北京第十八中学数学一元一次方程单元培优测试卷
一元一次方程单元测试卷(含答案解析)
一、初一数学一元一次方程解答题压轴题精选(难)1.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,(1)写出数轴上点B表示的数________;(2)|5-3|表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如|x-3|的几何意义是数轴上表示有理数3的点与表示有理数x的点之间的距离.试探索:①:若|x-8|=2,则x =________.②:|x+12|+|x-8|的最小值为________.(3)动点P从O点出发,以每秒5个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t=________,A,P两点之间的距离为2;(4)动点P,Q分别从O,B两点,同时出发,点P以每秒5个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t=________,P,Q之间的距离为4.【答案】(1)﹣12(2)6或10;0(3)1.2或2(4)3.2或1.6【解析】【解答】(1)数轴上B表示的数为8-20=﹣12;(2)①因为互为相反数的两个数绝对值相同,所以由│x-8│=2可得x-8=2或﹣(x-8)=2,解得x=6或10;②因为绝对值最小的数是0,所以│x+12│+│x-8│的最小值是0;(3)根据│A点在数轴上的位置-t秒后P点在数轴上的位置│=A、P两点间的距离列式得│8-5t│=2,因为互为相反数的两个数绝对值相同,所以8-5t=2或﹣(8-5t)=2,解得t=1.2或2;(4)根据t秒后Q点在数轴上的位置-t秒后P点在数轴上的位置│=t秒后P,Q的距离列式得│﹣12+10t-5t│=4,因为互为相反数的两个数绝对值相同,所以﹣12+10t-5t=4或﹣(﹣12+10t-5t)=4,解得t=3.2或1.6.【分析】(1)抓住已知条件:B是数轴上位于点A左侧一点,且AB=20,且点A表示的数是8,就可求出OB的长,从而可得出点B表示的数。
北京第十八中学必修第一册第二单元《一元一次函数,方程和不等式》测试(有答案解析)
一、选择题1.函数2()f x x bx c =++对任意实数t 满足()(4)f t f t =-,则(1),(2),(4)f f f 的大小关系是( ) A .(1)(2)(4)f f f << B .(2)(1)(4)f f f << C .(4)(2)(1)f f f <<D .(4)(1)(2)f f f <<2.下列命题中是真命题的是( )A .2222y x x =+++的最小值为2;B .当a >0,b >0时,1124ab a b++≥; C .若a 2+b 2=2,则a +b 的最大值为2;D .若正数a ,b 满足2,a b +=则11+4+22a b +的最小值为12.3.当4x >时,不等式44x m x +≥-恒成立,则m 的取值范围是( ) A .8m ≤B .8m <C .8m ≥D .8m >4.若不等式220ax bx ++>的解集是1123x x ⎧⎫-<<⎨⎬⎩⎭,则a b -=( ) A .4-B .14C .10-D .105.对于实数a 、b 、m ,下列说法:①若22am bm >,则a b >;②若a b >,则a ab b ;③若0b a >>,0m >,则a m ab m b+>+;④若0a b >>且ln ln a b =,则2a b +的最小值是22,正确的个数为( ) A .1B .2C .3D .46.已知2m >,0n >,3m n +=,则112m n+-的最小值为( ) A .3B .4C .5D .67.若实数,x y 满足0xy >,则的最大值为( ) A .22B .22+C .422+D .422- 8.若直线10ax by --=,(a ,0b >)过点()2,1-,则11a b+的最小值为( ) A .322-B .8C .42D .322+9.下列命题正确的是( ) A .若a bc c>,则a b > B .若22a b >,则a b >C .若2211a b >,则a b < D .若a b <,则a b <10.若a 、b 、c >0且a (a +b +c )+bc =4-23,则2a +b +c 的最小值为( ) A . 3-1 B . 3+1 C .23+2D .23-211.若a >b ,则下列不等式一定成立的是( ). A .11a b< B .55a b > C .22ac bc >D .a b >12.已知,a b R +∈,2229ab b a b +++=,则+a b 的最小值( ) A .1B .2C .52D .3二、填空题13.设m ,a R ∈,()()211f x x a x =+-+,2()24mg x mx ax =++,若“对于一切实数x ,()0f x >”是“对于一切实数x ,()0g x >”的充分条件,则实数m 的取值范围是___________.14.正实数,,a b c 满足22340a ab b c -+-=,当ab c取得最大时,212a b c +-的最大值为____________.15.已知0a b >>,则41a ab a b+++-的最小值为__________. 16.已知0x >,0y >,22x y +=,则223524x y x yxy +++的最小值为______.17.设0b >,21a b -=,则242a a b+的最小值为_________.18.已知关于x 的不等式230x ax ++,它的解集是[1,3],则实数a =__. 19.如图,在半径为4(单位:cm )的半圆形(O 为圆心)铁皮上截取一块矩形材料ABCD ,其顶点,A B 在直径上,顶点,C D 在圆周上,则矩形ABCD 面积的最大值为____(单位:2cm ).20.如图:已知树顶A 离地面212米,树上另一点B 离地面112米,某人在离地面32米的C 处看此树,则该人离此树_________米时,看A 、B 的视角最大.三、解答题21.已知a 、b 都是正实数,且.bb a a=- (1)求证:a >1; (2)求b 的最小值.22.解关于x 的不等式2(2)210()a x x a R -+-≥∈.23.设函数2()(2)3(0)f x ax b x a =+-+≠, (1)若不等式()0f x >的解集(1,3)-.求a ,b 的值; (2)若()12f =,0a >,0b >,求14a b+的最小值.24.解下列不等式: (1)2340x x -->; (2)122x x -≤+.25.已知关于x 的不等式()22600kx x k k -+<≠. (1)若不等式的解集是{3x x <-或}2x >-,求k 的值; (2)若不等式的解集是R ,求k 的取值范围; (3)若不等式的解集为∅,求k 的取值范围.26.若不等式2520ax x +->的解集是122x x ⎧⎫<<⎨⎬⎩⎭,求不等式22510ax x a -+->的解集.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由题意知()f x 关于2x =对称,结合函数解析式即可判断(1),(2),(4)f f f 的大小. 【详解】由对任意实数t 满足()(4)f t f t =-,知:()f x 关于2x =对称, 由函数2()f x x bx c =++知:图象开口向上,对称轴为22bx =-=, ∴()f x 在[2,)+∞上单调递增,而(1)(41)(3)f f f =-=, ∴(2)(1)(4)f f f <<. 故选:B 【点睛】本题考查了二次函数的性质,根据对称性,结合二次函数的性质比较函数值的大小,属于基础题.2.B解析:BCD 【分析】利用基本不等式分别判断A 、B 、D 选项,C选项可设,a b αα==,利用三角函数的值域求范围. 【详解】 A 选项,222x +≥0>,∴2y =≥==,即221x +=±时成立,又222x ≥+,故A 错;B 选项,当a >0,b >0时,1124a b +++≥⨯=,当且仅当1a b =⎧=,即1a b ==时等号成立,B 正确;C选项,设,a b αα==,则2sin 24a b πααα⎛⎫+==+≤ ⎪⎝⎭,C 正确;D 选项,2a b +=,()212192a b ⎡⎤⎛⎫∴+++= ⎪⎢⎥⎝⎭⎣⎦, 则()121252229291111++4+22442+2242a b a b a b a b a b ⎛⎫+ ⎪⎡⎤+⎛⎫⎛⎫+++=⨯++ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝=+⎣+⎭⎦ ⎪⎝⎭251942⎛ ≥⨯+= ⎝⎭,当且仅当122422a b a b ++=++且2a b +=时等号成立,解得1a b ==,故D 正确. 故选:BCD 【点睛】本题考查基本不等式的应用、利用三角函数的值域求范围,注意取等号的条件,属于中档题.3.A解析:A 【分析】 由题可得444444x x x x +=-++--,且40x ->,利用基本不等式解答即可. 【详解】解:∵4x >,∴40x ->,∴44444844x x x x +=-++≥=-- 当且仅当444x x -=-,即6x =时取等号, ∵当4x >时,不等式44x m x +≥-恒成立, ∴只需min484m x x ⎛⎫≤+= ⎪-⎝⎭. ∴m 的取值范围为:(8],-∞. 故选A . 【点睛】本题主要考查基本不等式,解题的关键是得出444444x x x x +=-++--,属于一般题.4.C解析:C由题意可知方程220ax bx ++=的根为11,23-,结合根与系数的关系得出12,2a b =-=-,从而得出-a b 的值.【详解】由题意可知方程220ax bx ++=的根为11,23- 由根与系数的关系可知,11112,2323b a a-+=--⨯= 解得12,2a b =-=- 即12210a b -=-+=- 故选:C 【点睛】本题主要考查了根据一元二次不等式的解集求参数的值,属于中档题.5.C解析:C 【解析】分析:由不等式性质对其判定 详解:对于①,若22am bm >,20m >,则a b >,故正确对于②,若a b >,则a a b b >,正确 对于③,若0b a >>,0m >,则a m ab m b+>+,故正确 对于④,若0a b >>且lna lnb =,则1ab =,1b a=122a b a a∴+=+≥当12a a =时等号成立,即1a =< 这与a b >矛盾,故错误 综上所述,正确的个数为3 故选C点睛:由不等式性质对其判定,若能举出反例即可判断其错误,注意数值的符号,对于④中利用基本不等式求出最小值需要满足一正二定三相等,本题在取等号时是取不到的,故错误.6.B解析:B 【分析】由2m >,0n >,3m n +=,所以21m n -+=,结合“1”的代换,结合基本不等式,即【详解】因为2m >,0n >,3m n +=,所以21m n -+=, 则()1111222224222n m m n m n m n m n-⎛⎫+=+-+=++≥+= ⎪---⎝⎭, 当且仅当22n m m n-=-且3m n +=,即51,22m n ==时取等号,故选:B. 【点睛】本题主要考查了利用基本不等式求最值问题,其中解答合理构造基本不等式的条件“一正、二定、三相等”,结合“1”的代换技巧是解答的关键,着重考查推理与运算能力.7.D解析:D 【解析】试题分析:由实数,x y 满足0xy >,,设{2m x y n x y=+=+,解得2{x m ny n m=-=-,则2222224()424222x y m n n m n m n m x y x y m n m n m n--+=+=-+≤-⋅=-++,当且仅当2n mm n=,及2n m =时等号成立,所以的最大值为422-,故选D.