初中数学常用公式定理

合集下载

初中数学公式定理大全

初中数学公式定理大全

初中数学公式定理大全1点的定理:过两点有且只有一条直线;两点之间线段最短角的定理:同角或等角的补角相等;同角或等角的余角相等直线定理:过一点有且只有一条直线和已知直线垂直;直线外一点与直线上各点连接的所有线段中,垂线段最短2平行定理:经过直线外一点,有且只有一条直线与这条直线平行推论:如果两条直线都和第三条直线平行,这两条直线也互相平行证明两直线平行定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行两直线平行推论:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补3定理:三角形两边的和大于第三边推论:三角形两边的差小于第三边三角形内角和定理:三角形三个内角的和等于180°4定理:全等三角形的对应边、对应角相等边角边定理(SAS):有两边和它们的夹角对应相等的两个三角形全等;有两角和它们的夹边对应相等的两个三角形全等推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等边边边定理(SSS):有三边对应相等的两个三角形全等斜边、直角边定理(HL):有斜边和一条直角边对应相等的两个直角三角形全等5定理1:在角的平分线上的点到这个角的两边的距离相等定理2:到一个角的两边的距离相同的点,在这个角的平分线上;角的平分线是到角的两边距离相等的所有点的集合6等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)推论1:等腰三角形顶角的平分线平分底边并且垂直于底边;等腰三角形顶角平分线、底边上的中线和底边上的高互相重合等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)7定理:线段垂直平分线上的点和这条线段两个端点的距离相等逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上;线段的垂直平分线可看作和线段两端点距离相等的所有点的集合定理1:关于某条直线对称的两个图形是全等形定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称8定理:在直角三角形中,如果一个锐角等于30°那它所对的直角边等于斜边的一半判定定理:直角三角形斜边上的中线等于斜边上的一半勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,a^2+b^2=c^2勾股定理的逆定理:如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形9定理:四边形的内角和等于360°;四边形的外角和等于360°多边形内角和定理:n边形的内角和等于(n-2)×180°推论:任意多边的外角和等于360°10平行四边形性质定理:1.平行四边形的对角相等2.平行四边形的对边相等3.平行四边形的对角线互相平分推论:夹在两条平行线间的平行线段相等平行四边形判定定理 1.两组对角分别相等的四边形是平行四边形 2.两组对边分别相等的四边形是平行四边形 3.对角线互相平分的四边形是平行四边形 4.一组对边平行相等的四边形是平行四边形11矩形性质定理:矩形的四个角都是直角;矩形的对角线相等矩形判定定理1:有三个角是直角的四边形是矩形;对角线相等的平行四边形是矩形12菱形性质定理1:菱形的四条边都相等菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形面积=对角线乘积的一半,即S=(a×b)÷2菱形判定定理1:四边都相等的四边形是菱形菱形判定定理2:对角线互相垂直的平行四边形是菱形13正方形性质定理1:正方形的四个角都是直角,四条边都相等正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角14定理:关于中心对称的两个图形是全等的;关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称15等腰梯形性质定理:1.等腰梯形在同一底上的两个角相等2.等腰梯形的两条对角线相等等腰梯形判定定理:1. 在同一底上的两个角相等的梯形是等腰梯形2.对角线相等的梯形是等腰梯形平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边16三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半:L=(a+b)÷2S=L×h17相似三角形定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似相似三角形判定定理:1. 两角对应相等,两三角形相似(ASA)2. 两边对应成比例且夹角相等,两三角形相似(SAS)3. 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似判定定理3:三边对应成比例,两三角形相似(SSS)相似直角三角形定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似性质定理:1.相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比2.相似三角形周长的比等于相似比3.相似三角形面积的比等于相似比的平方18定理1:任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值定理2:任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值19定理:过不共线的三个点,可以作且只可以作一个圆;垂直于弦的直径平分这条弦,并且评分弦所对的两条弧推论1:平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧推论2:弦的垂直平分弦经过圆心,并且平分弦所对的两条弧推论3:平分弦所对的一条弧的直径,垂直评分弦,并且平分弦所对的另一条弧定理3:1.在同圆或等圆中,相等的弧所对的弦相等,所对的弦的弦心距相等2.经过圆的半径外端点,并且垂直于这条半径的直线是这个圆的切线3.圆的切线垂直经过切点的半径4.三角形的三个内角平分线交于一点,这点是三角形的内心5.从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角6.圆的外切四边形的两组对边的和相等7.如果四边形两组对边的和相等,那么它必有内切圆8.两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等20比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b。

