掌握内容热量传递的三种基本方式的概念特点及基本定律
传热学知识点总结
传热学知识点总结传热学知识点总结传热学,是研究热量传递规律的科学,是研究由温差引起的热能传递规律的科学。
大约在上世纪30年代,传热学形成了独立的学科。
以下是小编整理的传热学知识点总结,欢迎阅读!第一章§1-1 “三个W”§1-2 热量传递的三种基本方式§1-3 传热过程和传热系数要求:通过本章的学习,读者应对热量传递的三种基本方式、传热过程及热阻的概念有所了解,并能进行简单的计算,能对工程实际中简单的传热问题进行分析(有哪些热量传递方式和环节)。
作为绪论,本章对全书的主要内容作了初步概括但没有深化,具体更深入的讨论在随后的章节中体现。
本章重点:1.传热学研究的基本问题物体内部温度分布的计算方法热量的传递速率增强或削弱热传递速率的方法2.热量传递的三种基本方式(1).导热:依靠微观粒子的热运动而产生的热量传递。
传热学重点研究的是在宏观温差作用下所发生的热量传递。
傅立叶导热公式:(2).对流换热:当流体流过物体表面时所发生的热量传递过程。
牛顿冷却公式:(3).辐射换热:任何一个处于绝对零度以上的物体都具有发射热辐射和吸收热辐射的能力,辐射换热就是这两个过程共同作用的结果。
由于电磁波只能直线传播,所以只有两个物体相互看得见的部分才能发生辐射换热。
黑体热辐射公式:实际物体热辐射:3.传热过程及传热系数:热量从固壁一侧的流体通过固壁传向另一侧流体的过程。
最简单的传热过程由三个环节串联组成。
4.传热学研究的基础傅立叶定律能量守恒定律+ 牛顿冷却公式 + 质量动量守恒定律四次方定律本章难点1.对三种传热形式关系的理解各种方式热量传递的机理不同,但却可以(串联或并联)同时存在于一个传热现象中。
2.热阻概念的理解严格讲热阻只适用于一维热量传递过程,且在传递过程中热量不能有任何形式的损耗。
思考题:1.冬天经太阳晒过的棉被盖起来很暖和,经过拍打以后,效果更加明显。
为什么?2.试分析室内暖气片的散热过程。
热传递热量通过流体的对流传递
热传递热量通过流体的对流传递热量传递是指热量从高温物体传递到低温物体的过程。
传热的方式有三种:传导、对流和辐射。
在介绍流体的对流传热之前,先了解一下传热的基本知识。
一、热传递的基本原理热传递是能量的传递方式,能量从高温物体到低温物体传递,使两者达到热平衡。
热传递的方式有传导、对流和辐射三种。
(一)传导传导是指通过物质内部的分子热振动传递热量的过程。
热量沿温度梯度从高温区域传递到低温区域。
传导率取决于物质的导热性质和温度梯度。
常见的固体和液体都能够传导热量。
(二)对流对流是指通过物体表面上的流体(比如液体或气体)的运动传递热量的过程。
对流分为自然对流和强制对流两种形式。
自然对流是指在温差的驱动下,流体由于密度的差异而形成的运动。
比如,加热后的空气密度减小,上升形成对流。
强制对流是指通过外部力(如风或泵)使流体运动,从而传递热量。
强制对流可以通过风扇或泵等设备来搅动流体,加速热量传递。
(三)辐射辐射是指通过电磁波将热量从发光物体传递到其他物体的过程。
辐射可以在真空中传递,无需介质传递。
常见的辐射形式有电磁波、红外线和可见光等。
二、流体的对流传热流体的对流传热是指通过流动的流体传递热量的过程。
流体的对流传热包括自然对流和强制对流。
(一)自然对流传热自然对流传热是指在温差作用下,流体通过密度的差异而产生的运动,从而传递热量。
自然对流传热的机理是流体受热后密度下降,体积膨胀,从而使流体向上运动。
同时,冷却后的流体密度增加,使流体向下运动。
形成这种循环运动的力称为浮力。
自然对流传热最常见的例子就是热气球。
在热气球中,空气被加热后变得轻,从而使热气球得以上升。
(二)强制对流传热强制对流传热是通过外部力(如风或泵)使流体运动,从而传递热量。
强制对流传热的机理是外部力搅动流体,使流体中的高温部分与低温部分混合,加速热量的传递。
在实际工程中,强制对流传热是非常常见的应用。
比如,利用风扇将空气吹向加热元件,加速热量传递。
传热学——精选推荐
第一章、基本内容:一、热量传递的三种基本方式⒈导热 掌握导热系数λ是一物性参数,其单位为w /(m·K);它取决于物质的热力状态,如压力、温度等。
⒉对流 掌握对流换热的表面传热系数h 为一过程量,而不像导热系数λ那样是物性参数。
⒊热辐射 掌握黑体辐射的斯蒂藩—玻耳兹曼定律。
二、传热过程与传热系数⒈传热过程 理解传热系数K 是表征传热过程强弱的标尺。
⒉热阻分析1、试分析室内暖气片的散热过程,各环节有哪些热量传递方式?以暖气片管内走热水为例。
答:有以下换热环节及热传递方式(1)由热水到暖气片管到内壁,热传递方式是对流换热(强制对流);(2)由暖气片管道内壁至外壁,热传递方式为导热;(3)由暖气片外壁至室内环境和空气,热传递方式有辐射换热和对流换热。
二、定量计算本节的定量计算主要是利用热量传递的三种基本方式所对应的定律,即导热的傅里叶定律,对流换热的牛顿冷却公式,热辐射的斯蒂藩—玻耳兹曼定律进行简单的计算。
另外,传热过程、热阻综合分析法及能量守恒定律也是较重要的内容。
1、一双层玻璃窗,宽1.1m ,高1.2m ,厚3mm ,导热系数为1.05W/(m·K);中间空气层厚5MM ,设空气隙仅起导热作用,导热系数为0.026W/(m·K)。
室内空气温度为25℃。
表面传热系数为20W/(m 2·K);室外空气温度为-10℃,表面传热系数为15W/(m 2·K)。
试计算通过双层玻璃窗的散热量,并与单层玻璃窗相比较。