考点:基本不等式的应用.8.D解析:D 【分析】先得到21a b +=,再整理11a b +为23b aab ++求最小值,最后判断等号成立即可. 【详解】解:∵直线10ax by --=,过点()2,1-, ∴ 21a b +=, ∵0a >,0b > ∴20a b>,0ba >∴1111222323322b a b a a b a b a b a b a b+=++=++≥⋅+=+()() 当且仅当2b aa b=时,等号成立. 故选:D.本题考查基本不等式“1”的妙用求最值,是基础题.9.D解析:D 【分析】A 项中,需要看分母的正负;B 项和C 项中,已知两个数平方的大小只能比较出两个数绝对值的大小. 【详解】A 项中,若0c <,则有a b <,故A 项错误;B 项中,若22a b >,则a b >,故B 项错误;C 项中,若2211a b>则22a b <即a b <,故C 项错误;D <定有a b <,故D 项正确.故选:D 【点睛】本题主要考查不等关系与不等式,属于基础题.10.D解析:D 【解析】由a (a +b +c )+bc =4-得(a +c )·(a +b )=4- ∵a 、b 、c >0.∴(a +c )·(a +b )≤22b c 2a ++⎛⎫ ⎪⎝⎭(当且仅当a +c =b +a ,即b =c 时取“=”),∴2a +b +c=1)=-2. 故选D点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误11.B解析:B 【分析】利用函数的单调性、不等式的基本性质即可判断出结论. 【详解】 a >b ,则1a 与1b的大小关系不确定;由函数y =x 5在R 上单调递增,∴a 5>b 5; c =0时,ac 2=bc 2;取a =-1,b =-2,|a |>|b |不成立.因此只有B 成立. 故选B .本题考查了函数的单调性、不等式的基本性质,考查了推理能力与计算能力,属于基础题.12.C解析:C 【分析】令z a b =+,得a z b =-,代入2229ab b a b +++=,化简后利用判别式列不等式,解不等式求得+a b 的最小值. 【详解】令z a b =+,得a z b =-,代入2229ab b a b +++=并化简得()212290b z b z +--+=,关于b 的一元二次方程有正解,所以首先()()2124290z z ∆=---+≥, 即()()27250z z +-≥,由于,a b 是正实数,所以250z -≥,即52z ≥,也即+a b 的最小值为52. 此时对称轴1221120222z z z ---==-≥>,所以关于b 的一元二次方程()212290b z b z +--+=有正解,符合题意.故选:C 【点睛】本小题主要考查判别式法求最值,考查一元二次不等式的解法,属于中档题.二、填空题13.【分析】先求出和恒成立时的范围然后根据充分条件的定义求解【详解】在上恒成立则解得在上恒成立首先都不可能恒成立因此解得∵对于一切实数x 是对于一切实数x 的充分条件∴解得故答案为:【点睛】思路点睛:本题考 解析:[6,)+∞【分析】先求出()0f x >和()0>g x 恒成立时a 的范围,然后根据充分条件的定义求解. 【详解】()0f x >在R 上恒成立,则2(1)40a ∆=--<,解得13a -<<,()0>g x 在R 上恒成立,首先0m ≤都不可能恒成立,因此2240m a m >⎧⎨∆=-<⎩,解得22m ma -<<,∵“对于一切实数x ,()0f x >”是“对于一切实数x ,()0g x >”的充分条件,∴12320mmm ⎧-≤-⎪⎪⎪≥⎨⎪>⎪⎪⎩,解得6m ≥. 故答案为:[6,)+∞.【点睛】思路点睛:本题考查一元二次不等式恒成立问题,考查由充分条件求参数范围,一元二次不等式恒成立问题,注意讨论最高次项系数(若最高次项系数为0,则不等式不是二次不等式),充分条件与必要条件问题可以利用集合的包含关系进行求解.14.【分析】由条件可得由均值不等式可得的最大值及其对应的条件则从而可得答案【详解】解:由条件可得则由当且仅当即时有最大值此时所以当时有最大值1所以的最大值为1故答案为:1【点睛】易错点睛:利用基本不等式 解析:1【分析】由条件可得2234134ab a ab c b a ab b b a-+-+⨯==,由均值不等式可得ab c 的最大值及其对应的条件,则22212211(1)1a b c b b b+-=-=--+,从而可得答案. 【详解】解:由条件可得2234c a ab b =-+,则2234134ab a ab c b a ab b b a-+-+⨯==由344331a b b a b a a b -+⨯=⨯+-≥= 当且仅当4b aa b⨯=,即2a b =时,ab c 有最大值,此时22c b =,所以22212211(1)1a b c b b b+-=-=--+ 当1b =时,212a b c+-有最大值1. 所以212a b c +-的最大值为1. 故答案为:1 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方,这时改用勾型函数的单调性求最值.15.【分析】由可知利用基本不等式即可求最值【详解】因为所以当且仅当即时等号成立故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一正就是各项必须为正数;(解析:【分析】由0a b >>可知0a b +>,0a b ->,414122a b a b a a b a b a b a b+-++=++++-+-,利用基本不等式即可求最值. 【详解】 因为0a b >>,所以0a b +>,0a b ->,414122a b a b a a b a b a b a b+-++=++++-+-2≥==当且仅当a b a b ⎧+=⎪⎨-=⎪⎩即2a =,b =故答案为:【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.16.16【分析】由条件可知则原式变形为展开后利用基本不等式求最小值【详解】原式;当且仅当即时取等所以的最小值为16故答案为:16【点睛】关键点点睛:本题的关键是结合1的妙用利用基本不等式求最值解析:16【分析】 由条件可知()1212x y +=,则原式变形为()1243522x y x y y x y x ⎛⎫=++++ ⎪⎝⎭,展开后,利用基本不等式求最小值.【详解】 原式()124493524162x y x y x y y x y x y x⎛⎫=++++=++≥ ⎪⎝⎭; 当且仅当23x y =即67x =,47y =时取等. 所以223524x y x y xy+++的最小值为16. 故答案为:16【点睛】关键点点睛:本题的关键是结合 “1”的妙用,利用基本不等式求最值.17.4【分析】两次应用基本不等式验证等号能同时成立即得【详解】由题意当且仅当即时上述不等式中等号同时成立故答案为:4【点睛】本题考查了基本不等式求最值考查了运算求解能力逻辑推理能力在连续运用基本不等式求 解析:4【分析】两次应用基本不等式,242a a b +≥12b b +≥,验证等号能同时成立即得. 【详解】由题意211a b =+≥,2442a a b +≥===≥, 当且仅当2142b b a a b⎧=⎪⎪⎨⎪=⎪⎩,即21a b =⎧⎨=⎩时上述不等式中等号同时成立. 故答案为:4.【点睛】本题考查了基本不等式求最值,考查了运算求解能力,逻辑推理能力,在连续运用基本不等式求最值时,要注意等号能否同时成立.18.【分析】由一元二次不等式与对应方程的关系利用根与系数的关系求出的值【详解】关于的不等式它的解集是所有关于的方程的两根为1和3由根与系数的关系知实数故答案为:【点睛】本题考查了一元二次不等式与对应方程 解析:4-【分析】由一元二次不等式与对应方程的关系,利用根与系数的关系求出a 的值.【详解】关于x 的不等式230x ax ++,它的解集是[1,3],所有关于x 的方程2x ax 30++=的两根为1和3,由根与系数的关系知,实数(13)4a =-+=-.故答案为:4-.【点睛】本题考查了一元二次不等式与对应方程的关系应用问题,是基础题.19.【分析】设BC=x 连结OC 求出OB 得到矩形面积表达式然后利用基本不等式求出函数的最值即可【详解】设BC=x 连结OC 得OB=所以AB =2所以矩形面积S =2x ∈(04)S =2即x2=16﹣x2即x =2时解析:16【分析】设BC=x,连结OC ,求出OB ,得到矩形ABCD 面积表达式,然后利用基本不等式求出函数的最值即可.【详解】设BC=x,连结OC ,得OB=216x -,所以AB =2216x -,所以矩形ABCD 面积S =22x 16x -,x ∈(0,4),S =2()22222x 162161616x x x x x -=-≤+-= .即x 2=16﹣x 2,即x =22时取等号,此时y max =16故答案为16【点睛】本题考查函数解析式的求法,考查利用基本不等式求函数最值问题,考查计算能力. 20.6【分析】过点作设根据已知中树顶距地面米树上另一点距地面米人眼离地面米我们易求出即的表达式进而根据基本不等式求出的范围及取最大值时的值进而得到答案【详解】如图过点作则设由图可知:当且仅当时等号成立即 解析:6【分析】过点C 作CD AB ⊥,设CD x =,根据已知中树顶A 距地面212米,树上另一点B 距地面112米,人眼C 离地面32米.我们易求出tan ACB ∠,即tan()ACD BCD ∠-∠的表达式,进而根据基本不等式,求出tan ACB ∠的范围及tan ACB ∠取最大值时x 的值,进而得到答案.【详解】如图,过点C 作CD AB ⊥,则213922AD =-=,113422BD =-=, 设CD x =,由图可知:94tan tan 555tan tan()94361tan ?tan 26121?ACD BCD x x ACB ACD BCD ACD BCD x x x x-∠-∠∠=∠-∠====+∠∠⨯++,当且仅当6x =时,等号成立.即6x =时,tan ACB ∠有最大值,此时ACB ∠最大.故答案为: 6【点睛】 本题考查的知识点是三角函数的实际应用,两角差的正切公式,及基本不等式,其中构造适当的三角形,将问题转化为一个三角函数问题是解答本题的关键.三、解答题21.无22.无23.无24.无25.无26.无。
一元一次方程培优训练(有答案)
⼀元⼀次⽅程培优训练(有答案)⼀元⼀次⽅程培优训练基础篇⼀、选择题1.把⽅程103.02.017.07.0=--x x 中的分母化为整数,正确的是() A.132177=--x x B.13217710=--x x C.1032017710=--x x D.132017710=--x x 2.与⽅程x+2=3-2x 同解的⽅程是() A.2x+3=11 B.-3x+2=1 C.132=-x D.231132-=+x x 3.甲、⼄两⼈练习赛跑,甲每秒跑7m,⼄每秒跑6.5m,甲让⼄先跑5m,设x秒后甲可追上⼄,则下列四个⽅程中不正确的是()A.7x=6.5x+5B.7x+5=6.5xC.(7-6.5)x=5D.6.5x=7x-5 4.适合81272=-++a a 的整数a 的值的个数是() A. 5 B. 4 C. 3 D. 25.电视机售价连续两次降价10%,降价后每台电视机的售价为a 元,则该电视机的原价为() A.0.81a 元 B.1.21a 元 C.21.1a 元 D.81.0a 元6.⼀张试卷只有25道选择题,做对⼀题得4分,做错1题倒扣1分,某学⽣做了全部试题共得70分,他做对了( )道题。
