【精选】一元一次方程单元培优测试卷
第三章 一元一次方程 单元培优卷 七年级数学上册
2021-2022学年度七年级上第三章一元一次方程单元培优卷一.选择题1.下列各式中,是一元一次方程的是( )A .4x +2y =3B .y +5=0C .x 2=2x ﹣1D .x ﹣42.下列说法正确的是( )A .方程6x =3的解是x =2B .方程14x =18的解是x =2C .方程−4x =−8的解是x =−2D .方程4+2x =0的解是x =−2 3.解一元一次方程3(2)3212x x --=-去分母后,正确的是( ) A .3(2﹣x )﹣3=2(2x ﹣1) B .3(2﹣x )﹣6=2x ﹣1C .3(2﹣x )﹣6=2(2x ﹣1)D .3(2﹣x )+6=2(2x ﹣1) 4.若方程2x ﹣kx +1=5x ﹣2的解为﹣1,则k 的值为( )A .10B .﹣4C .﹣6D .﹣85.下列所给条件,不能列出方程的是( )A .某数比它的平方小6B .某数加上3,再乘以2等于14C .某数与它的的差D .某数的3倍与7的和等于296.今年父亲的年龄是儿子年龄的3倍,5年前父亲的年龄是儿子年龄的4倍.设今年儿子的年龄为x 岁,则下列式子正确的是( )A .4x -5=3(x -5)B .4x+5=3(x+5)C .3x+5=4(x+5)D .3x -5=4(x -5)7.一项工程甲单独做要40天完成,乙单独做需要50天完成,甲先单独做4天,然后甲乙两人合作x 完成这项工程,则可以列的方程是( )A .15040404=++x B .15040404=⨯+x C .150404=+x D .15040404=++x x 8.某铁路桥长,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了,整列火车完全在桥上的时间共.则火车的长度为( )A .B .C .D .二.填空题 9. 一元一次方程3x −6=0的解是________.10.在①21x -;②213x x +=;③π3π3-=-;④13t +=中,等式有_______,方程有_______(序号)11.某小区2020年绿化面积为2000平方米,计划2022年绿化面积要达到2880平方米.如果每年绿化面积的增长率相同,那么这个增长率是 .12.若关于x 的一元一次方程|a |x +2=0的解是x =﹣2,则a = .13.三个连续奇数的和是15,那么其中最大的奇数为___________.14.若关于x 的方程x +3=2a 和2x −6=4有相同的解,则a =________.15. 已知某商品降价80%后的售价为2800元,则该商品的原价为______元.16. 一通讯员骑摩托车需在规定时间内,把文件送到某地,若每小时走60千米,就早到12分钟,若每小时走50千米,则要迟到7分钟,求路程长为_______千米.三.解答题17. 解下列方程:(1)5278x x +=- (2)51763y -= 18.已知某人从甲地到乙地,一半路程骑自行车,一半路程步行;返回时13的时间骑车,23的时间步行.骑车的速度为15千米/时,步行的速度为5千米/时,且返回时比去时所用的时间多2小时,求甲.乙两地的距离.19.甲.乙两人在400米的环行跑道上进行早锻炼,甲慢跑速度为105米/分,乙步行速度为25米/分,两人同时同地同向出发,经过多少时间,两人第一次相遇?20.现用21张纸板制作盒子,每张纸板可制作盒身(侧面)2个或盒底3个,一个盒身配两个盒底.(1)为不浪费纸板,若设用x 张纸板制作盒身,剩下_______张制作盒底,使得盒身与盒底刚好配套,列出方程并求解出x .(2)若有63张一样的纸板,问一共可制作多少个盒子?23. 整理一批图书,如果由一个人单独做要用30ℎ,现先安排一部分人用1ℎ整理,随后又增加6人和他们一起又做了2ℎ,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少?21.如图,已知点A,B是数轴上原点O两侧的两点,其中点A在负半轴上,点B在正半轴上,AO =2,OB=10.动点P从点A出发以每秒2个单位长度的速度向右运动,到达点B后立即返回,速度不变;动点Q从点O出发以每秒1个单位长度的速度向右运动,当点Q到达点B时,动点P,Q停止运动.设P,Q两点同时出发,运动时间为t秒.(1)当点P从点A向点B运动时,点P在数轴上对应的数为.当点P从点B返回向点O运动时,点P在数轴上对应的数为(以用含t的代数式表示)(2)当t为何值时,点P,Q第一次重合?(3)当t为何值时,点P,Q之间的距离为3个单位?。
一元一次方程 单元培优测试
一元一次方程 单元培优测试1.已知关于x 的方程5(21)a x a x +=-+的解是1x =-,则a 的值是 ( ).A .-5B .-6C .-7D .8 2.方程2412332x x -+-=-,去分母得 ( ). A .22(24)33(1)x x --=-+ B . 123(24)183(1)x x --=-+C .12(24)18(1)x x --=-+D . 62(24)9(1)x x --=-+3、下列说法正确的是 ( )(A )在等式ab ac =两边除以a ,可得b c =(B )在等式b c a a=两边都除以a ,可得b c = (C )在等式a b =两边都除以(21c +),可得2211a b c c =++ (D )在等式22x a b =-两边除以2,可得x a b =- 4、一个两位数,个位数字与十位数字的和为9,如果将个位数字与十位数字对调后所得新数比原数大9,则原来两位数是 ( )A.54B.27C.72D.455.某项工作,甲单独做要4天完成,乙单独做要6天完成,若甲先做1天后,然后甲、乙合作完成此项工作,若设甲一共做了x 天,所列方程是( ).A.x +14+x 6=1B.x 4+x +16=1C.x 4+x -16=1D.x 4+14+x 6=1 6. 某市举行的青年歌手大奖赛今年共有 人参加,比赛的人数比去年增加 20%还多3人,设去年参赛的有 人,则 为( )A. B.C.D. 7.某商品涨价20%后欲恢复原价,应该必须下降的百分数为()A .17% B.18 C.19% D.20%8. 钟表的时针与分针在运行过程中,每隔一定时间就相遇一次,相遇间隔的时间是()A .1小时 B. 小时 C. 小时 D. 小时9. 汽车以72千米/时的速度在公路上行驶,开向寂静的山谷,驾驶员揿一下喇叭,4秒后听到(120%)3a ++(120%)3a +-回响,这时汽车离山谷多远?已知空气中声音的传播速度约为340米/秒.设听到回响时,汽车离山谷x 米,根据题意,列出方程为( )A. 2x+4×20=4×340B. 2x-4×72=4×340C. 2x+4×72=4×340D. 2x-4×20=4×34010、某单位A 、B 、C 三个部门的人数依次是84人、56人、60人,如果每个部门都按相同的比例裁减人员,使三个部门共留下150人,那么A 部门留下的人数是( ).(A )65人 (B )63人 (C )60人 (D )56人二.填空题11、的值为是一元一次方程,则的方程关于m m x m x m x 0=4+3)+(22)+(2--_______ ,方程的解为_______12. 如果的值为,则的值大比x x x 3233-253-2- 13. 日历中同一竖列相邻三个数的和为63,则这三个数分别为______、______ 、______。
一元一次方程单元测试题及答案
一元一次方程单元测试题及答案一、选择题(每题3分,共30分)1. 下列方程中,不是一元一次方程的是:A. 3x - 5 = 0B. 2x + 3y = 6C. 4x = 12D. 5x - 7 = 8答案:B2. 解方程2x - 3 = 7,x的值是:A. 5B. 10C. -5D. -10答案:A3. 方程3x + 2 = 11的解是:A. x = 1B. x = 3C. x = 2D. x = 4答案:B4. 方程5x - 15 = 0的解是:A. x = 3C. x = 5D. x = -5答案:A5. 方程2x + 4 = 10的解是:A. x = 3B. x = 2C. x = 1D. x = 4答案:B6. 方程6x - 9 = 15的解是:A. x = 4B. x = 3C. x = 2D. x = 1答案:A7. 方程4x + 8 = 20的解是:A. x = 2B. x = 3C. x = 4D. x = 5答案:B8. 方程3x - 7 = 2x + 8的解是:B. x = 8C. x = 7D. x = 5答案:A9. 方程2x = 6的解是:A. x = 3B. x = 2C. x = 1D. x = 0答案:B10. 方程5x + 10 = 25的解是:A. x = 3B. x = 2C. x = 1D. x = 4答案:A二、填空题(每题2分,共20分)11. 方程ax + b = 0的解是 x = _______。
答案:-b/a12. 方程2x - 5 = 3,解得 x = _______。
答案:413. 方程3x + 6 = 0,解得 x = _______。
答案:-214. 方程4x = 16,解得 x = _______。
答案:415. 方程5x - 2 = 18,解得 x = _______。
答案:416. 方程6x + 12 = 30,解得 x = _______。
第11章一元一次方程(单元测试)培优卷(原卷版)
第11章《一元一次方程》培优卷考试时间:120分钟 满分:120分一.选择题(共10小题,每小题3分,满分30分)2.方程42x x -=-的解是( )A .1x =B .3x =C .2x =D .0x =4.某种商品的进价为100元,由于该商品积压,商店准备按标价的8折销售,可保证利润20元,则标价为( )A .116元B .145元C .150元D .160元5.关于y 的方程()321a y -=+与方程10y -=的解相同,则a 的值为( )A .3B .1C .1-D .3-6. “鸡兔同笼”问题是中国古代著名典型趣题之一,大约在1500年前,《孙子算经》中就记载了这个有趣的问题:今有雄(鸡)兔同笼,上有三十五头,下有九十四足,问雉兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚.问笼中各有多少只鸡和兔?如果我们设有x 只鸡,则可列方程( )A .24(35)94x x +-=B .42(35)94x x +-=C .24(94)35x x +-=D .42(94)35x x +-=7.我国古代的“九宫格”是由33⨯的方格构成的,每个方格内均有不同的数,每一行、每一列以及每一条对角线上的三个数之和相等.如图给出了“九宫格”的一部分,请你推算x 的值是( )A .2021-B .2020-C .2019-D .2017- 8.观察下列两行数: 1,3,5,7,9,11,13,15,17,…1,4,7,10,13,16,19,22,25,…探究发现:第1个相同的数是1,第2个相同的数是7,…,若第n 个相同的数是103,则n 等于( ) A .18 B .19 C .20 D .219.