假定在两种情况下室内、外空气温度及表面传热系数相同。
解:(1)双层玻璃窗情形,由传热过程计算式:(2)单层玻璃窗情形:显然,单层玻璃窃的散热量是双层玻璃窗的2.6倍。
因此,北方的冬天常常采用双层玻璃窗使室内保温。
2、一外径为0.3m ,壁厚为5mm 的圆管,长为5m ,外表面平均温度为80℃。
200℃的空气在管外横向掠过,表面传热系数为80W/(m 2·K)。
热量的传递与热量的传递速率计算方法
热量的传递与热量的传递速率计算方法热量传递是热力学中的基本概念之一,它涉及到热量从高温物体传递到低温物体的过程。
在工程实践中,我们经常需要计算热量的传递速率,以便合理设计和改善热力系统。
本文将介绍热量的传递方式以及常用的计算方法。
一、热量的传递方式热量的传递可以通过三种方式进行:传导、对流和辐射。
下面将对这三种方式进行详细阐述。
1. 传导传导是指物体内部或不相邻物体之间通过分子碰撞来传递热量的过程。
传导过程可以通过能量传递的方式进行,即分子通过碰撞将热量从高温区域传递到低温区域。
传导的速率与物体的导热性能有关,导热性能越高,传导速率越快。
2. 对流对流是指热量通过流体的运动传递的过程。
当流体受热后,流体的密度减小,形成浮力,产生对流流动。
对流传热速率与流体的性质、流动速度以及体积等因素有关。
对流传热速率通常比传导快,因为对流可以带走更多的热量。
3. 辐射辐射是指热量通过电磁波的辐射传递的过程。
所有物体在温度不为零时都会发出电磁波,这些电磁波的波长和强度与物体的温度有关。
辐射传热速率与物体的表面温度的四次方成正比,因此高温物体的辐射传热速率较快。
二、热量传递速率的计算方法热量传递速率是指单位时间内热量传递的量,通常用功率来表示。
下面将介绍几种常用的计算方法。
1. 传导热传递速率的计算传导热传递速率的计算可以使用傅里叶定律。
傅里叶定律表明,传热速率正比于温度梯度,反比于物体的导热系数和传热距离。
传导热传递速率可以用以下公式表示:Q = - k*A*(∆T/∆x)其中,Q表示传导热传递速率,k表示导热系数,A表示传热面积,∆T表示温度差,∆x表示传热距离。
2. 对流热传递速率的计算对流热传递速率的计算需要考虑流体的性质以及流动速度等因素。
常用的计算方法包括乌格尔数和努塞尔数,它们可以用以下公式表示:Nu = C*(Re^m)*(Pr^n)其中,Nu表示努塞尔数,Re表示雷诺数,Pr表示普朗特数,C、m 和n是与具体问题相关的常数。
主要内容本章介绍了三种基本传热方式,即导热、对流传热
t
Q qA 2rL dt 常数
dr
t
rQ
dt
dr
t1
r1 2rL
若为常数,则:
Q
t1 t ln r r1
--------可见温度分布 为对数关系
2L
0
t1 r1
r2Q Q t2 dr
薄壳衡b算法
§6.2.2一维稳态导热-----薄壳衡算法
Q t1 t2 ln r2 r1
恒压比热Cp: 恒压条件下,单位质量的物质升高或降低1℃所需(放
出)的热量,KJ/Kg.℃。取平均温度下的数值计算。 有相变时(蒸汽冷凝、液体沸腾)
相变热Q=qmr r:汽化潜热,KJ/Kg。 如热流体是饱和蒸汽,在换热器中冷凝后,冷凝液温度
T2低于饱和温度T1。 则 Q=qm1[r+Cp1(T1-T2)]=qm2Cp2(t2-t1)
t1 t2
r2 r1
2L 2L r2 r1 ln r2 r1 t
令rm
r2 r1 ln r2 r1
--------对数平均半径
当 r2 2 时,可用算术平均代替
r1
于是Q t1 t2 t1 t2
b
b
2Lrm Am
对照:平壁:Q
t1 t2
①对流传热过程的基本概念、定律、传热速率方程; ②管内强制湍流流动时表面传热系数的经验关联及影 响因素; ③总传热速率方程以及传热过程的计算。
6.1 概述
一、传热过程在工业生产中的应用 传热即热的传递(以温度差为推动力的能量传递现象)根据
热力学第二定律,凡是有温度差的存在就必然有热的传递,因 此传热是自然界和工程领域中较为普遍的一种传递过程。许多 单元操作,如蒸发、精馏、干燥、结晶、冷冻、吸收和萃取等, 无不直接或间接与传热有关。
热量传递的基本方式
热辐射的主要特点:
(1)所有温度大于0 K的物体都具有发射热辐 射的能力,温度愈高,发射热辐射的能力愈强。
发射热辐射时:内热能 辐射能 ;
(2)所有实际物体都具有吸收热辐射的能力, 物体吸收热辐射时:辐射能 内热能 ;
(3)热辐射不依靠中间媒介,可以在真空中传
播;
(4)物体间以热辐射的方式进行的热量传递是
tw1
热流量:单位时间传导的热量,W
tw2
Atw1 tw2
: 材料的热导率(导热系数): 0
表明材料的导热能力,W/(m·K)。
x
3
热流密度 q :单位时间通过单位面积的热流量
qtw1tw2
A
ቤተ መጻሕፍቲ ባይዱ
Atw1 tw2
tw1 t w 2
tw1 tw 2 R
A
R A
称为平壁的导热热阻,表示物体对 导热的阻力,单位为K/W 。
的现象
解释辐射现象的两种理论 : 电磁理论与量子理论
电磁波的数学描述: c
c — 某介质中的光速, c c0 n
c0 3.0108 m/s 为真空中的光速; n 为介质的折射率。
— 波长, 常用m为单位, 1m = 10-6 m。
— 频率, 单位 s-1。
9
电磁波的波谱:
射线: < 5×10-5 m X射线: 5×10-7 m < < 5×10-2 m 紫外线: 4×10-3 m < < 0.38 m 可见光: 0.38 m < < 0.76 m 红外线: 0.76 m < < 103 m 无线电波: > 103 m