A.17B.18C.19D.207.在⾼速公路上,⼀辆长4⽶,速度为110千⽶/时的轿车准备超越⼀辆长12⽶,速度为100千⽶/时的卡车,则轿车从开始追击到超越卡车,需要花费的时间约是()A.1.6秒B.4.32秒C.5.76秒D.345.6秒8.⼀项⼯程,甲单独做需x 天完成,⼄单独做需y 天完成,两⼈合作这项⼯程需天数为() A.y x +1 B.y x 11+ C.xy 1D. yx 111+9、若2x =-是关于x 的⽅程233xx a +=-的解,则代数式21a a -的值是()A 、0B 、283-C 、29- D 、2910、⼀个六位数左端的数字是1,如果把左端的数字移到右端,那么所得的六位数等于原数的3倍,则原数为()A 、142857B 、157428C 、124875D 、175248 ⼆、填空题12.当m =_____时,⽅程(m -3)x|m|-2+m -3=0是⼀元⼀次⽅程。
一元一次方程测试题
一元一次方程测试题题目一:解一元一次方程1. 5x + 3 = 18解:根据一元一次方程的定义,我们需要将x的系数与常数项分开,并进行移项运算,以求解x的值。
首先,将3移到等式的右边:5x = 18 - 3化简得到:5x = 15接下来,我们可以将方程两边都除以系数5,即可解得:x = 15 / 5计算得到x的值为:x = 3因此,方程的解为x = 3。
题目二:使用一元一次方程解决实际问题2. 一本书的原价为30元,打折后的价格为20元。
求折扣后的折扣率是多少?解:假设折扣率为x(即打折后的价格为原价的x倍),根据题目可以列出一元一次方程:30 * x = 20化简得到:x = 20 / 30计算得到折扣率x的值为:x = 2 / 3因此,折扣后的折扣率为2/3或约0.67。
题目三:解一元一次方程组3. 解方程组:2x + y = 5x - 3y = 7解:通过消元的方法,我们可以将方程组转化为一个一元一次方程,从而解得变量的值。
首先,我们可以通过第二个方程将x表示为y的函数:x = 7 + 3y将x的表达式代入第一个方程,得到:2(7 + 3y) + y = 5化简得到:14 + 6y + y = 5合并同类项:7y + 14 = 5移项得到:7y = 5 - 14化简得到:7y = -9接下来,将y的系数除以7,即可解得:y = -9 / 7计算得到y的值为:y = -1.2857(约等于-1.29)将y的值代入第一个方程,可以求解x的值:2x - 1.29 = 5化简得到:2x = 5 + 1.29化简得到:2x = 6.29最后,将x的系数除以2,即可解得:x = 6.29 / 2计算得到x的值为:x = 3.145(约等于3.15)因此,方程组的解为x = 3.15,y = -1.29。
总结:通过以上三道题目的解答,我们可以看到一元一次方程的解题思路和步骤。
首先需要将变量的系数与常数项进行整理,然后进行移项运算,将变量单独放在等式的一边。
最新七年级一元一次方程单元测试卷(含答案解析)
一、初一数学一元一次方程解答题压轴题精选(难)1.如图,数轴上 A、B 两点所对应的数分别是 a 和 b,且(a+5)2+|b﹣7|=0.(1)求 a,b;A、B 两点之间的距离.(2)有一动点 P 从点 A 出发第一次向左运动 1 个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照如此规律不断地左右运动,当运动到 2019次时,求点P所对应的数.(3)在(2)的条件下,点P在某次运动时恰好到达某一个位置,使点P到点B的距离是点 P 到点 A 的距离的3倍?请直接写出此时点 P所对应的数,并分别写出是第几次运动.【答案】(1)解:∵(a+5)2+|b﹣7|=0,∴a+5=0,b﹣7=0,∴a=﹣5,b=7;∴A、B两点之间的距离=|﹣5|+7=12;(2)解:设向左运动记为负数,向右运动记为正数,依题意得:﹣5﹣1+2﹣3+4﹣5+6﹣7+…+2018﹣2019=﹣5+1009﹣2019=﹣1015.答:点P所对应的数为﹣1015(3)解:设点P对应的有理数的值为x,①当点P在点A的左侧时:PA=﹣5﹣x,PB=7﹣x,依题意得:7﹣x=3(﹣5﹣x),解得:x=﹣11;②当点P在点A和点B之间时:PA=x﹣(﹣5)=x+5,PB=7﹣x,依题意得:7﹣x=3(x+5),解得:x=﹣2;③当点P在点B的右侧时:PA=x﹣(﹣5)=x+5,PB=x﹣7,依题意得:x﹣7=3(x+5),解得:x=﹣11,这与点P在点B的右侧(即 x>7)矛盾,故舍去.综上所述,点P所对应的有理数分别是﹣11和﹣2.所以﹣11和﹣2分别是点P运动了第11次和第6次到达的位置.【解析】【分析】(1)由绝对值和平方的非负性可得a与b的值,相减得两点间的距离。
(2)设向左运动记为负数,向右运动记为正数,并在-5的基础上把得到的数据相加即可。
(3)设点P对应的有理数的值为x,分别表示PA和PB的长,列方程求解即可。
一元一次方程单元测试题
一元一次方程单元测试题篇1:一元一次方程单元测试题一元一次方程单元测试题一.填空题:(每小题3分,共30分)1.方程的解为____________________;2.相邻5个自然数的和为45,则这5个自然数分别为______________________;3.如果x=1是方程m(x-1)=3(x+m)的解,则m=_________________;4.一根长18米的铁丝围成一个长是宽的2倍的长方形的面积为________________;5.若代数式2x-6的值与0.5互为倒数,则x=____.6.一件衬衫进货价60元,提高50%标价为_______,八折优惠价为________,利润为______;7.小明跑步每秒钟跑4米,则他15秒钟跑_____米,2分钟跑_____米,1小时跑____公里;.8.笼子里鸡和兔总共有56个头,160只脚,设鸡有x只,则兔有___________只,列方程__________________可求出鸡兔的.只数;9.小明今年6岁,他的祖父72岁,__________年后,小明的年龄是他祖父年龄的;10.关于x的一元一次方程2x+a=x+1的解是-4,则方程-ay+1=3的解为:y=________________;二.选择题(每小题3分,共24分)11.方程3(x+1)=2x-1的解是A、x=-4B.x=1C.x=2D.x=-212.某商品提价100%后要恢复原价,则应降价()A30%,B50%,C75%,D100%;13.方程去分母后可得()A3x-3=1+2x,B3x-9=1+2x,C3x-3=2+2x,D3x-12=2+4x;14、小山上大学向某商人贷款1万元,月利率为6‰,1年后需还给商人多少钱?()A17200元,B16000元,C10720元,D10600元;15.小明每秒钟跑6米,小彬每秒钟跑5米,小彬站在小明前10米处,两人同时起跑,小明多少秒钟追上小彬()A5秒,B6秒,C8秒,D10秒;16.甲商品进价为1000元,按标价1200元9折出售,乙商品进价为400元,按标价600元7.5折出售,则甲、乙两商品的利润率()A、甲高B、乙高C、一样高D、无法比较17.某种产,商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为( )。
一元一次方程测试题(含答案)
第三章一元一次方程测试题一、选择题(每小题6分,共36分)1.下列方程中,是一元一次方程的是( ) A.x 2-4x=3 B.3x-1=2x C. x+2y=1 D.xy-3=5 2.方程212=-x 的解是( )A.41-=x B.4-=x C. 41=x D.x=4 3.已知等式3a=2b+5,则下列等式中不一定成立的是( )A.3a-5=2bB.3a+1=2b+6C.3ac=2bc+5D.3532+=b a 4.若关于x 的方程2x+a-4=0的解是x=-2,则a 的值等于( )A.-8 B.0 C.2 D.85.一个长方形的周长为26cm ,若这个长方形的长减少1cm ,宽增加2cm ,就可成为一个正方形,设长方形的长为xcm ,可列方程( )A.x-1=(26-x)+2B.x-1=(13-x)+2C.x+1=(26-x)-2D.x+1=(13-x)-26.已知某商店有两个进价不同的计算器都卖了80元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店A.不盈不亏B.盈利10元C.亏损10元D.盈利50元二、填空题(每小题6分,共24分)7.方程4232=-x 的解是________________ 9.如果关于x 的方程37615=-x 与m x x 2214218++=-的解相同,那么m 的值是_____________ 三、解答题(每小题10分,共40分)11.解方程(1)2x+5=3(x-1) (2)4)1(2=-x (3)152+-=-x x(4))9)21(3=--x x (5)11)121(21=--x (6)()()x x 2152831--=--(7)23421=-++x x (8)1)23(2151=--x x (9) 32213415x x x --+=-(10)1835+=-x x (11)0262921=---x x (12)13)1(32=---x x(13)53210232213+--=-+x x x (14)1246231--=--+x x x (15)32222-=---x x x19、x x 45321412332=-⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛- 20、14]615141[3121=⎭⎬⎫⎩⎨⎧+-⎪⎭⎫ ⎝⎛-x12.在某年全国足球甲级A 组的前11场比赛中,某队保持连续不败,共积23分,按比赛规则,胜一场得3分,平一场得1分,那么该队共胜了多少场?分析:设该队胜了x 场,根据题意,用含x 的式子填空:(1)该队平了_____________________场;(2)按比赛规则,该队胜场共得______________________分;(3)按比赛规则,该队平场共得______________________分.13.用白铁皮做罐头盒,每张白铁皮可制作盒身16个或盒底43个,一个盒身与两个盒底配成一个罐头盒.现有150张白铁皮,用多少张白铁皮制盒身、多少张白铁皮制盒底可以正好制成整套罐头盒而无余料?14.整理一批图书,如果由一个人单独做要用30h ,现先安排一部分人用1h 整理,随后又增加6人和他们一起又做了2h ,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员是多少?四、附加题(每小题10分,共20分)15.为了拓展销路,商店对某种照相机的售价做了调整,按原价的8折出售,此时利润率为14%.若此种照相机的进价为1200元,该照相机的原售价是多少?16.公园门票价格规定如下表:某校七年级(1)(2)两个班共104人去游园,其中(1)班现有40多人,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元.问:(1)两班各有多少学生?(2)如果两个班联合起来,作为一个团体购票,可省多少钱?(3)如果七年级(1)班单独组织去游园,作为组织者的你将如何购票才最省钱?参考答案:1.B2.A3.C4.D5.B6.B 提示:设第一个计算器的进价为x 元,第二个计算器的进价为y 元,则1.6x=80,0.8y=80,解得 x=50,y=100.因为80×2-50-100=10(元),所以盈利了10元.7.x=98.a+d=b+c (答案不唯一)9.±2.提示:由37615=-x ,得x=3,代入m x x 2214218++=-,得m =2,所以m=±2. 10.504.提示:设A 港和B 港相距xkm ,列方程2263226-=++x x ,解得x=504 11.(1)x=8;(2)x=-9.2.12.(1)11-x ;(2)3x ;(3)(11-x );3x+(11-x )=23,x=6.答:该队共胜了6场.13.解:设用x 张白铁皮制盒身,(150-x )张白铁皮制盒底,列方程2×16x=43(150-x ),解得x=86,所以150-x=150-86=64答:用86张白铁皮制盒身,64张白铁皮制盒底.14.解:设先安排整理的人员有x 人,列方程130)6(230=++x x ,解得x=6. 答:先安排整理的人员有6人.15.解:设该照相机的原售价为x 元,列方程 0.8x=1200(1+14%),解得x=1710答:该照相机的原售价为1710元.16.解:(1)设七年级(1)班有x 人,则七年级(2)班有(104-x )人,列方程13x+11(104-x )=1240解得x=48,104-x=56,答:七年级(1)班有48人,七年级(2)班有56人.(2)1240-104×9=304,所以两个班联合起来,作为一个团体购票,可省304元钱.(3)因为48×13=624,51×11=561,所以按照51张票购买比较省钱.。