若定义:如果两个一元一次方程的解之和为1,我们就称这两个方程为“美好方程”.若关于x 的方程30x m +=与方程4210x x -=+是“美好方程”,则m 的值是( )A .9B .9-C .12D .12-10.如图,甲、乙两动点分别从正方形ABCD 的顶点,A C 同时沿正方形的边开始移动,甲点按顺时针方向环行,乙点按逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2024次相遇在边( )上.A .AB B .BC C .CD D .DA二.填空题(共6小题,每小题3分,满分18分)三.解答题(共3题,每题6分,满分18分)四.解答题(共3题,每题8分,满分24分)20.某商场经销的甲、乙两种商品,甲种商品每件售价60元,利润率为50%;乙种商品每件进价50元,21.菲乐童装店购进A、B两种款式羽绒服,每件A羽绒服比每件B羽绒服进价多200元;如果购进3件A 羽绒服和5件B羽绒服的进价相同.(1)求A、B两种羽绒服每件进价分别为多少元?(2)若购进A、B两款羽绒服共224件,一共花费了92000元,求购进A、B两款羽绒服各多少件?(3)在(2)的条件下,A羽绒服售价为600元,B羽绒服加价30%后出售,B羽绒服全部售出,此时A羽绒服剩余部分未售出,菲乐童装店决定剩下的羽绒服8折出售,所有羽绒服售出后,菲乐童装店获利11%,求A羽绒服按原价售出了多少件?22.某车间计划加工一批产品.如果每小时加工产品10个,就可以在预定时间完成任务;实际加工两个小时后,提高了加工速度,平均每小时多加工了2个,结果提前1小时完成任务,设这批产品一共有x个.(1)实际加工两个小时后还剩______个产品;(2)这批产品一共有多少个?(3)若这批产品销售时按成本价提高40%后进行标价,按标价的8折销售时,每个产品仍可以获利15元,这批产品的总成本为多少元?五.解答题(共2题,每题9分,满分18分)23.定义一种新的运算“*”:++=+;(3)*(15)18--=+;(14)*(7)21--=-;(12)*(14)26+-=-;(15)*(17)32*-=-=+0(15)(15)*015+=+=+;(13)*00*(13)13(1)仔细观察,归纳“*”运算的法则:两数进行“*”运算时, .特别地,0与任何数进行“*”运算,或任何数与0进行“*”运算时, ;(2)计算:[](12)*0*(13)--= ;(3)若a 为非负数,且3*3*a a =-,求出a 的值.24.如图,已知数轴上点A 表示的数为12,B 是数轴上一点.且20AB =.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为(0)t t >秒.(1)写出数轴上点B 表示的数___,点P 表示的数___(用含t 的代数式表示);(2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P ,Q 同时出发,问点P 运动多少秒时追上点Q ;(3)若M 为AP 的中点,N 为PB 的中点,点P 在运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN 的长.六.解答题(满分12分)25.若A 、B 、C 为数轴上三点,若点C 到A 的距离是点C 到B 的距离2倍,我们就称点C 是点是[],A B 的好点.(1)如图1,点A 表示的数为1-,点B 表示的数为2,表示1的点C 到点A 的距离是2,到点B 的距离是1,那么点C 是[],A B 的好点.又如表示0的点D 到点A 的距离是1,到点B 的距离是2,那么点D____[],A B 的好点,但点D______[],B A 的好点(请在横线上填是或不是..........) (2)如图2,M 、N 为数轴上两点,点M 所表示的数为2-,点N 所表示的数为4.求[],M N 的好点;(3)A 、B 为数轴上两点,点A 所表示的数为2-,点B 所表示的数为40.现有一只电子蚂蚁P 从点B 出发,以2个单位每秒的速度向左运动,到达点A停止.当经过多少秒时,P,A和B中恰有一个点为其余两点的好点?。
人教版(2024)七年级上册数学 第5章 一元一次方程 单元培优检测题
人教版(2024)七年级上册数学第5章一元一次方程单元提升训练一.选择题1.若与可以合并成一项,则的值是()A.B.1C.3D.92.若x=1是方程2x+a=0的解,则a=()A.1B.2C.﹣1D.﹣23.下列等式的变形中,正确的是()A.如果,那么a=b B.如果|a|=|b|,那么a=bC.如果ax=ay,那么x=yD.如果m=n,那么4.方程去分母得()A.2+2(2x﹣4)=﹣(x﹣7)B.12+2(2x﹣4)=﹣x﹣7C.12+(2x﹣4)=﹣(x﹣7)D.12+2(2x﹣4)=﹣(x﹣7)5.解方程2(x﹣2)=5﹣3(x﹣2)时,去括号正确的是()A.2x﹣4=5﹣3x+6B.x﹣4=5﹣x+6C.2x﹣2=5﹣3x﹣2D.2x﹣4=5﹣3x﹣66.若某件商品按原价提价后,欲恢复原价,应降价(A.B.C.D.9.“⊕”表示一种运算符号,其意义是2a b a b ⊕=-,若()132x ⊕⊕=,则x 等于()A.32B.2C.12D.110.如图,宽为50cm 的长方形图案由10个形状大小完全相同的小长方形拼成,其中一个小长方形的面积为()A.2400cm B.2500cm C.2600cm D.24000cm 二.填空题11.若式子3x+4与2﹣5x 的值相等,则x 的值为.12.关于x 的多项式3(4)b a x x x b --+-是二次三项式,则a=_____b=______14.乐乐在解方程时,不小心把其中一个数字用墨水污染成了,他翻阅了答案知道这个方程的解为,于是他判断污染了的数字应该是______.三.解答题17.解下列方程:(1)223146x x +--=;(2)()()1112225x x -=-+18.周末,甲乙两人沿环形生态跑道散步,甲每分钟行80米,乙每分钟行120米,跑道一圈长400米.求:(1)若甲乙两人同时同地同向出发,多少分钟后他们第一次相遇?(2)若两人同时同地反向出发,多少分钟后他们第一次相距100米?19.在阿阳中学举行的“我爱祖国”征文活动中,七年级和八年级共收到征文118篇,且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,求七年级收到的征文有多少篇.20.己知a,b满足,a,b分别对应这数轴上的A,B两点.(1)__________,__________,并在数轴上画出A,B两点;(2)若点P从点A出发,以每秒2个单位长度的速度向数轴正半轴运动,求运动时间为多少时,点P 到A的距离是点P到B的距离的2倍?(3)数轴上还有一点C对应的数为50,若点P和点Q同时从点A和点B出发,分别以每秒3个单位长度和每秒1个单位长度向点C运动.P点到达C点后,再立刻以同样的速度返回,向点A运动,当Q运动到点C时,整个运动停止.求点P和点Q运动多少秒时,P,Q两点之间的距离为4?并求此时点Q对应的数.21.某商场用2730元购进甲、乙两种商品共60件,这两种商品的进价、标价如表所示:价格\类型甲乙进价(元/件)3565标价(元/件)50100(1)这两种商品各购进多少件?(2)若甲种商品按标价的9折出售,乙种商品按标价的8.5折出售,且在运输过程中有2件甲种、1件乙种商品不慎损坏,请问这批商品全部售出后,该商场共获利多少元?。
第三章 一元一次方程 单元培优检测试题 2023-2024学年人教版数学七年级上册
2023-2024学年人教版数学七年级上册第三章一元一次方程单元培优检测试题一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1.若方程(m−2)x|2m−3|=6是关于x的一元一次方程,则m的值为( )A. 2B. 1C. 1或2D. 任何数2.在方程:5x+8y=4;x+5=0;x2+5x−2=0;2πx=4中,一元一次方程的个数为( )A. 1个B. 2个C. 3个D. 4个3.下列运用等式性质正确的是( )A. 如果a=b,那么a+c=b−cB. 如果a=b,那么ac =bcC. 如果ac =bc,那么a=b D. 如果a=3,那么a2=3a24.下列式子的变形中,正确的是( )A. 由6+x=10得x=10+6B. 由8x=4−3x得8x−3x=4C. 由3x+5=4x得3x−4x=−5D. 由2(x−1)=3得2x−1=35.一元一次方程x+3x=8的解是( )A. x=−1B. x=0C. x=1D. x=26.关于x的方程3x+2m=−1与方程x+2=2x+1的解相同,则m的值为( )A. 2B. −2C. 1D. −17.下列移项正确的有.( )①12−x=−5,移项,得12−5=x;②−7x+3=−13x−2,移项,得13x−7x=−3−2;③2x+3=3x+4,移项,得2x−4=3x−3;④−5x−7=2x−11,移项,得11−7=2x−5x.A. 1个B. 2个C. 3个D. 4个8.已知关于x的方程2x+a−9=0的解是x=2,则a的值为( )A. 5B. 4C. 3D. 29.下列方程变形中,正确的是.( )A. 方程3x−2=2x+1,移项,得3x−2x=−1+2B. 方程3−x=2−5(x−1),去括号,得3−x=2−5x+1C. 方程23x=32,未知数系数化为1,得x=1D. 方程x−12=1化成x−1=210.解方程1−x+12=x4,去分母,去括号得( )A. 1−2x+2=xB. 1−2x−2=xC. 4−2x+2=xD. 4−2x−2=x11.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中.( )A. 亏了10元钱B. 赚了10钱C. 赚了20元钱D. 亏了20元钱12.《孙子算经》中有一道题,原文是:今有四人共车,一车空;三人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每4人共乘一车,最终剩余1辆车;若每3人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x人,可列方程( )A. x4+1=x−93B. x+14=x3−9 C. x4−1=x+93D. x4+1=x+93二、填空题(本大题共8小题,共24.0分)13.已知(a−3)x|a|−2−5=2是关于x的一元一次方程,则a=.14.将方程4x+3y=6变形成用含y的代数式表示x,则x=.15.已知x=−2是方程a(x+3)=12a+x的解,则a=.16.若4x−1与7−2x的值互为相反数,则x=.17.用符号※定义一种新运算a※b=ab+2(a−b),若3※x=0,则x的值为.18.某人在解方程2x−13=x+a2−1去分母时,方程右边的−1忘记乘6,算得方程的解为x=2,则a的值为.19.某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件销售利润为元.20.如图,已知正方形的边长为4,甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的3倍,则它们第2023次相遇在边.三、解答题(本大题共6小题,共60.0分。