对流换热类型 空气自然对流换热 水自然对流换热 空气强迫对流换热 水强迫对流换热 水沸腾 水蒸气凝结
传热学内容总结
绪论部分一、热量传递的三种基本方式⒈导热应充分理解导热是物质的固有本质,无论是气体、液体还是固体液态还是固态,都具有导热的本领。
利用傅里叶定律进行稳态一维物体导热量的计算。
应能区分热流量Φ和热流密度q。
前者单位是w,后者单位是w/m2,且q=Φ/A。
同时还应将热流量Φ与热力学中的热量Q区别开来,后者的单位是J。
传热学中引入了时间的概念,强调热量传递是需要时间的。
充分掌握导热系数λ是一物性参数,其单位为w/(m·K);它取决于物质的热力状态,如压力、温度等。
对不同的物质,可用教材的附录查得导热系数值。
⒉对流掌握对流换热是流体流过固体壁面且由于其与壁面间存在温差时的热量传递现象,它与流体的流动机理密不可分;同时,由于导热也是物质的固有本质,因而对流换热是流体的宏观热运动(热对流)与流体的微观热运动(导热)联合作用的结果。
初步会运用牛顿冷却公式或计算对流换热量。
注意其中A为换热面积,必须是流体与壁面间相互接触的、与热量传递方向相垂直的面积。
掌握对流换热的表面传热系数h为一过程量,而不像导热系数λ那样是物性参数。
也正因为如此,不同对流换热过程的表面传热系数的数量级相差很大。
⒊热辐射掌握热辐射的特点,区分它与导热及对流的不同之处。
掌握黑体辐射的斯蒂藩—玻耳兹曼定律。
它是一个黑体表面向外界发射的辐射热量,而不是一个表面与外界之间以辐射方式交换的热量。
通过对两块非常接近的互相平行黑体壁面间辐射换热的计算,以了解辐射换热的概念。
应注意三种热量传递方式并不是单独出现,常常串联或并联在一起起作用。
可以结合日常生活及工程实际中的实例加深理解。
二、传热过程与传热系数⒈传热过程充分理解传热过程是热量在被壁面隔开的两种流体之间热量传递的过程。
在传热过程中三种热量传递方式常常联合起作用。
能对一维平壁的传热过程进行简单的计算。
理解传热系数K是表征传热过程强弱的标尺。
既然对流换热表面传热系数h是过程量,它常作为传热过程的一个环节,因而传热系数也是过程量。
热工基础与应用 第3版 知识点
《热工基础及应用》第3版知识点第一章 热能转换的基本概念本章要求:1.掌握研究热能转换所涉及的基本概念和术语;2.掌握状态参数及可逆过程的体积变化功和热量的计算;3.掌握循环的分类与不同循环的热力学指标。
知识点:1.热力系统:根据研究问题的需要和某种研究目的,人为划定的一定范围内的研究对象称为热力系统,简称热力系或系统。
热力系可以按热力系与外界的物质和能量交换情况进行分类。
2.工质:用来实现能量相互转换的媒介物质称为工质。
3.热力状态:热力系在某瞬时所呈现的宏观物理状态称为热力状态。
对于热力学而言,有意义的是平衡状态。
其实现条件是:0,0,0p T μ∆=∆=∆=。
4. 状态参数和基本状态参数:描述系统状态的宏观物理量称为热力状态参数,简称状态参数。
状态参数可按与系统所含工质多少有关与否分为广延量(尺度量)参数和强度量状态参数;按是否可直接测量可分为基本和非基本状态参数。
5. 准平衡(准静态)过程和可逆过程:准平衡过程是基于对热力过程的描述而提出的。
实现准平衡过程的条件是推动过程进行的不平衡势差要无限小,即0p ∆→,0T ∆→(0μ∆→)。
6、热力循环:为了实现连续的能量转换,就必须实施热力循环,即封闭的热力过程。
热力循环按照不同的方法可以分为:可逆循环和不可逆循环;动力循环(正循环)和制冷(热)循环(逆循环)等。
动力循环的能量利用率的热力指标是热效率:0=t H W Q η;制冷循环能量利用率的热力学指标是制冷系数:L 0=Q W ε。
第二章 热力学第一定律本章要求:1. 深入理解热力学第一定律的实质;2. 熟练掌握热力学第一定律的闭口系统和稳定流动系统的能量方程。
知识点:1. 热力学第一定律:是能量转换与守恒定律在涉及热现象的能量转换过程中的应用。
热力学第一定律揭示了能量在传递和转换过程中数量守恒这一实质。
2. 闭口系统的热力学第一定律表达式,即热力学第一定律基本表达式:Q U W =∆+。
传热的基本概念及三种基本方式特点、区别和联系
传热的基本概念及三种基本方式特点、区别和联系传热是热量从高温物体传递到低温物体或从物体的高温部分传递到低温部分的过程。
热传导、热对流和热辐射是传热的三种基本方式。
它们的特点、区别和联系如下:
1.特点:
•热传导:通过物体内部的微观粒子运动,将热量从高温区传递到低温区。
•热对流:由于流体(气体或液体)的运动,将热量从高温区传递到低温区。
•热辐射:通过电磁波的辐射和吸收,将热量从一个物体传递到另一个物体。
1.区别:
•热传导依赖于微观粒子的运动,而热对流和热辐射则与流体的运动和电磁波的传播有关。
•热对流和热辐射可以在气体、液体和固体中进行,而热传导主要在固体中进行。
1.联系:
•在某些情况下,传热过程可能同时包含热传导、热对流和热辐射。
•在传热过程中,三种方式的贡献可能相互影响,共同决定热量传递的总体效果。
简而言之,传热的基本概念及三种基本方式特点、区别和联系主要涉及热量在不同介质中的传递机制,以及它们在特定条件下的相互作用。
传热学知识总结1
传热学主要知识点1. 热量传递的三种基本方式。
热量传递的三种基本方式:导热(热传导)、对流(热对流)和热辐射。
2.导热的特点。
a 必须有温差;b 物体直接接触;c 依靠分子、原子及自由电子等微观粒子热运动而传递热量;d 在引力场下单纯的导热一般只发生在密实的固体中。