北京第十八中学七年级数学上册第三单元《一元一次方程》经典测试(含解析)
一、选择题1.已知下列四个应用题:①现有60个零件的加工任务,甲单独每小时可以加工4个零件,乙单独每小时可以加工6个零件.现甲乙两人合作,问两人开始工作几小时后还有20个零件没有加工?②甲乙两人从相距60km 的两地同时出发,相向面行,甲的速度是4/km h ,乙的速度是6/km h ,问经过几小时后两人相遇后又相距20km ?③甲乙两人从相距60km 的两地相向面行,甲的速度是4/km h ,乙的速度是6/km h ,如果甲先走了20km 后,乙再出发,问乙出发后几小时两人相遇?④甲乙两人从相距20km 的两地同时出发,背向而行,甲的速度是4/km h ,乙的速度是6/km h ,问经过几小时后两人相距60km ?其中,可以用方程462060x x ++=表述题目中对应数量关系的应用题序号是( )A .①②③④B .①③④C .②③④D .①② 2.如图所示,两人沿着边长为90 m 的正方形,按A →B →C →D →A …的方向行走,甲从A 点以65 m/min 的速度、乙从B 点以75 m/min 的速度行走,当乙第一次追上甲时,将在正方形的( )边上.A .BCB .DC C .ADD .AB 3.如图,方格中的格子被填上了数,每一行、每一列以及两条对角线中所填的数字之和均相等,则x 的值为( ) 16x 1115 12A .39B .13C .14D .94.下列方程中,是一元一次方程的是( )A .243x x -=B .0x =C .21x y +=D .11x x -= 5.下列方程变形一定正确的是( )A .由x +3=-1,得x =-1+3B .由7x =-2,得x =-74C .由12x =0,得x =2 D .由2=x -1,得x =1+2 6.方程6x+12x-9x=10-12-16的解为( ) A .x=2 B .x=1 C .x=3 D .x=-27.一个两位数,十位上的数比个位上的数的3倍大1,个位上的数与十位上的数的和等于9,这个两位数是( )A .54B .72C .45D .62 8.若代数式4x +的值是2,则x 等于( )A .2B .2-C .6D .6- 9.某种商品的标价为120元,若以九折降价出售,相对于进价仍获利20%,则该商品的进价是( ).A .95元B .90元C .85元D .80元 10.若代数式x +2的值为1,则x 等于( )A .1B .-1C .3D .-3 11.如图,正方ABCD 形的边长是2个单位,一只乌龟从A 点出发以2个单位/秒的速度顺时针绕正方形运动,另有一只兔子也从A 点出发以6个单位/秒的速度逆时针绕正方形运动,则第2020次相遇在( )A .点AB .点BC .点CD .点D12.某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获纯利润500元,其利润率为20%,则该电器的标价为( )A .3750元B .4000元C .4250元D .3500元 13.若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解,则,,m n k 的大小关系是( )A .m>n>kB .n>k>mC .k>m>nD .m> k> n 14.甲、乙两个工程队,甲队32人,乙队28人,现在从乙队抽调x 人到甲队,使甲队人数为乙队人数的2倍.则根据题意列出的方程是( )A .32+x =2(28−x)B .32−x =2(28−x)C .32+x =2(28+x)D .2(32+x)=28−x 15.下列判断错误的是 ( )A .若a =b ,则a −3=b −3B .若a =b ,则7a −1=7b −1C .若a =b ,则ac 2+1=bc 2+1D .若ac 2=bc 2,则a =b 二、填空题16.解方程213412208x x x -+-= -1,去分母时,方程两边应都乘____,得______________________,这一变形的依据是________________.17.某公司销售,,A B C 三种电子产品,在去年的销售中,产品C 的销售额占总的销售额的60%,由于受新冠肺炎疫情的影响,估计今年,A B 两种产品的销售额都将比去年减少45%,公司将产品C 定为今年销售的重点,要使今年的总销售额与去年持平,那么今年产品C 的销售额应比去年增加__________.18.5个人用5天完成了某项工程的14,如果再增加工作效率相同的10个人,那么完成这项工作前后共用_____天.19.若2a +1与212a +互为相反数,则a =_____. 20.一列火车匀速行驶,经过一条长600米的隧道需要45秒的时间,隧道的顶部一盏固定灯,在火车上垂直照射的时间为15秒,则火车的长为_____.21.在方程1322x -=-的两边同时_________,得x =__________. 22.(1)如果33x y -=,那么x =_________; (2)如果2m n =,那么3m =___________. 23.若方程()||110a a x --=是关于x 的一元一次方程,则a =____________.24.解方程:1225y y -+=. 解:去分母,得____________.去括号,得______________.移项,得_______________.合并同类项,得______________.方程两边同除以3,得_______________.25.方程3622y y y -+=,左边合并同类项后,得____________. 26.有一位工人师傅要锻造底面直径为40cm 的“矮胖”形圆柱,可他手上只有底面直径是10cm 、高为80cm 的“瘦长”形圆柱,若不计损耗,则锻造出的“矮胖”形圆柱的高为________.三、解答题27.一位商人来到一座新城市,想租一套房子,A 家房东的条件是先交2000元,每月租金1200元;B 家房东的条件是每月租金1400元.(1)这位商人想在这座城市住半年,则租哪家的房子划算?(2)如果这位商人想住一年,租哪家的房子划算?(3)这位商人住多长时间时,租两家的房子租金一样?28.程大位是珠算发明家,他的名著《直指算法统宗》详述了传统的珠算规则,确立了算盘用书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?29.对于任意四个有理数a b c d ,,,,可以组成两个有理数对(,)a b 与(,)c d . 我们规定:(,)(,)a b c d bc ad =-★.例如:(1,2)(3,4)23142=⨯-⨯=★.根据上述规定解决下列问题:(1)有理数对(2,3)(3,2)--=★ ;(2)若有理数对(2,31)(1,1)9x x -+-=★,则x = ;(3)当满足等式(3,21)(,)32x k x k k --+=+★的x 是整数时,求整数k 的值. 30.设a ,b ,c ,d 为有理数,现规定一种新的运算:a bad bc c d =-,那么当35727x-=时,x 的值是多少?。
第三章一元一次方程(培优)(原卷版)
第三章一元一次方程(培优)-七年级数学上册单元培优达标强化卷一、选择题1.将3x−7=2x变形正确的是()A. 3x+2x=7B. 3x−2x=−7C. 3x+2x=−7D. 3x−2x=72.已知关于x的方程(m−2)x|m−1|=0是一元一次方程,则m的值是()A. 2B. 0C. 1D. 0或23.方程2x+1=3与2−a−x3=0的解相同,则a的值为()A. 0B. 3C. 5D. 74.若多项式4x−5与2x−12的值相等,则x的值是()A. 1B. 32C. 23D. 25.已知:|m−2|+(n−1)2=0,则方程2m+x=n的解为()A. x=−4B. x=−3C. x=−2D. x=−16.某种商品原先的利润率为20%,为了促销,现降价10元销售,此时利润率下降为10%,那么这种商品的进价是()A. 100元B. 110元C. 120元D. 130元7.一项工程甲单独做要40天完成,乙单独做需要60天完成,甲先单独做4天,然后甲乙两人合作x天完成这项工程,则可以列的方程是()A. 440+x40+60=1B. 440+x40×60=1C. 440+x40+x60=1D. 440+x60=18.下列说法中,正确的是()A.若ac=bc,则a=bB. 若ac =bc,则a=bC. 若a 2=b 2,则a =bD. 若|a|=|b|,则a =b9. 某商场根据市场信息,对商场中现有的两台不同型号的空调进行调价销售,其中一台空调调价后售出可获利20%(相对于进价),另一台空调调价后售出则亏本20%(相对于进价),而这两台空调调价后的售价恰好相同,那么商场把这两台空调调价后售出( )A. 要亏本4%B. 可获利2%C. 要亏本2%D. 既不获利也不亏本10. 小淇在某月的日历中圈出相邻的三个数,算出它们的和是19,那么这三个数的位置可能是( ) A. B. C. D.二、填空题11. 若代数式(1−a−14)x 2−5y +4−12(ax 2+2by +16)(a 、b 为常数)的值与字母x 、y 的取值无关,则方程3ax +b =0的解为________12. 如果a ,b 为定值,关于x 的一次方程2kx+a 3−x−bk6=2,无论k 为何值时,它的解总是1,则a +2b = . 13. 若(a −2)x |a|−1−2=0是关于x 的一元一次方程,则a =______. 14. 一件衣服先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,那么这件衣服的成本是__________元.15. 小明按标价八折购买了一双鞋,比按标价购买节省了40元,这双鞋的实际售价为____元.16. 已知关于x 的方程x−m 2=x +m 3与方程x−12=3x −2的解互为倒数,则m 2−2m −3的值为_________.17. 用“∗”表示一种运算,其意义是a ∗b =a −2b ,如果x ∗(3∗2)=3,则x =______.18.有两根同样长度但粗细不同的蜡烛,粗蜡烛可以燃烧6小时,细蜡烛可以燃烧4小时,一次停电,同时点燃两根蜡烛,来电后同时吹灭,发现剩下的粗蜡烛长度是细蜡烛长度的两倍,则停电时间是______小时.19.如果x=1是方程2−13(m−x)=2x的解,那么关于y的方程m(y−3)−2=m(2y−5)的解是______ .20.如图,已知点A、B是直线上两点,AB=12厘米,点C在线段AB上,且BC=4厘米.点P、点Q是直线上的两个动点,点P的速度为1厘米/秒,点Q的速度为2厘米/秒.