1.2。2独立性检验的基本思想及其初步应用(1)ppt

合集下载

独立性检验的基本思想及其初步应用高中数学人教A版选修PPT课件

独立性检验的基本思想及其初步应用高中数学人教A版选修PPT课件

a ≈ a + b×a + c nn n
其中n = a + b + c + d为样本容量,即
(a+b+c+d)a (a+b)(a+c),
即ad bc
因此|ad-bc|越小,说明吸烟与患肺癌之间关系越弱; |ad-bc|越大,说明吸烟与患肺癌之间关系越强。
18
独立性检验
为了使不同样本容量的数据有统一的评判标准,基于上述分
甲生产线 97 3
100
乙生产线 95 5
100
总计
192 8
200
10
100 90 80 70 60 50 40 30 20 10 0 合格
不合格
合格
不合格
甲生产线 乙生产线
甲生产线 乙生产线
0
100
200
300
11
1 . 2×2 列 联 表 是 传 统 的 调 查 研 究 中 最 常 用的方法之一,用于研究两个变量之间相 互独立还是存在某种关联性,它适用于分 析两个变量之间的关系.
k
0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(1)如果k 10.828,就有99.9%的把握认为" X与Y有关系"
(2)如果k 7.879,就有99.5%的把握认为" X与Y有关系"
(3)如果k 6.635,就有99%的把握认为" X与Y有关系"
不成立,即有99%的把握认为“吸烟
0
与患肺癌有关系”。
20
判断H 0是否成立的规则
如果 k 6.635 ,就判断 H0 不成立,即认为吸烟与

《独立性检验的基本思想及其初步应用》PPT课件

《独立性检验的基本思想及其初步应用》PPT课件

0.05 3.841
0.025 5.024
0.010 0.005 6.635 7.879
0.001 10.828
K2的观测值为k
如果 k k0,就以 (1 P(K 2 k0 )) 100%的把握
认为“X与Y有关系”;而这种判断有可能出错,出
错的概率不会超过 P(K 2 k0 )。
7
例如 :
1如果k 10.828,就有99.9%把握认为" X与Y有
❖ 试用你所学过的知识进行分析,能否在犯错 误的概率不超过0.005的前提下,认为“喜欢 体育还是文娱与性别有关系”?
体育 文娱 总计
男生 21 23 44
女生 6 29 35
总计 27 52 79
16
[思路探索] 可用数据计算 K2,再确定其中的具体关系. 解 判断方法如下: 假设 H0“喜欢体育还是喜欢文娱与性别没有关系”,若 H0 成立, 则 K2 应该很小. ∵a=21,b=23,c=6,d=29,n=79, ∴k=a+bcn+add-ab+cc2b+d =21+237×9×6+212×9×29-212+3×66×223+29≈8.106.
12
例4:为研究不同的给药方式(口服与注射)和药的效果(有效 与无效)是否有关,进行了相应的抽样调查,调查的结果列 在表中,根据所选择的193个病人的数据,能否作出药的效果 和给药方式有关的结论?
口服 注射 合计
有效 58 64 122
无效 40 31 71
合计 98 95 193
P(k≥k0) 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

2014年人教A版选修1-2课件 1.2 独立性检验的基本思想及其初步应用

2014年人教A版选修1-2课件 1.2  独立性检验的基本思想及其初步应用

问题1. 下表是对吸烟和不吸烟的人中患肺癌的调 查数据, 你能从中分析吸烟对患肺癌的影响程度吗?
不吸烟 吸烟 总计 不患肺癌 7775 2099 9874 患肺癌 42 49 91 总计 7817 2148 9965
对于某种变量取不同的 “值” 表示不同的类别, 这样的变量称为分类变量. 如: 是否吸烟, 是否信仰宗教, 男性或女性等. 如上表这样, 列出两个分类变量的频数表, 称为 列联表.
不患肺癌 患肺癌 总计 不吸烟 a b a+ b 即 |ad -bc| 越小, 吸烟与患肺癌之间的关系越弱 ; 吸烟 c d c+d 反之越强.总计 a+ c b+ d a+b+c+d
为了使不同容量的数据有统一的评判标准, 我们 我们把列联表中的数字用字母代替, 并计算: 把检查 |ad-bc| 的大小转换成检查 a ; “不吸烟” 样本中 “不患肺癌” 的比例 : n(ad - bc)2 a+ b 2 K , (a + b)(c + d )(a的比例 + c)(b +c “吸烟” 样本中 “不患肺癌” :d ) . c+d 其中 na+b+c+d 为样本容量. 假设 H0: 吸烟与患肺癌没有关系 , 则需 2 若 H0 成立, a则 K c 应该很小. , ad-bc≈0. a + b c + d H0 成立与否呢? 小到什么程度来判断
0.4
0.2 0 不吸烟 吸烟
问题1. 下表是对吸烟和不吸烟的人中患肺癌的调 查数据, 你能从中分析吸烟对患肺癌的影响程度吗?
不吸烟 吸烟 总计 不患肺癌 7775 2099 9874
1

