=kx+b (k ,b 为常数,k ≠0)的性质(1)k 的正负决定直线的倾斜方向;①k >0时,y 的值随x 值的增大而增大;②k ﹤O 时,y 的值随x 值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x 轴相交的锐角度数越大(直线陡),|k|越小,直线与x 轴相交的锐角度数越小(直线缓);(3)b 的正、负决定直线与y 轴交点的位置;①当b >0时,直线与y 轴交于正半轴上;②当b <0时,直线与y 轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数.(4)由于k,b的符号不同,直线所经过的象限也不同;①如图11-18(l)所示,当k>0,b>0时,直线经过第一、二、三象限(直线不经过第四象限);②如图11-18(2)所示,当k>0,b﹥O时,直线经过第一、三、四象限(直线不经过第二象限);③如图11-18(3)所示,当k﹤O,b>0时,直线经过第一、二、四象限(直线不经过第三象限);④如图11-18(4)所示,当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限).(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的.知识点3 正比例函数y=kx(k≠0)的性质(1)正比例函数y=kx的图象必经过原点;(2)当k>0时,图象经过第一、三象限,y随x的增大而增大;(3)当k<0时,图象经过第二、四象限,y随x的增大而减小.知识点4 点P(x0,y0)与直线y=kx+b的图象的关系(1)如果点P(x0,y0)在直线y=kx+b的图象上,那么x0,y0的值必满足解析式y=kx+b;(2)如果x0,y0是满足函数解析式的一对对应值,那么以x0,y0为坐标的点P(1,2)必在函数的图象上.例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点P′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P′(2,1)不在直线y=x+l的图象上.知识点5 确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.(2)由于一次函数y=kx+b(k≠0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.知识点6 待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b 中,k ,b 就是待定系数.知识点7 用待定系数法确定一次函数表达式的一般步骤(1)设函数表达式为y=kx+b ;(2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k 与b 的值,得到函数表达式.例如:已知一次函数的图象经过点(2,1)和(-1,-3)求此一次函数的关系式.解:设一次函数的关系式为y =kx+b (k ≠0),由题意可知,⎩⎨⎧+-=-+=,3,21b k b k 解⎪⎪⎩⎪⎪⎨⎧-==.35,34b k ∴此函数的关系式为y=3534-x . 【说明】 本题是用待定系数法求一次函数的关系式,具体步骤如下:第一步,设(根据题中要求的函数“设”关系式y=kx+b ,其中k ,b 是未知的常量,且k ≠0);第二步,代(根据题目中的已知条件,列出方程(或方程组),解这个方程(或方程组),求出待定系数k ,b );第三步,求(把求得的k ,b 的值代回到“设”的关系式y=kx+b 中);第四步,写(写出函数关系式).思想方法小结 (1)函数方法.函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题.(2)数形结合法.数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用.知识规律小结 (1)常数k ,b 对直线y=kx+b(k ≠0)位置的影响. ①当b >0时,直线与y 轴的正半轴相交;当b=0时,直线经过原点;当b ﹤0时,直线与y 轴的负半轴相交.②当k ,b 异号时,即-k b >0时,直线与x 轴正半轴相交; 当b=0时,即-kb =0时,直线经过原点; 当k ,b 同号时,即-kb ﹤0时,直线与x 轴负半轴相交. ③当k >O ,b >O 时,图象经过第一、二、三象限;当k >0,b=0时,图象经过第一、三象限;当b >O ,b <O 时,图象经过第一、三、四象限;当k ﹤O ,b >0时,图象经过第一、二、四象限;当k ﹤O ,b=0时,图象经过第二、四象限;当b <O ,b <O 时,图象经过第二、三、四象限.(2)直线y=kx+b (k ≠0)与直线y=kx(k ≠0)的位置关系.直线y=kx+b(k ≠0)平行于直线y=kx(k ≠0)当b >0时,把直线y=kx 向上平移b 个单位,可得直线y=kx+b ;当b ﹤O 时,把直线y=kx 向下平移|b|个单位,可得直线y=kx+b .(3)直线b 1=k 1x+b 1与直线y 2=k 2x+b 2(k 1≠0 ,k 2≠0)的位置关系. ①k 1≠k 2⇔y 1与y 2相交;②⎩⎨⎧=≠2121b b k k ⇔y 1与y 2相交于y 轴上同一点(0,b 1)或(0,b 2); ③⎩⎨⎧≠=2121,b b k k ⇔y 1与y 2平行; ④⎩⎨⎧==2121,b b k k ⇔y 1与y 2重合.典例讲解 基本题本节有关基本概念的题目主要是一次函数、正比例函数的概念及它们之间的关系,以及构成一次函数及正比例函数的条件.例1 下列函数中,哪些是一次函数?哪些是正比例函数?(1)y=-21x ; (2)y=-x2; (3)y=-3-5x ;(4)y=-5x 2; (5)y=6x-21 (6)y=x(x-4)-x 2. [分析] 本题主要考查对一次函数及正比例函数的概念的理解.解:(1)(3)(5)(6)是一次函数,(l )(6)是正比例函数.例2 当m 为何值时,函数y=-(m-2)x 32-m +(m-4)是一次函数?[分析] 某函数是一次函数,除应符合y=kx+b 外,还要注意条件k ≠0. 解:∵函数y=(m-2)x 32-m +(m-4)是一次函数,∴⎩⎨⎧≠--=-,0)2(,132m m ∴m=-2.∴当m=-2时,函数y=(m-2)x 32-m +(m-4)是一次函数.小结 某函数是一次函数应满足的条件是:一次项(或自变量)的指数为1,系数不为0.而某函数若是正比例函数,则还需添加一个条件:常数项为0.基础应用题本节基础知识的应用主要包括:(1)会确定函数关系式及求函数值;(2)会画一次函数(正比例函数)图象及根据图象收集相关的信息;(3)利用一次函数的图象和性质解决实际问题;(4)利用待定系数法求函数的表达式.例3 一根弹簧长15cm ,它所挂物体的质量不能超过18kg ,并且每挂1kg 的物体,弹簧就伸长0.5cm ,写出挂上物体后,弹簧的长度y (cm )与所挂物体的质量x(kg )之间的函数关系式,写出自变量x 的取值范围,并判断y 是否是x 的一次函数.[分析] (1)弹簧每挂1kg 的物体后,伸长0.5cm ,则挂xkg 的物体后,弹簧的长度y 为(l5+0.5x )cm ,即y=15+0.5x .(2)自变量x 的取值范围就是使函数关系式有意义的x 的值,即0≤x ≤18.(3)由y=15+0.5x 可知,y 是x 的一次函数.解:(l )y=15+0.5x .(2)自变量x 的取值范围是0≤x ≤18.(3)y 是x 的一次函数.学生做一做 乌鲁木齐至库尔勒的铁路长约600千米,火车从乌鲁木齐出发,其平均速度为58千米/时,则火车离库尔勒的距离s (千米)与行驶时间t (时)之间的函数关系式是 .老师评一评 研究本题可采用线段图示法,如图11-19所示.火车从乌鲁木齐出发,t 小时所走路程为58t 千米,此时,距离库尔勒的距离为s 千米,故有58t+s=600,所以,s=600-58t .例4 某物体从上午7时至下午4时的温度M (℃)是时间t (时)的函数:M=t 2-5t+100(其中t=0表示中午12时,t=1表示下午1时),则上午10时此物体的温度为 ℃.[分析] 本题给出了函数关系式,欲求函数值,但没有直接给出t 的具体值.从题中可以知道,t=0表示中午12时,t=1表示下午1时,则上午10时应表示成t=-2,当t=-2时,M=(-2)3-5×(-2)+100=102(℃).答案:102例5 已知y-3与x 成正比例,且x=2时,y=7.(1)写出y 与x 之间的函数关系式;(2)当x=4时,求y 的值;(3)当y=4时,求x 的值.[分析] 由y-3与x 成正比例,则可设y-3=kx ,由x=2,y=7,可求出k ,则可以写出关系式.解:(1)由于y-3与x 成正比例,所以设y-3=kx .把x=2,y=7代入y-3=kx 中,得7-3=2k ,∴k =2.∴y 与x 之间的函数关系式为y-3=2x ,即y=2x+3.(2)当x=4时,y=2×4+3=11.(3)当y =4时,4=2x+3,∴x=21. 学生做一做 已知y 与x+1成正比例,当x=5时,y=12,则y 关于x 的函数关系式是 .老师评一评 由y 与x+1成正比例,可设y 与x 的函数关系式为y=k (x+1).再把x=5,y=12代入,求出k 的值,即可得出y 关于x 的函数关系式. 设y 关于x 的函数关系式为y=k (x+1).∵当x=5时,y=12,∴12=(5+1)k ,∴k=2.∴y 关于x 的函数关系式为y=2x+2.【注意】 y 与x+1成正比例,表示y=k(x+1),不要误认为y=kx+1.例6 若正比例函数y=(1-2m )x 的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1﹤x 2时,y 1>y 2,则m 的取值范围是( )A .m ﹤OB .m >0C .m ﹤21D .m >M[分析] 本题考查正比例函数的图象和性质,因为当x 1<x 2时,y 1>y 2,说明y 随x 的增大而减小,所以1-2m ﹤O,∴m >21,故正确答案为D 项. 学生做一做 某校办工厂现在的年产值是15万元,计划今后每年增加2万元.(1)写出年产值y (万元)与年数x (年)之间的函数关系式;(2)画出函数的图象;(3)求5年后的产值.老师评一评 (1)年产值y (万元)与年数x (年)之间的函数关系式为y=15+2x .(2)画函数图象时要特别注意到该函数的自变量取值范围为x ≥0,因此,函数y=15+2x 的图象应为一条射线.画函数y=12+5x 的图象如图11-21所示.(3)当x=5时,y =15+2×5=25(万元)∴5年后的产值是25万元.例7 已知一次函数y=kx+b 的图象如图11-22所示,求函数表达式. [分析] 从图象上可以看出,它与x 轴交于点(-1,0),与y 轴交于点(0,-3),代入关系式中,求出k 为即可.解:由图象可知,图象经过点(-1,0)和(0,-3)两点,代入到y=kx+b 中,得⎩⎨⎧+=-+-=,03,0b b k ∴⎩⎨⎧-=-=.3,3b k ∴此函数的表达式为y=-3x-3.例8 求图象经过点(2,-1),且与直线y=2x+1平行的一次函数的表达式.[分析]图象与y=2x+1平行的函数的表达式的一次项系数为2,则可设此表达式为y=2x+b,再将点(2,-1)代入,求出b即可.解:由题意可设所求函数表达式为y=2x+b,∴图象经过点(2,-1),∴-l=2×2+b.∴b=-5,∴所求一次函数的表达式为y=2x-5.综合应用题本节知识的综合应用包括:(1)与方程知识的综合应用;(2)与不等式知识的综合应用;(3)与实际生活相联系,通过函数解决生活中的实际问题.例8 已知y+a与x+b(a,b为是常数)成正比例.(1)y是x的一次函数吗?请说明理由;(2)在什么条件下,y是x的正比例函数?[分析]判断某函数是一次函数,只要符合y=kx+b(k,b中为常数,且k≠0)即可;判断某函数是正比例函数,只要符合y=kx(k为常数,且k ≠0)即可.解:(1)y是x的一次函数.∵y+a与x+b是正比例函数,∴设y+a=k(x+b)(k为常数,且k≠0)整理得y=kx+(kb-a).∵k≠0,k,a,b为常数,∴y=kx+(kb-a)是一次函数.(2)当kb-a=0,即a=kb时,y是x的正比例函数.例9 某移动通讯公司开设了两种通讯业务:“全球通”使用者先交50元月租费,然后每通话1分,再付电话费0.4元;“神州行”使用者不交月租费,每通话1分,付话费0.6元(均指市内通话)若1个月内通话x分,两种通讯方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的关系;(2)一个月内通话多少分时,两种通讯方式的费用相同?(3)某人预计一个月内使用话费200元,则选择哪种通讯方式较合算?[分析]这是一道实际生活中的应用题,解题时必须对两种不同的收费方式仔细分析、比较、计算,方可得出正确结论.解:(1)y1=50+0.4x(其中x≥0,且x是整数)y2=0.6x(其中x≥0,且x是整数)(2)∵两种通讯费用相同,∴y 1=y 2,即50+0.4x=0.6x .∴x =250.∴一个月内通话250分时,两种通讯方式的费用相同.(3)当y 1=200时,有200=50+0.4x ,∴x=375(分).∴“全球通”可通话375分.当y 2=200时,有200=0.6x ,∴x=33331(分). ∴“神州行”可通话33331分. ∵375>33331, ∴选择“全球通”较合算.例10 已知y+2与x 成正比例,且x=-2时,y=0.(1)求y 与x 之间的函数关系式;(2)画出函数的图象;(3)观察图象,当x 取何值时,y ≥0?(4)若点(m ,6)在该函数的图象上,求m 的值;(5)设点P 在y 轴负半轴上,(2)中的图象与x 轴、y 轴分别交于A ,B 两点,且S △ABP =4,求P 点的坐标.[分析] 由已知y+2与x 成正比例,可设y+2=kx ,把x=-2,y=0代入,可求出k ,这样即可得到y 与x 之间的函数关系式,再根据函数图象及其性质进行分析,点(m ,6)在该函数的图象上,把x=m ,y=6代入即可求出m 的值.解:(1)∵y+2与x 成正比例,∴设y+2=kx (k 是常数,且k ≠0)∵当x=-2时,y=0.∴0+2=k ·(-2),∴k =-1.∴函数关系式为x+2=-x ,即y=-x-2.(2)列表;x0 -2(3)由函数图象可知,当x ≤-2时,y ≥0.∴当x ≤-2时,y ≥0.(4)∵点(m ,6)在该函数的图象上,∴6=-m-2,∴m =-8.(5)函数y=-x-2分别交x 轴、y 轴于A ,B 两点,∴A (-2,0),B (0,-2).∵S △ABP =21·|AP|·|OA|=4, ∴|BP|=428||8==OA . ∴点P 与点B 的距离为4.又∵B 点坐标为(0,-2),且P 在y 轴负半轴上,∴P 点坐标为(0,-6).例11 已知一次函数y=(3-k )x-2k 2+18.(1)k 为何值时,它的图象经过原点?(2)k 为何值时,它的图象经过点(0,-2)?(3)k 为何值时,它的图象平行于直线y=-x ?(4)k 为何值时,y 随x 的增大而减小?[分析] 函数图象经过某点,说明该点坐标适合方程;图象与y 轴的交点在y 轴上方,说明常数项b >O ;两函数图象平行,说明一次项系数相等;y 随x 的增大而减小,说明一次项系数小于0.解:(1)图象经过原点,则它是正比例函数.∴⎩⎨⎧≠-=+-,03,01822k k ∴k =-2. ∴当k=-3时,它的图象经过原点. (2)该一次函数的图象经过点(0,-2).∴-2=-2k 2+18,且3-k ≠0,∴k=±10∴当k=±10时,它的图象经过点(0,-2)(3)函数图象平行于直线y=-x ,∴3-k=-1,∴k =4.∴当k =4时,它的图象平行于直线x=-x .(4)∵随x 的增大而减小,∴3-k ﹤O .∴k >3.∴当k >3时,y 随x 的增大而减小.例12 判断三点A (3,1),B (0,-2),C (4,2)是否在同一条直线上.[分析] 由于两点确定一条直线,故选取其中两点,求经过这两点的函数表达式,再把第三个点的坐标代入表达式中,若成立,说明在此直线上;若不成立,说明不在此直线上.解:设过A ,B 两点的直线的表达式为y=kx+b .由题意可知,⎩⎨⎧+=-+=,02,31b b k ∴⎩⎨⎧-==.2,1b k ∴过A ,B 两点的直线的表达式为y=x-2.∴当x=4时,y=4-2=2.∴点C (4,2)在直线y=x-2上.∴三点A (3,1), B (0,-2),C (4,2)在同一条直线上.学生做一做 判断三点A (3,5),B (0,-1),C (1,3)是否在同一条直线上.探索与创新题主要考查学生运用知识的灵活性和创新性,体现分类讨论思想、数形结合思想在数学问题中的广泛应用.例13 老师讲完“一次函数”这节课后,让同学们讨论下列问题:(1)x 从0开始逐渐增大时,y=2x+8和y=6x 哪一个的函数值先达到30?这说明了什么?(2)直线y=-x 与y=-x+6的位置关系如何?甲生说:“y=6x 的函数值先达到30,说明y=6x 比y=2x+8的值增长得快.” 乙生说:“直线y=-x 与y=-x+6是互相平行的.”你认为这两个同学的说法正确吗?[分析] (1)可先画出这两个函数的图象,从图象中发现,当x >2时,6x >2x+8,所以,y=6x 的函数值先达到30.(2)直线y=-x 与y=-x+6中的一次项系数相同,都是-1,故它们是平行的,所以这两位同学的说法都是正确的.解:这两位同学的说法都正确.例14 某校一名老师将在假期带领学生去北京旅游,用旅行社说:“如果老师买全票,其他人全部半价优惠.”乙旅行社说:“所有人按全票价的6折优惠.”已知全票价为240元.(1)设学生人数为x ,甲旅行社的收费为y 甲元,乙旅行社的收费为y 乙元,分别表示两家旅行社的收费;(2)就学生人数讨论哪家旅行社更优惠.[分析] 先求出甲、乙两旅行社的收费与学生人数之间的函数关系式,再通过比较,探究结论.解:(1)甲旅行社的收费y 甲(元)与学生人数x 之间的函数关系式为 y 甲=240+21×240x=240+120x. 乙旅行社的收费y 乙(元)与学生人数x 之间的函数关系式为y 乙=240×60%×(x+1)=144x+144.(2)①当y 甲=y 乙时,有240+120x=144x+144,∴24x =96,∴x=4.∴当x=4时,两家旅行社的收费相同,去哪家都可以.②当y 甲>y 乙时,240+120x >144x+144,∴24x <96,∴x <4.∴当x ﹤4时,去乙旅行社更优惠.③当y 甲﹤y 乙时,有240+120x ﹤140x+144,∴24x >96,∴x >4.∴当x >4时,去甲旅行社更优惠.小结 此题的创新之处在于先通过计算进行讨论,再作出决策,另外,这两个函数都是一次函数,利用图象来研究本题也不失为一种很好的方法.学生做一做 某公司到果园基地购买某种优质水果,慰问医务工作者.果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案.甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由顾客自己租车运回,已知该公司租车从基地到公司的运输费为5000元.(1)分别写出该公司两种购买方案的付款y (元)与所购买的水果量x (千克)之间的函数关系式,并写出自变量X 的取值范围;(2)当购买量在什么范围时,选择哪种购买方案付款少?并说明理由. 老师评一评 先求出两种购买方案的付款y (元)与所购买的水果量x (千克)之间的函数关系式,再通过比较,探索出结论.(1)甲方案的付款y 甲(元)与所购买的水果量x (千克)之间的函数关系式为y 甲=9x (x ≥3000);乙方案的付款y 乙(元)与所购买的水果量x (千克)之间的函数关系式为y 乙=8x+500O (x ≥3000).(2)有两种解法:解法1:①当y 甲=y 乙时,有9x=8x+5000,∴x=5000.∴当x=5000时,两种方案付款一样,按哪种方案都可以.②当y 甲﹤y 乙时,有9x ﹤8x+5000,∴x <5000.又∵x ≥3000,∴当3000≤x ≤5000时,甲方案付款少,故采用甲方案.③当y 甲>y 乙时,有9x >8x+5000,∴x >5000.∴.当x >500O 时,乙方案付款少,故采用乙方案.解法2:图象法,作出y 甲=9x 和y 乙=8x+5000的函数图象,如图11-24所示,由图象可得:当购买量大于或等于3000千克且小于5000千克时,y 甲﹤y 乙,即选择甲方案付款少;当购买量为5000千克时,y 甲﹥y 乙即两种方案付款一样;当购买量大于5000千克时,y 甲>y 乙,即选择乙方案付款最少.【说明】 图象法是解决问题的重要方法,也是考查学生读图能力的有效途径.例15 一次函数y=kx+b 的自变量x 的取值范围是-3≤x ≤6,相应函数值的取值范围是-5≤y ≤-2,则这个函数的解析式为 .[分析] 本题分两种情况讨论:①当k >0时,y 随x 的增大而增大,则有:当x=-3,y=-5;当x=6时,y=-2,把它们代入y=kx+b 中可得⎩⎨⎧+=-+-=-,62,35b k b k ∴⎪⎩⎪⎨⎧-==,4,31b k ∴函数解析式为y=-31x-4.②当k ﹤O 时则随x 的增大而减小,则有:当x=-3时,y=-2;当x=6时,y=-5,把它们代入y=kx +b 中可得⎩⎨⎧+=-+-=-,65,32b k b b ∴⎪⎩⎪⎨⎧-=-=,3,31b k ∴函数解析式为y=-31x-3. ∴函数解析式为y=31x-4,或y=-31x-3. 答案:y=31x-4或y=-31x-3. 【注意】 本题充分体现了分类讨论思想,方程思想在一次函数中的应用,切忌考虑问题不全面.中考试题预测例1 某地举办乒乓球比赛的费用y (元)包括两部分:一部分是租用比赛场地等固定不变的费用b (元),另一部分与参加比赛的人数x (人)成正比例,当x=20时y=160O ;当x=3O 时,y=200O .(1)求y 与x 之间的函数关系式;(2)动果有50名运动员参加比赛,且全部费用由运动员分摊,那么每名运动员需要支付多少元?[分析] 设举办乒乓球比赛的费用y (元)与租用比赛场地等固定不变的费用b (元)和参加比赛的人数x (人)的函数关系式为y=kx+b (k ≠0).把x=20,y=1600;x=30,y=2000代入函数关系式,求出k ,b 的值,进而求出y 与x 之间的函数关系式,当x=50时,求出y 的值,再求得y ÷50的值即可.解:(1)设y 1=b ,y 2=kx (k ≠0,x >0),∴y=kx+b .又∵当x=20时,y=1600;当x=30时,y=2000,∴⎩⎨⎧+=+=,302000,201600b k b k ∴⎩⎨⎧==.800,40b k∴y 与x 之间的函数关系式为y=40x+800(x >0).(2)当x=50时,y=40×50+800=2800(元).∴每名运动员需支付2800÷50=56(元〕答:每名运动员需支付56元.例2 已知一次函数y=kx+b ,当x=-4时,y 的值为9;当x=2时,y 的值为-3.(1)求这个函数的解析式。