点P、Q分别从点C、点B同时出发在直线上运动,则经过___________秒时线段PQ的长为5厘米.三、解答题21.已知关于x的方程3[x−2(x−a3)]=4x和3x+a12−1−5x8=1有相同的解,那么这个解是多少?22.甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过1天罚款1000元,甲、乙两人经商量后签订了该合同.(1)正常情况下,甲、乙两人能否履行该合同⋅为什么⋅(2)现两人合作了这项工程的75%,因别处有急事,必须调走1人,问调走谁更合适些⋅为什么⋅23.甲、乙两站相距360千米,一列快车从甲站开出,每小时行160千米,一列慢车从乙站开出,每小时行80千米.(1)若两车同时开出,相向而行多少小时后两车相遇?(2)若两车同向而行,快车在慢车的后面,且慢车提前半小时出发,经过多少小时后快车追上慢车?24.某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的1倍2多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价−进价)(1)该超市购进甲、乙两种商品各多少件?(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙商品是按原价打几折销售?25.已知|a+4|+(b−2)2=0,数轴上A、B两点所对应的数分别是a和b.(1)填空:a=___________,b=____________;(2)数轴上是否存在点C,C点在A点的右侧,且点C到A点的距离是点C到B点的距离的2倍?若存在,请求出点C表示的数;若不存在,请说明理由;(3)点P以每秒2个单位的速度从A点出发向左运动,同时点Q以3个单位每秒的速度从B点出发向右运动,点M以每秒4个单位的速度从原点O点出发向左运动.若N为PQ的中点,当PQ=16时,求MN的长.。
第三章 一元一次方程 单元培优检测试题 2023-2024学年人教版数学七年级上册
2023-2024学年人教版数学七年级上册第三章一元一次方程单元培优检测试题一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1.若方程(m−2)x|2m−3|=6是关于x的一元一次方程,则m的值为( )A. 2B. 1C. 1或2D. 任何数2.在方程:5x+8y=4;x+5=0;x2+5x−2=0;2πx=4中,一元一次方程的个数为( )A. 1个B. 2个C. 3个D. 4个3.下列运用等式性质正确的是( )A. 如果a=b,那么a+c=b−cB. 如果a=b,那么ac =bcC. 如果ac =bc,那么a=b D. 如果a=3,那么a2=3a24.下列式子的变形中,正确的是( )A. 由6+x=10得x=10+6B. 由8x=4−3x得8x−3x=4C. 由3x+5=4x得3x−4x=−5D. 由2(x−1)=3得2x−1=35.一元一次方程x+3x=8的解是( )A. x=−1B. x=0C. x=1D. x=26.关于x的方程3x+2m=−1与方程x+2=2x+1的解相同,则m的值为( )A. 2B. −2C. 1D. −17.下列移项正确的有.( )①12−x=−5,移项,得12−5=x;②−7x+3=−13x−2,移项,得13x−7x=−3−2;③2x+3=3x+4,移项,得2x−4=3x−3;④−5x−7=2x−11,移项,得11−7=2x−5x.A. 1个B. 2个C. 3个D. 4个8.已知关于x的方程2x+a−9=0的解是x=2,则a的值为( )A. 5B. 4C. 3D. 29.下列方程变形中,正确的是.( )A. 方程3x−2=2x+1,移项,得3x−2x=−1+2B. 方程3−x=2−5(x−1),去括号,得3−x=2−5x+1C. 方程23x=32,未知数系数化为1,得x=1D. 方程x−12=1化成x−1=210.解方程1−x+12=x4,去分母,去括号得( )A. 1−2x+2=xB. 1−2x−2=xC. 4−2x+2=xD. 4−2x−2=x11.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中.( )A. 亏了10元钱B. 赚了10钱C. 赚了20元钱D. 亏了20元钱12.《孙子算经》中有一道题,原文是:今有四人共车,一车空;三人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每4人共乘一车,最终剩余1辆车;若每3人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x人,可列方程( )A. x4+1=x−93B. x+14=x3−9 C. x4−1=x+93D. x4+1=x+93二、填空题(本大题共8小题,共24.0分)13.已知(a−3)x|a|−2−5=2是关于x的一元一次方程,则a=.14.将方程4x+3y=6变形成用含y的代数式表示x,则x=.15.已知x=−2是方程a(x+3)=12a+x的解,则a=.16.若4x−1与7−2x的值互为相反数,则x=.17.用符号※定义一种新运算a※b=ab+2(a−b),若3※x=0,则x的值为.18.某人在解方程2x−13=x+a2−1去分母时,方程右边的−1忘记乘6,算得方程的解为x=2,则a的值为.19.某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件销售利润为元.20.如图,已知正方形的边长为4,甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的3倍,则它们第2023次相遇在边.三、解答题(本大题共6小题,共60.0分。
第6章 一元一次方程单元测试(培优卷)
第6章 一元一次方程单元测试(培优卷)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,考试时间80分钟,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020·湖南七年级月考)下列说法错误的是( )A .若a b =,则ac bc =B .若ac bc =,则a b =C .若22a c b c -=-,则a b =D .若a b =,则2211a b c c =++ 2.(2021·全国七年级)已知方程(1)30m m x-+=是关于x 的一元一次方程,则m 的值是( ) A .±1 B .1 C .-1 D .0或13.(2020·山东七年级月考)把方程10.2110.40.7x x +--=中的分母化为整数,结果应为( ). A .10121147x x +--= B .1010210147x x +--= C .101211047x x +--= D .552101027x x +--= 4.(2020·西安市铁一中学七年级月考)有一玻璃密封器皿如图1,测得其底面直径为20cm ,高20cm ,现内装蓝色溶液若干,如图②放置时,测得液面高10cm ,如图③放置时,测得液面高16cm .则该玻璃密封器皿总容量为( )A .1200π3cmB .1300π3cmC .1400π3cmD .1500π3cm5.(2020·湖南广益实验中学七年级月考)规定:用{}m 表示大于m 的最小整数,例如5{}32=,{4}5=,{1.5}1-=-等;用[]m 表示不大于m 的最大整数,例如7[]32=,[2]2=,[ 3.2]4-=-,如果整数x 满足关系式:2{}3[]32x x +=,则x 的值为( )A .3B .5-C .6D .76.(2021·广东七年级期末)甲乙两地相距180km ,一列慢车以40km/h 的速度从甲地匀速驶往乙地,慢车出发30分钟后,一列快车以60km/h 的速度从甲地匀速驶往乙地.两车相继到达终点乙地,再此过程中,两车恰好相距10km 的次数是( )A .1B .2C .3D .47.(2020·安徽七年级期中)方程···13153520192021x x x x ++++=⨯的解是x =( ) A .20212020 B .20211010 C .20212019 D .101020218.(2020·浙江七年级)设一列数a 1,a 2,a 3,…,a 2015,…中任意三个相邻的数之和都是20,已知a 2=2x ,a 18=9+x ,a 65=6﹣x ,那么a 2020的值是( )A .2B .3C .4D .59.(2021·全国七年级)某原料供应商对购买其原料的顾客实行如下优惠办法: (1)一次购买金额不超过1万元,不予优惠; (2)一次购买金额超过1万元,但不超过3万元,九折优惠; (3)一次购买超过3万元的,其中3万元九折优惠,超过3万元的部分八折优惠.某公司分两次在该供应商处购买原料,分别付款7800元和25200元.如果该公司把两次购买的原料改为一-次购买的话,那么该公司一共可少付款( )A .3360 元B .2780 元C .1460 元D .1360元10.(2020·湖北七年级期末)如图,点,C D 为线段AB 上两点,9AC BD +=,且75AD BC AB +=,设CD t =,则方程()()371232t x x x --=-+的解是( )A .2x =B .3x =C .4x =D .5x =11.(2020·浙江七年级期末)对一个正整数x 进行如下变换:若x 是奇数,则结果是31x +;若x 是偶数,则结果是12x .我们称这样的操作为第1次变换,再对所得结果进行同样的操作称为第2次变换,……以此类推.如对6第1次变换的结果是3,第2次变换的结果是10,第3次变换的结果是5……若正整数a 第6次变换的结果是1,则a 可能的值有( )A .1种B .4种C .32种D .64种12.(2021·重庆七年级期末)整数a 满足36a <≤,若a 使得关于x 的方程()631ax x +=-的解为整数,则满足条件的所有整数a 的个数是( )A .1B .2C .3D .4二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在横线上) 13.(2020·西安铁一中滨河学校七年级月考)若方程415x -=与203a x --=的解相同,则a 的值为_______. 14.(2020·安徽七年级月考)按照如图所示的计算程序,若输出的结果为13,则输入的正数x 可以是______.15.(2020·镇江市外国语学校七年级月考)如图,在相距150个单位长度的直线跑道AB 上,机器人甲从端点A 出发,匀速往返于端点A 、B 之间,机器人乙同时从端点B 出发,以大于甲的速度匀速往返于端点B 、A 之间.他们到达端点后立即转身折返,用时忽略不计.若这两个机器人第一次迎面相遇时,相遇地点与点A 之间的距离为30个单位长度,则他们第二次迎面相遇时,相遇地点与点A 之间的距离则为_____个单位长度.16.(2021·福建七年级月考)一列方程如下排列:1142x x -+=的解是2x =; 2162x x -+=的解是3x =; 3182x x -+=的解是4x =;… 根据观察得到的规律,写出其中解是2021x =的方程:______.17.(2020·浙江七年级期中)瑞士大数学家列昂纳德·欧拉(1707~1783)在他的一生中,为人类作出了卓越的贡献,留下了886篇论文和著作,几乎在数学的每个分支中都留下了他的足迹.在他的名著《代数基础》一书中,载有他着意收集到的许多趣题,下面一例就是该书中的一个趣题:父亲临终时立下遗嘱,按下述方式分配遗产:老大分的100瑞士法郎和剩下的十分之一;老二分的200瑞士法郎和剩下的十分之一;老三分的300瑞士法郎和剩下的十分之……依此类推,分给其余的孩子.