第6章 一元一次方程单元测试(培优卷)
第6章 一元一次方程单元测试(培优卷)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,考试时间80分钟,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020·湖南七年级月考)下列说法错误的是( )A .若a b =,则ac bc =B .若ac bc =,则a b =C .若22a c b c -=-,则a b =D .若a b =,则2211a b c c =++ 2.(2021·全国七年级)已知方程(1)30m m x-+=是关于x 的一元一次方程,则m 的值是( ) A .±1 B .1 C .-1 D .0或13.(2020·山东七年级月考)把方程10.2110.40.7x x +--=中的分母化为整数,结果应为( ). A .10121147x x +--= B .1010210147x x +--= C .101211047x x +--= D .552101027x x +--= 4.(2020·西安市铁一中学七年级月考)有一玻璃密封器皿如图1,测得其底面直径为20cm ,高20cm ,现内装蓝色溶液若干,如图②放置时,测得液面高10cm ,如图③放置时,测得液面高16cm .则该玻璃密封器皿总容量为( )A .1200π3cmB .1300π3cmC .1400π3cmD .1500π3cm5.(2020·湖南广益实验中学七年级月考)规定:用{}m 表示大于m 的最小整数,例如5{}32=,{4}5=,{1.5}1-=-等;用[]m 表示不大于m 的最大整数,例如7[]32=,[2]2=,[ 3.2]4-=-,如果整数x 满足关系式:2{}3[]32x x +=,则x 的值为( )A .3B .5-C .6D .76.(2021·广东七年级期末)甲乙两地相距180km ,一列慢车以40km/h 的速度从甲地匀速驶往乙地,慢车出发30分钟后,一列快车以60km/h 的速度从甲地匀速驶往乙地.两车相继到达终点乙地,再此过程中,两车恰好相距10km 的次数是( )A .1B .2C .3D .47.(2020·安徽七年级期中)方程···13153520192021x x x x ++++=⨯的解是x =( ) A .20212020 B .20211010 C .20212019 D .101020218.(2020·浙江七年级)设一列数a 1,a 2,a 3,…,a 2015,…中任意三个相邻的数之和都是20,已知a 2=2x ,a 18=9+x ,a 65=6﹣x ,那么a 2020的值是( )A .2B .3C .4D .59.(2021·全国七年级)某原料供应商对购买其原料的顾客实行如下优惠办法: (1)一次购买金额不超过1万元,不予优惠; (2)一次购买金额超过1万元,但不超过3万元,九折优惠; (3)一次购买超过3万元的,其中3万元九折优惠,超过3万元的部分八折优惠.某公司分两次在该供应商处购买原料,分别付款7800元和25200元.如果该公司把两次购买的原料改为一-次购买的话,那么该公司一共可少付款( )A .3360 元B .2780 元C .1460 元D .1360元10.(2020·湖北七年级期末)如图,点,C D 为线段AB 上两点,9AC BD +=,且75AD BC AB +=,设CD t =,则方程()()371232t x x x --=-+的解是( )A .2x =B .3x =C .4x =D .5x =11.(2020·浙江七年级期末)对一个正整数x 进行如下变换:若x 是奇数,则结果是31x +;若x 是偶数,则结果是12x .我们称这样的操作为第1次变换,再对所得结果进行同样的操作称为第2次变换,……以此类推.如对6第1次变换的结果是3,第2次变换的结果是10,第3次变换的结果是5……若正整数a 第6次变换的结果是1,则a 可能的值有( )A .1种B .4种C .32种D .64种12.(2021·重庆七年级期末)整数a 满足36a <≤,若a 使得关于x 的方程()631ax x +=-的解为整数,则满足条件的所有整数a 的个数是( )A .1B .2C .3D .4二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在横线上) 13.(2020·西安铁一中滨河学校七年级月考)若方程415x -=与203a x --=的解相同,则a 的值为_______. 14.(2020·安徽七年级月考)按照如图所示的计算程序,若输出的结果为13,则输入的正数x 可以是______.15.(2020·镇江市外国语学校七年级月考)如图,在相距150个单位长度的直线跑道AB 上,机器人甲从端点A 出发,匀速往返于端点A 、B 之间,机器人乙同时从端点B 出发,以大于甲的速度匀速往返于端点B 、A 之间.他们到达端点后立即转身折返,用时忽略不计.若这两个机器人第一次迎面相遇时,相遇地点与点A 之间的距离为30个单位长度,则他们第二次迎面相遇时,相遇地点与点A 之间的距离则为_____个单位长度.16.(2021·福建七年级月考)一列方程如下排列:1142x x -+=的解是2x =; 2162x x -+=的解是3x =; 3182x x -+=的解是4x =;… 根据观察得到的规律,写出其中解是2021x =的方程:______.17.(2020·浙江七年级期中)瑞士大数学家列昂纳德·欧拉(1707~1783)在他的一生中,为人类作出了卓越的贡献,留下了886篇论文和著作,几乎在数学的每个分支中都留下了他的足迹.在他的名著《代数基础》一书中,载有他着意收集到的许多趣题,下面一例就是该书中的一个趣题:父亲临终时立下遗嘱,按下述方式分配遗产:老大分的100瑞士法郎和剩下的十分之一;老二分的200瑞士法郎和剩下的十分之一;老三分的300瑞士法郎和剩下的十分之……依此类推,分给其余的孩子.最后发现,遗产全部分完后所有孩子分的的遗产相等.问:遗产总数是_______瑞士法郎,孩子人数是_______人.18.(2020·浙江七年级期末)圆形钟面上从2点整到4点整,时针和分针成60度角时的时间是__________.三、解答题(本大题共6小题,共46分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)三、解答题19.(2020·阳高县第二中学校七年级月考)解下列方程:(1)14233x x-=+(2)3(x-3)-2(2x-5)=6(3)21101211362x x x-++-=-(4)0.310.1310.20.03x x--=20.(2021·全国七年级)已知x=m与x=n分别是关于x的方程ax+b=0(a≠0)与cx+d=0(c≠0)的解.(1)若关于x的方程ax+b=0(a≠0)的解与方程6x-7=4x-5的解相同,求m的值;(2)当n=1时,求代数式3c2+cd+2c-2(12cd32+c2-d)的值;(3)若|m-n|12=,则称关于x的方程ax+b=0(a≠0)与cx+d=0(c≠0)为“差半点方程”.试判断关于x的方程4042x92-=9×2020﹣2020t+x,与4040x+4=8×2021﹣2020t﹣x,是否为“差半点方程”,并说明理由.21.(2020·重庆礼嘉中学七年级月考)某中学库存若干套桌凳,准备修理后支援贫困山区学校,现有甲、乙两木工组,甲每天修桌凳20套,乙每天修桌凳比甲多5套,甲单独修完这些桌凳比乙单独修完多用9天,学校每天付甲组80元修理费,付乙组110元修理费.(1)问该中学库存多少套桌凳?(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:①由甲单独修理;②由乙单独修理;③甲、乙合作同时修理.你认为哪种方案省时又省钱为什么?22.(2021·福建七年级月考)某购物网站上的一种小礼品按销售量分三部分制定阶梯销售单价,如下表:(1)“双十一”期间,购物总金额累计满300元可使用50元购物津贴(即累计总金额每满300减50元),若购买75件,花费______元;若购买120件,花费______元;若购买240件,花费______元.(2)“双十一”期间,王老师购买这种小礼品共花了342元,列方程求王老师购买这种小礼品的件数.(3)“双十二”即将来临,但“双十二”期间不能使用购物津贴,王老师和李老师各自单独在该网站购买这种小礼品,他们一共购买了400件,其中王老师的购买数量大于李老师的购买数量,他们一共花费1331元,请问王老师和李老师各购买这种小礼品多少件?23.(2021·湖北七年级期末)数形结合思想是通过数和形之间的对应关系和相互转化来解决问题的数学思想方法.我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事休.”(1)(问题背景)往返于甲、乙两地的客车,中途停靠2个车站(来回票价一样),可以从任意站点头票出发且任意两站间的票价都不同,共有___________种不同的票价,需准备________种车票.聪明的小周是这样思考这个问题的,她用A,B,C,D,4个点表示车站,每两站之间的票价用相应两点间的线段表示,共连出多少条线段,就有多少种不同的票价.(2)(迁移应用)A,B,C,D,E,F六支足球队进行单循环比赛,当比赛到某一天时,统计出A,B,C,D,E五支队已经分别比赛了5,4,3,2,1场球,则还没有与B队比赛的球队是_____队.(3)(拓展创新)某摄制组从A市到B市有一天的路程,计划上午比下午多走100千米到C市吃午饭,但由于堵车,中午才赶到一个小镇,只行驶了上午原计划的三分之一,过了小镇,汽车行驶了400千米,傍晚才停下来休息,司机说,再走从C市到这里的路程的二分之一就到达目的地了,求A,B两市相距多少千米?24.(2020·武汉市南湖中学七年级月考)已知有理数,a b满足(a+20)2+(b-30)2=0,且在数轴上对应的点分别是A和B两点(如图)我们把数轴上A、B两点之间的距离用AB a b表示.(1)求AB的值(2)若数轴上有一点C,满足2AC=3BC,求C点表示的数.(3)若动点P和Q分别从A、B两点出发,分别以2单位/s和4单位/s的速度运动,Q点向左运动,P点运动到何处时PQ=30?。
解一元一次方程培优专项练习题