3.对流〔热对流〕(Convection)的概念。
流体中〔气体或液体〕温度不同的各部分之间,由于发生相对的宏观运动而把热量由一处传递到另一处的现象。
4对流换热的特点。
当流体流过一个物体外表时的热量传递过程,它与单纯的对流不同,具有如下特点:a 导热与热对流同时存在的复杂热传递过程b 必须有直接接触〔流体与壁面〕和宏观运动;也必须有温差c 壁面处会形成速度梯度很大的边界层5.牛顿冷却公式的基本表达式及其中各物理量的定义。
6. 热辐射的特点。
a 任何物体,只要温度高于0 K ,就会不停地向周围空间发出热辐射;b 可以在真空中传播;c 伴随能量形式的转变;d 具有强烈的方向性;e 辐射能与温度和波长均有关;f 发射辐射取决于温度的4次方。
7.导热系数, 外表传热系数和传热系数之间的区别。
导热系数:表征材料导热能力的大小,是一种物性参数,与材料种类和温度关。
外表传热系数:当流体与壁面温度相差1度时、每单位壁面面积上、单位时间内所传递的热量。
影响h 因素:流速、流体物性、壁面形[]W )(∞-=t t hA Φw []2m W )( f w t t h AΦq -==状大小等。
传热系数:是表征传热过程强烈程度的标尺,不是物性参数,与过程有关。
8.实际热量传递过程:常常表现为三种基本方式的相互串联/并联作用。
9.复杂传热过程第一章 导热理论基础1傅立叶定律的基本表达式及其中各物理量的意义。
傅立叶定律〔导热基本定律〕:垂直导过等温面的热流密度,正比于该处的温度梯度,方向与温度梯度相反。
(1)空隙中充有空气,空气导热系数小,因此保温性好;(2)空隙太大,会形成自然对流换热,辐射的影响也会增强,因此并非空隙越大越好。
传热学总复习
一、热量传递的三种基本方式--导热、对流、热辐射: 1、概念:1)基本概念:ⅰ)、导热的概念:物体各部分之间不发生相对位移,依靠分子、原子及自由电子等微观粒子的热运动而产生的热量传递。
ⅱ)、对流的概念:指由于流体的宏观运动,从而流体各部分之间发生相对位移、冷热流体相互掺混所引起的热量传递过程 ⅲ)、热辐射:物体因热的原因发出辐射能的现象2)、传热的机理:ⅰ)导热依靠微观粒子的热运动:分子、原子的相互碰撞、晶格的振动等ⅱ)对流依靠流动的宏观运动:流体的相互位移或掺混ⅲ)热辐射:发射电磁波 2、热量传递的三个基本公式 1)导热的傅里叶定律(一维):Φ-热流量(单位时间通过某一给定面积的热量),单位W q —单位时间内通过单位面积的热流量,单位W/m2 2) 对流换热的牛顿冷却定律: Ⅰ、对流换热:对流伴随有导热的现象 Ⅱ、牛顿冷却定律流体被加热时: 流体被冷却时: h —表面传热系数,与过程有关。
单位W/m2.K 3、热辐射(斯忒藩-玻尔兹曼定律): (σ-斯忒藩-玻尔兹曼常量(黑体辐射常数)σ=5.67×10-8 W/(m2.K4) 实际物体热辐射量: 二、传热过程:1、 传热过程的概念:热量由壁面一侧的流体通过壁面传到另一侧流体中去的过程。
2、传热过程热流量的计算:3、传热系数(单位W/m2.K):三、热阻:串联环节的总热阻等于各分热阻之和,且稳态时, 各环节的热流量相等。
第二章 导热基本定律及稳态导热一、温度场、等温面、等温线、温度梯度的意义等温线的特点:物体中的任一条等温线要么形成一个封闭的曲线,要么终止在物体表面上,而不会与另一条等温线相交。
温度梯度:空间某点的温度的变化率。
二、导热的基本定律、意义 1)(1dxdt λAΦ--=dxdt A q λ-=Φ=t Ah t t Ah f w ∆=-=Φ)(t Ah t t Ah w f ∆=-=Φ)(4T A σ=Φ4T A σε=ΦtAk h h t t A f f ∆=++-=Φ212111λδ21111h h k ++=λδ2121222*********Ah A Ah t t Ah t t A t t Ah t t f f f w w w w f ++-=-=-=-=Φλδλδn nt gradt ∂∂=∂t1、导热基本定律(傅里叶定律):2、傅里叶定律的意义:揭示了连续温度场内每一点的温度梯度与热流量间的联系。
热量传递主要有三种基本方式及导热对流和什么
热量传递主要有三种基本方式及导热对流和什么
热量传递的三种基本方式:热传导,热对流和热辐射。
1.热传导:通常也称为导热,是物体内部或相互接触的物体表面之间,由于分子、原子及电子等微观粒子的热运动而产生的热量传递现象。
导热依赖两个基本条件:一是必须有温差,二是必须直接接触(不同物体)或是物体内部传递。
2.热对流:是指由于流体的宏观运动,致使不同温度的流体相对位移而产生的热量传递现象,对流只能发生于流体中,且一定伴随着流体分子的不规则热运动产生的导热。
对流换热按流动的起因不同(流动的驱动力不同)分为自然对流和强迫对流两种。
自然对流是由于温差引起的流体不同部分的密度不同而自然产
生上下运动的对流换热。
因此,有温差不一定能发生自然对流,还应考虑表面的相对位置是否能形成因温度差导致的密度差引起的流体
运动。
当固体表面的温度高于环境的空气温度时,该表面上方的空气受热后密度变小,自由上升,从而发生自然对流换热。
在表面下方,紧挨表面的空气受热后密度变小,由于受到阻挡积聚在表面底下,难以产生空气的自由运动,从而没有自然对流换热的发生。
而表面的下方,空气受冷后自由下沉,则可以发生自然对流换热。
强迫对流则是流体在外力的推动作用下流动所引起的对流换热。
强迫对流换热程度比自然对流换热剧烈得多,当流体发生相变的时候,对流换热则分别称为沸腾换热和凝结换热。