最后发现,遗产全部分完后所有孩子分的的遗产相等.问:遗产总数是_______瑞士法郎,孩子人数是_______人.18.(2020·浙江七年级期末)圆形钟面上从2点整到4点整,时针和分针成60度角时的时间是__________.三、解答题(本大题共6小题,共46分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)三、解答题19.(2020·阳高县第二中学校七年级月考)解下列方程:(1)14233x x-=+(2)3(x-3)-2(2x-5)=6(3)21101211362x x x-++-=-(4)0.310.1310.20.03x x--=20.(2021·全国七年级)已知x=m与x=n分别是关于x的方程ax+b=0(a≠0)与cx+d=0(c≠0)的解.(1)若关于x的方程ax+b=0(a≠0)的解与方程6x-7=4x-5的解相同,求m的值;(2)当n=1时,求代数式3c2+cd+2c-2(12cd32+c2-d)的值;(3)若|m-n|12=,则称关于x的方程ax+b=0(a≠0)与cx+d=0(c≠0)为“差半点方程”.试判断关于x的方程4042x92-=9×2020﹣2020t+x,与4040x+4=8×2021﹣2020t﹣x,是否为“差半点方程”,并说明理由.21.(2020·重庆礼嘉中学七年级月考)某中学库存若干套桌凳,准备修理后支援贫困山区学校,现有甲、乙两木工组,甲每天修桌凳20套,乙每天修桌凳比甲多5套,甲单独修完这些桌凳比乙单独修完多用9天,学校每天付甲组80元修理费,付乙组110元修理费.(1)问该中学库存多少套桌凳?(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:①由甲单独修理;②由乙单独修理;③甲、乙合作同时修理.你认为哪种方案省时又省钱为什么?22.(2021·福建七年级月考)某购物网站上的一种小礼品按销售量分三部分制定阶梯销售单价,如下表:(1)“双十一”期间,购物总金额累计满300元可使用50元购物津贴(即累计总金额每满300减50元),若购买75件,花费______元;若购买120件,花费______元;若购买240件,花费______元.(2)“双十一”期间,王老师购买这种小礼品共花了342元,列方程求王老师购买这种小礼品的件数.(3)“双十二”即将来临,但“双十二”期间不能使用购物津贴,王老师和李老师各自单独在该网站购买这种小礼品,他们一共购买了400件,其中王老师的购买数量大于李老师的购买数量,他们一共花费1331元,请问王老师和李老师各购买这种小礼品多少件?23.(2021·湖北七年级期末)数形结合思想是通过数和形之间的对应关系和相互转化来解决问题的数学思想方法.我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事休.”(1)(问题背景)往返于甲、乙两地的客车,中途停靠2个车站(来回票价一样),可以从任意站点头票出发且任意两站间的票价都不同,共有___________种不同的票价,需准备________种车票.聪明的小周是这样思考这个问题的,她用A,B,C,D,4个点表示车站,每两站之间的票价用相应两点间的线段表示,共连出多少条线段,就有多少种不同的票价.(2)(迁移应用)A,B,C,D,E,F六支足球队进行单循环比赛,当比赛到某一天时,统计出A,B,C,D,E五支队已经分别比赛了5,4,3,2,1场球,则还没有与B队比赛的球队是_____队.(3)(拓展创新)某摄制组从A市到B市有一天的路程,计划上午比下午多走100千米到C市吃午饭,但由于堵车,中午才赶到一个小镇,只行驶了上午原计划的三分之一,过了小镇,汽车行驶了400千米,傍晚才停下来休息,司机说,再走从C市到这里的路程的二分之一就到达目的地了,求A,B两市相距多少千米?24.(2020·武汉市南湖中学七年级月考)已知有理数,a b满足(a+20)2+(b-30)2=0,且在数轴上对应的点分别是A和B两点(如图)我们把数轴上A、B两点之间的距离用AB a b表示.(1)求AB的值(2)若数轴上有一点C,满足2AC=3BC,求C点表示的数.(3)若动点P和Q分别从A、B两点出发,分别以2单位/s和4单位/s的速度运动,Q点向左运动,P点运动到何处时PQ=30?。
最新七年级一元一次方程单元培优测试卷
一、初一数学一元一次方程解答题压轴题精选(难)1.如图,已知点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+3|+(b﹣2)2=0.(1)求A、B两点的对应的数a、b;(2)点C在数轴上对应的数为x,且x是方程2x+1= x﹣8的解.①求线段BC的长;②在数轴上是否存在点P,使PA+PB=BC?求出点P对应的数;若不存在,说明理由.【答案】(1)解:∵|a+3|+(b﹣2)2=0,∴a+3=0,b﹣2=0,解得,a=﹣3,b=2,即点A表示的数是﹣3,点B表示的数是2 。
(2)解:①2x+1= x﹣8解得x=﹣6,∴BC=2﹣(﹣6)=8即线段BC的长为8;②存在点P,使PA+PB=BC理由如下:设点P的表示的数为m,则|m﹣(﹣3)|+|m﹣2|=8,∴|m+3|+|m﹣2|=8,当m>2时,解得 m=3.5,当﹣3<m<2时,无解当x<﹣3时,解得m=﹣4.5,即点P对应的数是3.5或﹣4.5【解析】【分析】(1)根据绝对值及平方的非负性,几个非负数的和为零则这几个数都为零从而得出解方程组得出a,b的值,从而得出A,B两点表示的数;(2)①解方程2x+1= x﹣8 ,得出x的值,从而得到C点的坐标,根据两点间的距离得出BC的长度;②存在点P,使PA+PB=BC理由如下:设点P的表示的数为m,根据两点间的距离公式列出方程|m﹣(﹣3)|+|m﹣2|=8,然后分类讨论:当m>2时,解得m=3.5,当﹣3<m<2时,无解,当x<﹣3时,解得m=﹣4.5,即点P对应的数是3.5或﹣4.5 。
2.温州和杭州某厂同时生产某种型号的机器若干台,温州厂可支援外地10台,杭州厂可支援外地4台,现在决定给武汉8台,南昌6台,每台机器的运费如下表,设杭州厂运往南昌的机器为x台,(1)用含x的代数式来表示总运费(单位:元)(2)若总运费为8400元,则杭州厂运往南昌的机器应为多少台?(3)试问有无可能使总运费是7800元?若有可能请写出相应的调动方案;若无可能,请说明理由.【答案】(1)解:总费用为:400(6-x)+800(4+x)+300x +500(4-x)=200x+7600(2)解:由题意得200x+7600=8400,解得x=4,答:杭州运往南昌的机器应为4台(3)解:由题意得200x+7600=7800,解得x=1. 符合实际意义,答:有可能,杭州厂运往南昌的机器为1台.【解析】【分析】(1)根据总费用=四条线路的运费之和(每一条线路的费用=台数×运费),列式后化简即可。
北京市七年级数学上册第三单元《一元一次方程》测试(培优练)
一、选择题1.下列方程变形中,正确的是( )A .方程3221x x -=+,移项,得3212x x -=-+B .方程()3251x x -=--,去括号,得3251x x -=--C .方程2332t =,系数化为1,得1t = D .方程110.20.5x x--=,整理得36x = 2.如果x =2是方程12x +a =﹣1的解,那么a 的值是( ) A .0 B .2 C .﹣2 D .﹣6 3.方程2424x x -=-+的解是 ( ) A .x =2 B .x =−2 C .x =1 D .x =0 4.一元一次方程−2x +5=3x −10的解是( )A .x =3B .x =−3C .x =5D .x =−55.有两支同样长的蜡烛,一支能点燃4小时,另一支能点燃3小时,一次遇到停电,同时点燃这两支蜡烛,来电后同时吹灭,发现其中一支的长度是另一支的一半,则停电时间为( ) A .2小时B .3小时C .125小时D .52小时6.某种商品每件的标价是330元,按标价的8折销售时,仍可获利10%,则这种商品每件的进价为( ) A .300元 B .250元 C .240元 D .200元 7.某人连续休假4天,这四天的日期之和是74,他休假第一天的日期是( ) A .17号B .18号C .19号D .20号8.下列各题正确的是( ) A .由743x x =-移项得743x x -= B .由213132x x --=+去分母得()()221133x x -=+- C .由()()221331x x ---=去括号得42391x x ---= D .由()217x x +=+去括号、移项、合并同类项得5x = 9.下列方程中,是一元一次方程的是( ) A .243x x -=B .0x =C .21x y +=D .11x x-=10.下列方程变形一定正确的是( ) A .由x +3=-1,得x =-1+3B .由7x =-2,得x =-74C .由12x =0,得x =2 D .由2=x -1,得x =1+211.若“△”是新规定的某种运算符号,设x △y=xy+x+y ,则2△m=﹣16中,m 的值为( ) A .8 B .﹣8 C .6 D .﹣6 12.若4a ﹣9与3a ﹣5互为相反数,则a 2﹣2a+1的值为( )A .1B .﹣1C .2D .013.宜宾某机械厂加工车间有34名工人,平均每名工人每天加工小齿轮20个或大齿轮15个.已知3个小齿轮和2个大齿轮配成一套,问分别安排多少名工人加工大、小齿轮,才能使每天生产的齿轮刚好配套?若设加工小齿轮的工人有x 名,则可列方程为( ) A .2015(34)x x =- B .220315(34)x x ⨯=⨯- C .320215(34)x x ⨯=⨯-D .320(34)215x x ⨯-=⨯14.佳佳的压岁钱由爸爸存入某村镇银行,当年年利率为1.5%,一年后取出时得到本息和为4060元,则佳佳的压岁钱是( ) A .2060元 B .3500元 C .4000元 D .4100元 15.方程−2x +2018=2020的解是( )A .x =−2018B .x =1C .x =−1D .x =2018二、填空题16.如果3m -与21m +互为相反数,则m =________.17.一个“数值转换机”按如图的程序计算,例如:输入的数为36,则经过一次运算即可输出结果106.若输出的结果127是经过两次运算才输出的,则输入的数是_____.18.某商品每件标价为150元,若按标价打8折后,仍可获利20%,则该商品每件的进价为______元.19.一列火车匀速行驶,经过一条长600米的隧道需要45秒的时间,隧道的顶部一盏固定灯,在火车上垂直照射的时间为15秒,则火车的长为_____.20.一个长方形周长是44cm ,长比宽的3倍少10cm ,则这个长方形的面积是______. 21.喜欢集邮的小惠共有中、外邮票145张,其中中国邮票的张数比外国邮票的张数的2倍少5张,问小惠有中国邮票______张,外国邮票_____张. 22.在方程431=-x 的两边同时_________,得x =___________. 23.某长方形足球场的周长为340米,长比宽多20米,问这个足球场的长和宽各是多少米. (1)若设这个足球场的宽为x 米,那么长为_______米。
一元一次方程测试题及答案
一元一次方程测试题及答案
测试题1:
解一元一次方程:
1. 3x - 6 = 12
首先,将方程中的常数项移到等号右边,得:
3x = 12 + 6
3x = 18
然后,将方程两边同时除以系数3,得:
x = 18/3
x = 6
所以,方程的解为x = 6。
2. 2(5x + 3) = 4(x - 2) + 6
首先,使用分配律展开方程,得:
10x + 6 = 4x - 8 + 6