一次函数经典例题20题

一次函数经典例题20题

一次函数经典例题20题(最新版)目录1.题目概述2.一次函数的基本概念3.一次函数的性质4.例题解析5.总结正文一次函数经典例题 20 题一次函数是数学中的基本概念之一,它在各个领域的数学问题中都有广泛的应用。

本文将通过 20 个经典例题,介绍一次函数的基本概念和性质,并解析如何解决一次函数的题目。

一、一次函数的基本概念一次函数是指形如 y=ax+b 的函数,其中 a 和 b 是常数,且 a 不等于 0。

在这个函数中,x 的次数为 1,因此称为一次函数。

其中,y 表示函数的输出,x 表示函数的输入,a 表示斜率,b 表示截距。

二、一次函数的性质1.斜率斜率是指函数图像在坐标系中的倾斜程度。

在一次函数 y=ax+b 中,斜率 a 表示函数图像的倾斜程度。

当 a>0 时,函数图像是向上倾斜的;当 a<0 时,函数图像是向下倾斜的。

2.截距截距是指函数图像与坐标轴的交点。

在一次函数 y=ax+b 中,截距 b表示函数图像与 y 轴的交点。

当 b>0 时,函数图像与 y 轴的交点在 y 轴的正半轴上;当 b<0 时,函数图像与 y 轴的交点在 y 轴的负半轴上。

3.函数的单调性一次函数的单调性是指函数值随着自变量的增大或减小而单调增加或单调减少的性质。

当斜率 a>0 时,函数图像是向上倾斜的,函数值随着 x 的增大而单调增加;当斜率 a<0 时,函数图像是向下倾斜的,函数值随着 x 的增大而单调减少。

三、例题解析以下是 20 个一次函数的经典例题及其解析:1.已知函数 y=2x+3,求当 x=2 时的函数值。

解:将 x=2 代入函数 y=2x+3 中,得到 y=2×2+3=7。

2.已知函数 y=-x+7,求当 x=5 时的函数值。

解:将 x=5 代入函数 y=-x+7 中,得到 y=-5+7=2。

3.已知函数 y=3x-2,求函数的斜率。

解:函数的斜率是 3。

一次函数知识点及分类练习题(绝对经典全面)

一次函数知识点及分类练习题(绝对经典全面)

一次函数知识点及分类练习题一、一次函数的定义1.若函数y=(k+1)x+k2-1是正比例函数,则k的值为()A. 0B. ﹣1C. ±1D. 12.若函数是一次函数,则m的值为( )A. B. -1 C. 1 D. 23.下列函数:①y= x,②y=2x-1,③ ,④y=-x中,是一次函数的有( )A. 4个B. 3个C. 2个D. 1个4.已知函数y=(k-1)x+k2-1,当k________时,它是一次函数,当k________时,它是正比例函数.二、一次函数的性质5.已知一次函数. 若随的增大而增大,则的取值范围是()A. B. C. D.6.已知一次函数的图象经过第二、三、四象限,则的取值范围在数轴上表示为(). A. B.C. D.7.已知(-1,y1),(1.8,y2),(- , y3)是直线y = -3x + m (m 为常数)上的三个点,则y1,y2,y3的大小关系是( )A. y3>y1>y2B. y1>y3>y2C. y1>y2>y3D. y3>y2>y18.下列图象中,哪个是一次函数的大致图象()A. B. C. D.9.在一次函数y=kx+2中,若y随x的增大而增大,则k________0.(填“>”或“<”),它的图象不经过第________象限.10.若点P(-3,),Q(2,)在一次函数的图象上,则与的大小关系是________三、一次函数图像的平移11.直线y=2x+2向下平移4个单位后与x轴的交点坐标是()A. (0,1)B. (0,-1)C. (-1,0)D. (1,0)12、一次函数的图像先向下平移5个单位后再向右平移4个单位,其函数关系式为13、一次函数能过平移后变为y=-5x+6,其平移过程是14.将一次函数y=﹣2x﹣1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为________.四、一次函数的求值15.若点A(2,-3)、B(4,3)、C(5,a)在同一条直线上,则a的值是( )A. 6或-6B. 6C. -6D. 6或316.下列哪一个点在直线y=-2x-5上()A. (2,-1)B. (3,1)C. (-2,1)D. (-1,-3)17.当x=-1时,一次函数y=kx+3的值为5,则k的值为________ .18.一次函数y=﹣2x+6的图象与x轴交点坐标是________,与y轴交点坐标是________.19.在一次函数中,随的增大而________(填“增大”或“减小”),当时,y的最小值为________.20.在函数y=﹣3x+7中,如果自变量x大于2,那么函数值y的取值范围是________.五、一次函数的解析式21.已知一次函数的图象过点(3,5) 与(-4, -9),那么这个函数的解析式是________,则该函数的图象与轴交点的坐标为________.22.已知直线经过点﹙1,2﹚和点﹙3,0﹚,这条直线的解析式.23.已知y是x的一次函数,当x=3时,y=1;当x=﹣2时,y=﹣4,求此一次函数的解析式.六、一次函数与方程及不等式的关系24.如图,直线l1的解析式是y=2x-1,直线l2的解析式是y=x+1,则方程组的解是________.25.如图,直线与直线交于P ,则方程组的解是________.26.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是________.27.已知二元一次方程组的解是,直线y=2x与y=﹣3x+b的交点坐标是________.24题25题26题28.已知二元一次方程组的解是,直线y=2x与y=﹣3x+b的交点坐标是________.七、一次函数的应用29.一次函数y=x+4与坐标轴所围成的三角形的面积为________30、如图,直线y=﹣x+3与坐标轴分别交于点A、B,与直线y=x交于点C,线段OA上的点Q以每秒1个长度单位的速度从点O出发向点A作匀速运动,运动时间为t秒,连接CQ.若△OQC是等腰直角三角形,则t的值为________.31.一个一次函数的图象与直线y=﹣2x+1平行,且经过点(﹣2,﹣6),则这个一次函数的解析式为________.32.某养猪专业户利用一堵砖墙(长度足够)围成一个长方形猪栏,围猪栏的栅栏一共长40m ,设这个长方形的相邻两边的长分别为x (m)和y(m).(1)求y关于x的函数表达式和自变量的取值范围;(2)若长方形猪栏砖墙部分的长度为5m ,求自变量x 的取值范围.33.如图,直线y=kx+6(k≠0)与x轴,y轴分别交于点E,F,点E的坐标为(-8,0),点A 的坐标为(-6,0),点P(x,y)是线段EF上的一个动点(1)求k的值;(2)求点P在运动过程中△OPA的面积S与x的函数关系式,并写出自变量x的取值范围;(3)当△OPA的面积为9时,求点P的坐标.34.如图,在平面直角坐标系中,直线与轴交于点A,直线与轴交于点B,与直线y=2x+3交于点C(-1,n).(1)求n、k的值;(2)求△ABC的面积.。