解一元一次方程培优专项练习题一:选择题1、下列方程中,是一元一次方程的是( )(A );342=-x x (B );0=x (C );12=+y x (D ).11xx =- 2、根据“x 的3倍与5的和比x 的 少2”可列方程()A 、B 、C 、D 3、若方程 是关于x 的一元一次方程,则字母系数a 、b 和c 的值满足( )A 、 ,b=0,c 为任意数B 、C 、D 、 4、方程063=+x 的解的相反数是( )A.2 B.-2 C.3 D.-3 5、 当x=2时,代数式ax-2的值是4,那么,当x=-2时,这个代数式的值是( ) A 、-4 B 、-8 C 、8 D 、26、方程x (x+1)=0的根是()A 、0 B 、1 C 、0和1 D 、0和-17、已知关于x 的方程432x m -=的解是x=m,则m 的值是( )A.2 B.-2 C.2或7 D.-2或78、方程 的解是()A 、 B 、 C 、 D 、 二、填空题1、6、已知 是关于x 的一元一次方程,求m=2、已知代数式15+a 与)5(3-a 的值相等,那么=a ___.3、若3x+2与-5x-8互为相反数,则x-2的值为_______。4、已知方程x+1=-1与方程2x-k=-x 有相同的解,那么-k=5、若 是同类项,则3x+2y= 。
6、当k= 时,多项式 中不含xy 项。
7、已知-2是方程3|a|-x=1-2x 的解,那么a= 。
三、解答题1、解方1:(1)23579x x x -=++ (2)2x-3=3x-(x-2) (3)32)32(63=+-x2、解方程2:(1)3157146x x ---= (2)322126x x x -+-=-2353-=+x x 2353+=+x x ()2353-=+x x ()2353+=+x x 31()0122=++-c bx x a 21=a 0,0,21=≠≠c b a 0,0,21≠≠=c b a 为任意数c b a ,0,21≠=012=-x 2121-21±2±()()081122=++--x m x m 8213222+-+--x xy y kxy x 122213++y x ab b a 与(3)42331+-=--y y y (4) 42311212--=+-x x x3、解方程3:(1)35.012.02=+--x x (2)301.032.01=+-+x x四:能力提高1、解方程:(1) (2)(3)(4)(5) (6)(7) (8)()()()121212345--=+--x x x 633252212+-+=+--x x x x 2503.002.003.05.09.04.0-=+-+x x x 146151413121=⎭⎬⎫⎩⎨⎧+⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-x 3221221413223x x =-⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-22136132432-⎪⎭⎫ ⎝⎛---=+--x x x x ()()()()4614351241131+-=++-++x x x x 012.015018.021024.017---=-x x x2、解答题(1)关于x 的方程27x-32=11m 和x+2=2m 有相同的根,求m 的值(2)如果方程 的解也是当成|3x-2|=m 的解,求m 的值?(3)已知关于x 的方程9x-3=kx+14有整数解,那么满足条件的所有整数k 的解?(4)方程|x-5|+2x=-5的解是多少?方程|5x+6|=6x-5的解是多少?(5)当a 为何值时,关于x 的方程 ①有唯一解?②无解?(6)求适合下列条件的x① ② ③23252+-=-x x ()6612131--=+x ax a x 023=--x x 5342=++-x x 56151xx -=--。
一元一次方程测试卷(培优竞赛卷)
一元一次方程测试卷(培优竞赛卷)一、选择题(每小题3分,共30分)1.若方程2x b x a a b--=-有唯一解,则字母a 、b 应当满足的条件是( ) A 、0a b += B 、1a b= C 、0a b +≠ D 、任意有理数 2.方程19991999x x -=-的解的个数是( ) A 、1 B 、2 C 、3 D 、无数个3.甲买了5个面包,乙买了4个面包,这时丙到了,三人每人吃了3个,丙付甲、乙共x 元,这些钱中甲应得( )A 、45x 元B 、54x 元C 、59x 元D 、23x 元 4.一列匀速前进的火车,从它进入600米的隧道到离开,共需30少,又知在隧道顶部的一束固定的灯光垂直照射火车5秒,则这列火车的长度是( )A 、100米B 、120 米C 、150米D 、200米5.某商店经销一种商品,由于进货价降低了5%,出售价不变,使得利润由原来的x%提高到了(x+6)%,则x 的值为( )。
(注:出售价=进货价⨯(1+利润率))A 、10B 、12C 、14D 、176.某人往返于某段路程,去时的速度是1v ,回时的速度是2v ,则他的平均速度是( )A 、 122v v + B 、 12122v v v v + C 、12122v v v v + D 、1212v v v v -+ 7.有5分和2分的硬币共100枚,值3元2角,设5分硬币有a 枚,2分硬币有b 枚,则2a b -的值为( )A 、-10B 、20C 、80D 、1108.小刚在某月的日历上圈出相邻的4个数,算出这4个数和为36。
则这4个数在日历上的位置是( )9.m 人a 天可以完成一项工作,如果增加n 人,则完成这项工作的天数是( )A 、a n +B 、a n -C 、ma m n +D 、a m n+ 10.银行教育储蓄的年利率如表:小明现在正读七年级,今年7月他父母为他在银行存款3年后的收益最大,则小明父母应该采用( ) A 、 直接存一个3年期;B 、 先存一个1年期,1年后将本息和自动转存一个2年期;C 、 先存一个1年期,1年后将本息和自动转存两个1年期;D 、 先存一个2年期,2年后将本息和自动转存一个1年期。
(完整版)一元一次方程应用题培优试题
一元一次方程应用题培优试题2.根据题意,列方程(1)某数与8的和的2倍比它自己大11,求这个数.(2)某老师准备在期末对学生进行奖励,到文具店买了20本练习簿和30支铅笔,共花了16元,现在知道练习簿比铅笔贵3角.求练习簿和铅笔单价?(3)某产品的成本价为25元,现在按标价的8折销售,还可以有10元的利润,求此产品的标价?(4)某文件需要打印,小李独立做需要6小时完成,小王独立做需要9小时完成.现在他们俩共同做了3小时,剩下的工作由小王独自做完.问小王还要用多少小时把剩下的工作做完?3.某班一次数学竞赛共出了20道题,现抽出了4份试卷进行分析如下表:(1)问答对一题得多少分,不答或答错一题扣多少分?(2)一位同学说他得了65分,请问可能吗?请说明理由.试卷答对题数不答或答错题数得分A19 1 94B18 2 88C17 3 82D10 10 404.为了鼓励居民节约用水,某市自来水公司按如下方式对每户月用水量进行计费:当用水量不超过10吨时,每吨的收费标准相同;当用水量超过10吨时,超出10吨的部分每吨收费标准也相同.下表是小明家1﹣4月份用水量和交费情况:月份 1 2 3 4 用水量(吨)8 10 12 15费用(元)16 20 26 35请根据表格中提供的信息,回答以下问题:(1)若小明家5月份用水量为20吨,则应缴水费多少元?(2)若小明家6月份交纳水费29元,则小明家6月份用水多少吨?5.甲、乙两支“徒步队”到野外沿相同路线徒步,徒步的路程为24千米.甲队步行速度为4千米/时,乙队步行速度为6千米/时.甲队出发1小时后,乙队才出发,同时乙队派一名联络员跑步在两队之间来回进行一次联络(不停顿),他跑步的速度为10千米/时.(1)乙队追上甲队需要多长时间?(2)联络员从出发到与甲队联系上后返回乙队时,他跑步的总路程是多少?(3)从甲队出发开始到乙队完成徒步路程时止,何时两队间间隔的路程为1千米?6.A,B两地相距1890千米,甲、乙两列火车分别从A,B两地同时出发相向而行,甲每小时行120千米,乙每小时行150千米,经过多长时间两车间的距离是135千米?7.王强参加了一场3000米的赛跑,他以6米/秒的速度跑了一段路程,又以4米/秒的速度跑完了其余的路程,一共花了10分钟,王强以6米/秒的速度跑了多少米?8.甲乙两运输队,甲队原有32人,乙队原有28人,若从乙队调走一些人到甲队,那么甲队人数恰好是乙队人数的2倍,问从乙队调走了多少人到甲队?9.整理一批图书,由一个人做要40小时完成.现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?10.一个两位数,十位上的数字是个位上数字的2倍,如果把个位上的数与十位上的数对调得到的数比原数小36,求原来的两位数.11.一项工程由甲单独做需12天完成,由乙单独做需8天完成,若两人合作3天后,剩下部分由乙单独完成,乙还需做多少天?12.某商场国庆节搞促销活动,购物不超过200元不给优惠,超过200(不含200元)元而不足500元,所有商品按购物价优惠10%,超过500元的,其中500元按9折优惠,超过的部分按8折优惠,A,B两个商品价格分别为180元,550元.(1)某人第一次购买一件A商品,第二次购买一件B商品,实际共付款多少元?(2)若此人一次购物购买A,B商品各一件,则实际付款多少钱?(3)国庆期间,某人在该商场两次购物分别付款180元和550元,如果他合起来一次性购买同样的商品,还可节约多少钱?14.为庆祝“六一”儿童节,某市中小学统一组织文艺汇演,甲、乙两所学校共92人(其中甲校的人数多于乙校的人数,且甲校的人数不足90人)准备统一购买服装参加演出;下面是某服装厂给出的演出服装的价格表购买服装的套数1套至45套46套至90套91套以上每套服装的价格60元50元40元(1)如果两所学校分别单独购买服装一共应付5000元,甲、乙两所学校各有多少学生准备参加演出?(2)如果甲校有10名同学抽调去参加书法绘画比赛不能参加演出,请你为两所学校设计一种最省钱的购买服装方案.15.公园门票价格规定如下表:购票张数1~50张51~100张100张以上每张票的价格13元11元9元某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?16.为准备联合韵律操表演,甲、乙两校共100人准备统一购买服装(一人买一套)参加表演,其中甲校人数多于乙校人数,下面是服装厂给出的演出服装的价格表:购买服装的套数1套至49套50套至99套100套及以上每套服装的价格60元55元50元如果两所学校分别单独购买服装,一共应付5710元.(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少钱?(2)甲、乙两校各有多少学生准备参加表演?(3)如果甲校有9名同学抽调去参加迎奥运书法比赛不能参加演出,那么你有几种购买方案,通过比较,你该如何购买服装才能最省钱?17.小张和父亲预定搭乘家门口的公共汽车赶往火车站,去家乡看望爷爷.在行驶了三分之一路程时,估计继续乘公共汽车将会在火车开车后半小时到达火车站.根据随即下车改乘出租车,车速提高了一倍,结果赶在火车开车前15分钟到达火车站.已知公共汽车的平均速度是40千米/时,问小张家到火车站有多远?18.甲、乙两站相距510千米,一列慢车从甲站开往乙站,速度为45千米/时,慢车行驶两小时后,另有一列快车从乙站开往甲站,速度为60千米/时,(1)快车开出几小时后与慢车相遇?(2)相遇时快车距离甲站多少千米?19.