1.2独立性检验的基本思想及其初步应用

1.2独立性检验的基本思想及其初步应用

试用图形判断服用药和患病之间是否有关系?
解析:相应的等高条形图如下:
从图形可以看出,服用药的样本中患病的比例明显低于 没有服用药的样本中患病的比例,因此可以认为:服用药和 患病之间有关系.
独立性检验方法——K2公式
在调查的480名男士中有38名患有色盲,520名女 士中有6名患有色盲,能否在犯错误的概率不超过0.001的前 提下认为性别与患色盲有关系? 分析:
4.下面是一个2×2列联表: x1 x2 总计 y1 a 2 b y2 21 25 46 总计 73 27 100
则表中a、b的值分别为( C ) A.94、96 C.52、54 B.52、50 D.54、52
5.性别与身高列联表如下: 男 女 总计 高(165 cm以上) 37 6 43 矮(165 cm以下) 4 13 17 总计 41 19 60
作出2×2列联表 → 计算随机变量K2的值 → 对照临界值作出结论 解析:根据题目所给的数据作出如下的列联表:
色盲 不色盲 总计

女 总计
38
6 44
442
514 956
480
520 1 000
根据列联表中所给的数据可以得: a=38,b=442,c=6,d=514,a+b=480,c+d= 520,a+c=44,b+d=956,n=1 000.
3.独立性检验. 利用随机变量K2来判断“两个分类变量有关系”的方法 定义 称为独立性检验.
nad-bc2 公式 K2=_____________________ a+bc+da+cb+d ,其中n=______________. a+b+c+d
①根据实际问题的需要确定容许推断“两个分类变量有 临界值 k0 .② 关系”犯错误概率的上界α,然后查表确定 ________ k________ ≥k0 利用公式计算随机变量K2的 ________ , 观测值 k .③如果 具体 就推断“X与Y有关系”,这种推断犯错误的概率不超过 步骤 α;否则,就认为在犯错误的概率不超过α的前提下不能 推断“X与Y有关系”,或者在样本数据中没有发现足够 证据支持结论“X与Y有关系”.

独立性检验的基本思想及其初步应用

独立性检验的基本思想及其初步应用

如果“吸烟与患肺癌没有关系”,那么吸烟样
本中不患肺癌的比例应该与不吸烟样本中相应的比
例差不多.
所以
a a+
b

c
c +d
,
所以 a c + d ca + b,
ad bc
即 ad bc 0.
︱ad-bc︱越小,说明吸烟与患肺癌之间的关系越弱;
︱ad-bc︱越大,说明吸烟与患肺癌之间的关系越强.
患心脏病 患其他病 总计
秃顶
214
175
389
不秃顶
451
597
1 048
总计
665
772
1 437
(1)相应的等高条形图如下所示,
不患心脏病 患心脏病
秃顶
不秃顶
由图可认为秃顶与患心脏病有关系
吸烟与患肺癌列联表(单位:人)
不患肺癌
患肺癌
总计
不吸烟
7 775
42
7 817
吸烟
2 099
49
2 148
总计
9 874
91
9 965
在不吸烟者中患肺癌的比重是__0_._5_4_%_,
在吸烟者中患肺癌的比重是__2_._2_8_%_.
说明:吸烟者和不吸烟者患肺癌的可能性存在差异, 吸烟者患肺癌的可能性大.
K2
(n ad bc)2
(a b)(c d )(a c)(b d )
临界值表:
P ( K 2 k 0 ) 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

3.2独立性检验的基本思想及其初步应用 课件(人教A版选修2-3)

3.2独立性检验的基本思想及其初步应用 课件(人教A版选修2-3)

3. 独立性检验临界值表
P(K2 ≥k 0 ) k0
0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828
想一想:在K2运算时,在判断变量相关时,若K2的观测值k= 56.632,则P(K2≥6.635)≈0.01和P(K2≥10.828)≈0.001, 哪种说法是正确的? 提示 两种说法均正确.
兴趣不浓厚的
总计

86
73
103
95
189
判断学生的数学成绩好坏与对学习数学的兴趣是否有关?
解 由公式得 K 的观测值
解 由公式得 K 的观测值 86×103×95×94
2
189× 64×73-22×30 k189 = ×64×73-22×302 ≈38.459. 86 × 103 × 95 × 94 k= ≈38.459.
想一想:如何理解分类变量?
提示
(1)这里的“变量”和“值”都应作为“广义”的变量和值
来理解.例如:对于性别变量,其取值有“男”和“女”两 种,这里的“变量”指的是“性别”,这里的“值”指的是“男”
或“女”.因此,这里说的“变量”和“值”不一定是取具体的
数值. (2)分类变量是大量存在的.例如:吸烟变量有吸烟与不 吸烟两种类别,而国籍变量则有多种类别.
2.独立性检验 利用随机变量K2来判断“两个分类变量有关系”的方法 定义 称为独立性检验
公式
n ad-bc2 a+bc+da+c b+d K2=_______________________ 其中n=___________ a+b+c+d

1.2独立性检验的基本思想及其初步应用课件人教新课标

1.2独立性检验的基本思想及其初步应用课件人教新课标
a+b c+d
因此,
|ad-bc|越小,说明吸烟与患肺癌之间关系越弱; |ad-bc|越大,说明吸烟与患肺癌之间关系越强.
为了使不同样本容量的数据有统一的评判 标准,基于上述分析,我们构造一个随机变量:
K2 =
n(ad - bc)n
(a + b)(c + d)(a + c)(b + d)
其中n=a+b+c+d为样本容量.
48 121 208 223 193 165 42
(I)将各组的频率填入表中;
(II)根据上述统计结果,计算灯管使用寿命不足 1500小时的频率.
解答
分组
频数 频率
[500,9 [900, 00) 1100)
48 121 0.048 0.121
[1100, 1300)
208 0.208
[1300, 1500)
P(k2>k) 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k 0.455 0.708 1.323 2.072 2.706 3.84 5.024 6.635 7.879 10.83
(2)利用K2公式,计算随机变量K2的观测值k.
(3)如果k>k0,就推断“X与Y有关系”,这 种推断犯错误的概率不超过a;否则,就认为在犯 错误的概率不超过a的前提下不能推断“X与Y有关 系”.
k=
16.373 > 6.635
3891048 665 772
所以有99%的把握认为”秃顶与患心脏病有关”.
解答
根据题目所得数据得到列联表:
秃顶 不秃顶
总计
患心脏病 214 451 665