3.热辐射,热辐射不需要任何中间介质而远距离传播,并且在传播过程中有热能-辐射能-热能的能量形式转换。
热量传递的三种基本方式导热(热传导)、对流(热对流)和热辐射。
[ W m2 ]
: 热导率(导热系数) (Thermal conductivity) W (m C) 直角坐标系中: t t t q q x i q y j q z k i j k x y z
注:傅里叶定律只适用于各向同性材料 各向同性材料:热导率在各个方向是相同的
Nu C Rem
)/ 2; 式中:定性温度为 tr (tw tf特征长度为管外径 d, 数中的流速采用整个管束中最窄截面处的流速。 Re 实验验证范围:
C和m的值见下表。
Ref 2000 ~ 40000。
§6-5 自然对流换热及实验关联式
自然对流:不依靠泵或风机等外力推动,由流体自身 温度场的不均匀所引起的流动。一般地,不均匀温度 场仅发生在靠近换热壁面的薄层之内。 自然对流的自模化现象:紊流时换热系数与特征尺度无 关。
Nu f (Re, Pr); Nu x f ( x ' , Re, Pr)
自然对流换热:
Nu f (Gr , Pr)
混合对流换热: Nu f (Re, Gr , Pr) 试验数据的整理形式:
Nu c Re n Nu c Re n Pr m Nu c(Gr Pr)n
2. 入口段的热边界层薄,表面传热系数高。 层流入口段长度: l / d 0.05 Re Pr 湍流时:
4-2 边界节点离散方程的建立及代数 方程的求解
对于第一类边界条件的热传导问题,处理比较简单,因为 已知边界的温度,可将其以数值的形式加入到内节点的离 散方程中,组成封闭的代数方程组,直接求解。
而对于第二类边界条件或第三类边界条件的热传导问题, 就必须用热平衡的方法,建立边界节点的离散方程,边界 节点与内节点的离散方程一起组成封闭的代数方程组,才 能求解。
热量传递的基本方式
建筑火灾蔓延过程中,热量传递的三种基本方式
建筑火灾蔓延过程中,热量传递的三种基本方式建筑火灾蔓延过程中,热量传递的三种基本方式在建筑火灾的蔓延过程中,热量传递的方式对火灾的发展起着至关重要的作用。
热量传递的三种基本方式分别是传导、对流和辐射。
本文将就这三种方式展开深入讨论,以帮助读者更好地理解建筑火灾蔓延的机理和特点。
1. 传导传导是指热量在固体介质内部传递的过程。
在建筑火灾中,建筑结构或物体的表面会受到火焰的热辐射作用,导致其表面温度升高。
随着时间的推移,高温表面上的热量会向内部传导,使得物体内部的温度也不断上升。
这种过程会导致建筑结构的破坏,加剧火势的蔓延。
传导还包括了传热系数的计算,可以帮助我们评估建筑材料的防火性能。
2. 对流对流是指热量通过流体介质的传递方式。
在建筑火灾中,空气是最常见的流体介质。
火灾将导致空气的流动,形成对流。
热空气会上升,冷空气会下沉,从而形成对流热量传递。
这种方式会导致火势快速蔓延,使得火灾范围不断扩大。
对流还会对人员逃生和消防作业产生影响,因此应当引起足够重视。
3. 辐射辐射是指热量在真空或介质间以电磁波的形式传递的过程。
在建筑火灾中,火焰释放的热辐射是主要的辐射形式。
辐射可以穿透空气,直接作用于建筑结构或物体的表面,使得其温度升高。
这种方式是火灾蔓延的主要原因之一,因为辐射可以快速传递热量,导致火势迅速升级。
建筑火灾蔓延过程中热量传递的三种基本方式——传导、对流和辐射,相互作用,共同推动着火势的蔓延。
要有效地遏制火灾的蔓延,我们需要全面理解这三种方式的特点和机理,并在预防和灭火工作中加以应用。
在个人观点方面,我认为加强对这三种方式的认识和研究,对防火和建筑安全具有重要意义。
只有深入理解火灾蔓延的机理,我们才能制定科学合理的防火措施,保障人们的生命财产安全。
总结回顾起来,本文从传导、对流和辐射三个方面对建筑火灾蔓延的热量传递方式进行了深入讨论。
通过对这些内容的了解,我们不仅能够更好地理解火灾蔓延的机理,还能够更有效地进行防火和灭火工作,从而保障人们的生命财产安全。
传热学知识点
传热学主要知识点1.热量传递的三种基本方式。
热量传递的三种基本方式:导热(热传导)、对流(热对流)和热辐射。
2.导热的特点。
a 必须有温差;b 物体直接接触;c 依靠分子、原子及自由电子等微观粒子热运动而传递热量;d 在引力场下单纯的导热一般只发生在密实的固体中。
3.对流(热对流)(Convection)的概念。
流体中(气体或液体)温度不同的各部分之间,由于发生相对的宏观运动而把热量由一处传递到另一处的现象。
4对流换热的特点。
当流体流过一个物体表面时的热量传递过程,它与单纯的对流不同,具有如下特点:a 导热与热对流同时存在的复杂热传递过程b 必须有直接接触(流体与壁面)和宏观运动;也必须有温差c 壁面处会形成速度梯度很大的边界层 5.牛顿冷却公式的基本表达式及其中各物理量的定义。
[]W )(∞-=t t hA Φw []2m W )( f w t t h AΦq -==6. 热辐射的特点。
a 任何物体,只要温度高于0 K,就会不停地向周围空间发出热辐射;b 可以在真空中传播;c 伴随能量形式的转变;d 具有强烈的方向性;e 辐射能与温度和波长均有关;f 发射辐射取决于温度的4次方。
7.导热系数, 表面传热系数和传热系数之间的区别。
导热系数:表征材料导热能力的大小,是一种物性参数,与材料种类和温度关。
表面传热系数:当流体与壁面温度相差1度时、每单位壁面面积上、单位时间内所传递的热量。