春节期间,七(1)班的明明、丽丽等同学随家长一同到某公园游玩,下面是购买门票时,明明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)明明他们一共去了几个成人,几个学生?(2)请你帮助明明算一算,用哪种方式购票更省钱?说明理由;(3)购完票后,明明发现七(2)班的张小涛等8名同学和他们的12名家长共20人也来购票,请你为他们设计出最省的购票方案,并求出此时的购票费用.24.小明和小刚从学校出发去敬老院送水果,小明带着东西先走了200 m,小刚才出发.若小明每分钟行80 m,小刚每分钟行120 m.则小刚用几分钟可以追上小明?26.某中学组织七年级学生参观,原计划租用45座客车若干辆,但有15人没有座位;如果租用同样数量的60座客车,则多出一辆,且其余客车恰好坐满.试问:(1)七年级学生人数是多少?(2)原计划租用45座客车多少辆?参考答案1.解:×20=2800(元),×20=560(元),×20=112,送券100(元),×20=20(元),2800+560+100+20=3480(元)设相当于x折出售,则(14000+3480)×=14000,解得x≈8所以,他还可以购回3480元的物品.相当于8折出售.2.解:(1)设某数为x,(x+8)×2﹣x=11;(2)设铅笔单价为x元,30x+20(x+0.3)=16;(3)设标价为x元,x×80%=25+10;(4)设还要用x小时把剩下的工作做完,(+)×3+x=1.3.解:(1)由D卷可知,每答对一题与答错(或不答)一题共得4分,设答对一题得x分,则答错(或不答)一题得(4﹣x)分,再由A卷可得方程:19x+(4﹣x)=94,解得:x=5,4﹣x=﹣1.答:答对一题得5分,不答或答错一题扣1分.(2)5x﹣(20﹣x)=65时,x=,题目的数量应该为整数,所以这位同学不可能得65.4.解:(1)从表中可以看出规定吨数位不超过10吨,10吨以内,每吨2元,超过10吨的部分每吨3元,小明家5月份的水费是:10×2+(20﹣10)×3=50元;(2)设小明家6月份用水x吨,29>10×2,所以x>10.所以,10×2+(x﹣10)×3=29,解得:x=13.小明家6月份用水13吨.5.解:(1)设乙队追上甲队需要x小时,根据题意得:6x=4(x+1),解得:x=2.答:乙队追上甲队需要2小时.(2)设联络员追上甲队需要y小时,10y=4(y+1),∴y=,设联络员从甲队返回乙队需要a小时,6(+a)+10a=×10,∴a=,∴联络员跑步的总路程为10(+)=答:他跑步的总路程是千米.(3)要分三种情况讨论:设t小时两队间间隔的路程为1千米,则①当甲队出发不到1h,乙队还未出发时,甲队与乙队相距1km.由题意得4t=1,解得t=0.25.②当甲队出发1小时后,相遇前与乙队相距1千米,由题意得:6(t﹣1)﹣4(t﹣1)=4×1﹣1,解得:t=2.5.③当甲队出发1小时后,相遇后与乙队相距1千米,由题意得:6(t﹣1)﹣4(t﹣1)═4×1+1,解得:t=3.5.答:0.25小时或2.5小时或3.5小时两队间间隔的路程为1千米.6.解:在行程问题中,路程=速度×时间,设经过x小时后,两车相距135千米,那么甲行驶了120x千米,乙行驶了150x 千米.当两车相遇前相距135千米时,可得方程:120x+135+150x=1890当两车在相遇后相距135千米时,可得方程:120x+150x=1890+135解这两个方程,得x=6.5或x=7.5答:经过6.5小时或7.5小时,两列火车相距135千米.7.解:解法1:设王强以6米/秒速度跑了x米,那么以4米/秒速度跑了(3000﹣x)米.根据题意列方程:去分母得:2x+3(3000﹣x)=10×60×12.去括号得:2x+9000﹣3x=7200.移项得:2x﹣3x=7200﹣9000.合并同类项得:﹣x=﹣1800.化系数为1得:x=1800.解法二:设王强以6米/秒速度跑了x秒,则王强以4米/秒速度跑了(10×60﹣x)秒.根据题意列方程6x+4(10×60﹣x)=3000,去括号得:6x+2400﹣4x=3000.移项得:6x﹣4x=3000﹣2400.合并同类项得:2x=600.化系数为1得:x=300,6x=6×300=1800.答:王强以6米/秒的速度跑了1800米.8.解:设从乙队调走了x人到甲队,根据题意列方程得:(28﹣x)×2=32+x,解得:x=8.答:从乙队调走了8人到甲队.9.解:设应先安排x人工作,根据题意得: +=1化简可得: +=1,即:x+2(x+2)=10解可得:x=2答:应先安排2人工作.10.解:设这个两位数个位上数字为x,则十位上的数字为2x,根据题意列方程得:(10×2x)+x﹣36=10x+2x解得:x=4,则:2x=8,答:原来的两位数是84.11.解:设乙还需做x天.由题意得: ++=1,解之得:x=3.答:乙还需做3天.12.解:(1)由题意得:180+500×0.9+(550﹣500)×0.8=180+450+40=670(元).答:实际共付款670元;(2)500×0.9+(180+550﹣500)×0.8=450+230×0.8=450+184=634(元).答:若此人一次够买A、B商品各一件,实际共付634元;(3)670﹣634=36(元).答:还可节约36元.13.解:不会,设A复印机需xmin印完余下的试卷,则:()×20+=1,解得:x=5,∵5<8,∴不会影响按时发卷.答:如果由A机单独完成剩下的复印任务,不会影响按时发卷.14.解:(1)设甲校x人,则乙校(92﹣x)人,依题意得50x+60(92﹣x)=5000,x=52,∴92﹣x=40,答:甲校有52人参加演出,乙校有40人参加演出.(2)乙:92﹣52=40人,甲:52﹣10=42人,两校联合:50×(40+42)=4100元,而此时比各自购买节约了:(42×60+40×60)﹣4100=820元若两校联合购买了91套只需:40×91=3640元,此时又比联合购买每套节约:4100﹣3640=460元因此,最省钱的购买方案是两校联合购买91套服装,即比实际人数多买91﹣(40+42)=9套.15.解:(1)设初一(1)班有x人,则有13x+11(104﹣x)=1240或13x+9(104﹣x)=1240,解得:x=48或x=76(不合题意,舍去).即初一(1)班48人,初一(2)班56人;(2)1240﹣104×9=304,∴可省304元钱;(3)要想享受优惠,由(1)可知初一(1)班48人,只需多买3张,51×11=561,48×13=624>561∴48人买51人的票可以更省钱.16.解:(1)若甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省:5710﹣50×100=710(元);(2)设甲校有学生x人(依题意50<x<100),则乙校有学生(100﹣x)人.依题意得:55x+60×(100﹣x)=5710,解得:x=58.经检验x=58符合题意.∴100﹣x=42.故甲校有58人,乙校有42人.(3)方案一:各自购买服装需49×60+42×60=5460(元);方案二:联合购买服装需(49+42)×55=5005(元);方案三:联合购买100套服装需100×50=5000(元);综上所述:因为5460>5005>5000.所以应该甲乙两校联合起来选择按50元每套一次购买100套服装最省钱.17.解:设小张家距火车站距离为x千米,乘公共汽车的时间是小时,乘公共汽车后再乘出租车共用(+)小时,即﹣=++即,即x﹣x=+,解得:x=90千米.所以小张家距火车站有90千米.答:小张家距火车站有90千米.18.解:(1)设快车开出x小时后与慢车相遇,则45(x+2)+60x=510,解得x=4,(2)510﹣60×4=270(千米).答:4小时后快车与慢车相遇;相遇时快车距离甲站270千米.19.解:(1)设成人人数为x人,则学生人数为(12﹣x)人,则:由题中所给的票价单可得:35x+(12﹣x)=350解得:x=8故:学生人数为12﹣8=4人,成人人数为8人.(2)如果买团体票,按16人计算,共需费用:35×0.6×16=336元336<350所以,购团体票更省钱.(3)最省的购票方案为:买16人的团体票,再买4张学生票.此时的购票费用为:16×35×0.6+4×17.5=406元.。
【精选】 一元一次方程单元培优测试卷
一、初一数学一元一次方程解答题压轴题精选(难)1.甲、乙两班学生到集市上购买苹果,苹果的价格如下:购苹果数不超过10千克超过10千克但不超过20千克超过20千克每千克价格10元9元8元苹果30千克.(1)乙班比甲班少付出多少元?(2)设甲班第一次购买苹果x千克.①则第二次购买的苹果为多少千克;②甲班第一次、第二次分别购买多少千克?【答案】(1)解:乙班购买苹果付出的钱数=8×30=240元,∴乙班比甲班少付出256-240=16元(2)解:①甲班第二次购买的苹果为(30-x)千克;②若x≤10,则10x+(30-x)×8=256,解得:x=8若10<x≤15,则9x+(30-x)×9=256无解.故甲班第一次购买8千克,第二次购买22千克【解析】【分析】(1)根据20kg以上每千克的价格为8元可求出乙班付出的钱数,从而可求出乙班比甲班少付出多少.(2)设甲班第一次购买x千克,第二次购买30-x千克,则需要讨论①x≤10,②10<x≤15,列出方程后求解即可得出答案.2.已知有理数,定义一种新运算:⊙ =(a+1).如:⊙ =(2+1)(1)计算(-3)⊙的值;(2)若⊙(-4)=6,求的值.【答案】(1)解:∵⊙ =(a+1),∴(-3)⊙ = ,= ,= ,= ;(2)解:∵⊙(-4)=6,∴,即,解得 .【解析】【分析】(1)根据⊙ =(a+1),直接代入计算即可;(2)根据新定义可得方程,解方程即可.3.一根长80厘米的弹簧,一端固定,如果另一端挂上物体,那么在正常情况下物体的质量每增加1千克可使弹簧增长2厘米。
(1)正常情况下,当挂着千克的物体时,弹簧的长度是多少厘米?(2)正常情况下,当挂物体的质量为6千克时,弹簧的长度是多少厘米?(3)正常情况下,当弹簧的长度是120厘米时,所挂物体的质量是多少千克?(4)如果弹簧的长度超过了150厘米时,弹簧就失去弹性,问此弹簧能否挂质量为40千克的物体?为什么?【答案】(1)解:由题意得:y=80+2x,答:弹簧的长度是(80+2x)厘米(2)解:∵y=80+2x,∴当x=6时,y=80+2×6=92,答:弹簧的长度是92厘米(3)解:∵y=80+2x,∴当y=120时,120=80+2x,∴x=20,答:所挂物体的质量是20千克。
一元一次方程培优测试题
一元一次方程测试题姓名:一、选择题(3分每题,共18分)1.在方程x x 22=-,13.0=x ,152-=x x ,342=-x x ,x=6,x+2y=0中,是一元一次方程的有( ) A.5个 B.4个 C.3个 D.2个2.下列各式运用等式的性质变形,错误的是( )A.由ac=bc,则a=bB.由a c =b c,则a=b C.由-a=-b,则a+3=b+3 D.由(m 2+1)a=(m 2+1)b,则a=b 3.已知x=4是关于x 的方程ax-1=3(x+a)的解,则a 的值是( )A.4B.9C.13D.154.某商店将一种商品的进价提价20%后,又降价20%以96元出售,则该商品卖出这件商品的盈亏情况是( )A.不亏不赚B.亏损4元C.赚6元D.亏损24元5.某种水费是这样计算的:用水量不超过20吨,按每吨1.2元收费,超过20吨则超过的部分按每吨1.5元收费。