人教A版高中数学选修1-2《一章 统计案例 1.2 独立性检验的基本思想及其初步应用》精品课件_33

人教A版高中数学选修1-2《一章 统计案例  1.2 独立性检验的基本思想及其初步应用》精品课件_33

解:根据题目所给数据得到如下列联表:
患心脏病 不患心脏病 总计
秃顶
214
ቤተ መጻሕፍቲ ባይዱ不秃顶
451
总计
665
175
389
597
1048
772
1437
根据列联表中的数据,得到
K 2 1437 (214597 175 451)2 16.373 6.635. 3891048 665 772
案 例:某医疗机构为了了解呼吸道疾病与吸 烟是否有关,进行了一次抽样调查,共调查了 515个成年人,其中吸烟者220人,不吸烟者 295人。
调查结果:吸烟的220人中有37人患呼吸道疾 病,183人未患呼吸道疾病;不吸烟的295人中 有21人患病,274人未患病。
根据这些数据,能否断定:患呼吸道疾 病与吸烟有关?
(2)求k值 (3)下结论
5
8
3
2
6
1
4
5
9
8
(1)如果k 10.828,就有99.9%的把握认为" X 与Y有关系" (2)如果k 7.879,就有99.5%的把握认为" X 与Y有关系"
(3)如果k 6.635,就有99%的把握认为" X 与Y有关系"
(4)如果k 5.024,就有97.5%的把握认为" X 与Y有关系"
练习3:为了调查胃病是否与生活规律有关,在某地对540名40岁以上 的人进行了调查,结果是:患胃病者生活不规律的共60人,患胃病者 生活规律的共20人,未患胃病者生活不规律的共260人,未患胃病者生 活规律的共200人. (1)根据以上数据列出2×2列联表; (2)能够以99%的把握认为40岁以上的人患胃病与否和生活规律有关 系吗?为什么?