一次函数各类题型详解加练习

一次函数各类题型详解加练习
∴A的坐标为(0,2),B的坐标为(0,-3)
令 +2=-2 -3,解得 =
(提示:求两个函数之间的交点,令两个解析式相等即可得到交点横坐标)
将 = 带入y₁= +2
得:y₁= +2=
∴点C的坐标为( , )
(2)AB=2-(-3)=5(提示:AB与y轴重合,上y减下y求长度。)
(分析:以AB为底,点C到AB的距离为高,就可以求出△ABC的面积。)
求线段AB、CD的长度。
解:∵AB∥x轴
∴AB=6-(-3)= 9
(右x减左x,即可求得长度)
同理∵CD∥x轴
∴CD=5-2=3
③既不平行于x轴,也不平行于y轴:如:点A(x₁,y₁),点B(x₂,y₂),则使用求线段的通用公式AB=
例:点A的坐标为(3,3),点B的坐标为(-3,-5),
求线段AB的长度。
S△COP=
OC·OP= ×8×(2t-8)=8t-32(t≥4)
(上一问中刚求出)
-8t+32=2×16(0≤t<4)
S△COP=2S△AOB,即或解,得:t=0或者t=8
8t-32=2×16(t≥4)
(4)思路:在△COP和△AOB中:∠COP=∠AOB=90°,OC =OA=8
还差一组条件就能证明两三角形全等了,因为整个题目并未有角度的信息,
解:AB中点的坐标为:( , )整理,得( ,3)
∵直线AB的k₁=2,且k₁·k₂=-1
∴垂直于AB的直线的k₂=
设垂直平分线解析式为:y= +b,将( ,3)代入解析式,
可得AB中垂线的解析式为y= +
把y=0代入解析式可得
点P的坐标为:( ,0)
综上:符合要求的点P共有4个:

一次函数典型例题

一次函数典型例题
(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围。
10.已知一次函数y=kx+b的图象经过点(-1, -5),且与正比例函数y= x的图象相交于点(2,a),求
(1)a的值
(2)k,b的值
(3)这两个函数图象与x轴所围成的三角形的面积。
三图像及性质
1.将直线y=3x-2向上平移4个单位,得直线_。
一次函数典型例题(共3页)
一次函数典型例题
一、概念
1.正确反映,龟兔赛跑的图象是()
ABCD
2.一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的高度(cm)与燃烧时间(小时)的函数关系用图象表示为()
3.已知动点P在边长为2的正方形ABCD的边上沿着A—B—C—D运动,x表示点P由A点出发所经过路程,y表示△APD的面积,则y与x的函数关系图象大致为()
4.如图1,在矩形ABCD中,AB<BC,点E为对角线AC上的一个动点,连接BE,DE,过E作EF⊥BC于F.设AE=x,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的
A.线段BEB.线段EFC.线段CED.线段DE
二、表达式
1.已知一次函数y=kx+b的图象经过(-1,2)、(2,3)两点,则这个一次函数的关系式为_。
2.若函数 是一次函数,则m的值是.
3.已知y= + , 与x+2成正比, 是x+1的2倍,并且当x=0时,y=4,试求函数y与x的关系式。
4.一次函数y=kx+b与y=2x+1平行,且经过点(-3,4),则表达式为:。
5.写出同时具备下列两个条件的一次函数表达式(写出一个即可)。

八年级数学一次函数32道典型题(含答案和解析)

八年级数学一次函数32道典型题(含答案和解析)