某家庭五月份的平均水费是每吨1.25元。
则五月份应交水费( )A.20元B.24元C.30元D.36元6.一架飞机在A,B 两城之间飞行,顺风要5.5小时,逆风要6小时,风速为24千米/时,则A,B 两城之间的距离x 的方程是( ) A.5.5x -6x =24 B.242.5x -=246x + C.6x +24=5.5x -24 D.245.5x +=246x - 二、填空题(3分每题,共27分)7、若13223=+-k x k 是关于x 的一元一次方程,则该方程的解为=x _________8、若单项式2a 2x+4与4a 4(-x+1)是同类项,则x 的值是9、三个连续偶数的和是60,则这三个偶数分别为10、在某大学班上,选修法语和不选修法语的人数比为2:5,后来从外班转入2个选修法语的人,结果该比变为1:2,则这个班原来的人数是_______11、将若干客房分给某旅行社,一个房间住7个人,则余下7位客人没处住,若一个房间住满9位客人,则空出一间房,则有_______间客房,有_______为客人12、当121---=mx x x 时,代数式的值为1,那么当1=x 时,此代数式的值为_________ 13、一项工程,A 队做要10天完成,B 队做要6天完成,现A 队先做2天,B 队再加入合作,完成这项工程共需x 天,可列方程为14、一家电信公司给顾客提供两种上网收费方式:方式A 以每分钟0.1元的价格按上网时间计费;方式B 除收月租费20元外,再以每分钟0.05元的价格按上网所用时间计费。
第五章 一元一次方程培优训练测试题(含解析)
第五章:一元一次方程培优训练测试题一.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.若方程2512-=+-x kx x 的解为1-,则k 的值为( )A.10B.4-C.6-D.8- 2.一组数2,1,3,x ,7,,如果满足“从第三个数起,若前两个数依次为a 、b ,则紧随其后的数就是2a ﹣b ”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中y 表示的数为( )A.-9B.-1C.5D.213.程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是( )A. 大和尚25人,小和尚75人B. 大和尚75人,小和尚25人C. 大和尚50人,小和尚50人D. 大、小和尚各100人4.一条公路,甲队单独修需6天,乙队单独修需12天,若甲、乙两队同时分别从两端开始修,全 部修完需要( )A .2天B .3天C .4天D .5天 5.在排成每行七天的日历表中取下一个33⨯方块(如图), 若所有日期数之和为135,则n 的值为( )A .13B .14C .15D .96.甲、乙两运动员在长为100m 的直道AB (A ,B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点…若甲跑步的速度为5m/s ,乙跑步的速度为4m/s ,则起跑后100s 内,两人相遇的次数为( ) A .5B .4C .3D .27.一列“动车组”高速列车和一列普通列车的车身长分别为80米与100米,它们相向行驶在平行的 轨道上,若坐在高速列车上的旅客看见普通列车驶过窗口的时间是5秒,则坐在普通列车上的旅客看见高速列车驶过窗口的时间是( )A .7.5B .6C .5D .48.有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车;若每辆客车乘43人,则只有1人不能上车.有下列四个等式:①40m +10=43m -1;②4314010+=+n n ;③4314010-=-n n ;④40m +10=43m +1.其中正确的是( )9.将正整数1至2018按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是( )A .2019B .2018C .2016D .201310.某种商品的进价为800元,出售时标价为1200元,后来由于该项商品积压,商品准备打折出售,但要保持利润率是5%,则出售时此商品可打( )折A. 五B.六C.七D.八二.填空题(本题共6小题,每题4分,共24分) 温馨提示:填空题必须是最简洁最正确的答案!11.将方程15.013.03.02=+--x x 的分母化为整数,方程变为_______________12.一件衣服先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,那么这件衣服的成本是_____元13.关于x 的方程()2136+-=-x a ax 的解为2-=x ,则_______=a14.某公司只生产普通汽车和新能源汽车,该公司在去年的汽车产量中,新能源汽车占总产量的10%,今年由于国家能源政策的导向和油价上涨的影响,计划将普通的产量减少10%,为保持总产量与去年相等,那么今年新能源汽车的产量应增加的百分数为__________ 15.已知875cb a ==,且923=+-c b a ,则__________342=-+c b a 16.在等式()x x a 321+=+中,若x 是负整数,则整数a 的取值是_______三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17(本题6分)解下列方程: (1)2221625312--=+--x x x ; (2)01.002.01.02.02.018xx x +=--18(本题8分).已知:关于x 的方程2(x-1)+1=x 与3(x+m)=m-1有相同的解,求:以y 为未知数的方程2333ym my -=-的解.19(本题8分).关于x 的方程1634=--+ax a x 的解是x=1,对于同样的a ,求另一个关于x 的方程1436=--+ax a x 的解.20(本题10分)(1).x 等于什么数时,代数式323-x 的值比414-x 的值的2倍小1? (2).若已知M=x 2+3x-5,N=3x 2+5,并且6M=2N-4,求x.21(本题10分).某班计划买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不少于5盒).问:(1)当分别购买20盒、40盒乒乓球时,去哪家商店购买更合算?(2)当购买乒乓球多少盒时,两种优惠办法付款一样?22(本题12分).(1)一个两位数的十位数字和个位数字之和是7,如果这个两位数加上45,则恰好成为个位数字与十位数字对调之后组成的两位数.求这个两位数. (2)小李在解方程132253=--+mx x 去分母时方程右边的1没有乘以6,因而得到方程的解为4-=x ,求出m 的值并正确解出方程.23.(本题12分)把正整数1,2,3,4,…,2018排列成如图所示的一个数表.(1)用一正方形在表中随意框住4个数,把其中最小的数记为x ,另三个数用含x 的式子表示 出来,从大到小依次是 , , ; (2)当被框住的4个数之和等于416时,x 的值是多少?(3)被框住的4个数之和能否等于622?如果能,请求出此时x 的值;如果不能,请说明理由.。
3.一元一次方程培优经典题
七年级数学培优姓名:专题一:一元一次方程概念的理解:例1:若()2219203m x x m --+=+是关于x 的一元一次方程,则方程的解是 。
练习:1.()()221180m x m x --+-=是关于x 的一元一次方程,则代数式()()199231101m m m +-++的值为 。
2.已知关于y 的方程4232y n y +=+和方程3261y n y +=-的解相同,求n 的值。
3.已知关于x 的方程23x m m x -=+与1322x x +=-的解互为倒数,则m 的值是 。
4.若方程()()321x k x -=+与62k x k -=的解互为相反数,求k 。
5.当m 取什么数时,关于x 的方程15142323mx x ⎛⎫-=- ⎪⎝⎭的解是正整数?6.若k 为整数,则使得方程()199920012000k x x -=-的解也是整数的k 值有( )A.4个B.8个C.12个D.16个 难点知识突破:专题二:方程的解的讨论:例2:已知关于x 的方程()2132a x x -=-无解,试求a 的值。
$练习:7.如果a ,b 为定值,关于x 的方程2236kx a x bk +-=+,无论k 为何值,它的解总是1,求a ,b 的值。
$8.对于任何a 值,关于x ,y 的方程()11ax a y a +-=+有一个与a 无关的解,这个解是( )A.2,x y ==-1B.2,1x y ==C.2,1x y =-=D.2,1x y =-=- $9.当a 、b 满足什么条件时,方程251x a bx +-=-;(1)有无数解;(2)无解10.若关于x 的方程()()311x x k x -+=-无解,则k= 。
专题三:绝对值方程:$例4:解方程:(1)215x x -++= (2)213x x -++= (3)212x x -++=11.若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解,则m 、n 、k 的大小关系是( )A.m >n >kB.n >k >mC.k >m >nD.m >k >n二元一次方程组解法(1)⎩⎨⎧-=+=+1574304y x y x (2)⎩⎨⎧=+=+73452y x y x(3)⎩⎨⎧=+-=++0325201023y x y x(4)⎩⎨⎧=-=+2332535y x y x(5)⎩⎨⎧=-=+2372227y x y x(6)⎪⎪⎩⎪⎪⎨⎧⨯=+-=+4010020100251001543522y x y x y x ··(7)⎩⎨⎧=--=-5)(42y y x y x (8)⎪⎩⎪⎨⎧+-=+-+=-8)2(2)(3143)(2y x y x y x y x。
第三章 一元一次方程(培优)(原卷版)