独立性检验的基本思想及其初步应用

独立性检验的基本思想及其初步应用

§3.2独立性检验的基本思想及其初步应用学习目标 1.了解独立性检验的基本思想、方法及其简单应用.2.理解判断两个分类变量是否有关系的常用方法、独立性检验中K2的含义及其实施步骤(重、难点).知识点1两个分类变量之间关联关系的定性分析1.分类变量变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量.这里的“变量”和“值”都应作为“广义”的变量和值进行理解,它们取的不一定是具体的数值.2.列联表列出的两个分类变量的频数表,称为列联表.假设两个分类变量X和Y,它们的可能取值分别为{x1,x2}和{y1,y2},其样本频数列联表(也称为2×2列联表)为:y1y2总计x1 a b a+bx2 c d c+d总计a+c b+d a+b+c+d3.两个分类变量之间关联关系的定性分析的方法(1)频率分析法:通过对样本的每个分类变量的不同类别事件发生的频率大小进行比较来分析分类变量之间是否有关联关系.通常通过列联表列出两个分类变量的频数表来进行分析.(2)图形分析法:与表格相比,图形更能直观地反映出两个分类变量间是否互相影响,常用等高条形图展示列联表数据的频率特征.【预习评价】(1)下面是一个2×2列联表:y1y2总计x1 a 2173x282533总计 b 46则表中a,b处的值分别为()A.94,96B.52,50C.52,60D.54,52(2)根据如图所示的等高条形图可知吸烟与患肺病关系(填“有”或“没有”).知识点2独立性检验1.定义:利用随机变量K2来判断“两个分类变量有关系”的方法称为独立性检验.2.K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.3.独立性检验的具体做法(1)根据实际问题的需要确定容许推断“两个分类变量有关系”犯错误概率的上界α,然后查表确定临界值k0.(2)利用公式计算随机变量K2的观测值k.(3)如果k≥k0,就推断“X与Y有关系”,这种推断犯错误的概率不超过α,否则就认为在犯错误的概率不超过α的前提下不能推断“X与Y有关系”,或者在样本数据中没有发现足够证据支持结论“X与Y有关系”.【预习评价】(1)在吸烟与患肺病这两个分类变量是否相关的判断中,下列说法中正确的是()①若K2的观测值k>6.635,则在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;②从独立性检验可知在在犯错误的概率不超过0.01前提下,认为吸烟与患肺病有关系时,我们说若某人吸烟,则他有99%的可能患有肺病;③从统计量中得知在犯错误的概率不超过0.05的前提下认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误.A.①B.①③C.③D.②(2)某班主任对全班50名学生进行了作业量的调查,数据如下表:认为作业量大认为作业量不大总计男生18927女生81523总计262450则推断“学生的性别与认为作业量大有关”这种推断犯错误的概率不超过()A.0.01B.0.005C.0.025D.0.001题型一利用等高条形图判断两个分类变量是否有关系【例1】为考察某种药物预防疾病的效果进行动物试验,得到如下列联表:患病未患病总计服用药104555未服用药203050总计3075105试用等高条形图分析服用药和患病之间是否有关系.规律方法(1)本题采用数形结合法通过条形图直观地看出差异,得出结论. (2)应用等高条形图判断两变量是否相关的方法在等高条形图中,可以估计满足条件X=x1的个体中具有Y=y1的个体所占的比例aa+b,也可以估计满足条件X=x2的个体中具有Y=y1的个体所占的比例cc+d.“两个比例的值相差越大,H1成立的可能性就越大.”【训练1】网络对现代人的生活影响较大,尤其是对青少年,为了解网络对中学生学习成绩的影响,某地区教育主管部门从辖区初中生中随机抽取了1 000人调查,发现其中经常上网的有200人,这200人中有80人期末考试不及格,而另外800人中有120人不及格.利用图形判断学生经常上网与学习成绩有关吗?方向1 有关“相关的检验”【例2-1】某校对学生课外活动进行调查,结果整理成下表:用你所学过的知识进行分析,能否在犯错误的概率不超过0.005的前提下,认为“喜欢体育还是文娱与性别有关系”?方向2有关“无关的检验”【例2-2】为了探究学生选报文、理科是否与对外语的兴趣有关,某同学调查了361名高二在校学生,调查结果如下:理科对外语有兴趣的有138人,无兴趣的有98人,文科对外语有兴趣的有73人,无兴趣的有52人.分析学生选报文、理科与对外语的兴趣是否有关?规律方法(1)独立性检验的关注点在2×2列联表中,如果两个分类变量没有关系,则应满足ad-bc≈0,因此|ad -bc|越小,关系越弱;|ad-bc|越大,关系越强.(2)独立性检验的具体做法①根据实际问题的需要确定允许推断“两个分类变量有关系”犯错误的概率的上界α,然后查表确定临界值k0.②利用公式K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)计算随机变量K2的观测值k.③如果k>k0,推断“X与Y有关系”这种推断犯错误的概率不超过α;否则,就认为在犯错误的概率不超过α的前提下不能推断“X与Y有关系”,或者在样本数据中没有发现足够的证据支持结论“X与Y有关系”.【训练2】打鼾不仅影响别人休息,而且可能与患某种疾病有关.下表是一次调查所得的数据:根据独立性检验,能否在犯错误的概率不超过0.001的前提下认为每一晚都打鼾与患心脏病有关系?题型三独立性检验的综合应用【例3】某高校共有学生15 000人,其中男生10 500人,女生4 500人.为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间(单位:时)的样本数据.(1)应收集多少位女生的样本数据?(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图),其中样本数据的分组区间为[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率.(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否认为“该校学生的每周平均体育运动时间与性别有关”.附:P(K2≥k0)0.1000.0500.0100.005k0 2.706 3.841 6.6357.879K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d).规律方法(1)解答此类题目的关键在于正确利用K2=n(ad-bc)2计算k的值,再用它与临界值k0的大小作比(a+b)(c+d)(a+c)(b+d)较来判断假设检验是否成立,从而使问题得到解决.(2)此类题目规律性强,解题比较格式化,填表计算分析比较即可,要熟悉其计算流程,不难理解掌握.【训练3】某校高三年级在一次全年级的大型考试中,数学成绩优秀和非优秀的学生中,物理、化学、总分成绩优秀的人数如下表所示,能否在犯错误的概率不超过0.001的前提下认为数学成绩优秀与物理、化学、总分成绩优秀有关系?物理优秀化学优秀总分优秀数学优秀228225267数学非优秀14315699注:该年级在此次考试中数学成绩优秀的有360人,非优秀的有880人.课堂达标1.观察下列各图,其中两个分类变量x,y之间关系最强的是()2.某同学寒假期间对其30位亲属的饮食习惯进行了一次调查,列出了如下2×2列联表:偏爱蔬菜 偏爱肉类 总计50岁以下 4 8 12 50岁以上 16 2 18 总计201030则可以说其亲属的饮食习惯与年龄有关的把握为( ) A.90%B.95%C.99%D.99.9%3.为了判断高中学生的文理科选修是否与性别有关系,随机调查了50名学生,得到如下2×2列联表:理科 文科 男 13 10 女720已知P (K 2≥3.841)≈0.05,P (K 2≥5.024)≈0.025.根据表中数据,得到K 2的观测值k =50×(13×20-10×7)223×27×20×30≈4.844.可认为选修文理科与性别有关系的可能性不低于 . 4.根据下表计算:不看电视 看电视 男 37 85 女35143K 2的观测值k ≈ (保留3位小数).5.在109个人身上试验某种药物预防感冒的作用,得到如下列联表:感冒 未感冒 总计 服用药1146 57 未服用药 213152总计3277109则有多大把握认为该药有效?课堂小结1.列联表与等高条形图列联表由两个分类变量之间频率大小差异说明这两个变量之间是否有关联关系,而利用等高条形图能形象直观地反映它们之间的差异,进而推断它们之间是否具有关联关系.2.对独立性检验思想的理解独立性检验的基本思想类似于数学中的反证法.先假设“两个分类变量没有关系”成立,计算随机变量K2的值,如果K2值很大,说明假设不合理.K2越大,两个分类变量有关系的可能性越大.基础过关1.对两个分类变量A,B的下列说法中正确的个数为()①A与B无关,即A与B互不影响;②A与B关系越密切,则K2的值就越大;③K2的大小是判定A与B是否相关的唯一依据A.0B.1C.2D.32.高二第二学期期中考试,按照甲、乙两个班学生的数学成绩优秀和及格统计人数后,得到如下列联表:优秀及格总计甲班113445乙班83745总计197190则随机变量K2的观测值约为()A.0.600B.0.828C.2.712D.6.0043.考察棉花种子经过处理跟生病之间的关系得到下表数据:种子处理种子未处理总计根据以上数据,可得出()A.种子是否经过处理跟是否生病有关B.种子是否经过处理跟是否生病无关C.种子是否经过处理决定是否生病D.以上都是错误的4.2013年6月11日,中国的“神舟十号”发射成功,由此许多人认为中国进入了航天强国之列,也有许多人持反对意见,为此进行了调查.在参加调查的3 648名男性公民与3 432名女性公民中,持反对意见的男性有1 843人、女性有1 672人,在运用这些数据说明中国“神十”发射成功是否与中国进入航天强国有关系时,用下列最具说服力.①回归直线方程;②平均数与方差;③独立性检验.5.为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取了60名高中生,通过问卷调查,得到以下数据:由以上数据,计算得到K2的观测值k≈9.643,根据临界值表,以下说法正确的是(填序号).①没有充足的理由认为课外阅读量大与作文成绩优秀有关;②有0.5%的把握认为课外阅读量大与作文成绩优秀有关;③有99.9%的把握认为课外阅读量大与作文成绩优秀有关;④有99.5%的把握认为课外阅读量大与作文成绩优秀有关.6.在研究某种药物对“H1N1”病毒的治疗效果时,进行动物试验,得到以下数据,对150只动物服用药物,其中132只动物存活,18只动物死亡,对照组150只动物进行常规治疗,其中114只动物存活,36只动物死亡.(1)根据以上数据建立一个2×2列联表;(2)试问该种药物对治疗“H1N1”病毒是否有效?7.在一次恶劣天气的飞行航程中调查男女乘客在飞机上晕机的情况如下表所示,根据此资料是否能在犯错误的概率不超过0.05的前提下认为在恶劣天气飞行中男人比女人更容易晕机?能力提升8.利用独立性检验来考察两个分类变量X和Y是否有关系时,通过查阅下表来确定“X与Y有关系”的可信程度.如果K2≥5.024,那么就有把握认为“X与Y有关系”的百分比为()A.25%B.75%C.2.5%D.97.5%9.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查了52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是()表1表2表3表4A.成绩B.视力C.智商D.阅读量10.下表是关于男婴与女婴出生时间调查的列联表:那么,A=,B=,C=,D=,E=.11.在研究性别与吃零食这两个分类变量是否有关系时,下列说法中正确的是(填序号).①若K2的观测值k=6.635,则我们在犯错误的概率不超过0.01的前提下认为吃零食与性别有关系,那么在100个吃零食的人中必有99人是女性;②由独立性检验可知在犯错误的概率不超过0.01的前提下认为吃零食与性别有关系时,如果某人吃零食,那么此人是女性的可能性为99%;③由独立性检验可知在犯错误的概率不超过0.01的前提下认为吃零食与性别有关系时,是指每进行100次这样的推断,平均有1次推断错误.12.随着生活水平的提高,人们的休闲方式也发生了变化.某机构随机调查了n 个人,其中男性占调查人数的25.已知男性中有一半的人的休闲方式是运动,而女性中只有13的人的休闲方式是运动. (1)完成下列2×2列联表:(2)若在犯错误的概率不超过0.05的前提下,可认为“性别与休闲方式有关”,那么本次被调查的人数至少有多少?(3)根据(2)的结论,本次被调查的人中,至少有多少人的休闲方式是运动? 13.(选做题)某学校为了解该校高三年级学生在市一练考试的数学成绩情况,随机从该校高三文科与理科各抽取50名学生的数学成绩,作出频率分布直方图如图,规定考试成绩在[120,150]内为优秀.(1)由以上频率分布直方图填写下列2×2列联表.若按是否优秀来判断,是否有99%的把握认为该校的文理科数学成绩有差异.文科理科总计优秀非优秀总计5050100(2)某高校派出2名教授对该校随机抽取的学生成绩中一练数学成绩在140分以上的学生进行自主招生面试,每位教授至少面试一人,每位学生只能被一位教授面试.若甲教授面试的学生人数为ξ,求ξ的分布列和均值.。