八年级数学一次函数32道典型题(含答案和解析)1、下列函数中:① y=2πx ;② y=-2x+6;③ y=34x ;④ y=x2+3;⑤ y=32x ;⑥ y=√x ,其中是一次函数的有( )个.A.1B.2C.3D.4 答案: C .解析: ①②③满足自变量次数为1,系数不为零,且自变量不在分母上,故为一次函数.④自变量次数不为1,故不是一次函数. ⑤自变量在分母上,不是一次函数. ⑥自变量次数为12,不是一次函数.考点:函数——一次函数——一次函数的基础.2、 当m= 时,y=(m -4)x 2m+1-4x -5 是一次函数. 答案: 4或0.解析:y=(m -4)x 2m+1-4x -5是一次函数.则 m -4=0或2m+1=1. 解得 m=4或m=0.考点:函数——一次函数——一次函数的基础.3、一次函数y=kx+b 的图象不经过第二象限,则k ,b 的取值范围是( ).A. k <0,b≥0B. k >0,b≤0C. k <0,b <0D. k >0,b >0 答案: B .解析: ① k >0时,直线必经过一、三象限,故k >0.② 再由图象过三、四象限或者原点,所以b≤0 .考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.4、一次函数y=kx -k 的图象一定经过( ).A. 一、二象限B. 二、三象限C. 三、四象限D. 一、四象限 答案: D . 解析: 解法一:当k >0时,函数为增函数,且与y 轴交点在x 轴下方,此时函数经过一、三、四象限.当k <0时,函数为减函数,且与y 轴交点在x 轴上方,此时函数经过一、二、四象限.∴一次函数y=kx -k 的图象一定经过一、四象限. 解法二:一次函数y=kx -k=k (x -1)的图象一定过(1,0),即该图象一定经过一、四象限.考点:函数——一次函数——一次函数的图象——一次函数的性质.5、如果ab >0,ac <0,则直线y=−ab x+cb 不通过( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 答案: A .解析:ab >0 ,ac <0.则a ,b 同号;a ,c 异号;b ,c 异号. ∴−ab <0,cb <0.∴直线y=−abx+cb 过第二、三、四象限.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.6、如图,一次函数y=kx+b 和正比例函数y=kbx 在同一坐标系内的大致图象是( ).解析:A 、∵一次函数的图象经过一、三、四象限.∴k>0,b<0.∴kb<0.∴正比例函数y=kbx应该经过第二、四象限.故本选项错误.B、∵一次函数的图象经过一、二、四象限.∴k<0,b>0.∴kb<0.∴正比例函数y=kbx应该经过第二、四象限.故本选项正确.C、∵一次函数的图象经过二、三、四象限.∴k<0,b<0.∴kb>0.∴正比例函数y=kbx应该经过第一、三象限.故本选项错误.D、∵一次函数的图象经过一、二、三象限.∴k>0,b>0.∴kb>0.∴正比例函数y=kbx应该经过第一、三象限.故本选项错误.故选B.考点:函数——一次函数——正比例函数的图象——一次函数的图象.7、下列图象中,不可能是关于的一次函数y=mx-(m-3)的图象的是().解析:将解析式变为y=mx+(3-m)较易判断.考点:函数——一次函数——一次函数的图象.8、若一次函数y=-2x+3的图象经过点P1(-5,m)和点P2(1,n),则m n.(用“>”、“<”或“=”填空).答案:>.解析:在y=-2x+3中,k=-2<0.∴在一次函数y=-2x+3中,y随x的增大而减小.∵-5<1.∴m>n.考点:函数——一次函数——一次函数的性质.9、一次函数y=kx+b中,y随着x的增大而减小,b<0,则这个函数的图象不经过().A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:A.解析:∵一次函数y=kx+b中,y随着x的增大而减小.∴k<0.又∵b<0.∴这个函数的图象不经过第一象限.考点:函数——一次函数——一次函数的性质——一次函数图象与k、b的关系.10、已知一次函数y=kx+b-x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为().A. k>1,b<0B. k>1,b>0C. k>0,b>0D. k>0,b<0答案:A.解析:一次函数y=kx+b-x即为y=(k-1)x+b.∵函数值y随x的增大而增大.∴k-1>0,解得k>1.∵图象与x轴的正半轴相交,∴b <0.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.11、已知一次函数y=kx+2k+3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所有可能取得的整数值为 . 答案:-1.解析: 由已知得:{ 2k +3>0k <0.解得:−32<k <0. ∵k 为整数. ∴k=-1.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.12、在直角坐标系x0y 中,一次函数y=kx+6的图象经过点A (2,2). (1) 求一次函数的表达式.(2) 求一次函数图象与x 轴、y 轴交点的坐标.答案:(1) 一次函数的表达式为:y=-2x+6.(2) 一次函数图象与x 轴、y 轴交点的坐标分别为(3,0),(0,6). 解析:(1) ∵一次函数y=kx+6的图象经过点A (2,2).∴2=2k+6. ∴k=-2.∴一次函数的表达式为:y=-2x+6.(2) 在y=-2x+6中,令x=0,则y=6,令y=0,则x=3.∴一次函数图象与x 轴、y 轴交点的坐标分别为(3,0),(0,6).考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.13、设一次函数y=kx+b 的图象经过点P (1,2),它与x 轴,y 轴的正半轴分别交于A ,B 两点,坐标原点为O ,若OA+OB=6,则此函数的解析式是 或 . 答案: 1.y=-x+3.2.y=-2x+4.解析:因为一次函数y=kx+b的图象经过点P(1,2).所以k+b=2,即k=2-b.令y=0,则x=−bk =bb−2.所以点A(bb−2,0),点B(0,b).又因为A,B位于x轴,y轴的正半轴,并且OA+OB=6.所以bb−2+b=6,其中b>2.解得b=3或b=4.此时k=-1或-2.所以函数的解析式是y=-x+3或y=-2x+4.考点:函数——一次函数——一次函数综合题.14、一次函数y=(m2-1)x+(1-m)和y=(m+2)x+(2m-3)的图象分别与y轴交于点P和Q,这两点关于x轴对称,则m的值是().A. 2B.2或-1C. 1或-1D.-1答案:A.解析:一次函数y=(m2-1)x+(1-m)的图象与y轴的交点P为(0,1-m).一次函数y=(m+2)x+(2m-3)的图象与y轴的交点Q为(0,2m-3).因为P和Q关于x轴对称.所以1-m+2m-3=0.解得m=2.考点:函数——一次函数——一次函数的图象——一次函数图象与几何变换.15、已知直线y=2x-1.(1)求此直线与x轴的交点坐标.(2)若直线y=k1x+b1与已知直线平行,且过原点,求k1、b1的值.(3)若直线y=k2x+b2与已知直线关于y轴对称,求k2、b2的值.答案:(1)(12,0).(2)k1=2,b1=0.(3)k2=-2,b2=-1.解析:(1)令y=0,则0=2x-1.∴x=12.∴与x轴的交点坐标为(12,0).(2)∵y=k1x+b1与y=2x-1平行.∴k1=2.又∵y=k1x+b1过原点.∴b1=0.(3)在直线y=2x-1上任取一点(1,1).则(1,1)关于y轴的对称点为(-1,1).又∵y=k2x+b2与已知直线关于y轴对称.则b2=-1.点(-1,1)在直线y=k2x-1上.∴1=-k2-1.∴k2=-2.考点:函数——一次函数——一次函数与坐标轴交点——一次函数图象与几何变换——两条直线相交或平行问题.16、如图所示,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值.(2)解关于x,y的方程组{y=x+1y=mx+n,请你直接写出它的解.(3)直线l3:y=nx+m是否也经过点P?请说明理由.答案:(1)b=2.(2){x=1y=2.(3)直线l3:y=nx+m经过点P.解析:(1)将P(1,b)代入y=x+1,得b=1+1=2.(2)由于P点坐标为(1,2),所以{x=1y=2.(3)将P(1,2)代入解析式y=mx+n得,m+n=2.将x=1代入y=nx+m得y=m+n.由于m+n=2.所以y=2.故P(1,2)也在y=nx+m上.考点:函数——一次函数——求一次函数解析式——一次函数与二元一次方程.17、如图,直线y=kx+b经过A(-1,1)和B(-√7,0)两点,则关于x的不等式组0<kx+b<-x的解集为.答案:-√7<x<-1.解析:∵直线y=kx+b经过B(-√7,0)点.∴0<kx+b,就是y>0,y>0的范围在x轴的上方.此时:-√7<x.∵直线y=-x经过A(-1,1).那么就是A点左侧kx+b<-x.得:x<-1.故解集为:-√7<x<-1.考点:函数——一次函数——一次函数与一元一次不等式.18、阅读理解:在数轴上,x=1表示一个点,在平面直角坐标系中,x=1表示一条直线(如图(a)所示),在数轴上,x≥1表示一条射线;在平面直角坐标系中,x≥1表示的是直线x=1右侧的区域;在平面直角坐标系中,x+y-2=0表示经过(2,0),(0,2)两点的一条直线,在平面直角坐标系中,x+y-2≤0表示的是直线x+y-2=0及其下方的区域(如图(b)所示),如果x,y满足{x+2y−2≥03x+2y−6≤0x≥0y≥0,请在图(c)中用阴影描出点(x,y)所在的区域.答案:解析:略.考点:函数——一次函数——一次函数与一元一次不等式.19、甲、乙两人从顺义少年宫出发,沿相同的线路跑向顺义公园,甲先跑一段路程后,乙开始出发,当乙超过甲150米时,乙停在此地等候甲,两人相遇后,乙和甲一起以甲原来的速度跑向顺义公园,如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象,请根据题意解答下列问题.(1)在跑步的全过程中,甲共跑了米,甲的速度为米/秒.(2)求乙跑步的速度及乙在途中等候甲的时间.(3)求乙出发多长时间第一次与甲相遇?答案:(1)1.900.2.1.5.(2)乙在途中等候甲的时间是100秒.(3)乙出发150秒时第一次与甲相遇.解析:(1)解:根据图象可以得到:甲共跑了900米,用了600秒.∴甲的速度为900÷600=1.5米/秒.(2)甲跑500秒的路程是500×1.5=750米.甲跑600米的时间是(750-150)÷1.5=400秒.乙跑步的速度是750÷(400-100)=2.5米/秒.乙在途中等候甲的时间是500-400=100秒.(3)∵D(600,900),A(100,0),B(400,750).∴OD的函数关系式为y=1.5x,AB的函数关系式为y=2.5x-250.根据题意得{y=1.5xy=2.5x−250.解得x=250.∴乙出发150秒时第一次与甲相遇.考点:函数——一次函数——一次函数的应用.20、如图1是某公共汽车线路收支差额y(单位:万元)(票价总收人减去运营成本)与乘客量x(单位:万人)的函数图象.目前这条线路亏损,为了扭亏,有关部门举行提高票价的听证会.乘客代表认为:公交公司应节约能源,改善管理,降低运营成本,以此举实现扭亏.公交公司认为:运营成本难以下降,公司己尽力,提高票价才能扭亏.根据这两种意见,可以把图1分别改画成图2和图3.(1)说明图1中点A和点B的实际意义.(2)你认为图2和图3两个图象中,反映乘客意见的是,反映公交公司意见的是.(3)如果公交公司采用适当提高票价又减少成本的办法实现扭亏为赢,请你在图4 中画出符合这种办法的y与x的大致函数关系图象.答案:(1)点A表示这条线路的运营成本为1万元.点B表示乘客数达1.5万人时,这条线路的收支达到平衡.(2)1.图3.2.图2.(3)将图4中的射线AB绕点A逆时针适当旋转且向上平移.解析:(1)点A表示这条线路的运营成本为1万元.点B表示乘客数达1.5万人时,这条线路的收支达到平衡.(2)反映乘客意见的是图3.反映公交公司意见的是图2.(3)将图4中的射线AB绕点A逆时针适当旋转且向上平移.考点:函数——一次函数——一次函数的图象——一次函数的应用.x+b的图象经过点A(2,3),AB⊥x轴于点B,连接OA.21、如图,已知一次函数y=−12(1) 求一次函数的解析式.(2) 设点P 为y=−12x+b 上的一点,且在第一象限内,经过点P 作x 轴的垂线,垂足为Q .若△POQ 的面积等于54倍的△AOB 的面积,求点P 的坐标.答案:(1) y=−12x+4.(2) (3,52)或(5,32).解析:(1) ∵一次函数y=−12x+b 的图象经过点A (2,3).∴3=(−12)×2+b .解得b=4.故此一次函数的解析式为:y=−12x+4.(2) 设P (p ,d ),p >0.∵点P 在直线y=−12x+4的图象上.∴ d=−12p+4①.∵ S △POQ =54S △AOB =54×12×2×3. ∴ 12pd=154②.①②联立得,{ d =−12p +412pd =154.解得{ p =3d =52或{p =5d =32.∴ 点坐标为:(3,52)或(5,32).考点:函数——一次函数——求一次函数解析式——一次函数的应用.22、已知:一次函数y=12x+3的图象与正比例函数y=kx 的图象相交于点A (a ,1).(1) 求a 的值及正比例函数y=kx 的解析式.(2) 点P 在坐标轴上(不与原点O 重合),若PA=OA ,直接写出P 点的坐标.(3) 直线x=m (m <0且m≠-4 )与一次函数的图象交于点B ,与正比例函数图象交于点C ,若△ABC 的面积为S ,求S 关于m 的函数关系式.答案:(1) a=-4,正比例函数的解析式为y=−14x . (2) P 1(-8,0)或P 2(0,2).(3) S △ABC=38m2+3m+6(m≠-4).解析:(1) ∵一次函数y=12x+3的图象与正比例函数y=kx 的图象相交于点A (a ,1).∴ 12a+3=1. 解得a=-4. ∴ A (-4,1). ∴ 1=K×(-4). 解得k=−14.∴正比例函数的解析式为y=−14x .(2) 如图1,P 1(-8,0)或P 2(0,2).(3) 依题意得,点B 坐标为(m ,12m+3),点C 的坐标为(m ,−m4).作AH ⊥BC 于点H ,H 的坐标为(m ,1). 分两种情况: ① 当m <-4时.BC=−14m -(12m+3)=−34m -3.AH=-4-m .则S △ABC =12BC×AH=12(−34m -3)(-4-m )=38m 2+3m+6.② 当m >-4时.BC=(12m+3)+m 4=34m+3.AH=m+4.则S △ABC =12BC×AH=12(34m+3)(m+4)=38m 2+3m+6.综上所述,S △ABC=38m2+3m+6(m≠-4).考点:函数——平面直角坐标系——坐标与距离——坐标与面积.一次函数——一次函数图象上点的坐标特征——两条直线相交或平行问题——一次函数综合题.三角形——三角形基础——三角形面积及等积变换.23、已知y 1=x+1,y 2=-2x+4,当-5≤x≤5时,点A (x ,y 1)与点B (x ,y 2)之间距离的最大值是 . 答案:18.解析: 当x=5时,y 1=6,y 2=-6.当x=-5时,y 1=-4,y 2=14.∴ A (5,6),B (5,-6)或A (-5,-4),B (-5,14). ∴ AB=6-(-6)=12或AB=14-(-4)=18. ∴ 线段AB 的最大值是18.考点:函数——一次函数——一次函数的性质.24、如图,在平面直角坐标系xOy中,直线y=−4x+8与x轴,y轴分别交于点A,点B,点3D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C 处.(1)求AB的长和点C的坐标.(2)求直线CD的解析式.答案: (1)AB=√62+82=10,点C的坐标为C(16,0).(2)直线CD的解析式为y=3x-12.4解析:(1)根据题意得A(6,0),B(0,8).在RT△OAB中,∠AOB=90°,OA=6,OB=8.∴AB=√62+82=10.∵△DAB沿直线AD折叠后的对应三角形为△DAC.∴AC=AB=10.∴OC=OA+AC=OA+AB=16.∵点C在x轴的正半轴上.∴点C的坐标为C(16,0).(2)设点D的坐标为D(0,y)(y<0).由题意可知CD=BD,CD2=BD2.由勾股定理得162+y2=(8-y)2.解得y=-12.∴点D的坐标为D(0,-12).可设直线CD的解析式为y=kx-12(k≠0).∵点C(16,0)在直线y=kx-12上.∴16k-12=0..解得k=34∴直线CD的解析式为y=3x-12.4考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.25、直线AB:y=-x+b分别与x、y轴交于A、B两点,点A的坐标为(3,0),过点B的直线交x轴负半轴于点C,且OB:OC=3:1.(1)求点B的坐标及直线BC的解析式.(2)在x轴上方存在点D,使以点A、B、C为顶点的三角形与△ABC全等,画出△ABD,并请直接写出点D的坐标.(3)在线段OB上存在点P,使点P到点B,C的距离相等,求出点P的坐标.答案:(1)B(0,3),直线BC的解析式为y=3x+3.(2)画图见解析,D1(4,3),D2(3,4).(3)证明见解析.解析:(1)把A(3,0)代入y=-x+b,得b=3.∴B(0,3).∴OB=3.∵OB:OC=3:1.∴OC=1.∵点C在x轴负半轴上.∴C(-1,0).设直线BC 的解析式为y=mx+n . 把B (0,3)及C (-1,0)代入,得{n =3−m +n =0.解得{m =3n =3.∴直线BC 的解析式为:y=3x+3.(2) 如图所示,D 1(4,3),D 2(3,4).(3) 由题意,PB=PC .设PB=PC=X ,则OP=3-x . 在RT △POC 中,∠POC=90°. ∴ OP 2+OC 2=PC 2. ∴ (3-x )2+12=x 2. 解得,x=53.∴ OP=3-x=43.∴点P 的坐标(0,43).考点:函数——平面直角坐标系——特殊点的坐标.一次函数——求一次函数解析式.三角形——全等三角形——全等三角形的性质.26、一次函数y=kx+b (k≠0),当x=-4时,y=6,且此函数的图象经过点(0,3). (1) 求此函数的解析式.(2) 若函数的图象与x 轴y 轴分别相交于点A 、B ,求△AOB 的面积.(3) 若点P 为x 轴正半轴上的点,△ABP 是等腰三角形,直接写出点P 的坐标.答案:(1)y=−34x+3.(2)6.(3)(78,0)或(9,0).解析:(1)当x=-4时,y=6,且此函数的图象经过点(0,3).代入y=kx+b 有,{−4k +b =6b =3,解得:{k =−34b =3.∴此函数的解析式为y=−34x+3.(2)当y=0时,x=4.∴点A (4,0),B (0,3). ∴ S △AOB=12×3×4=6.(3)AB=√42+32=5.当点P 为P 1时,BP 1=AP 1.∴在RT △OBP 1中,32+OP 12=(4-OP 1)2. 解得:OP 1=78. ∴ P1(78,0).当点P 为P 2时,AB=AP 2,∴P 2(9,0). 故点P 的坐标为(78,0)或(9,0).考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.三角形——三角形基础——三角形面积及等积变换. 等腰三角形——等腰三角形的性质.27、已知点A (-4,0),B (2,0).若点C 在一次函数y=12x+2的图象上,且△ABC 是直角三角形,则点C 的个数是( ).A.1B. 2C. 3D.4 答案: B .解析: 如图所示,当AB 为直角边时,存在C 1满足要求.当AB 为斜边时,存在C 2满足要求.故点C的个数是2.考点:函数——一次函数——一次函数综合题.28、在平面直角坐标系xOy中,点A(-3,2),点B是x轴正半轴上一动点,连结AB,以AB为腰在x轴的上方作等腰直角△ABC,使AB=BC.(1)请你画出△ABC.(2)若点C(x,y),求y与x的函数关系式.答案:(1)画图见解析.(2)y=x+1.解析:(1)(2)作AE⊥x轴于E,CF⊥x轴于F.∴∠AEB=∠BFC=90°.∵A(-3,2).∴ AE=2,EO=3. ∵ AB=BC ,∠ABC=90°. ∴ ∠ABE+∠CBF=90°. ∵ ∠BCF+∠CBF=90°. ∴ ∠ABE=∠BCF. ∴ △ABE ≌△BCF . ∴ EB=CF ,AE=BF. ∵ OF=x ,CF=y . ∴ EB=y=3+(x+2). ∴ y=x+1.考点:函数——一次函数——一次函数综合题.三角形——直角三角形——等腰直角三角形.29、如图,直线l 1:y=12x 与直线l 2:y=-x+6交于点A ,直线l 2与x 轴、y 轴分别交于点B 、C ,点E 是线段OA 上一动点(E 不与O 、A 重合),过点E 作 EF ∥x 轴,交直线l 2于点F .(1) 求点A 的坐标.(2) 设点E 的横坐标为t ,线段EF 的长为d ,求d 与t 的函数关系式,并写出自变量t 的取值范围.(3) 在x 轴上是否存在一点P ,使△PEF 为等腰直角三角形?若存在,求出P 点坐标;若不存在,请你说明理由.答案:(1) (4,2).(2) d=6-32t ,其中0<t <4.(3) 存在点P (3,0),P (92,0),P (185,0),使△PEF 为等腰直角三角形.解析:(1)联立{ y =12y =−x +6,解得{x =4y =2.∴点A 的坐标为(4,2).(2)点E 在直线l 1:y=12x .∵点E 的横坐标为t . ∴点E 的纵坐标为12t .∵ EF ∥x 轴,点F 在直线l 2:y=-x+6上. ∴点F 的纵坐标为12t .由12t=-x+6,得点F 的横坐标为6-12t .∴ EF 的长d=6−12t -t=6−32t . ∵ 点E 在线段OA 上. ∴ 0<t <4.(3) 若∠PEF=90°,PE=EF .则6−32t=t2,解得t=3.∵ 0<t <4.∴ P 点坐标为(3,0). 若∠PFE=90°,PF=EF . 则6−32t=t2,解得t=3. ∵ 0<t <4.∴ P 点坐标为(92,0).若 ∠EPF=90°. ∴6−32t=2×t2,解得t=125. 此时点P 的坐标为(185,0).综上,存在点P (3,0),P (92,0),P (185,0),使△PEF 为等腰直角三角形. 考点:函数——一次函数——两条直线相交或平行问题——一次函数的应用——一次函数综合题.三角形——直角三角形——等腰直角三角形.30、规定:把一次函数y=kx+b 的一次项系数和常数项互换得y=bx+k ,我们称y=kx+b 和y=bx+k (其中k.b≠0,且|k|≠|b |)为互助一次函数,例如y=−23x+2和y=2x −23就是互助一次函数.如图,一次函数y=kx+b 和它的互助一次函数的图象l 1,l 2交于P 点,l 1,l 2与x 轴,y 轴分别交于A ,B 点和C ,D 点.(1) 如图(1),当k=-1,b=3时. ① 直接写出P 点坐标 .② Q 是射线CP 上一点(与C 点不重合),其横坐标为m ,求四边形OCQB 的面积S 与m 之间的函数关系式,并求当△BCQ 与△ACP 面积相等时m 的值.(2) 如图(2),已知点M (-1,2),N (-2,0).试探究随着k ,b 值的变化,MP+NP 的值是否发生变化?若不变,求出MP+NP 的值;若变化,求出使MP+NP 取最小值时的P 点坐标.答案: (1)① (1,2).② S=2m −16(m >13),m=53.(2)随着k ,b 值的变化,点P 在直线x=1上运动,MP+NP 的值随之发生变化.使MP+NP 取最小值时的P 点坐标为(1,65).解析:(1)① P (1,2).② 如图,连接OQ .∵ y=-X+3与y=3x -1的图象l 1,l 2与x 轴,y 轴分别交于A ,B 点和C ,D 点. ∴ A (3,0),B (0,3),C (13,0),D (0,-1).∵ Q (m ,3m -1)(m >13).∴ S=S △OBQ +S △OCQ =12×3×m+12×13×(3m -1)=2m −16(m >13).∴ S △BCQ =S -S △BOC =2m −16−12×3×13=2m −23. 而S △ACP =12×(3−13)×2=83.由S △BCQ=S △ACP ,得2m −23=83,解得m=53.(2) 由{ y =kx +b y =bx +k,解得{ x =1y =k +b ,即P (1,k+b ).∴随着k ,b 值的变化,点P 在直线x=1上运动,MP+NP 的值随之发生变化. 如图,作点N (-2,0)关于直线x=1的对称点N(4,0),连接MN 交直线x=1于点P ,则此时MP+NP 取得最小值.设直线MN 的解析式为y=cx+d ,依题意{−c +d =24c +d =0.解得{c =−25y =85.∴直线MN 的解析式为y=−25x+85.令x=1,则y=65,∴P (1,65).即使MP+NP 取最小值时的P 点坐标为(1,65).考点:函数——函数基础知识——函数过定点问题.一次函数——一次函数与二元一次方程——一次函数综合题. 几何初步——直线、射线、线段——线段的性质:两点之间线段最短. 三角形——三角形基础——三角形面积及等积变换.31、新定义:对于关于x 的一次函数y=kx+b (k≠0),我们称函数{y =kx +b (x ≤m )y =−kx −b (x >m )为一次函数y=kx+b (k≠0)的m 变函数(其中m 为常数).例如:对于关于x 的一次函数y=x+4的3变函数为{y =x +4(x ≤3)y =−x −4(x >3).(1) 关于x 的一次函数y=-x+1的2变函数为y ,则当x=4时,y=__________. (2) 关于x 的一次函数y=x+2的1变函数为y 1,关于x 的一次函数y=−12x -2的-1变函数为y 2,求函数y 1和函数y 2的交点坐标.(3) 关于x 的一次函数y=2x+2的1变函数为y 1,关于x 的一次函数y=−12x -1的m变函数为y 2.① 当-3≤x≤3时,函数y 1的取值范围是__________(直接写出答案).② 若函数y 1和函数y 2有且仅有两个交点,则m 的取值范围是__________(直接写出答案).答案: (1)3.(2)(−83,−23)和(0,2).(3)①-8≤y 1≤4.②−65≤m <−23.解析: (1) 根据m 变函数定义,关于x 的一次函数y=-x+1的2变函数为: {y =−x +1(x ≤2)y =x −1(x >2).∴ x=4时,y 1=4-1=3.∴ y 1=3.(2) 根据定义得:y 1={y =x +2(x ≤1)y =−x −2(x >1),y 2={y =−12x −2(x ≤−1)y =12x +2(x >−1). 求交点坐标:① {y =x +2(x ≤1)y =−12x −2(x ≤−1) ,解得{x =−83y =−23. ② {y =x +2(x ≤1)y =12x +2(x >−1) ,解得{x =0y =2. ③ {y =−x −2(x >1)y =−12x −2(x ≤−1),无解. ④ {y =−x −2(x >1)y =12x +2(x >−1),无解. 综上所述函数y 1和函数y 2的交点坐标为(−83,−23)和(0,2).(3)略.考点:函数——一次函数——一次函数的性质——一次函数图象上点的坐标特征——一次函数与二元一次方程——一次函数综合题.32、在平面直角坐标系xOy 中,对于点M (m ,n )和点N (m ,n’,给出如下定义:若n’={n (m ≥2)−n (m <2),则称点N 为点M 的变换点.例如:点(2,4)的变换点的坐标是(2,4),点(-1,3)的变换点的坐标是(-1,-3).(1) 回答下列问题:① 点(√5,1)的变换点的坐标是 .② 在点A (-1,2),B (4,-8)中有一个点是函数y=2x 图象上某一点的变换点,这个点是 (填“A”或“B”).(2) 若点M 在函数y=x+2(-4≤x≤3)的图象上,其变换点N 的纵坐标n’的取值范围是 .(3) 若点M 在函数y=-x+4(-1≤x≤a ,a >-1)的图象上,其变换点N 的纵坐标n’的取值范围是-5≤n’≤2,则a 的取值范围是 .答案: (1)①(√5,1).② A.(2)-4<n’≤2或4≤n’≤5.(3)6≤a≤9.解析:(1)① 由定义可知,由于√5>2,所以点(√5,1)的变换点的坐标是(√5,1).②若点A(-1,2)是变换点,则变换前的点为(-1,-2),-2=-1×2,在函数y=2x上.若点B(4,-8)是变换点,则变换前的点为(4,-8),-8≠4×2,不在函数y=2x上.所以这个点是A.(2)若点M在函数y=x+2(-4≤x≤3)的图象上,设M(x,x+2).当2≤x≤3时,4≤n’=x+2≤5.当-4≤x<2时,-4<n’=-(x+2)≤2.综上,纵坐标n’的取值范围是-4<n’≤2或4≤n’≤5.(3)当a>2时,2≤x<a时,4-a≤n’=-x+4≤2.-1≤x<2时,-5≤n’=-(-x+4)≤—2.∴只需-5≤4-a≤-2,此时6≤a≤9.当a<2时,-1≤x≤a,-5≤n’=-(-x+4)≤a-4.此时不满足-5≤n’≤2,故舍去.综上,的取值范围是6≤a≤9.考点:式——探究规律——定义新运算.函数——平面直角坐标系——点的位置与坐标.一次函数——一次函数图象上点的坐标特征.。