影响h因素:流速、流体物性、壁面形状大小等。
传热系数:是表征传热过程强烈程度的标尺,不是物性参数,与过程有关。
常温下部分物质导热系数:银:427;纯铜:398;纯铝:236;普通钢:30-50;水:;空气:;保温材料:<;水垢:1-3;烟垢:。
8.实际热量传递过程:常常表现为三种基本方式的相互串联/并联作用。
9.复杂传热过程Upside surface: adiabaticDownside surface: adiabatic xai LL2L A/A/A/第一章导热理论基础1傅立叶定律的基本表达式及其中各物理量的意义。
传热学复习 (1)
单值性条件(定解条件)(思考题8)
几何条件、物理条件、 初始条件 边界条件
第一类、第二类、第三类(思考题9、10) 第四类边界条件
热扩散系数 a
c
物性参数、物理意义 与导热系数的联系与区别(思考题17)
保温材料(思考题4)
2-2 物质的导热特性
不同物质的导热系数相差很大
一般情况下, 固体 > 液体 > 气体
同一种物质 晶体>非晶体
同一种物质 固态 > 液态 > 气态
0.0183
各向异性材料——木材、石墨、云母、动植物的肌肉和纤维组织等。
直角坐标系中导热微分方程的简化处理
t t t 一般形式 ( ct ) ( ) ( ) ( ) x x y y z y
变导热系数 ( 0 1 bt)
算术平均温度:tm
tw1 tw 2 2 平均导热系数:m 0 (1btm )
(习题3-5、3-9、3-11)
多层壁: t w1 twn 1
i i 1 i A
n
l
tw1 twn 1 n ri 1 1 ln ri i 1 2i
一般情况下,
固体 液体 气体
金属 非金属
金属 2.3~430 W (m K)
液体 0.07~0.7 W (m K)
气体 0.006~0.6 W (m K)
纯金属 合金
晶体 非晶体
20C常温下
空气 =0.0259 水 =0.599
物体的发射率 (物性参数)
2 传热系数k W/(m K)
传热过程
kA(t f 1 t f 2 ) q k (t w t f )
二级建造师考试机电实务重点知识:热量传递的三种基本方式
二级建造师考试机电实务重点知识:热
量传递的三种基本方式
二级建造师考试机电实务重点知识:热量传递的三种基本方式,由xx为二级建造师考试考生整理,希望对考生有所帮助。
更多二级建造师考试信息可登录查看,。
二级建造师考试机电实务重点知识:热量传递的三种基本方式
(1)导热,又称热传导
导热是指物体各部分无相位移或不同物体直接接触时,依靠分子、原子及自由电子等微观粒子热运动而进行的热量传递现象。
导热系数丸又称导热率,是指单位厚度的物体具有单位温度差时,在它的单位面积上单位时间的导热量。
(2)热对流
依靠流体的运动,把热量由一处传递到另一处的现象,称为热对流。
工程上常见的传热情况(如管壳式换热器、蒸汽锅炉的管束\冰箱的冷凝器等)往往不是单纯的热对流,而是流体与固体壁直接接触时的换热过程,这时既有热对流也伴随有热传导,已不再是基本传热方式,将其称为对流换热(又称放热)。
对流换热表面传热系数(有时简称对流换热系数),是指单位面积上,当流体同壁之间为单位温差,在单位时间内所能传递的热量,表达了该对流换热过程的强弱。
(3)热辐射
依靠物体表面对外发射可见和不可见的射线(电磁波)传递热量称为热辐射,也称为辐射换热。
热辐射传热过程并不需要像导热或热对流那样以冷、热物体的直接接触传递热量。
xx:【全国注册二级建造师报名时间汇总】|【二建名师课程辅导】。
传热学知识点总结
§ 1-1 “三个W§ 1-2热量传递得三种基本方式§ 1-3传热过程与传热系数要求通过本章得学习,读者应对热量传递得三种基本方式、传热过程及热阻得概念有所了解并育缱行简单得计算,能寸工程实际中简单得传热问题进行分析(有哪些热量传递方式与环节)。
作为绪论,本章对全书得主要内容作了初步概括但没有深化,具体更深入得讨论在随后得章节中体现。
本章重点:1、传热学研究得基本问题物体内部温度分布得计算方法热量得传递速率增强或削弱热传递速率得方法2、热量传递得三种基本方式(1) 、导热:依靠微观粒子得热运动而产生得热量传递。
传热学重点研究得就是在宏观温差作用下所发生得热量传递。
傅立叶导热公式:(2) 、对流换热:当流体流过物体表面时所发生得热量传递过程。
牛顿冷却公式:⑶、辐射换热:任何一个处于绝对零度以上得物体都具有发射热辐射与吸收热辐射得能力,辐射换热就就是这两个过程共同作用得结果。
由于电磁波只育請线传播所以只有两个物体相互瞧得见得部分才能发生辐射换热。
黑体热辐射公式:实际物体热辐射:3、传热过程及传热系数:热量从固壁一则得流体通过固壁传向另一侧流体得过程。
最简单得传热过程由三个环节串联组成。
4、传热学研究得基础傅立叶定律能量守恒定律+牛顿冷却公式+质量动量守恒定律四次方定律本章难点1、对三种传热形式关系得理解各种方式热量传递得机理不同,但却可以(串联或并联)同时存在于一个传热现象中。
2、热阻概念得理解严格讲热阻只适用于一维热量传递过程,且在传递过程中热量不能有任何形式得损耗。
思考题:1、冬天经太阳晒过得棉被盖起来很暖与,经过拍打以后,效果更加明显。
为什么?2、试分析室内暖气片得散热过程。
3、冬天住在新建得居民楼比住旧楼房感觉更冷。
试用传热学观点解释原因。
4、从教材表1-1给出得几种h数值,您可以得到什么结论?5、夏天,有两个完全相同得液氮贮存容器放在一起,一个表面已结霜,另一个则没有。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章导热问题的数值解法1.重点内容:①掌握导热问题数值解法的基本思路;②利用热平衡法和泰勒级数展开法建立节点的离散方程。