然后,将x项移到等号左边,将常数项移到等号右边,得:10x - 4x = -8 + 6 - 6
6x = -8
最后,将方程两边同时除以系数6,得:
x = -8/6
x = -4/3
所以,方程的解为x = -4/3。
测试题答案:
1. 方程3x - 6 = 12的解为x = 6。
2. 方程2(5x + 3) = 4(x - 2) + 6的解为x = -4/3。
通过以上两个测试题,我们可以看到一元一次方程的解法。
首先,
将方程中的常数项移到等号右边,然后将方程化简为x的形式,最后
将方程两边同时除以系数得出x的解。
根据这个解题步骤,我们可以
解决更复杂的一元一次方程,从而求得方程的解。
总结:
本文提供了两个一元一次方程的测试题及答案,并给出了解题过程。
一元一次方程是简单的线性方程,通过对方程中的常数项和系数进行
运算,可以得出方程的解。
理解一元一次方程的解题步骤,有助于解
决更复杂的方程。
北京第十八中学七年级数学上册第三单元《一元一次方程》测试(有答案解析)
一、选择题1.在代数式a 2+1,﹣3,x 2﹣2x ,π,1x 中,是整式的有( ) A .2个B .3个C .4个D .5个 2.代数式x 2﹣1y的正确解释是( ) A .x 与y 的倒数的差的平方 B .x 的平方与y 的倒数的差C .x 的平方与y 的差的倒数D .x 与y 的差的平方的倒数 3.某公司今年2月份的利润为x 万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)( )A .(x ﹣8%)(x+10%)B .(x ﹣8%+10%)C .(1﹣8%+10%)xD .(1﹣8%)(1+10%)x4.把有理数a 代入|a +4|﹣10得到a 1,称为第一次操作,再将a 1作为a 的值代入得到a 2,称为第二次操作,…,若a =23,经过第2020次操作后得到的是( ) A .﹣7 B .﹣1 C .5 D .115.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为( )A .64B .77C .80D .856.如图,阴影部分的面积为( )A .228ab a π-B .222ab a π-C .22ab a π-D .224ab a π- 7.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A .17 B .67 C .-67D .0 8.古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .13=3+10B .25=9+16C .36=15+21D .49=18+31 9.多项式3336284a a x y x --+中,最高次项的系数和常数项分别为( )A .2和8B .4和8-C .6和8D .2-和8- 10.下列关于多项式21ab a b --的说法中,正确的是( )A .该多项式的次数是2B .该多项式是三次三项式C .该多项式的常数项是1D .该多项式的二次项系数是1- 11.代数式213x -的含义是( ). A .x 的2倍减去1除以3的商的差B .2倍的x 与1的差除以3的商C .x 与1的差的2倍除以3的商D .x 与1的差除以3的2倍12.某养殖场2018年底的生猪出栏价格为每千克a 元,受市场影响,2019年第一季度出栏价格平均每千克上升15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )元A .(115%)(120%)a ++B .(115%)20%a +C .(115%)(120%)a +-D .(120%)15%a +二、填空题13.填在各正方形中的四个数字之间具有相同的规律,根据这种规律,m 的值应是_______.14.多项式2213383x kxy y xy --+-中,不含xy 项,则k 的值为______. 15.在多项式422315x x x x 中,同类项有_________________; 16.将一个正方形纸片剪成如图中的四个小正方形,用同样的方法,每个小正方形又被剪成四个更小的正方形,这样连续5次后共得到______个小正方形.17.将下列代数式的序号填入相应的横线上.①223a b ab b ++;②2a b +;③23xy -;④0;⑤3y x -+;⑥2xy a ;⑦223x y +;⑧2x;⑨2x . (1)单项式:_______________;(2)多项式:_______________;(3)整式:_________________;(4)二项式:_______________.18.已知在没有标明原点的数轴上有四个点,且它们表示的数分别为a 、b 、c 、d .若|a ﹣c |=10,|a ﹣d |=12,|b ﹣d |=9,则|b ﹣c |=___.19.多项式223324573x x y x y y --+-按x 的降幂排列是______。
【精选】 一元一次方程单元培优测试卷
一、初一数学一元一次方程解答题压轴题精选(难)1.甲、乙两班学生到集市上购买苹果,苹果的价格如下:购苹果数不超过10千克超过10千克但不超过20千克超过20千克每千克价格10元9元8元苹果30千克.(1)乙班比甲班少付出多少元?(2)设甲班第一次购买苹果x千克.①则第二次购买的苹果为多少千克;②甲班第一次、第二次分别购买多少千克?【答案】(1)解:乙班购买苹果付出的钱数=8×30=240元,∴乙班比甲班少付出256-240=16元(2)解:①甲班第二次购买的苹果为(30-x)千克;②若x≤10,则10x+(30-x)×8=256,解得:x=8若10<x≤15,则9x+(30-x)×9=256无解.故甲班第一次购买8千克,第二次购买22千克【解析】【分析】(1)根据20kg以上每千克的价格为8元可求出乙班付出的钱数,从而可求出乙班比甲班少付出多少.(2)设甲班第一次购买x千克,第二次购买30-x千克,则需要讨论①x≤10,②10<x≤15,列出方程后求解即可得出答案.2.已知有理数,定义一种新运算:⊙ =(a+1).如:⊙ =(2+1)(1)计算(-3)⊙的值;(2)若⊙(-4)=6,求的值.【答案】(1)解:∵⊙ =(a+1),∴(-3)⊙ = ,= ,= ,= ;(2)解:∵⊙(-4)=6,∴,即,解得 .【解析】【分析】(1)根据⊙ =(a+1),直接代入计算即可;(2)根据新定义可得方程,解方程即可.3.一根长80厘米的弹簧,一端固定,如果另一端挂上物体,那么在正常情况下物体的质量每增加1千克可使弹簧增长2厘米。
(1)正常情况下,当挂着千克的物体时,弹簧的长度是多少厘米?(2)正常情况下,当挂物体的质量为6千克时,弹簧的长度是多少厘米?(3)正常情况下,当弹簧的长度是120厘米时,所挂物体的质量是多少千克?(4)如果弹簧的长度超过了150厘米时,弹簧就失去弹性,问此弹簧能否挂质量为40千克的物体?为什么?【答案】(1)解:由题意得:y=80+2x,答:弹簧的长度是(80+2x)厘米(2)解:∵y=80+2x,∴当x=6时,y=80+2×6=92,答:弹簧的长度是92厘米(3)解:∵y=80+2x,∴当y=120时,120=80+2x,∴x=20,答:所挂物体的质量是20千克。
第五章 一元一次方程培优训练测试题(含解析)
第五章:一元一次方程培优训练测试题一.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.若方程2512-=+-x kx x 的解为1-,则k 的值为( )A.10B.4-C.6-D.8- 2.一组数2,1,3,x ,7,,如果满足“从第三个数起,若前两个数依次为a 、b ,则紧随其后的数就是2a ﹣b ”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中y 表示的数为( )A.-9B.-1C.5D.213.程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是( )A. 大和尚25人,小和尚75人B. 大和尚75人,小和尚25人C. 大和尚50人,小和尚50人D. 大、小和尚各100人4.一条公路,甲队单独修需6天,乙队单独修需12天,若甲、乙两队同时分别从两端开始修,全 部修完需要( )A .2天B .3天C .4天D .5天 5.在排成每行七天的日历表中取下一个33⨯方块(如图), 若所有日期数之和为135,则n 的值为( )A .13B .14C .15D .96.甲、乙两运动员在长为100m 的直道AB (A ,B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点…若甲跑步的速度为5m/s ,乙跑步的速度为4m/s ,则起跑后100s 内,两人相遇的次数为( ) A .5B .4C .3D .27.一列“动车组”高速列车和一列普通列车的车身长分别为80米与100米,它们相向行驶在平行的 轨道上,若坐在高速列车上的旅客看见普通列车驶过窗口的时间是5秒,则坐在普通列车上的旅客看见高速列车驶过窗口的时间是( )A .7.5B .6C .5D .48.有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车;若每辆客车乘43人,则只有1人不能上车.有下列四个等式:①40m +10=43m -1;②4314010+=+n n ;③4314010-=-n n ;④40m +10=43m +1.其中正确的是( )9.将正整数1至2018按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是( )A .2019B .2018C .2016D .201310.某种商品的进价为800元,出售时标价为1200元,后来由于该项商品积压,商品准备打折出售,但要保持利润率是5%,则出售时此商品可打( )折A. 五B.六C.七D.八二.填空题(本题共6小题,每题4分,共24分) 温馨提示:填空题必须是最简洁最正确的答案!11.将方程15.013.03.02=+--x x 的分母化为整数,方程变为_______________12.一件衣服先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,那么这件衣服的成本是_____元13.关于x 的方程()2136+-=-x a ax 的解为2-=x ,则_______=a14.某公司只生产普通汽车和新能源汽车,该公司在去年的汽车产量中,新能源汽车占总产量的10%,今年由于国家能源政策的导向和油价上涨的影响,计划将普通的产量减少10%,为保持总产量与去年相等,那么今年新能源汽车的产量应增加的百分数为__________ 15.已知875cb a ==,且923=+-c b a ,则__________342=-+c b a 16.在等式()x x a 321+=+中,若x 是负整数,则整数a 的取值是_______三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17(本题6分)解下列方程: (1)2221625312--=+--x x x ; (2)01.002.01.02.02.018xx x +=--18(本题8分).已知:关于x 的方程2(x-1)+1=x 与3(x+m)=m-1有相同的解,求:以y 为未知数的方程2333ym my -=-的解.19(本题8分).关于x 的方程1634=--+ax a x 的解是x=1,对于同样的a ,求另一个关于x 的方程1436=--+ax a x 的解.20(本题10分)(1).x 等于什么数时,代数式323-x 的值比414-x 的值的2倍小1? (2).若已知M=x 2+3x-5,N=3x 2+5,并且6M=2N-4,求x.21(本题10分).