八上 一次函数与方程组、不等式 知识点+例题+练习 (非常好 分类全面)

八上 一次函数与方程组、不等式 知识点+例题+练习 (非常好 分类全面)

例1 从2014年起,中国的鞋号已“变脸”,新的国家标准要求鞋号用毫米数标注.据了解大多数市民还不了解此新标准,小明对新旧鞋号的标注变化进行了对比研究,发现新标准鞋子毫米数y与旧鞋号x之间存在着一次函数关系,并得到相关数据如下:旧鞋号 x 36 38 40新标准毫米数y230 240 250(1)请你帮助小明根据上述数据归纳出新标准毫米数与旧鞋号标注之间的换算关系式,并用一句简明的数学语言来表示;(2)如果小明的爸爸穿的一双42号凉鞋坏了,准备买一双同样尺寸的新凉鞋,那么应买一双多少毫米数的新凉鞋?例2 某种拖拉机的油箱可储油40L,加满油并开始工作后,•油箱中的余油量y(L)与工作时间x(h)之间为一次函数关系,如图所示.(1)求y与x的函数解析式.(2)一箱油可供拖位机工作几小时?知识点2 图像法解决实际问题注:读图时一定要明确横纵坐标表示的量所代表的意义。

例3 某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,如图表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求yl 与y2的函数表达式;(2)解释图中表示的两种方案是如何付推销费的;(3)如果你是推销员,应如何选择付费方案.二、典型例题题型1 运用一次函数的关系解决生活中的实际问题例 1 如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数表达式;(2)若桌面上有12个饭碗,整齐叠放成一摞,求出它的高度;(3)若桌面上有若干个饭碗,整齐叠放成一摞,已测得它的高度为37.5cm,你能求出此时有多少个饭碗吗?题型2利用图表信息解决实际问题例2 某厂家生产两种款式的布质环保购物袋,每天共生产4500个,两种购物袋的成本和售价如下表,设每天生产A种购物袋x个,每天共获利y元.(1)求y与x的函数关系式;(2)如果该厂每天最多投入成本10000元,那么每天最多获利多少元?题型3 建立一次函数模型解决实际问题例3 某下岗职工购进一批苹果到农贸市场零售,已知买出的苹果数量x(kg)与收入y(元)的关系如下表:在平面直角坐标系中描点,观察点的分布情况,探求收入y(元)与买出数量x(kg)之间的函数关系式。