2.掌握内容:数值解法的实质。
3.了解内容:了解非稳态导热问题的两种差分格式及其稳定性。
由前述可知,求解导热问题实际上就是对导热微分方程在定解条件下的积分求解,从而获得分析解。
但是,对于工程中几何形状及定解条件比较复杂的导热问题,从数学上目前无法得出其分析解。
随着计算机技术的迅速发展,对物理问题进行离散求解的数值方法发展得十分迅速,并得到广泛应用,并形成为传热学的一个分支——计算传热学(数值传热学),这些数值解法主要有以下几种:(1)有限差分法;(2)有限元方法;(3)边界元方法。
数值解法能解决的问题原则上是一切导热问题,特别是分析解方法无法解决的问题。
如:几何形状、边界条件复杂、物性不均、多维导热问题。
分析解法与数值解法的异同点:相同点:根本目的是相同的,即确定①()gQ=。
x,y,z,τx,y,z,τft=;②()不同点:数值解法求解的是区域或时间空间坐标系中离散点的温度分布代替连续的温度场;分析解法求解的是连续的温度场的分布特征,而不是分散点的数值。
4-1 导热问题数值求解的基本思想及内节点离散方程的建立一.数值解法的基本概念1.实质:对物理问题进行数值解法的基本思路可以概括为:把原来在时间、空间坐标系中连续的物理量的场,如导热物体的温度场等,用有限个离散点上的值的集合来代替,通过求解按一定方法建立起来的关于这些值的代数方程,来获得离散点上被求物理量的值。
该方法称为数值解法。
这些离散点上被求物理量值的集合称为该物理量的数值解。
2.基本思路:数值解法的求解过程可用框图 4-1 表示。
由此可见: (1)物理模型简化成数学模型是基础; (2)建立节点离散方程是关键;(3)一般情况微分方程中,某一变量在某一坐标方向所需边界条件的个数等于该变量在该坐标方向最高阶导数的阶数。
二.数值求解的步骤如图 4-2(a ),二维矩形域内无内热源、稳态、常物性的导热问题采用数值解法的步骤如下: (1)建立控制方程及定解条件控制方程:是指描写物理问题的微分方程。
针对图示的导热问题,它的控制方程(即导热微分方程)为:0y 2222=∂∂+∂∂tx t (a ) 边界条件:0=x 时,0t t =;H x =时,()[]f Hx t y H t h xtλ-=∂∂-=,2当0=y 时,()[]f y t x t h y t λ-=∂∂-=010,当W y =时,()[]f Wy t W x t h yt λ-=∂∂-=,3(2)区域离散化(确立节点)用一系列与坐标轴平行的网格线把求解区域划分成若干个子区域,用网格线的交点作为需要确定温度值的空间位置,称为节点(结点),节点的位置用该节点在两个方向上的标号m ,n 表示。
相邻两节点间的距离称步长,计为x ∆、y ∆。
每个节点都可以看成是以它为中心的一个小区域的代表,把节点代表的小区域称为元体(又叫控制容积),如图4-2(b)。
(3)建立节点物理量的代数方程(离散方程)节点上物理量的代数方程称离散方程。
其过程如下: 首先划分各节点的类型; 其次,建立节点离散方程;最后,代数方程组的形成。
对节点(m ,n )的代数方程,当x ∆=y ∆时,有:()1,1,,1,1,41-+-++++=n m n m n m n m n m t t t t t (b ) (4)设立迭代初场代数方程组的求解方法有直接解法与迭代解法,传热问题的有限差分法中主要采用迭代法。
采用迭代法求解时,需对被求的温度场预先设定一个解,这个解称为初场,并在求解过程中不断改进。
(5)求解代数方程组如图4-2(b ),除1=m 的左边界上各节点的温度已知外,其余()N M 1-个节点均需建立离散方程,共有()N M 1-个方程,则构成一个封闭的代数方程组。
求解时遇到的问题: ① 线性; ② 非线性; ③ 收敛性等。
①线性代数方程组:代数方程一经建立,其中各项系数在整个求解过程中不再变化;②非线性代数方程组:代数方程一经建立,其中各项系数在整个求解过程中不断更新。
③是否收敛判断:是指用迭代法求解代数方程是否收敛,即本次迭代计算所得之解与上一次迭代计算所得之解的偏差是否小于允许值。
关于变物性(物性为温度的函数)导热问题,建立的离散方程,四个邻点温度的系数不是常数,而是温度的函数。
在迭代计算时,这些系数应不断更新,这是非线性问题。
(6)解的分析通过求解代数方程,获得物体中的温度分布,根据温度场应进一步计算通过的热流量,热应力及热变形等。
因此,对于数值分析计算所得的温度场及其它物理量应作详细分析,以获得定性或定量上的结论。
三、稳态导热中位于计算区域内部的节点离散方程的建立方法 1.基本概念(1)内节点:位于计算区域内部的节点,称内节点。
(2)差分格式:差商中的差分可以用向前、向后、中心差分表示的格式称差分格式。
2.基本方法方法:① 泰勒级数展开法; ② 热平衡法。
以下分述之。