高中数学1-2独立性检验的基本思想及其初步应用同步课件新人教A版选修1-2.ppt

高中数学1-2独立性检验的基本思想及其初步应用同步课件新人教A版选修1-2.ppt

与性别是有关的.
根据列联表中所给的数据,有 a=38,b=442,c=6,
d=514,a+b=480,c+d=520,a+c=44,b+d=956,n
=1000,得 K2 的观测值
k=(a+b)(cn+(add-)(ab+c)c2)(b+d)

1000×(38×514-442×6)2 480×520×44×956
第一种剂量 第二种剂量
合计
死亡 14 6 20
存活 11 19 30
合计 25 25 50
三、解答题
7.在500个人身上试验某种血清预防感冒的作用,把一年中的记录与另外500个未用血 清的人作比较,结果如下表所示.
试画出列表的条形图,并通过图形判断这种血清能否起到预防感冒的作用?并进行独立
性检验.
[答案] 0.005
[解析] k=8.654>7.879,就推断“X与Y有关”犯错误的 概率不超过0.005.
6.为了探究电离辐射的剂量与人体的受损程度是否有关,用两种不同剂量的电离辐射 照射小白鼠.在照射后14天内的结果如下表所示:
进行统计分析时的统计假设是__________________. [答案] 假设电离辐射的剂量与人体受损程度无关.
≈27.1.


k≈27.1>10.828,所以我们有 99.9%的把握认为色盲与性
别有关系.这个结论只对所调查的 480 名男人和 520 名
女人有效.
[点评] 本题应首先作出调查数据的列联表,再根据列联 表画出二维条形图或三维柱形图,并进行分析,最后利用 独立性检验作出判断.
1.利用图形来判断两个分类变量是否有关系,可以画出三 维柱形图,也可以画出二维条形图,仅从图形上只可以粗 略地判断两个分类变量是否有关系,可以结合所给的数值 来进行比较.作图应注意单位统一,图形准确,但它不能 给我们两个分类变量有关或无关的精确的可信程度,若要 作出精确的判断,可以作独立性检验的有关计算.