一次函数章节易错题型分析

一次函数章节易错题型分析

一次函数章节易错题型分析易错点一:一次函数的概念例题1.下列语句不正确的是( B ) A .所有的正比例函数都是一次函数B .一次函数的一般形式是C .正比例函数和一次函数的图象都是直线D .正比例函数的图象是一条过原点的直线【解析】A 、所有的正比例函数肯定是一次函数,命题正确;B 、一次函数的一般形式是y =kx +b (k ≠0),命题错误,符合题意;C 、正比例函数和一次函数图像都是直线,命题正确;D 、正比例函数图像是直线,过原点,命题正确.【总结】此题主要考查一次函数和正比例函数的定义、图像,解题关键是牢记这些基本知识,所有正比例函数都是一次函数,而一次函数不一定是正比例函数. 【变式1】下列函数中,哪些是一次函数?(1)232y x =-;(2)12y x -=; (3)(5)(0)y m x m =-≠;(4)1(0)y ax a a=+≠;(5)(0)k y kx k x=+≠; (6)(3)(3)y k x k =-+≠-.答案:(2)、(3)、(4)、(6).【解析】判断是否是一次函数,要整理成(0)y kx b k =+≠的形式,一次函数有x 要是一次,0k ≠且是整式几个注意点.(1)是二次函数,(5)是分式.【总结】考查一次函数的基本概念,会判断两个量是否是一次函数关,一般要把关系式整理成概念的标准形式,找出对应k b ,.【变式2】(1)已知函数2(2)1y k x =-+是一次函数,则k 的取值范围是_________;y kx b =+(2)当m =________时,函数215(4)m y x m -=+-是一次函数,且不是正比例函数.【答案】(1)k ≠;(2)4m =-.【解析】(1)一次函数(0)y kx b k =+≠,所以k ≠;(2)一次函数(0)y kx b k =+≠其中,x 要是一次,所以4m =±,又因为是一次函数,不是正比例函数,所以4m -()不能为0,所以4m =-.【总结】考查一次函数的基本概念中对于自变量一次的理解. 【变式3】已知一次函数()23317k k y k x -+=-+是一次函数,求实数k 的值.【答案】2k =.【解析】由一次函数的概念可知:10k -≠,且2331k k --=,解得:1k =或2k =,又因为1k ≠, 所以2k =.【总结】考察一次函数的基本概念,对于自变量一次的及自变量系数不为零同时要满足的理解.易错点二:一次函数的平移例题1.已知直线23y x =-,把这条直线沿y 轴向上平移5个单位,再沿x 轴向右平移3个单位,求两次平移后的直线解析式? 【答案】24y x =-.【解析】根据一次函数图形平移规律:上加下减,左加右减.可知把这条直线沿y 轴上移5个单位,得23522y x x =-+=+,再沿x 轴右移3个单位,得2(3)224y x x =-+=-.【总结】考察一次函数图像的平移与解析式之间的关系.【变式1】将直线y =+1向右平移1个单位,相当于将直线y =+1向上平移了多少个单位?【解析】一次函数1y =+右移一个单位,解析式变为1)11y x =-+=+,则相当于1y =+【总结】考察一次函数图像平移与函数解析式变化的关系,即“上加下减,左加右减”.易错点三:已知一次函数与坐标轴围成图形面积求一次函数解析式双解问题 例题1.(1)一次函数3y x b =+的图象与两坐标轴围成的三角形的面积为48,求b 的值;(2)一次函数y kx b =+的图像与两坐标围成的三角形的面积是10,求一次函数的解析式.【答案】(1)b =±2)14y x =或14y x =-.【解析】(1)一次函数(0)y kx b k =+≠与两轴围成的三角形面积公式是22b s k =,所以24823b =⨯, 解得:b =±;(2)同理可知,2102b b k ==,14k =±,所以一次函数的解析式为14y x =或14y x =-.【总结】一次函数与两轴围成的面积公式22b s k=,注意双解的情况.【变式1】已知一次函数y kx b =+(0k ≠)与x 轴、y 轴围成的三角形面积为24,且与直线4733y x =-平行,求此一次函数的解析式.【答案】448833y x y x =+=-或.【解析】由一次函数与两轴围成的直角三角形面积公式为22b S k =,与直线4733y x =-平行可知k 相等,即43k =,代入面积公式22b S k =,224423b =⨯,得8b =±,所以一次函数的解析式为448833y x y x =+=-或.【总结】考察一次函数与坐标轴围成的三角形的面积问题,注意分类讨论. 易错点四:一次函数与不等式关系例题1如图,直线与x 轴交于点(-4,0)则当y >0时,x 的取值范围是( ) A .x >-4 B .x >0C .x <-4D .x <0【答案】 A【解析】根据题意,结合图像,通过观察可知y >0, 即为图像在x 轴上方的部分,可知x >-4.【总结】本题主要考查的是一次函数的图像及其变量取值范围间的关系,解答此类题型的关键在于利用数形结合思想,理清题意结合图像进行解答.【变式1】如图一次函数的图像如图所示,如果,那么x 的取值范围 是____________.y kx b =+y kx b =+0kx b +>【答案】x <2【解析】直线y =kx +b 与x 轴交点坐标是(2,0),由函数图像可知,y >0时,直线在x 轴上方,所以x <2.【总结】主要考查运用函数图像解一元一次不等式,考查分析能力和读图能力. 【变式2】如图所示,直线经过A (1,2)和B (3,0)两点,则不等式组 的解集是多少?【答案】10x -<<.【解析】直线y =kx +b 经过A (-1,2)和B (-3,0),解得直线解析式为:y =x +3,则不等式组可以转化为133x x -+<+<,解得:10x -<<.【总结】本题考查一次函数与不等式(组)的关系及数形结合思想的应用,解决此类问题关键是观察图形,做到数形结合. 易错点五:一次函数的应用之分配方案问题例题1.某公司有A 型产品40件,B 型产品60件,分配给下属甲乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完,两商店销售这两种产品每件的利润(元)如下表:y kx b =+--13x kx b -+<+<关于x 的函数关系式,并求出定义域的取值范围;(2)若公司要求利润不低于17560元,则有多少种不同的分配方案,并将方案设计出来;(3)为了促销,公司决定仅对甲店A 型产品让利销售,每件让利a 元,但让利后A 型产品的每件利润仍高于甲店B 型产品的每件利润,甲店的B 型产品以及乙店的A 、B 型产品的每件利润不变,问该公司如何设计分配方案,使总利润达到最大? 【答案】(1)W =20x +16800(1040x ≤≤);(2)x =38时,甲店A 型38件,B 型32件,乙店A 型2件,B 型28件;x =39时,甲店A 型39件,B 型31件,乙店A 型1件,B 型29件; x =40时,甲店A 型40件,B 型30件,乙店A 型0件,B 型30件;(3)W =(20-a )x +16800. ①当0<a <20时,x =40,即甲店A 型40件,B 型30件,乙店A 型0件,B 型30件,能使总利润达到最大;②当a =20时,10≤x ≤40,符合题意的各种方案,使总利润都一样;③当20<a <30时,x =10,即甲店A 型10件,B 型60件,乙店A 型30件,B 型0件,能使总利润达到最大.【解析】(1)依题意,甲店B 型产品有(70-x )件,乙店A 型有(40-x )件,B 型有(x -10)件,则(1)W =200x +170(70-x )+160(40-x )+150(x -10)=20x +16800.(2)由W =20x +16800≥17560,∴x ≥38,∴38≤x ≤40,x =38,39,40.∴有三种不同的分配方案.①x=38时,甲店A型38件,B型32件,乙店A型2件,B型28件;②x=39时,甲店A型39件,B型31件,乙店A型1件,B型29件;③x=40时,甲店A型40件,B型30件,乙店A型0件,B型30件.(3)W=(200-a)x+170(70-x)+160(40-x)+150(x-10)=(20-a)x+16800.①当0<a<20时,x=40,即甲店A型40件,B型30件,乙店A型0件,B型30件,能使总利润达到最大;②当a=20时,10≤x≤40,符合题意的各种方案,使总利润都一样;③当20<a<30时,x=10,即甲店A型10件,B型60件,乙店A型30件,B型0件,能使总利润达到最大.【总结】考查一次函数图像在实际问题中的应用.【变式1】为了保护环境,某企业决定购买10台污水处理设备,现有A,B两种型号的设备,其中每台的价格,月处理污水量及年消耗费如下表:(1)求购买设备的资金y万元与购买A型x台的函数关系,并设计该企业有几种购买方案;(2)若企业每月产生的污水量为2040吨,利用函数的知识说明,应选择哪种购买方案;(3)在第(2)问的条件下,若每台设备的使用年限为10年,污水厂处理污水费为每吨10元,请你计算,该企业自己处理污水与将污水排到污水厂处理相比较,10年节约资金多少万元?(注:企业处理污水的费用包括购买设备的资金和消耗费).【答案】(1)2100y x =+,有3种购买方案:0台A 型,10台B 型、1台A 型,9台B 型、2 台A 型,8台B 型;(2)选择1台A 型9台B 型;(3)42.8万元.【解析】(1)2100y x =+,由2100105x +≤,得0 2.5x ≤≤,所以x =0、1、2;(2)()240200102040x x +-≥,得1x ≥,所以x =1、2,又因为y 随着x 的增大而增大,故为了节约资金,应取x =1,即选择1台A 型9台B 型;(3)10年企业自己处理污水的总资金为:102+10×10=202(万元),若将污水排到污水处理厂,费用为2040×12×10×10=244.8(万元), 所以节约资金为:244.8-202=42.8万元.【总结】考查一次函数在实际问题中的应用,最优方案的问题,解题时注意分析. 易错点六:一次函数在几何图形中的应用例题1.如图,一次函数3y =+与坐标轴交于A 、B 两点,且点P 是坐标轴上一点,△ABP 为等腰三角形.(1)求∠ABO 的大小;(2)求出P 点的坐标.【答案】(1)ABO ∠=60°;(2)1P (0)、 2P (0)、3P (0,-3)、4P (0,5P (0,6P (0,1).【解析】(1)由3y =+,可得:A (0,3)、B 0),所以OA =3,OB =所以AB OAB ∠=30°,ABO ∠=60°;(2)当BA BP =时,1P (0)、 2P (0)、3P (0,-3);当AB AP =时,4P (0,5P (0, 当PA PB =时,6P (0,1).【总结】考查一次函数在几何图形中的简单运用,注意等腰的分类讨论. 【变式1】如图,一次函数y ax b =-与正比例函数y kx =的图象交于第三象限内的点A ,与y 轴交于(04)B -,,且OA=AB ,△OAB 的面积为6. (1)求两函数的解析式;(2)若(20)M ,,直线BM 与AO 交于P ,求P 点的坐标;(3)在x 轴上是否存在一点E ,使S △ABE =5,若存在,求E 点的坐标;若不存在,请说明理由.【答案】(1)正比例函数23y x=,一次函数243y x=--;(2)P(3,2);(3)E(-1,0)或(-11,0).【解析】(1)过A作AH⊥x轴,可求得AH=3,2OH BH==,所以A(-3,-2),所以正比例函数解析式为23y x=,由A(-3,-2)、(04)B-,,可求得一次函数解析式为243y x=--;(2)由(04)B-,、(20)M,,可求得直线BM的解析式为24y x=-.令23x=24x-,解得:3x=,所以P(3,2);(3)过点A作AF⊥x轴于点F,则1(24)392OBAFS=⨯+⨯=梯形,设(0)E a,,当119(3)24522ABES a a=-⨯-⨯-⨯⨯=,解得:1a=-;当1149(3)2522ABES a a=⨯⨯--⨯-⨯=,解得:11a=-,综上,E点的坐标为(-1,0)或(-11,0).【总结】考查一次函数在几何图形中的简单运用,注意对面积的分类讨论.例题2.已知直角坐标平面上点A(2,0),P是函数y=x(x>0)图象上一点,PQ⊥AP交y 轴正半轴于点Q .【答案】(1)略;(2)22b a =-;(3)或 【解析】(1)作PE ⊥x 轴,PF ⊥y 轴,可证△PAE ≌△PQF ;(2)P (a ,a ),由(1)得AE =QF ,即2a a b -=-,整理得:22b a =-;(3)22222AOQ APQ S a S a a =-=-+,,由23AOQ APQ S S =△△,可得2550a a -+=,解得:a =,所以点P 的坐标为或. 【总结】考查一次函数在几何图形中的应用,注意利用相关性质解题.例题3.如图,在直角梯形COAB 中,CB ∥OA ,以O 为原点建立直角坐标系,A 、C 的坐标分别为A (10,0)、C (0,8),CB =4,D 为OA 中点,动点P 自A 点出发沿A →B →C →O 的线路移动,速度为1个单位/秒,移动时间为t 秒.(1)求AB 的长,并求当PD 将梯形COAB 的周长平分时t 的值,并指出此时点P 在哪条边上;(2)动点P 在从A 到B 的移动过程中,设△APD 的面积为S ,试写出S 与t 的函数关系式,并指出t 的取值范围;(3)几秒后线段PD 将梯形COAB 的面积分成1:3的两部分?求出此时点P 的坐标?【答案】(1)AB =10,11t =,此时点P 在CB 边上;(2)2S t =(010t ≤≤);(3)1P (295,285)、2P (0,285). 【解析】(1)由题意,知10OA =,8OC =,过点B 作OA 边上的高,利用勾股定理, 可得AB =10,由10104852t ++++=,得11t =,此时点P 在CB 边上; (2)过P 作PH ⊥x 轴,则PH =45t ,所以145225S t t =⨯⨯=; (3)56COAB S =当P 在线段AB 上时,令2S t ==14,解得:7t =,则PH =285,AH =215,OH =295,所以1P (295,285); 当P 在线段AB 上时,令14ODP S =,解得:OP =285,所以2P (0,285). 【总结】考查一次函数在几何图形中的应用,综合性较强,注意认真分析.。

一次函数经典例题分类总结

一次函数经典例题分类总结

一次函数典型例题题型一:求解析式例1.已知一次函数y=ax+b的图象经过点A(2,0)与B(0,4).(1)求一次函数的解析式,并在直角坐标系内画出这个函数的图象;(2)如果(1)中所求的函数y的值在-4≤y≤4范围内,求相应的y的值在什么范围内.解:(1)由题意得:202 44a b ab b+==-⎧⎧⎨⎨==⎩⎩解得∴这个一镒函数的解析式为:y=-2x+4(•函数图象略).(2)∵y=-2x+4,-4≤y≤4,∴-4≤-2x+4≤4,∴0≤x≤4.练习:已知y=p+z,这里p是一个常数,z与x成正比例,且x=2时,y=1;x=3时,y=-1.(1)写出y与x之间的函数关系式;(2)如果x的取值范围是1≤x≤4,求y的取值范围.题型二:分段函数例2.为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.•小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身高调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:(1(不要求写出x的取值范围);(2)小明回家后,•测量了家里的写字台和凳子,写字台的高度为77cm,凳子的高度为43.5cm,请你判断它们是否配套?说明理由.解:(1)设一次函数为y=kx+b,将表中的数据任取两取,不防取(37.0,70.0)和(42.0,78.0)代入,得21 31 k pk p+=⎧⎨+=-⎩∴一次函数关系式为y=1.6x+10.8.(2)当x=43.5时,y=1.6×43.5+10.8=80.4.∵77≠80.4,∴不配套.练习:已知雅美服装厂现有A种布料70米,B种布料52米,•现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料1.•1米,B 种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.•9米,可获利45元.设生产M型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y元.①求y(元)与x(套)的函数关系式,并求出自变量的取值范围;②当M型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?解:.①y=50x+45(80-x)=5x+3600.∵两种型号的时装共用A种布料[1.1x+0.•6(80-x)]米,共用B种布料[0.4x+0.9(80-x)]米,∴解之得40≤x≤44,而x为整数,∴x=40,41,42,43,44,∴y与x的函数关系式是y=5x+3600(x=40,41,42,43,44);②∵y随x的增大而增大,∴当x=44时,y最大=3820,即生产M型号的时装44套时,该厂所获利润最大,最大利润是3820元.题型三:图像题例3.小明同学骑自行车去郊外春游,下图表示他离家的距离y(千米)与所用的时间x(小时)之间关系的函数图象.(1)根据图象回答:小明到达离家最远的地方需几小时?此时离家多远?(2)求小明出发两个半小时离家多远?(3)•求小明出发多长时间距家12千米?4.(1)由图象可知小明到达离家最远的地方需3小时;此时,他离家30千米.(2)设直线CD的解析式为y=k1x+b1,由C(2,15)、D(3,30),代入得:y=15x-15,(2≤x≤3).当x=2.5时,y=22.5(千米)答:出发两个半小时,小明离家22.5千米.(3)设过E、F两点的直线解析式为y=k2x+b2,由E(4,30),F(6,0),代入得y=-15x+90,(4≤x≤6)过A、B两点的直线解析式为y=k3x,∵B(1,15),∴y=15x.(0≤x≤1),•分别令y=12,得x=265(小时),x=45(小时).答:小明出发小时265或45小时距家12千米.练习:1.一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?2.如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?题型四:图像面积、坐标问题例4.已知一次函数的图象,交x轴于A(-6,0),交正比例函数的图象于点B,且点B•在第三象限,它的横坐标为-2,△AOB的面积为6平方单位,•求正比例函数和一次函数的解析式.练习:1.如图,一束光线从y轴上的点A(0,1)出发,经过x轴上点C反射后经过点B(3,3),求光线从A点到B点经过的路线的长.2.已知:如图一次函数y=12x-3的图象与x轴、y轴分别交于A、B两点,过点C(4,0)作AB的垂线交AB于点E,交y轴于点D,求点D、E的坐标.一次函数测试题一、选择(每小题3分,共30分)1.下列函数中,自变量x 的取值范围是x ≥2的是( ) A .y=2x - B .y=2x - C .y=24x - D .y=2x +·2x - 2.下面哪个点在函数y=12x+1的图象上( ) A .(2,1) B .(-2,1) C .(2,0) D .(-2,0) 3.下列函数中,y 是x 的正比例函数的是( ) A .y=2x-1 B .y=3xC .y=2x 2D .y=-2x+1 4.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四6.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k>3 B .0<k ≤3 C .0≤k<3 D .0<k<3 7.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( ) A .y=-x-2 B .y=-x-6 C .y=-x+10 D .y=-x-18.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )9.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )10.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( )A.y=-2x+3 B.y=-3x+2 C.y=3x-2 D.y=12x-3二、填空(每小题3分,共30分)11.已知自变量为x的函数y=mx+2-m是正比例函数,则m=________,•该函数的解析式为_________.12.若点(1,3)在正比例函数y=kx的图象上,则此函数的解析式为________.13.已知一次函数y=kx+b的图象经过点A(1,3)和B(-1,-1),则此函数的解析式为_________.14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.15.已知一次函数y=-x+a与y=x+b的图象相交于点(m,8),则a+b=_________.16.若一次函数y=kx+b交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)17.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x yx y--=⎧⎨-+=⎩的解是________.18.已知一次函数y=-3x+1的图象经过点(a,1)和点(-2,b),则a=________,b=______.19.如果直线y=-2x+k与两坐标轴所围成的三角形面积是9,则k的值为_____.20.如图,一次函数y=kx+b的图象经过A、B两点,与x轴交于点C,则此一次函数的解析式为__________,△AOC的面积为_________.。

一次函数经典题型 习题(精华 含答案)

一次函数经典题型 习题(精华 含答案)

一次函数题型一、点的坐标方法: x 轴上的点纵坐标为0,y 轴上的点横坐标为0;若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数; 若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数; 若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数;1、 若点A (m,n )在第二象限,则点(|m|,-n )在第____象限;2、 若点P (2a-1,2-3b )是第二象限的点,则a,b 的范围为______________________;3、 已知A (4,b ),B (a,-2),若A ,B 关于x 轴对称,则a=_______,b=_________;若A,B 关于y 轴对称,则a=_______,b=__________;若若A ,B 关于原点对称,则a=_______,b=_________;4、 若点M (1-x,1-y )在第二象限,那么点N (1-x,y-1)关于原点的对称点在第______象限。