(1)泰勒级数展开法如图4-3所示,以节点(m ,n )处的二阶偏导数为例,对节点(1+m ,n ) 及(1-m ,n )分别写出函数t 对(m ,n )点的泰勒级数展开式:对(1+m ,n ):+∂∂∆+∂∂∆+∂∂∆+∂∂∆+=+nm nm n m nm nm n m x t x x t x x t x xt xt t ,444,333,222,,,12462 (c )对(1-m ,n ): +∂∂∆+∂∂∆-∂∂∆+∂∂∆-=-nm nm n m nm nm n m x t x x t x x t x xtxt t ,444,333,222,,,12462 (d )(a )+(b )得:+∂∂∆+∂∂∆+=-+nm nm nm n m n m x t x x t xt t t ,444,222,,1,1122+ (e )变形为nm x t,22∂∂的表示式得:()22,,1,1,2202x xt t t x t nm n m n m nm ∆∆∂∂-++-+=(f )上式是用三个离散点上的值计算二阶导数nm x t,22∂∂的严格表达式,其中:()20x ∆称截断误差,误差量级为2x ∆,即表示未明确写出的级数余项中x ∆的最低阶数为2。
在数值计算时,用三个相邻节点上的值近似表示二阶导数的表达式即可,则相应的略去()20x ∆。
于是得:2,,1,1,222xt t t x tnm n m n m nm ∆∂∂-+-+=(4-1a )同理: 2,1,1,,222y t t t ytnm n m n m nm ∆∂∂-+-+=(4-1b )根据导热问题的控制方程(导热微分方程) 0y2222=∂∂+∂∂tx t 得:0222,1,1,2,,1,1=-++-+yt t t xt t t nm n m n m nm n m n m ∆∆-+-+(4-2) 若x ∆=y ∆,则有:()1,1,,1,1,41-+-++++=n m n m n m n m n m t t t t t (2)热平衡法:其本质是傅里叶导热定律和能量守恒定律的体现。
对每个元体,可用傅里叶导热定律写出其能量守恒的表达式。
如图4-3所示,元体在垂直纸面方向取单位长度,通过元体界面(w,e,n,s) 所传导的热流量可以对有关的两个节点根据傅里叶定律写出:从节点(1-m ,n )通过界面W 传导到节点(m ,n )的热流量为:xt t ynm n m w ∆∆=Φ-,,1-λ (g )同理:通过界面 e,n,s 传导给节点(m ,n )的热流量: xt t ynm n m e ∆∆=Φ+,,1-λ (h )y t t xnm n m w ∆∆=Φ+,1,-λ (i )yt t xnm n m w ∆∆=Φ-,1,-λ (j )对元体(m ,n ),根据能量守恒定律可知:0=Φ+Φ+Φ+Φs n e w (4-3)其中规定:导入元体(m ,n )的热流量为正;导出元体(m ,n )的热流量为负。
将式(g )、(h )、(i )、(j )代入式(4-3),当y x ∆=∆时即得式(b)。
说明:① 上述分析与推导是在笛卡儿坐标系中进行的; ② 热平衡法概念清晰,过程简捷;③ 热平衡法与2—2建立微分方程的思路与过程一致,但不同的是前者是有限大小的元体,后者是微元体。
4-2 边界节点离散方程的建立及代数方程的求解对于第一类边界条件的导热问题,所有内节点的离散方程组成一个封闭的代数方程组,即可求解; 第二类或第三类边界条件的导热问题,所有内节点的离散方程组成的代数方程组是不封闭的,因未知边界温度,因而应对位于该边界上的节点补充相应的代数方程,才能使方程组封闭,以便求解。
一、用热平衡法导出典型边界点上的离散方程在下面的讨论中,先把第二类边界条件及第三类边界条件合并起来考虑,并以w q 代表边界上已知的热流密度值或热流密度表达式,用热平衡方法导出三类典型边界节点的离散方程,然后针对w q 的三种不同情况使导得的离散方程进一步具体化,为使结果更具一般性,假设物体具有内热源Φ (不必均匀分布)。
1.位于平直边界上的节点如图4-4所示有阴影线的区域,边界节点()n m ,只能代表半个元体,设边界上有向该元体传递的热流密度为w q ,据能量守恒定律对该元体有:0222,,1,,1,,,1=∆+Φ∆∆+∆∆+∆∆+∆∆-+-w n m n m n m n m n m nm n m yq y x y t t x y t t x x t t y---λλλ(4-4a )若y x ∆=∆时,则:⎪⎪⎭⎫ ⎝⎛∆+Φ∆+=-+-λλw nm n m n m n m nm xq x t t t t 2241,21,1,,1, ++ (4-4b ) 2.外部角点如图4-5所示,二维墙角计算区域中,节点A ~E 均为外部角点,其特点是每个节点仅代表1/4个以y x ∆∆、为边长的元体。
假设边界上有向该元体传递的热流密度为w q ,则据能量守恒定律得其热平衡式为:02422,,1,,,1=∆∆+Φ∆∆+∆∆+∆∆--w n m n m n m n m n m q yx y x y t t x x t t y +-- λλ (4-5a )若y x ∆=∆时,则: ⎪⎪⎭⎫ ⎝⎛∆+Φ∆=--λλw nm n m n m nm xq x t t t 2221,21,,1, ++ (4-5b ) 3.内部角点:图4-5中的F 点为内部角点,代表了3/4个元体,同理得:024322,,,1,1,,1,,,1=∆∆+Φ∆∆+∆∆∆∆∆∆+∆∆--w n m n m n m nm n m nm n m nm n m q y x y x x t t y yt t x yt t xx t t y+-+-+--++ λλλλ (4-6a )若y x ∆=∆时,则: ⎪⎪⎭⎫ ⎝⎛∆+Φ∆=--λλw nm n m n m n m n m nm xq x t t t t t 2232261,2,11,1,,1, ++++++ (4-6b )4.讨论有关w q 的三种情况: (1)若是绝热边界则0=w q ,即令上式0=w q 即可。