第三章一元一次方程(培优)-七年级数学上册单元培优达标强化卷一、选择题1.将3x−7=2x变形正确的是()A. 3x+2x=7B. 3x−2x=−7C. 3x+2x=−7D. 3x−2x=72.已知关于x的方程(m−2)x|m−1|=0是一元一次方程,则m的值是()A. 2B. 0C. 1D. 0或23.方程2x+1=3与2−a−x3=0的解相同,则a的值为()A. 0B. 3C. 5D. 74.若多项式4x−5与2x−12的值相等,则x的值是()A. 1B. 32C. 23D. 25.已知:|m−2|+(n−1)2=0,则方程2m+x=n的解为()A. x=−4B. x=−3C. x=−2D. x=−16.某种商品原先的利润率为20%,为了促销,现降价10元销售,此时利润率下降为10%,那么这种商品的进价是()A. 100元B. 110元C. 120元D. 130元7.一项工程甲单独做要40天完成,乙单独做需要60天完成,甲先单独做4天,然后甲乙两人合作x天完成这项工程,则可以列的方程是()A. 440+x40+60=1B. 440+x40×60=1C. 440+x40+x60=1D. 440+x60=18.下列说法中,正确的是()A.若ac=bc,则a=bB. 若ac =bc,则a=b第2页,共5页C. 若a 2=b 2,则a =bD. 若|a|=|b|,则a =b9. 某商场根据市场信息,对商场中现有的两台不同型号的空调进行调价销售,其中一台空调调价后售出可获利20%(相对于进价),另一台空调调价后售出则亏本20%(相对于进价),而这两台空调调价后的售价恰好相同,那么商场把这两台空调调价后售出( )A. 要亏本4%B. 可获利2%C. 要亏本2%D. 既不获利也不亏本10. 小淇在某月的日历中圈出相邻的三个数,算出它们的和是19,那么这三个数的位置可能是( ) A. B. C. D.二、填空题11. 若代数式(1−a−14)x 2−5y +4−12(ax 2+2by +16)(a 、b 为常数)的值与字母x 、y 的取值无关,则方程3ax +b =0的解为________12. 如果a ,b 为定值,关于x 的一次方程2kx+a 3−x−bk6=2,无论k 为何值时,它的解总是1,则a +2b = . 13. 若(a −2)x |a|−1−2=0是关于x 的一元一次方程,则a =______. 14. 一件衣服先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,那么这件衣服的成本是__________元.15. 小明按标价八折购买了一双鞋,比按标价购买节省了40元,这双鞋的实际售价为____元.16. 已知关于x 的方程x−m 2=x +m 3与方程x−12=3x −2的解互为倒数,则m 2−2m −3的值为_________.17. 用“∗”表示一种运算,其意义是a ∗b =a −2b ,如果x ∗(3∗2)=3,则x =______.18.有两根同样长度但粗细不同的蜡烛,粗蜡烛可以燃烧6小时,细蜡烛可以燃烧4小时,一次停电,同时点燃两根蜡烛,来电后同时吹灭,发现剩下的粗蜡烛长度是细蜡烛长度的两倍,则停电时间是______小时.19.如果x=1是方程2−13(m−x)=2x的解,那么关于y的方程m(y−3)−2=m(2y−5)的解是______ .20.如图,已知点A、B是直线上两点,AB=12厘米,点C在线段AB上,且BC=4厘米.点P、点Q是直线上的两个动点,点P的速度为1厘米/秒,点Q的速度为2厘米/秒.点P、Q分别从点C、点B同时出发在直线上运动,则经过___________秒时线段PQ的长为5厘米.三、解答题21.已知关于x的方程3[x−2(x−a3)]=4x和3x+a12−1−5x8=1有相同的解,那么这个解是多少?22.甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过1天罚款1000元,甲、乙两人经商量后签订了该合同.(1)正常情况下,甲、乙两人能否履行该合同⋅为什么⋅(2)现两人合作了这项工程的75%,因别处有急事,必须调走1人,问调走谁更合适些⋅为什么⋅23.甲、乙两站相距360千米,一列快车从甲站开出,每小时行160千米,一列慢车从乙站开出,每小时行80千米.(1)若两车同时开出,相向而行多少小时后两车相遇?(2)若两车同向而行,快车在慢车的后面,且慢车提前半小时出发,经过多少小时后快车追上慢车?24.某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的1倍2多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价−进价)(1)该超市购进甲、乙两种商品各多少件?(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙商品是按原价打几折销售?25.已知|a+4|+(b−2)2=0,数轴上A、B两点所对应的数分别是a和b.(1)填空:a=___________,b=____________;(2)数轴上是否存在点C,C点在A点的右侧,且点C到A点的距离是点C到B点的距离的2倍?若存在,请求出点C表示的数;若不存在,请说明理由;(3)点P以每秒2个单位的速度从A点出发向左运动,同时点Q以3个单位每秒的速度从B点出发向右运动,点M以每秒4个单位的速度从原点O点出发向左运动.若N为PQ第4页,共5页的中点,当PQ=16时,求MN的长.。
【精选】七年级一元一次方程单元培优测试卷
一、初一数学一元一次方程解答题压轴题精选(难)1.下列图表是2017 年某校从参加中考体育测试的九年级学生中随机调查的10 名男生跑1000 米和 10 名女生跑 800米的成绩.(1)按规定,女生跑 800 米的时间不超过 3'24"就可以得满分.该校九年级学生有 490 人,男生比女生少 70 人.请你根据上面成绩,估计该校女生中有多少人该项测试成绩得满分? (2)假如男生 1 号和男生 10 号被分在同组测试,请分析他俩在 400 米的环形跑道测试的过程中能否相遇。
若能,求出发多长时间才能相遇;若不能,说明理由.【答案】(1)解:设男生有x人,女生有(x+70)人,由题意得:x+x+70=490,解得:x=210,则女生x+70=210+70=280(人).故女生得满分人数: (人)(2)解:不能;假设经过x分钟后,1号与10号在1000米跑中能首次相遇,根据题意得:解得又∵∴考生1号与10号不能相遇。
【解析】【分析】(1)通过男生、女生的人数关系列出方程,得出女生的人数;(2)根据题意表达出1号跟10号的速度,两位若相遇,相减的路程为400米,得出的时间为4.8, 但是4.8分钟大于3分钟,所以两位在测试过程中不会相遇。
2.温州和杭州某厂同时生产某种型号的机器若干台,温州厂可支援外地10台,杭州厂可支援外地4台,现在决定给武汉8台,南昌6台,每台机器的运费如下表,设杭州厂运往南昌的机器为x台,(1)用含x的代数式来表示总运费(单位:元)(2)若总运费为8400元,则杭州厂运往南昌的机器应为多少台?(3)试问有无可能使总运费是7800元?若有可能请写出相应的调动方案;若无可能,请说明理由.【答案】(1)解:总费用为:400(6-x)+800(4+x)+300x +500(4-x)=200x+7600(2)解:由题意得200x+7600=8400,解得x=4,答:杭州运往南昌的机器应为4台(3)解:由题意得200x+7600=7800,解得x=1. 符合实际意义,答:有可能,杭州厂运往南昌的机器为1台.【解析】【分析】(1)根据总费用=四条线路的运费之和(每一条线路的费用=台数×运费),列式后化简即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学一元一次方程解答题压轴题精选(难)1.如图,动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,运动到3秒钟时,两点相距15个单位长度.已知动点A、B的运动速度比之是3∶2(速度单位:1个单位长度/秒).(1)求两个动点运动的速度;(2)A、B两点运动到3秒时停止运动,请在数轴上标出此时A、B两点的位置;(3)若A、B两点分别从(2)中标出的位置再次同时开始在数轴上运动,运动的速度不变,运动的方向不限,问:运动到几秒钟时,A、B两点之间相距4个单位长度?【答案】(1)解:设点B的速度为2x个单位长度/秒,则点A的速度为3x个单位长度/秒,根据题意得:3×(2x+3x)=15,解得:x=1,∴3x=3,2x=2,答:动点A的运动速度为3个单位长度/秒,动点B的运动速度为2个单位长度/秒;(2)解:3×3=9,2×3=6,∴运动到3秒钟时,点A表示的数为﹣9,点B表示的数为6;(3)解:设运动的时间为t秒,当A、B两点向数轴正方向运动时,有|3t﹣2t﹣15|=4,解得:t1=11,t2=19;当A、B两点相向而行时,有|15﹣3t﹣2t|=4,解得:t3= 或t4= ,答:经过、、11或19秒,A、B两点之间相距4个单位长度.【解析】【分析】(1)根据已知:动点A、B的运动速度比之是3∶2,因此设点B的速度为2x个单位长度/秒,则点A的速度为3x个单位长度/秒,根据两点相距15,列方程,求解即可。
(2)根据两点的运动速度,就快求出A、B两点运动到3秒时停止运动,就可得出它们的位置。
(3)设运动的时间为t秒,分两种情况:当A、B两点向数轴正方向运动时;当A、B两点相向而行时,分别根据A、B两点之间相距4个单位长度,列方程求出t的值。
2.已知关于a的方程2(a+2)=a+4的解也是关于x的方程2(x-3)-b=7的解.(1)求a、b的值;(2)若线段AB=a,在直线AB上取一点P,恰好使 =b,点Q为PB的中点,请画出图形并求出线段AQ的长.【答案】(1)解:2(a-2)=a+4,2a-4=a+4a=8,∵x=a=8,把x=8代入方程2(x-3)-b=7,∴2(8-3)-b=7,b=3(2)解:①如图:点P在线段AB上,=3,AB=3PB,AB=AP+PB=3PB+PB=4PB=8,PB=2,Q是PB的中点,PQ=BQ=1,AQ=AB-BQ=8-1=7,②如图:点P在线段AB的延长线上,=3,PA=3PB,PA=AB+PB=3PB,AB=2PB=8,PB=4,Q是PB的中点,BQ=PQ=2,AQ=AB+BQ=8+2=10.所以线段AQ的长是7或10.【解析】【分析】(1)根据题意可得两个方程的解相同,所以根据第一个方程的解,可求出第二个方程中的b。
(2)分类讨论,P在线段AB上,根据,可求出PB的长,再根据中点的性质可得PQ的长,最后根据线段的和差可得AQ;P在线段AB的延长线上,根据,可求出PB的长,再根据中点的性质可得BQ的长,最后根据线段的和差可得AQ.3.今年夏天,我州某地区遭受罕见的水灾,“水灾无情人有情”,州里某单位给该地区某中学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件。
(1)求饮用水和蔬菜各有多少件。
(2)现计划租用甲、乙两种型号的货车共8辆,一次性将这批饮用水和蔬菜全部运往受灾地区某中学。
已知每辆甲型货车最多可装饮用水40件和蔬菜10件,每辆乙型货车最多可装饮用水和蔬菜各20件,则该单位安排甲、乙两种货车时有几种方案?请你帮忙设计出来。
(3)在(2)的条件下,如果甲型货车每辆需付运费400元,乙型货车每辆需付运费360元。