题型二、关于点的距离的问题方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示;若AB ∥x 轴,则(,0),(,0)A B A x B x 的距离为A B x x -; 若AB ∥y 轴,则(0,),(0,)A B A y B y 的距离为A B y y -;点B (2,-2)到x 轴的距离是_________;到y 轴的距离是____________; 1、 点C (0,-5)到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________;2、 点D (a,b )到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________; 3、 已知点P (3,0),Q(-2,0),则PQ=__________,已知点110,,0,22M N ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,则MQ=________; ()()2,1,2,8E F --,则EF 两点之间的距离是__________;已知点G (2,-3)、H (3,4),则G 、H 两点之间的距离是_________;4、 两点(3,-4)、(5,a )间的距离是2,则a 的值为__________;5、 已知点A (0,2)、B (-3,-2)、C (a,b ),若C 点在x 轴上,且∠ACB=90°,则C 点坐标为___________.题型三、一次函数与正比例函数的识别方法:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0时,一次函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。

八年级一次函数大题典型题

八年级一次函数大题典型题

八年级一次函数大题典型题一、与坐标有关的一次函数问题。

题1:已知一次函数y = kx + b的图象经过点A( - 2, - 3)及点B(1,6)。

(1)求此一次函数的解析式;(2)判断点C(-(1)/(3),2)是否在此函数的图象上。

解析:(1)因为一次函数y = kx + b的图象经过点A(-2,-3)和B(1,6),将这两点代入函数可得方程组-3=-2k + b 6=k + b用第二个方程6 = k + b减去第一个方程-3=-2k + b,可得:6-(-3)=(k + b)-(-2k + b) 9=k + b + 2k - b 9=3k k = 3把k = 3代入6=k + b,得6=3 + b,解得b=3。

所以一次函数的解析式为y = 3x+3。

(2)把x =-(1)/(3)代入y = 3x + 3,得y=3×(-(1)/(3))+3=- 1 + 3=2所以点C(-(1)/(3),2)在此函数的图象上。

题2:一次函数y=kx + b的图象与x轴、y轴分别交于点A(-2,0)、B(0,4)。

求该一次函数的解析式,并求出AOB的面积。

解析:(1)因为一次函数y = kx + b的图象经过点A(-2,0)和B(0,4)把A(-2,0),B(0,4)代入y=kx + b得0=-2k + b 4=b把b = 4代入0=-2k + b得0=-2k+4,解得k = 2所以一次函数的解析式为y = 2x+4。

(2)因为A(-2,0),B(0,4),所以OA = 2,OB=4S_ AOB=(1)/(2)× OA× OB=(1)/(2)×2×4 = 4二、一次函数与方程(组)、不等式的关系。

题3:已知一次函数y = 2x - 4。

(1)求当y = 0时,x的值;(2)求当x = 3时,y的值;(3)当x为何值时,y>0;(4)求直线y = 2x - 4与坐标轴围成的三角形的面积。

一次函数与不等式的典型例题

一次函数与不等式的典型例题

一次函数与不等式的典型例题一、例题例1:已知一次函数y = 2x - 3。

(1)当x取何值时,y>0?(2)当x取何值时,y≤slant1?二、解析1. 对于(1)- 已知y = 2x - 3,当y>0时,即2x - 3>0。

- 解这个不等式:- 首先将-3移到右边,得到2x>3。

- 然后两边同时除以2,解得x > (3)/(2)。

2. 对于(2)- 当y≤slant1时,也就是2x - 3≤slant1。

- 解这个不等式:- 先把-3移到右边,得到2x≤slant1 + 3,即2x≤slant4。

- 两边同时除以2,解得x≤slant2。

例2:一次函数y=-3x + 5,若y = kx + b的图象在y=-3x + 5的图象上方时x<2,求k,b满足的关系。

解析1. 因为y = kx + b的图象在y=-3x + 5的图象上方时x < 2,这意味着当x = 2时,y=kx + b和y=-3x + 5的值相等。

2. 把x = 2代入y=-3x + 5,可得y=-3×2 + 5=-1。

3. 把(2,-1)代入y = kx + b,得到-1 = 2k + b,移项可得b=-1 - 2k。

例3:已知一次函数y = kx + b(k≠0)的图象经过点(1,1)和( - 1, - 3)。

(1)求这个一次函数的表达式。

(2)若y>0,求x的取值范围。

解析1. 对于(1)- 因为一次函数y = kx + b的图象经过点(1,1)和( - 1, - 3),将这两点代入函数表达式可得方程组k + b = 1 -k + b=-3。

- 用第一个方程k + b = 1减去第二个方程-k + b=-3,得到(k + b)-(-k + b)=1-(-3)。

- 展开括号得k + b + k - b = 4,即2k = 4,解得k = 2。

- 把k = 2代入k + b = 1,得2 + b = 1,解得b=-1。

一次函数基础知识练习

一次函数基础知识练习

一次函数基础知识练习一、一次函数的定义1、下列函数(1)y=πx(2)y=2x-1 (3)y = 1x (4)y =21-3x (5)y =x 2-1中,是一次函数有( ) 2、已知一次函数k x k y )1(-=+3,则k =. 如果函数3)2(1+-=-k xk y 是一次函数,则=k 3、已知函数32)2(3--+=m x m y 是一次函数,则m =;此图象经过第象限。

4、28(3)1my m x m -=-++是一次函数,则m =二、单调性应用 1、已知点(-4,y 1),(2,y 2)都在直线y =- 12x +2上,则y 1与y 2大小关系是( ) (A )y 1>y 2 (B )y 1=y 2 (C )y 1<y 2 (D )不能比较2、已知点A (-1,a )与B (2,b )都在直线332+=x y 上,试用两种以上的方法比较a 与b 的大小; 3、若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,• 则k____0,b______0.4、点P 1(x 1,y 1),点P 2(x 2,y 2)是一次函数y =-4x + 3 图象上的两个点,且 x 1<x 2,则y 1与y 2的大小关系是5、点P 1(x 1,y 1)点p 2(x 2,y 2)是一次函数=-4x+3图象上的两点,且x 1<x 2,则y 1与y 2的大小关系是6、点A (5-,1y )和B (2-,2y )都在直线112y x =-+上,则1y 与2y 的关系是 三、图像的基本识别1、已知一次函数y =kx +b 的图象如图所示,则k 、b 的符号是( )(A)k >0,b >0 (B)k >0,b <0 (C)k <0,b >0 (D)k <0,b2、已知直线y=(k –2)x+k 不经过第三象限,则k 的取值范围是( )A .k ≠2B .k>2C .0<k<2D .0≤k<23、直线y=kx +b 经过一、二、四象限,则k 、b 应满足 ( )A . k>0, b<0B . k>0,b>0C . k<0, b<0;D . k<0, b>04、一次函数y=-(m 2+1)x -(m 2+2)的图象(m 为常数)不经过第象限5、已知一次函数4)2(-+-=m x m y 不经过第二象限,则m 的取值范围是6、若点P(a ,b)在第二象限内,则直线y =ax +b 不经过第_______限四、与不等式的关系1、如图,直线b kx y +=与x 轴的交点为(-3,0)则y >0时x 的取值范围是( )A.x >-3B.x >0C.x <-3D.x <02、对于一次函数32--=x y ,当x _______时,图象在x 轴下方.3、一次函数的图像交x 轴于(2,0),交y 轴于(0,3),当函数值大于0时,x 的取值范围是4、根据一次函数y=-3x-6的图像,当函数值大于零时,x 的范围是______________.5、根据函数33y x =-+的图象,回答下列问题:(1)y 的值随x 的增大而.(2)图象与x 轴的交点坐标是,与y 轴的交点坐标是.(3)当x 时,y >0;当x 时,y <0;当x 时,y =0.五、直线的平移(一)上下平移1、把直线32+-=x y 向下平移2个单位长度所得直线的解析式为2、将直线14+=x y 的图象向下平移3个单位长度,得到直线____________.3、已知一次函数b kx y +=的图象与43-=x y 的图象平行,而且经过点(1,1),则该一次函数的解析式为_________________5、若在同一坐标系中作出下列直线:①112y x =--;②21y x =-;③112y x =-+;④1y x =-.那么互相平行的直线是 7、已知直线y =(5-3m )x +32m -4与直线y =21x +6平行,求此直线的解析式. 8、直线(1)y k x b =-+与32y x =-平行,且过点(1,-2),请问直线y bx k =-不经过 象限9、若把一次函数y=2x -3,向上平移3个单位长度,得到图象解析式是(二)、左右平移1、把一次函数12-=x y 沿着x 轴向左平移1个单位,得到的直线的解析式为__________.2、直线21y x =+向右平移2个单位后的解析式是;3、已知直线:y=3x -12,将直线向右平移5个单位长度得到直线,则直线的解析式. 4、已知直线:y=3x -12,将直线向左平移5个单位长度得到直线,则直线的解析式.5、直线y=-5x -12向左平移2个单位长度后得到的直线解析式是___;直线y=向右平移3个单位长度后得到的直线解析式是___.(三)、综合应用1、直线y=8x +13既可以看作直线y=8x -3向___平移(填“上”或“下”)___单位长度得到;也可以看作直线y=8x -3向___平移(填“左”或“右”)___单位长度得到.2、要由直线y=2x +12得到直线y=2x -6,可以通过平移得到:先将直线y=2x +12向___平移(填“上”或“下”)___单位长度得到直线y=2x ,再将直线y=2x 向___平移(填“上”或“下”)得到直线y=2x -6;当然也可以这样平移:先将直线y=2x +12向___平移(填“左”或“右”)___单位长度得到直线y=2x ,再将直线y=2x 向___平移(填“左”或“右”)得到直线y=2x -6;以上这两种方法是分步平移.也可以一次直接平移得到,即将直线y=2x +12向___平移(填“上”或“下”)直接得到直线y=2x -6,或者将直线y=2x +12向___平移(填“左”或“右”)直接得到直线y=2x -6.六、直线与坐标轴围成的三角形的面积1、一次函数y=-2x+4的图象与x 轴交点坐标 是,与y 轴交点坐标是 图象与坐标轴所围成的三角形面积是 .2、一次函数y=2x -4的图象与x 轴交点坐标是,与y 轴交点坐标是.3、一次函数y=2x+b 与两坐标轴围成三角形的面积为4,则b=________________.4、直线443--=x y 与两坐标轴围成的三角形面积是 5、如果一次函数4+=kx y 与两坐标轴围成的三角形面积为4,则=k _____6、函数25+-=x y 与x 轴的交点是,与y 轴的交点是,与两坐标轴围成的三角形面积是。

关于一次函数经典例题20题的文章

关于一次函数经典例题20题的文章

关于一次函数经典例题20题的文章一次函数经典例题20题一次函数是数学中的基础概念之一,也是初中数学中的重要内容。

它的形式为y=ax+b,其中a和b是常数,x和y分别表示自变量和因变量。

在学习一次函数的过程中,我们经常会遇到一些经典例题,下面就让我们来看看其中的20个例题。

1. 已知y=2x+3,求当x=5时的y值。

\n2. 若y=3x-4,求当y=7时的x值。

\n3. 若y=4x-2,求当x=-1时的y值。

\n4. 若y=-2x+5,求当y=-3时的x值。

\n5. 若y=-3x+7,求当x=4时的y值。

\n6. 若y=5-2x,求当y=0时的x值。

\n7. 若y=-4+3x,求当y=-1时的x值。

\n8. 若y=x-6,求当x=-2时的y值。

\n9. 若y=2+x/3,求当y=1时的x值。

\n10. 已知直线过点(1, 3)和(4, 9),求直线方程。

\n11. 已知直线过点(-2, 5)和(3, -1),求直线方程。

\n12. 已知直线过点(-1, -4)和(2, 0),求直线方程。

\n13. 已知直线过点(3, 2)和(6, 5),求直线方程。

\n14. 已知直线过点(-3, -2)和(0, 1),求直线方程。

\n15. 若y=2x+1与y=-3x+4相交于点P,求点P的坐标。

\n16. 若y=4x-3与y=-2x+5相交于点P,求点P的坐标。

\n17. 若y=-5x+2与y=3x-1相交于点P,求点P的坐标。

\n18. 若y=6-2x与y=4x-1相交于点P,求点P的坐标。

\n19. 若y=-3+5x与y=-2x+7相交于点P,求点P的坐标。

\n20. 若直线过点(1, -2)且平行于直线y=3x-4,求直线方程。

这20个例题涵盖了一次函数的基本概念和应用。

通过解答这些例题,我们可以加深对一次函数的理解,并掌握如何根据已知条件确定一次函数的表达式或方程。

同时,这些例题也培养了我们分析问题、运用数学知识解决实际问题的能力。

一次函数知识点及其典型例题

一次函数知识点及其典型例题

一次函数根本概念1、变量:在一个变化过程中可以取不同数值的量。

常量:在一个变化过程中只能取同一数值的量。

例题:在匀速运动公式vts 中,v表示速度,t表示时间,s表示在时间t内所走的路程,那么变量是,常量是。

在圆的周长公式2πr中,变量是,常量是.2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。

*判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应例题:以下函数〔1〕πx (2)21 (3) (4)2-1-3 (5)2-1中,是一次函数的有〔〕〔A〕4个〔B〕3个〔C〕2个〔D〕1个3、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.4、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。

5、描点法画函数图形的一般步骤第一步:列表〔表中给出一些自变量的值及其对应的函数值〕;第二步:描点〔在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点〕;第三步:连线〔按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来〕。