独立性检验PPT课件

独立性检验PPT课件
用“假设检验”解决此问题
Page 3
请看下面的表格
表(一)
表(二)
Page 4
(一)反证法思想
结论如下:
︱ad – bc ︱越小,说明吸 烟与患肺癌之间的关系越 弱。
︱ad – bc ︱越大,说明吸 烟与患肺癌之间的关系越 强。
Page 5
(二)统一的评判标准
一般认为,小概率事件在一次 试验中不会发生,据此原则, 如果在某种假设下小概率事件 在一次试验中发生了,则认为 此假设不成立。(即H0不成立)
谢 谢 !ຫໍສະໝຸດ Page 6表(三) K2检验的临界值表
Page 7
(三) 假设检验的基本步骤:
(1)假设H0:两个分类变量没有关系; (2)求K2的观测值k; (3)⒈给定显著性水平α ,查表(三)定出临界值k0,与k进行 比较;⒉未给定显著性水平α,根据实际问题的需要确定容 许推断“两个分类变量有关系”犯错误概率的上界α,然后查 表(三)确定临界值k0 与k进行比较;
(4)若k≥k0,则拒绝H0,认为两个分类变量有关系; 若k<k0, 则接受H0,认为两个分类变量没有关系。
Page 8
小结: 反证法原理与假设检验原理
反证法原理
在一个已知假 设下,如果推 出一个矛盾, 就证明了这个 假设不成立。
Page 9
假设检验原理
在一个已知假设 下,如果推出一 个小概率事件发 生,则推断这个 假设不成立的可 能性很大。
1.2 独立性检验的基本 思想及其初步应用
樊永丽
樊永丽
-
1
有一个颠扑不破的真理,那就是当我 们不能确定什么是真的时候,我们就
应该去探求什么是最可能的。 ----------笛卡尔

3.2独立性检验的基本思想及其初步应用 PPT课件

3.2独立性检验的基本思想及其初步应用 PPT课件

反证法原理与假设检验原理 反证法原理:
在一个已知假设 下,如果推出一 个矛盾,就证明 了这个假设不成 立。
假设检验原理:
在一个已知假设 下,如果一个与 该假设矛盾的小 概率事件发生, 就推断这个假设 不成立。
11 [普通高中课程数学选修2-3] 3.2独立性检验的基本思想及其初步应用
假设检验问题: 求解思路
列 联 表
不吸烟
吸烟 总计
91 在不吸烟者中患肺癌的比重是 0.54% 2.28% 在吸烟者中患肺癌的比重是
吸烟者和不吸烟者都可能患肺癌, 吸烟者患肺癌的可能性较大
3 [普通高中课程数学选修2-3] 3.2独立性检验的基本思想及其初步应用
通过图形直观判断两个分类变量是否相关:
等高条 形图
100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% 不吸烟 吸烟
例 1. 在某医院 , 因为患心脏病而住院的 665 名男性病人 中 , 有 214 人秃顶 , 而另外 772 名不是因为患心脏病而住 院的男性病人中有175人秃顶.分别利用图形和独立性检 验方法判断是否有关?你所得的结论在什么范围内有效?
秃顶 不秃顶 总计 患心脏病 214 451 665 不患心脏病 175 597 772 总计 389 1048 1437
1 [普通高中课程数学选修2-3] 3.2独立性检验的基本思想及其初步应用
1.2独立性检验的基本思想 及其初步应用
2 [普通高中课程数学选修2-3] 3.2独立性检验的基本思想及其初步应用
分类变量
为了调查吸烟是否对肺癌有影响,某肿瘤研究所随 机地调查了9965人,得到如下结果(单位:人) 吸烟与肺癌列联表 不患肺癌 患肺癌 7775 42 2099 9874 49 总计 7817 2148 9965

独立性检验的基本思想及其初步应用

独立性检验的基本思想及其初步应用

【解】 根据题目所给数据得如下 2×2 列联表:
(a c)(b d) n(a b)(c d)
课堂练习
1.下列关于等高条形图的叙述正确的是( ) A.从等高条形图中可以精确地判断两个分类变量是否有关系 B.从等高条形图中可以看出两个变量频数的相对大小 C.从等高条形图可以粗略地看出两个分类变量是否有关系 D.以上说法都不对 解析:选 C.在等高条形图中仅能粗略判断两个分类变量的关 系,故 A 错.在等高条形图中仅能找出频率,无法找出频数, 故 B 错.
有关概念:分类变量
对于性别变量,其取值为男和女两种,这种变量的 不同“值”表示个体所属的不同类别,像这样的变量称 为分类变量.如是否吸烟、是否患肺癌、宗教信仰、国 籍等等
在日常生活中,主要考虑分类变量之间是否有关系: 例如,吸烟是否与患肺癌有关系?等等.
“美图”欣赏
列联表 2×2 为了调查吸烟是否对肺癌有影响,某肿瘤研究所随机 地调查了9965人,得到如下结果(单位:人)
查对临界值表,作出判断。(如果K2值很大,就断言 H0不成立,即认为“两个分类变量有关系”;如果很 小,则说明在样本数据中没有发现足够证据拒绝H0。)
例题解析:
例1. 在某医院,因为患心脏病而住院的665名男性病人中, 有214人秃顶;而另外772名不是因为患心脏病而住院的 男性病人中,有175人秃顶. 利用图形判断秃顶与患心脏 病是否有关系。能否在犯错误的概率不超过0.010的前 提下认为秃顶与患心脏病有关系?
9965(7775 49 42 2099)2
k
56.632.
7817 2148 9874 91
在H0成立的情况下,统计学家估算出如下的概率:
P(K 2 6.635) 0.01