某班计划买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不少于5盒).问:(1)当分别购买20盒、40盒乒乓球时,去哪家商店购买更合算?(2)当购买乒乓球多少盒时,两种优惠办法付款一样?22(本题12分).(1)一个两位数的十位数字和个位数字之和是7,如果这个两位数加上45,则恰好成为个位数字与十位数字对调之后组成的两位数.求这个两位数. (2)小李在解方程132253=--+mx x 去分母时方程右边的1没有乘以6,因而得到方程的解为4-=x ,求出m 的值并正确解出方程.23.(本题12分)把正整数1,2,3,4,…,2018排列成如图所示的一个数表.(1)用一正方形在表中随意框住4个数,把其中最小的数记为x ,另三个数用含x 的式子表示 出来,从大到小依次是 , , ; (2)当被框住的4个数之和等于416时,x 的值是多少?(3)被框住的4个数之和能否等于622?如果能,请求出此时x 的值;如果不能,请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学一元一次方程解答题压轴题精选(难)1.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,(1)写出数轴上点B表示的数________;(2)|5-3|表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如|x-3|的几何意义是数轴上表示有理数3的点与表示有理数x的点之间的距离.试探索:①:若|x-8|=2,则x =________.②:|x+12|+|x-8|的最小值为________.(3)动点P从O点出发,以每秒5个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t=________,A,P两点之间的距离为2;(4)动点P,Q分别从O,B两点,同时出发,点P以每秒5个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t=________,P,Q之间的距离为4.【答案】(1)﹣12(2)6或10;0(3)1.2或2(4)3.2或1.6【解析】【解答】(1)数轴上B表示的数为8-20=﹣12;(2)①因为互为相反数的两个数绝对值相同,所以由│x-8│=2可得x-8=2或﹣(x-8)=2,解得x=6或10;②因为绝对值最小的数是0,所以│x+12│+│x-8│的最小值是0;(3)根据│A点在数轴上的位置-t秒后P点在数轴上的位置│=A、P两点间的距离列式得│8-5t│=2,因为互为相反数的两个数绝对值相同,所以8-5t=2或﹣(8-5t)=2,解得t=1.2或2;(4)根据t秒后Q点在数轴上的位置-t秒后P点在数轴上的位置│=t秒后P,Q的距离列式得│﹣12+10t-5t│=4,因为互为相反数的两个数绝对值相同,所以﹣12+10t-5t=4或﹣(﹣12+10t-5t)=4,解得t=3.2或1.6.【分析】(1)抓住已知条件:B是数轴上位于点A左侧一点,且AB=20,且点A表示的数是8,就可求出OB的长,从而可得出点B表示的数。
(2)①根据|x-8|=2,可得出x-8=±2,解方程即可求出x的值;根据因为绝对值最小的数是0,因此可得出│x+12│+│x-8│的最小值是0。
(3)根据A,P两点之间的距离为2,可列出方程│8-5t│=2,再解方程求出t的值。
(4)根据t秒后Q点在数轴上的位置-t秒后P点在数轴上的位置│=t秒后P,Q的距离,可得出方程│﹣12+10t-5t│=4,再利用绝对值等于4的是为±4,可列出﹣12+10t-5t=±4,解方程求出t的值即可。
2.如图,数轴上 A、B 两点所对应的数分别是 a 和 b,且(a+5)2+|b﹣7|=0.(1)求 a,b;A、B 两点之间的距离.(2)有一动点 P 从点 A 出发第一次向左运动 1 个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照如此规律不断地左右运动,当运动到 2019次时,求点P所对应的数.(3)在(2)的条件下,点P在某次运动时恰好到达某一个位置,使点P到点B的距离是点 P 到点 A 的距离的3倍?请直接写出此时点 P所对应的数,并分别写出是第几次运动.【答案】(1)解:∵(a+5)2+|b﹣7|=0,∴a+5=0,b﹣7=0,∴a=﹣5,b=7;∴A、B两点之间的距离=|﹣5|+7=12;(2)解:设向左运动记为负数,向右运动记为正数,依题意得:﹣5﹣1+2﹣3+4﹣5+6﹣7+…+2018﹣2019=﹣5+1009﹣2019=﹣1015.答:点P所对应的数为﹣1015(3)解:设点P对应的有理数的值为x,①当点P在点A的左侧时:PA=﹣5﹣x,PB=7﹣x,依题意得:7﹣x=3(﹣5﹣x),解得:x=﹣11;②当点P在点A和点B之间时:PA=x﹣(﹣5)=x+5,PB=7﹣x,依题意得:7﹣x=3(x+5),解得:x=﹣2;③当点P在点B的右侧时:PA=x﹣(﹣5)=x+5,PB=x﹣7,依题意得:x﹣7=3(x+5),解得:x=﹣11,这与点P在点B的右侧(即 x>7)矛盾,故舍去.综上所述,点P所对应的有理数分别是﹣11和﹣2.所以﹣11和﹣2分别是点P运动了第11次和第6次到达的位置.【解析】【分析】(1)由绝对值和平方的非负性可得a与b的值,相减得两点间的距离。
(2)设向左运动记为负数,向右运动记为正数,并在-5的基础上把得到的数据相加即可。
(3)设点P对应的有理数的值为x,分别表示PA和PB的长,列方程求解即可。
3.先阅读下列解题过程,然后解答问题⑴、⑵,解方程:。
解:①当3x≥0时,原方程可化为一元一次方程3x=1,它的解是;②当3x≤0时,原方程可化为一元一次方程-3x=1,它的解是。
(1)请你根据以上理解,解方程:;(2)探究:当b为何值时,方程,①无解;②只有一个解;③有两个解。
【答案】(1)解:当x−3≥0时,原方程可化为一元一次方程为2(x−3)+5=13,方程的解是x=7;②当x−3<0时,原方程可化为一元一次方程为2(3−x)+5=13,方程的解是x=−1(2)解:∵|x−2|≥0,∴当b+1<0,即b<−1时,方程无解;当b+1=0,即b=−1时,方程只有一个解;当b+1>0,即b>−1时,方程有两个解【解析】【分析】(1)当x−3≥0时,得出方程为2(x−3)+5=13,求出方程的解即可;当x−3<0时,得出方程为2(3−x)+5=13,求出方程的解即可;(2)根据绝对值具有非负性得出|x−2|≥0,分别求出b+1<0,b+1=0,b+1>0的值,即可求出答案.4.已知有理数,定义一种新运算:⊙ =(a+1).如:⊙ =(2+1)(1)计算(-3)⊙的值;(2)若⊙(-4)=6,求的值.【答案】(1)解:∵⊙ =(a+1),∴(-3)⊙ = ,= ,= ,= ;(2)解:∵⊙(-4)=6,∴,即,解得 .【解析】【分析】(1)根据⊙ =(a+1),直接代入计算即可;(2)根据新定义可得方程,解方程即可.5.一根长80厘米的弹簧,一端固定,如果另一端挂上物体,那么在正常情况下物体的质量每增加1千克可使弹簧增长2厘米。
(1)正常情况下,当挂着千克的物体时,弹簧的长度是多少厘米?(2)正常情况下,当挂物体的质量为6千克时,弹簧的长度是多少厘米?(3)正常情况下,当弹簧的长度是120厘米时,所挂物体的质量是多少千克?(4)如果弹簧的长度超过了150厘米时,弹簧就失去弹性,问此弹簧能否挂质量为40千克的物体?为什么?【答案】(1)解:由题意得:y=80+2x,答:弹簧的长度是(80+2x)厘米(2)解:∵y=80+2x,∴当x=6时,y=80+2×6=92,答:弹簧的长度是92厘米(3)解:∵y=80+2x,∴当y=120时,120=80+2x,∴x=20,答:所挂物体的质量是20千克。
(4)解:∵y=80+2x,∴当x=40时,y=80+2×40=160(厘米)>150(厘米)∴此弹簧不能挂质量为40千克的物体.【解析】【分析】(1)由题意,物体的质量每增加1千克可使弹簧增长2厘米,于是可知物体的质量与弹簧的长度有关系.弹簧的长度=弹簧的原长+伸长的长度;弹簧伸长的长度=物体的质量×2厘米;根据这个关系可求解;(2)把x=6代入(1)中的关系式计算即可求解;(3)把y=120代入(1)中的关系式计算即可求解;(4)同理可求解.6.某食品厂从生产的袋装食品中抽出样品若干袋,用以检测每袋的质量是否符合标准,超过或不足标准质量的部分用正数或负数来表示(单位:克),记录如下表:袋数2132●合计与标准质量的差值+0.5+0.8+0.6﹣0.4﹣0.7+1.4(2)若每袋的标准质量为50克,每克的生产成本2元,求这批样品的总成本.【答案】(1)解:设被墨水涂污了的数据为x,则0.5×2+0.8×1+0.6×3+(﹣0.4)×2+(﹣0.7)x=1.4,解得:x=2,故这个数据为2(2)解:[50+1.4÷(2+1+3+2+2)]×(2+1+3+2+2)×2=1002.8元,答:这批样品的总成本是1002.8元【解析】【分析】(1)设被墨水涂污了的数据为x,根据题意列方程,即可得到结论;(2)根据题意计算计算即可.7.国家规定个人发表文章、出版图书所得稿费的纳税计算方法是:稿费不高于800元的不纳税;稿费高于800元,而低于4000元的应缴纳超过800元的那部分稿费的的税;稿费为4000元或高于4000元的应缴纳全部稿费的的税.试根据上述纳税的计算方法作答:(1)若王老师获得的稿费为2000元,则应纳税________元,若王老师获得的稿费为5000元,则应纳税________元(2)若王老师获稿费后纳税280元,求这笔稿费是多少元?【答案】(1)168;550(2)解:因为当稿费为4000元时,纳税=4000×11%=440(元),且280<440,所以王老师的这笔稿税高于800元,且低于4000元.设王老师的这笔稿税为x元,根据题意,14%(x-800)=280x=2800,答:王老师的这笔稿税为2800元.【解析】【解答】解:(1)①∵800<2400<4000,∴当王老师获得稿费为2000元时,应纳税:(2000-800)×14%=168(元);②当王老师获得稿费为5000元时,应纳税:5000×11%=550(元);【分析】(1)根据条件②计算即可;根据条件③计算即可;(2)设王老师所获得的这笔稿费为元,根据纳税金额,可判断稿费800<x<4000,属于第二种,利用稿费420元,列出方程,求出x值即可.8.仔细阅读下列材料.“分数均可化为有限小数或无限循环小数”,反之,“有限小数或无限小数均可化为分数”.例如: =1÷4=0.25; = =8÷5=1.6; =1÷3= ,反之,0.25= = ;1.6= = =.那么,怎么化成分数呢?解:∵ ×10=3+ ,∴不妨设 =x,则上式变为10x=3+x,解得x= ,即 = ;∵ = ,设 =x,则上式变为100x=2+x,解得x= ,∴ = =1+x=1+ =(1)将分数化为小数: =________, =________;(2)将小数化为分数:=________;=________。
(3)将小数化为分数,需要写出推理过程.【答案】(1)1.8;(2);(3)解:设 =x,则100x=95+x,解得:x= =1+ =【解析】【解答】(1)9÷5=1.8,22÷7= ;(2)设0. x,根据题意得:10x=5+x,解得:x ;设0. x,则10x=6+x,解得:x ..故答案为:.【分析】(1)由已学过的知识可知:分数均可化为有限小数或无限循环小数;是一个有限小数,是一个无限循环小数;(2)由阅读材料可求解;(3)由阅读材料可知,设循环节为x,即 =x,由材料可得方程 100x=95+x,解方程即可求解。