6、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

7、正比例函数及性质一般地,形如(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.注:正比例函数一般形式 (k不为零) ① k不为零② x指数为1 ③ b取零当k>0时,直线经过三、一象限,从左向右上升,即随x的增大y也增大;当k<0时,•直线经过二、四象限,从左向右下降,即随x 增大y反而减小.(1)解析式:〔k是常数,k≠0〕(2)必过点:〔0,0〕、〔1,k〕(3)走向:k>0时,图像经过一、三象限;k<0时,•图像经过二、四象限(4)增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小(5)倾斜度:越大,越接近y轴;越小,越接近x轴例题:.正比例函数(35)y m x=+,当m 时,y随x的增大而增大.假设23y x b=+-是正比例函数,那么b的值是〔〕A.0B.23 C.23- D.32-.函数(1)x,y随x增大而减小,那么k的范围是 ( )A.0<k B.1>k C.1≤k D.1<k东方超市鲜鸡蛋每个0.4元,那么所付款y元与买鲜鸡蛋个数x〔个〕之间的函数关系式是.平行四边形相邻的两边长为x、y,周长是30,那么y与x的函数关系式是.8、一次函数及性质一般地,形如+b(是常数,k≠0),那么y叫做x的一次函数.当0时,+b即,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式 (k不为零) ① k不为零②x指数为1 ③ b取任意实数一次函数的图象是经过〔0,b〕和〔-kb,0〕两点的一条直线,我们称它为直线,它可以看作由直线平移个单位长度得到.〔当b>0时,向上平移;当b<0时,向下平移〕〔1〕解析式:(k、b是常数,k≠0)〔2〕必过点:〔0,b 〕和〔-k b ,0〕〔3〕走向: k>0,图象经过第一、三象限;k<0,图象经过第二、四象限b>0,图象经过第一、二象限;b<0,图象经过第三、四象限直线经过第一、二、三象限 直线经过第一、三、四象限 直线经过第一、二、四象限 直线经过第二、三、四象限 〔4〕增减性: k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小. 〔5〕倾斜度:越大,图象越接近于y 轴;越小,图象越接近于x 轴. 〔6〕图像的平移: 当b>0时,将直线的图象向上平移b 个单位;当b<0时,将直线的图象向下平移b 个单位.例题:假设关于x 的函数1(1)m y n x -=+是一次函数,那么 ,n ..函数与的图象在同一坐标系内的大致位置正确的选项是〔 〕 将直线y =3x 向下平移5个单位,得到直线 ;将直线y =5向上平移5个单位,得到直线 .假设直线a x y +-=和直线b x y +=的交点坐标为(8,m ),那么=+b a . 函数y =31,当自变量增加m 时,相应的函数值增加〔 〕 A.3m +1 B.3m C.m D.3m -19、一次函数+b 的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:〔0,b〕,.即横坐标或纵坐标为0的点.假设m<0, n>0, 那么一次函数的图象不经过〔〕10、正比例函数与一次函数图象之间的关系一次函数+b的图象是一条直线,它可以看作是由直线平移个单位长度而得到〔当b>0时,向上平移;当b<0时,向下平移〕.11、直线11与22的位置关系〔1〕两直线平行:k12且b1≠b2〔2〕两直线相交:k1≠k2〔3〕两直线重合:k12且b1212、用待定系数法确定函数解析式的一般步骤:〔1〕根据条件写出含有待定系数的函数关系式;〔2〕将x、y的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;〔3〕解方程得出未知系数的值;〔4〕将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.13、一元一次方程与一次函数的关系任何一元一次方程到可以转化为0〔a,b为常数,a≠0〕的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于直线确定它与x轴的交点的横坐标的值.14、一次函数与一元一次不等式的关系任何一个一元一次不等式都可以转化为>0或<0〔a,b为常数,a ≠0〕的形式,所以解一元一次不等式可以看作:当一次函数值大〔小〕于0时,求自变量的取值范围.15、一次函数与二元一次方程组〔1〕以二元一次方程的解为坐标的点组成的图象与一次函数的图象一样.〔2〕二元一次方程组的解可以看作是两个一次函数和的图象交点.题型一、点的坐标方法: x轴上的点纵坐标为0,y轴上的点横坐标为0;假设两个点关于x轴对称,那么他们的横坐标一样,纵坐标互为相反数;假设两个点关于y轴对称,那么它们的纵坐标一样,横坐标互为相反数;假设两个点关于原点对称,那么它们的横坐标互为相反数,纵坐标也互为相反数;1、假设点A 〔〕在第二象限,那么点〔〕在第象限; 2、假设点P 〔2a-1,2-3b 〕是第二象限的点,那么的范围为; 3、 A 〔4,b 〕,B 〔2〕,假设A ,B 关于x 轴对称,那么;假设关于y 轴对称,那么;假设假设A ,B 关于原点对称,那么;4、 假设点M 〔1,1〕在第二象限,那么点N 〔11〕关于原点的对称点在第象限。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

xy y=k 3xy=k 2x y=k 1x oABCDA B CthO初二数学一次函数知识点总结1、函数:*判断Y 是否为X 的函数,只要看X 取值确定时,Y 是否有唯一确定的值与之对应 例:(1)下列关系式中,y 不是x 的函数的有 个①x y 2= ②2--=x y ③xy 2= ④2x y = ⑤x y =2⑥x y = ⑦x y 2010±=(2)下列各图给出了变量x 与y 之间的函数是: ( )2、确定自变量x 取值范围的方法:(1)关系式为整式时,自变量x 的取值范围为全体实数; (2)关系式有分母时,分母不等于零; (3)关系式含有根号时,被开方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,自变量x 的取值范围还要和实际情况相符合,使之有意义。

例:(1)函数y=2x -自变量x 的取值范围是 ,21-=x y 自变量x 的取值范围是函数32-+=x x y 自变量x 的取值范围是 ;23+-=x x y 自变量x 的取值范围是函数y=()033-++x x 自变量x 的取值范围是(2)拖拉机的油箱装油56千克,犁地平均每小时耗油6千克,则油箱剩油量q (千克)与时间t (小时)之间的关系是 ,自变量t 的取值范围是(3) 已知等腰三角形周长为20,写出底边长y 关于腰长x 的函数解析式(x 为自变量),并写出自变量取值范围,画出函数图象.3、函数的图像:例:①如图,是一种古代计时器——“漏壶”的示意图,在壶内盛一定量的水,水从壶下的小孔漏出,壶壁内画出刻度,人们根据壶中水面的位置计算时间.若用x 表示时间,y 表示壶底到水面的高度,下面的图象适合表示一小段时间内y 与x 的函数关系的是( )(不考虑水量变化对压力的影响)(A ) (B )(C ) (D )②均匀地向一个容器注水,最后把容器注满.在注水过程中,水面高度h 随时间t 的变化规律如图所示(图中OABC 为一折线),则这个容器的形状为( )4、正比例函数及性质正比例函数一般形式:y=kx (k 不为零)其中k 叫做比例系数.① k 不为零 ② x 指数为1 ③ b=0 ①解析式:y=kx (k 是常数,k ≠0)②必过点:(0,0)、(1,k )③走向和增减性:k>0时,图像经过一、三象限,k>0,y 随x 的增大而增大;k<0时,•图像经过二、四象限,y 随x 增大而减小。

④倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴 例:(1)图象经过(1,2)的正比例函数的表达式为___ ___ (2)若()n x m y m32382-+-=-是正比例函数,则=m ,=n , 若()n x m y m32382-+-=-是一次函数,则=m ,nxy oAxy oB xy o Dxy o Cxy O xyO xyO x yO(3)函数y =(k -1)x ,y 随x 增大而减小,则k 的范围是 (4)如图所示:321,,k k k 的大小关系是 5、一次函数及性质一次函数一般形式:y=kx+b (k 不为零) ① k 不为零 ②x 指数为1 ③ b 取任意实数 (1)解析式:y=kx+b(k 、b 是常数,k ≠0)(2)必过点:(0,b )和(-kb,0) (3)走向: k>0,图象经过第一、三象限; k<0,图象经过第二、四象限 b>0,图象与y 轴交点在x 轴上方;b<0,图象与y 轴交点在x 轴下方⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限 ⇔⎩⎨⎧<>0b k 直线经过第一、三、四象限 ⇔⎩⎨⎧><00b k 直线经过第一、二、四象限 ⇔⎩⎨⎧<<0b k 直线经过第二、三、四象限 (4)增减性: k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小. (5)倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴. (6)图像的平移: 当b>0时,将直线y=kx 的图象向上平移b 个单位;当b<0时,将直线y=kx 的图象向下平移b 个单位.例:(1)已知一次函数(1)y a x b =-+的图象如图所示,那么a 的取值范围 是 ,b 的取值范围是(2)函数y=2x+6与x 轴的交点坐标是_______,与y 轴的交点坐标是__ ___与坐标轴围成的三角形面积为(3)点A (1x ,1y )和点B (2x ,2y )在同一直线y kx b =+上,且0k <.若12x x >,则1y ,2y的关系是(4)将直线y =3x 向下平移5个单位,得到直线 ;直线y =-x -5如何平移,得到直线y =-x (5)函数y =ax +b 与y =bx +a 的图象在同一坐标系内的大致位置正确的是( )A .B .C .D .(6)若直线a x y +-=和直线b x y +=的交点坐标为(8,m ),则=+b a ____________. (7)已知函数y =3x +1,当自变量增加m 时,相应的函数值增加( ) A.3m +1 B.3m C.m D.3m -1(8)已知()0,8A 及在第一象限的动点()y x P ,,且10=+y x ,设OPA ∆的面积为S①求S 关于x 的函数解析式; ②求x 的取值范围; ③求S =12时P 点坐标 ④画出函数S 图象6、直线y=k 1x+b 1与y=k 2x+b 2的位置关系(1)两直线平行:k 1=k 2且b 1 ≠b 2 (2)两直线相交于y 轴同一点:k 1≠k 2 且21b b =例:已知一次函数23-=+=x y b kx y 与直线平行,与直线32+=x y 相交于y 轴上一点,则k 、b 的值分别为 ( )A 、k =3,b =2B 、k =3,b =3C 、k =2-,b =3D 、k =2,b =37、用待定系数法确定函数解析式的一般步骤:(1)设; (2)找; (3)代; (4)还原 例:暑假期间,小明和父母一起开车到距家200千米的景点旅游.出发前,汽车油箱内储油45升;当行驶150千米时,发现油箱剩余油量为30升.(1)已知油箱内余油量y (升)是行驶路程x (千米)的一次函数,求y 与x 的函数关系式; (2)当油箱中余油量少于3升时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家请说明理由.Oxy8、一元一次方程与一次函数的关系例:已知0=+b ax 的解是2,则b ax y +=与x 轴的交点坐标是 9、一次函数与一元一次不等式的关系例:①已知一次函数y=-2x-6。

(1)当x=-4时,则y= ,当y=-2时,则x= ; (2)画出函数图象;(3)不等式-2x-6>0解集是_____,不等式-2x-6<0解集是_____;(4)如果y 的取值范围-4≤y ≤2,则x 的取值范围__________;(5)如果x 的取值范围-3≤x ≤3,则y 的最大值是________,最小值是_______. ②如图,一次函数b kx y +=的图像经过A 、B 两点,则0>+b kx 解集是【 】 A .0>x B .3>x C .2>x D .23<<-x 10、一次函数与二元一次方程组例:(1)若直线y=3x+4和直线y=-2x -6交于点A,则点A 的坐标__ __ (2) 一次函数1y kx b =+与2y x a =+的图象如图,则下列结论①0k <;②0a >;③当3x <时,12y y <中,正确的个数是( )A .0B .1C .2D .3(3)如图,直线y 1=kx+b 过点A (0,2),且与直线y 2=mx 交于点 P (1,m ),则不等式组mx >kx+b >mx -2的解集是______________.专题训练:1.已知直线y =2x +m 不经过第二象限,那么实数m 的取值范围 是 _.直线y=kx+b 经过一、二、四象限,则直线y=-bx+k 不经过 第_ ___象限.直线()()31++-=m x m y 与y 轴交于x 轴上方,则实数m 的取值 范围是 _2.一次函数y=kx+b 的图象经过P(1,0)和Q(0,1)两点,则k= ,b= .3.正比例函数的图象与直线y= - 23 x+4平行,则该正比例函数的解析式为 ____ .4.函数y= - 32 x 的图象是一条过原点(0,0)及点(2, )的直线,这条直线经过第 _____象限,y 随x 的增大而 .5.已知一次函数y= - 12 x+2当x= 时,y=0;当x 时y>0; 当x 时y<0.6.把直线y= - 32 x -2向 平移 个单位,得到直线y= - 32(x+4)7.一次函数y=kx+b 过点(-2,5),且它的图象与y 轴的交点和直线y=-12x+3与y 轴的交点关于x轴对称,那么一次函数的解析式是 .8. 直线y=kx+b 经过点(0,3),且与两坐标轴构成的直角三角形的面积是6,则其解析式为 .9.一次函数b kx y +=,当13≤≤-x 时,对应的y 值为91≤≤y ,则函数解析式为 10. 在边长为 2 的正方形ABCD 的边BC 上,有一点P 从B 点运动到C 点,设PB=x ,四边形APCD 的面积为y ,写出y 与自变量x 的函数关系式,并且在直角坐标系中画出它的图象.(- 3 ,0)xy O(0,2)B A xyO32y x a =+1y kx b =+11. 已知一次函数y=32x+m 和y=-12x+n 的图象交于点A (-2,0)且与y 轴的交点分别为B 、C 两点, (1)求△ABC 的面积.(2)观察图像,请写出当x 为何值时,直线y=32x+m 的函数值小于直线y=-12x+n 的函数值12.已知:一次函数的图象经过点(2,1)和点(-1,-3). (1)求此一次函数的解析式;(2)求此一次函数与x 轴、y•轴的交点坐标以及该函数图象与两坐标轴所围成的三角形的面积; (3)若一条直线与此一次函数图象相交于(-2,a )点,且与y 轴交点的纵坐标是5,•求这条直线的解析式;(4)求这两条直线与x 轴所围成的三角形面积.13.如图:在平面直角坐标系中()()2,16,1-B A ,(1)在y 轴上找一点C ,使BC AC +最短,求点C 的坐标 (2)在x 轴上找一点D ,使BD AD +最短,求点D 的坐标。

相关文档
最新文档