3.2独立性检验的思想及应用(一)

3.2独立性检验的思想及应用(一)

列联表
0.54% 在不吸烟者中患肺癌的比重是_______ 在不吸烟者中患肺癌的比重是_______ 2.28% 在吸烟者中患肺癌的比重是_______ 在吸烟者中患肺癌的比重是_______ 结论:吸烟者和不吸烟者患肺癌的可能性存在差异. 结论:吸烟者和不吸烟者患肺癌的可能性存在差异.
不吸烟 吸烟 总计
不患肺癌 7775 2099 9874
患肺癌 42 49 91
总计 7817 2148 9965
等高条形图
1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 不吸烟 患肺癌 不患肺癌 吸烟
我们通过分析数据和图形, 我们通过分析数据和图形 , 得到的直观判断 吸烟和患肺癌有关" 是 " 吸烟和患肺癌有关 " , 那么这种判断是否可 靠呢?这需要用统计观点来考察这个问题. 靠呢?这需要用统计观点来考察这个问题.
独立性检验
利用随机变量K 判断" 利用随机变量 2判断"两个分类变量有关 的方法称为独立性检验 独立性检验. 系"的方法称为独立性检验. 反证法原理与独立性检验原理的比较 反证法原理 独立性检验 原理 在假设H0下,如果推出一个矛盾, 如果推出一个矛盾, 就证明假设H0不成立. 不成立. 在假设H0下,如果推出一个小概率 事件, 不成立. 事件,就说明H0不成立.
例如,吸烟是否与患肺癌有关系吗? 例如,吸烟是否与患肺癌有关系吗?
探究
为了研究吸烟是否对肺癌有影响, 为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机 地调查了9965 9965人 得到如下结果(单位: 地调查了9965人,得到如下结果(单位:人) 不吸烟 吸烟 总计 不患肺癌 7775 2099 9874 患肺癌 42 49 91 总计 7817 2148 9965

独立性检验的基本思想及其初步应用》

独立性检验的基本思想及其初步应用》

独立性检验的基本思想及其初步应用》生更加直观地理解两个分类变量之间的关系。

问题2:根据三维柱形图和二维条形图,你能否看出吸烟者和不吸烟者患肺癌的比例有何不同?二、独立性检验的基本思想1、独立性检验的基本思想:独立性检验是用来检验两个分类变量是否有关系的一种统计方法。

如果两个分类变量是独立的,那么它们之间是没有关系的;如果两个分类变量不独立,则它们之间是有关系的。

2、独立性检验的步骤:1)列出列联表;2)计算期望频数;3)计算卡方值;4)查表得出显著性水平;5)判断两个分类变量是否有关系。

三、K2检验的计算公式1、K2检验的计算公式:K2=∑(Oi-Ei)²/Ei其中,Oi为观察频数,Ei为期望频数。

2、K2检验的含义:K2检验的值越大,观察频数与期望频数的差距越大,两个分类变量之间的关系就越显著。

四、独立性检验的应用举例1、应用举例:1)医学研究:调查吸烟是否对患肺癌有影响;2)社会调查:调查男女是否对某一品牌的喜好程度有影响;3)市场调查:调查年龄与消费金额是否有关系。

2、独立性检验的应用:通过独立性检验,可以判断两个分类变量是否有关系,从而为我们提供科学的依据,进行合理的决策。

教学反思:本节课通过生动的例子和图表,引入了独立性检验的基本概念和思想。

通过对K2检验公式的介绍,让学生了解了如何计算卡方值。

同时,通过应用举例,让学生了解了独立性检验的实际应用。

在教学过程中,教师注重启发学生的思维,让学生在合作探究中主动掌握知识,达到了预期的教学目标。

练1、在某医院,665名男性病人中,214人秃顶,而在772名非心脏病男性病人中,175人秃顶。

能否以99%的置信度认为“秃顶与患心脏病”有关系?思考1、为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:性别。