该单位应选择哪种方案可使运费最少?最少运费是多少元?【答案】(1)解:设蔬菜有x件,根据题意得解得:答:蔬菜有件、饮用水有件(2)解:设安排甲种货车a辆,根据题意得解得:∵a为正整数∴或或∴有三种方案:①甲种货车2辆,乙种货车6辆;②甲种货车3辆,乙种货车5辆;③甲种货车4辆,乙种货车4辆(3)解:方案①:(元)方案②:(元)方案③:(元)∵∴选择方案①可使运费最少,最少运费是元【解析】【分析】(1)设蔬菜有x件,根据题意列出方程,求出方程的解,即可求解;(2)设安排甲种货车a辆,根据题意列出不等式组,求出不等式组的解集,由a为正整数,得出a为2或3或4,即可求出有三种方案;(3)分别求出三种方案的运费,即可求解.4.有两个大小完全一样长方形OABC和EFGH重合着放在一起,边OA、EF在数轴上,O 为数轴原点(如图1),长方形OABC的边长OA的长为6个坐标单位.(1)数轴上点A表示的数为________.(2)将长方形EFGH沿数轴所在直线水平移动.①若移动后的长方形EFGH与长方形OABC重叠部分的面积恰好等于长方形OABC面积的一半时,则移动后点F在数轴上表示的数为________.②若长方形EFGH向左水平移动后,D为线段AF的中点,求当长方形EFGH移动距离x为何值时,D、E两点在数轴上表示的数时互为相反数?【答案】(1)6(2)①3或9②如图所示:据题意得出D所表示的数为,点E表示数为:,当D、E两点在数轴上表示的数时互为相反数时:则解得:,当移动x为4的时候D、E两点在数轴上表示的数时互为相反数.【解析】【解答】解:(1)根据题意可得:A表示数为的长,故答案为:6.( 2 )①当向左边移动的时候,刚好移到矩形长一半的时候,此时重叠面积为长方形面积的一半,此时为9,当向右边边移动的时候,刚好移到矩形长一半的时候,此时重叠面积为长方形面积的一半,此时为3;故答案为:3或9.【分析】(1)根据题意可以看出结果;(2)①分为两种情况,分别向左或向右平移;②根据题意得出D所表示的数为,当D、E两点在数轴上表示的数时互为相反数时点E表示数为:,则,解出答案即可.5.根据绝对值定义,若有,则或,若,则,我们可以根据这样的结论,解一些简单的绝对值方程,例如:解:方程可化为:或当时,则有:;所以 .当时,则有:;所以 .故,方程的解为或。
(1)解方程:(2)已知,求的值;(3)在(2)的条件下,若都是整数,则的最大值是________(直接写结果,不需要过程).【答案】(1)解:方程可化为:或,当时,则有,所以;当时,则有,所以,故方程的解为:或(2)解:方程可化为:或,当时,解得:,当时,解得:,∴或(3)100【解析】【解答】(3)∵或,且都是整数,∴根据有理数乘法法则可知,当a=-10,b=-10时,取最大值,最大值为100.【分析】(1)仿照题目中的方法,分别解方程和即可;(2)把a+b看作是一个整体,利用题目中方法求出a+b的值,即可得到的值;(3)根据都是整数结合或,利用有理数乘法法则分析求解即可.6.某航空公司开展网络购机票优惠活动:凡购机票每张不超过2000元的一律八折优惠;超过2000元的,其中2000元按八折算,超过2000的部分按七折算.(1)甲旅客购买了一张机票的原价为1500元,需付款________元;(2)乙旅客购买了一张机票的原价为x(x>2000)元,需付款________元(用含x的代数式表示);(3)丙旅客因出差购买了两张机票,第一张机票实际付款1440元,第二张机票享受了七折优惠,他査看了所买机票的原价,发现两张票共节约了910元,求丙旅客第二张机票的原价和实际付款各多少元?【答案】(1)1200(2)0.7x+200(3)解:第一张机票的原价为1440÷0.8=1800(元).设丙旅客第二张机票的原价为y元,则购买两种票实际付款(1800+y-910)元,根据题意得:1440+0.7y+200=1800+y-910,解得:y=2500,∴1800+y-910-1440=1950.答:丙旅客第二张机票的原价为2500元,实际付款1950元【解析】【解答】解:(1)1500×0.8=1200(元).故答案为:1200.(2)根据题意得:需付款=2000×0.8+(x-2000)×0.7=0.7x+200(元).故答案为:(0.7x+200).【分析】(1)利用需付款=原价×0.8,即可求出结论;(2)根据需付款=2000×0.8+0.7×超出2000元部分,即可求出结论;(3)根据原价=需付款÷0.8可求出第一张机票的原价,设丙旅客第二张机票的原价为y元,则购买两种票实际付款(1800+y-910)元,根据(2)的结论,即可得出关于y的一元一次方程,解之即可得出结论.7.国家规定个人发表文章、出版图书所得稿费的纳税计算方法是:稿费不高于800元的不纳税;稿费高于800元,而低于4000元的应缴纳超过800元的那部分稿费的的税;稿费为4000元或高于4000元的应缴纳全部稿费的的税.试根据上述纳税的计算方法作答:(1)若王老师获得的稿费为2000元,则应纳税________元,若王老师获得的稿费为5000元,则应纳税________元(2)若王老师获稿费后纳税280元,求这笔稿费是多少元?【答案】(1)168;550(2)解:因为当稿费为4000元时,纳税=4000×11%=440(元),且280<440,所以王老师的这笔稿税高于800元,且低于4000元.设王老师的这笔稿税为x元,根据题意,14%(x-800)=280x=2800,答:王老师的这笔稿税为2800元.【解析】【解答】解:(1)①∵800<2400<4000,∴当王老师获得稿费为2000元时,应纳税:(2000-800)×14%=168(元);②当王老师获得稿费为5000元时,应纳税:5000×11%=550(元);【分析】(1)根据条件②计算即可;根据条件③计算即可;(2)设王老师所获得的这笔稿费为元,根据纳税金额,可判断稿费800<x<4000,属于第二种,利用稿费420元,列出方程,求出x值即可.8.阅读理解:定义:若一元一次方程的解在一元一次不等式组解集范围内,则称该一元一次方程为该不等式组的“子方程”.例如:的解为,的解集为,不难发现在的范围内,所以是的“子方程”.问题解决:(1)在方程① ,② ,③ 中,不等式组的“子方程”是________;(填序号)(2)若关于x的方程是不等式组的“子方程”,求k的取值范围;(3)若方程,都是关于x的不等式组的“子方程”,直接写出m的取值范围.【答案】(1)③(2)解:解不等式3x-6>4-x,得:>,解不等式x-1≥4x-10,得:x≤3,则不等式组的解集为<x≤3,解:2x-k=2,得:x= ,∴<≤3,<,解得:3<k≤4;(3)解:解方程:2x+4=0得,解方程:得:,解关于x的不等式组当<时,不等式组为:,此时不等式组的解集为:>,不符合题意,所以:>所以得不等式的解集为:m-5≤x<1,∵2x+4=0,都是关于x的不等式组的“子方程”,∴,解得:2<m≤3.【解析】【解答】解:(1)解方程:3x-1=0得:解方程:得:,解方程:得:x=3,解不等式组:得:2<x≤5,所以不等式组的“子方程”是③.故答案为:③;【分析】(1)先求出方程的解和不等式组的解集,再判断即可;(2)解不等式组求得其解集,解方程求出x= ,根据“子方城”的定义列出关于k的不等式组,解之可得;(3)先求出方程的解和不等式组的解集,分<与>讨论,即可得出答案.9.已知,两正方形在数轴上运动,起始状态如图所示.A、F表示的数分别为-2、10,大正方形的边长为4个单位长度,小正方形的边长为2个单位长度,两正方形同时出发,相向而行,小正方形的速度是大正方形速度的两倍,两个正方形从相遇到刚好完全离开用时2秒.完成下列问题:(1)求起始位置D、E表示的数;(2)求两正方形运动的速度;(3)M、N分别是AD、EF中点,当正方形开始运动时,射线MA开始以15°/s的速度顺时针旋转至MD结束,射线NF开始以30°/s的速度逆时针旋转至NE结束,若两射线所在直...线.互相垂直时,求MN的长.【答案】(1)解:∵A、F表示的数分别为-2、10,大正方形的边长为4个单位长度,小正方形的边长为2个单位长度,∴D表示的数为:-2+2=0,E表示的数为:10-4=6(2)解:设小正方形的速度是2x个单位/秒,大正方形的速度是x个单位/秒,则有2(2x+x)=2+4,解得:x=1,∴小正方形的速度是2个单位/秒,故小正方形速度2个单位/秒,大正方形速度1个单位/秒(3)解:设运动时间为t,由题意可得若想要两射线所在直线互相垂直,则有①15°t+30°t=90°或②15°t+30°t=270°,①15°t+30°t=90°,解得t=2,此时小正方形运动了4个单位,D点在数字4的位置,大正方形运动了2个单位,E点也在数字4的位置,即D,E重合,∵M、N分别是AD、EF中点,∴MN=3;②15°t+30°t=270°,解得t=6,此时小正方形运动了12个单位,D点在数字12的位置,大正方形运动了6个单位,E点在数字0的位置,∵M、N分别是AD、EF中点,∴此时M点位于数字11的位置,N点位于数字2的位置,∴MN=11-2=9;综上:当t=2时,MN=3;当t=6时,MN=9.【解析】【分析】(1)利用图象和正方形的边长即可得出;(2)设小正方形的速度是2x 个单位/秒,大正方形的速度是x个单位/秒,然后列方程计算即可;(3)由题意可得若想要两射线所在直线互相垂直,则有①15°t+30°t=90°或②15°t+30°t=270°两种情况,根据两种情况分别讨论即可.10.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a-b|.利用数形结合思想回答下列问题:(1)数轴上表示1和3两点之间的距离是________(2)数轴上表示和-1的两点之间的距离表示为________(3)若表示一个有理数,且,则=________(4)若表示一个有理数,且=8,则有理数的值是________【答案】(1)2(2)或(3)6(4)-5,3【解析】【解答】解:(1)由题意得1和3两点之间的距离为;(2)和-1的两点之间的距离表示为,或;(3)∵-4<x<2, 则x-2<0, x+4>0,∴=-(x-2)+(x+4)=-x+2+x+4=6;(4)当x<-4时,则x-2<0,x+4<0,=-(x-2)-(x+4)=2-x-x-4=-2x-2=8,解得x=-5;当4≤x<2, 则x-2<0, x+4≥0,=-(x-2)+(x+4)=-x+2+x+4=6≠8,无解;当x≥2时,则x-2≥0, x+4>0,∴=x-2+x+4=2x+2=8解得x=3.【分析】(1)(2)由题意可知数轴两点间的距离即是两点所表示的数相减所得的数的绝对值,据此计算即可;(3)先根据x的范围确定绝对值里面的代数式的正负,再根据绝对值的非负性去绝对值,然后再化简计算即得结果;(4)分三种情况讨论,即把整个数轴分三部分,即x<-4, -4≤x<2, x≥2,然后分别根据绝对值的非负性去绝对值,化简计算,再根据所得的结果等于8解方程求出x即可.11.如图,线段AB=10,动点P从点A出发,以每秒1个单位的速度,沿线段AB向终点B 运动,同时,另一个动点Q从点B出发,以每秒3个单位的速度在线段AB上来回运动(从点B向点A运动,到达点A后,立即原速返回,再次到达B点后立即调头向点A运动.)当点P到达B点时,P,Q两点都停止运动.设点P的运动时间为x.(1)当x=3时,线段PQ的长为________.(2)当P,Q两点第一次重合时,求线段BQ的长.(3)是否存在某一时刻,使点Q恰好落在线段AP的中点上?若存在,请求出所有满足条件的x的值;若不存在,请说明理由。