是否需要志愿者需要。

不需要男性。

30.170女性。

373.271)估计该地区老年人中需要志愿者提供帮助的比例;2)能否以99%的置信度认为该地区的老年人是否需要志愿者提供帮助与性别有关系?思考2、某研究小组为了研究中学生的身体发育情况,在某学校随机抽出20名15至16周岁的男生,将他们的身高和体重制成2×2列联表,根据列联表的数据,能否以95%的置信度认为该学校15至16周岁的男生的身高和体重之间有关系?课后作业:课本第18页第1题和第2题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考虑假设检验问题: H0:面包分量足 ←→ H1:面包分量不足
求解思路:
1. 在H0成立的条件下,构造与H0矛盾的小概 率事件A; 2. 如果样本使得这个小概率事件A发生,就能 一定把握断言H1成立;否则,断言没有发 现样本数据与H0相矛盾的证据。
三、两个概念
1.分类变量 对于性别变量,取值为:男、女 这种变量的不同取“值”表示个体所属的不 同类别,这类变量称为分类变量 分类变量在现实生活中是大量存在的,如是 否吸烟,是否患肺癌,宗教信仰,国别,年龄, 出生月份等等。
不吸烟 吸烟 吸烟 不吸烟
2) 通过图形直观判断两个分类变量是否相关:
9000 8000 7000 6000 5000 4000 3000 2000 1000 0 不吸烟 吸烟 患肺癌 不患肺癌
二维 条形图
3)通过图形直观判断两个分类变量是否相关: 患肺癌 比例
患肺癌 不患肺癌
100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% 不吸烟 吸烟
名男性病人中 , 有 214 人秃顶 , 而另外 772 名 不是因为患心脏病而住院的男性病人中有 175 人秃顶 . 分别利用图形和独立性检验方 法判断是否有关?你所得的结论在什么范围 内有效?
600 500 400 300 200 100 0 秃顶 不秃顶 患其他病 患心脏病 患心脏病 患其他病
不患肺癌 比例
独立性检验
通过数据和图表分析,得到 结论是:吸烟与患肺癌有关 结论的可 靠程度如 何?
H0: 吸烟和患肺癌之间没有关系 ←→H1: 吸烟和患肺癌之间有关系
不吸烟 吸烟 总计
吸烟与肺癌列联表 不患肺癌 患肺癌 a b c d a+c b+d
总计 a+b c+d a+b+c+d
假设吸烟和患肺癌之间没有关系 ,即H0成立
布置作业
第一章
统计案例
1.2 独立性检验的基本思想及初步应用(1)
问题 : 数学家庞加莱每天都从一家
面包店买一块 1000g 的面包,并记 录下买回的面包的实际质量。一年 后,这位数学家发现,所记录数据 的均值为 950g 。于是庞加莱推断这 家面包店的面包分量不足。
• 假设“面包分量足”,则一年购买面包的质量 数据的平均值应该不少于1000g ; • “这个平均值不大于950g”是一个与假设“面包 分量足”矛盾的小概率事件; • 这个小概率事件的发生使庞加莱得出推断结果。
一、假设检验问题的原理
假设检验问题由两个互斥的假设构成,其中一个 叫做原假设,用 H0 表示;另一个叫做备择假设, 用H1表示。 例如,在前面的例子中, 原假设为: H0:面包分量足, 备择假设为 H1:面包分量不足。 这个假设检验问题可以表达为: H0:面包分量足 ←→ H1:面包分量不足
二、求解假设检验问题
2099 9874
49 91
2148 9965
在不吸烟者中患肺癌的比重是 0.54% 2.28% 在吸烟者中患肺癌的比重是 说明:吸烟者和不吸烟者患肺癌的可能性存在差异, 吸烟者患肺癌的可能性大
1)通过图形直观判断两个分类变量是否相关: 三维 柱状图
8000 7000 6000 5000 4000 3000 2000 1000 0 不患肺癌 患肺癌
则 吸烟者不患癌的比例=不吸烟者不患癌的比例
a c ≈ , a+b c+d
ad bc
独立性检验 ad bc 0.
ad - bc 越小,说明吸烟与患肺癌之间的关系越弱, ad - bc 越大,说明吸烟与患肺癌之间的关系越强
引入一个随机变量
2
n(ad - bc) K = (a + b)(c + d)(a + c)(b + d)
利用随机变量K2来确定在多大程度上可以认为 “两个分类变量有关系”的方法称为两个分类 变量的独立性检验.(为假设检验的特例)
列联表
为了调查吸烟是否对肺癌有影响,某肿瘤研究所随机 地调查了9965人,得到如下结果(单位:人)
吸烟与肺癌列联表
不患肺癌 不吸烟 7775 患肺癌 42 总计 7817
吸烟 总计
独立性检验基本的思想类似反证法
(1)假设结论不成立,即“两个分类变量没有关系”.
(2)在此假设下随机变量 K2 应该很能小,如果由观测数据
计算得到K2的观测值k很大,则在一定程度上说明假设
不合理.
(3)根据随机变量K2的含义,可以通过 评价该假设不合理的程度,由实际计算出的, 说明假设合理的程度为99.9%,即“两个分类变量有关 系”这一结论成立的可信度为约为99.9%.
例 2. 为考察高中生性别与是否喜欢数学
课程之间的关系 , 在某城市的某校高中生 中随机抽取300名学生,得到如下列联表:
性别与喜欢数学课程列联表
喜欢数学课程 男 女 总计 37 35 72 不喜欢数学课程 总计 122 178 300 85 143 228
a c
b d
由表中数据计算得 K 2 ≈4.513 ,高中生的 性别与是否喜欢数学课程之间是否有关系? 为什么?
2 2
独立性检验
已知在 H 0成立的情况下,
P( K 6.635) 0.01
2
即在 H 0 成立的情况下,K2 大于6.635概率非常 小,近似为0.01 现在的K2=56.632的观测值远大于6.635
背景分析
条形图
柱形图
列联表
分类变量之间关系
独立性检验
例 1. 在某医院 , 因为患心脏病而住院的 665
作为检验在多大程度上可以认为“两个变量 有关系”的标准 。
2
独立性检验
吸烟与肺癌列联表 不患肺癌 不吸烟 吸烟 总计 7775 2099 9874 患肺癌 42 49 91 总式计算
9965(7775 49 42 2099) K 56.632 7817 2148 9874 91
相关文档
最新文档