初中数学定理公式定律大全

初中数学定理公式定律大全

初中数学定理公式定律大全1.代数定理-同号两数相乘为正,异号两数相乘为负。

-分配率:a×(b+c)=a×b+a×c。

-同底数幂相除,指数相减:(a^m)÷(a^n)=a^(m-n)。

-幂的乘法:(a^m)×(a^n)=a^(m+n)。

2.平方根公式-设a≥0,则√a×√a=a。

-若a≥0,则√(a^2)=a。

3.线性方程- 设a ≠ 0,方程 ax + b = 0 的解是 x = -b/a。

- 形如 ax + b = cx + d 的一次方程,有唯一解 x = (d - b)/(a -c)。

4.角度定理-外角和定理:一个三角形的外角等于它的两个不相邻内角的和。

-三角形内角和定理:一个三角形的内角之和等于180°。

-同位角定理:如果两条直线被一条截线分成两个内交角和两个外交角,则这两个内交角互为同位角,两个外交角互为同位角。

5.平行线和三角形定理-同位角、内错角定理:当两条直线被一条截线分成两个内交角和两个外交角时,同位角相等,内错角相等。

-平行线截割定理:当两条平行线被一条截线截断时,同位角相等,内错角相等。

-三角形内角和定理:一个三角形的内角之和等于180°。

-等腰三角形定理:两边相等的三角形中,两个对应的内角也相等。

6.几何定理-直角三角形定理:一个三角形中,如果一些角是直角,则它是直角三角形。

-直角边定理:在直角三角形中,斜边的平方等于各直角边的平方和。

-勾股定理:在直角三角形中,斜边的平方等于两个直角边的平方和。

-相似三角形定理:如果两个三角形的对应角相等,则这两个三角形相似。

-正方形的对角线垂直定理:正方形的对角线互相垂直且相等。

7.百分数与比例-百分数换分数:将百分数转化为分数,百分数除以100即可得到对应的分数。

-百分数的四则运算:百分数的加减乘除运算,先转化为分数进行计算,最后再转化为百分数。

-比例:设a:b=c:d,称a和b为比例的两个项,c和d为比例的两个对应项。

初中数理化公式定理大全

初中数理化公式定理大全

初中数理化公式定理大全
一、数学
1.平面向量综合定理
(1)如果a、b两向量的平行四边形内有n个单位向量,那么:
a+b=n
(2)如果两个平行四边形的面积等于n,那么:a·b=n
2.勾股定理
若两条直线a、b的端点坐标分别为(x1,y1),(x2,y2),则这两条直线之间的距离为:
d=√(x1-x2)2+(y1-y2)2
3.三角形面积公式
三角形面积S=1/2×底边×高,即:S=1/2×a×h。

4.三角函数定理
三个正数a,b,c的余弦定理为:a2 = b2+c2-2bc×cosA
5.四边形面积公式
四边形面积S=(a+b)×h/2,其中a、b是四边形的两边,h是两边之间的距离。

二、物理
1.牛顿定律
物体的受力等价于这个物体所受到的力与物体质量的乘积
2.克劳斯定律
光在物质中传播的速度受到物质的影响,物质的折射率越大,光的传播速度就越小。

3.弹性力学定律
当一定物体受到外力作用时,物体将发生位移,外力和位移之间的比值即为弹性力学定律,其公式为:F=kd
4.相对论
物理学上提出的一种观点,认为在观察者看来,物体的运动受到光的限制,其速度不会超过光的速度,即:v<c
5.热力学定律
热力学第一定律:能量守恒定律,即热量不会因时空而消失。

初中数学所有定理与公式

初中数学所有定理与公式

初中数学所有定理与公式初中数学中的定理与公式有很多,以下是一些重要的定理和公式:一、整数与出列1.整数与负数相乘,结果为负数。

(定理)2.出列法则:同号相乘为正,异号相乘为负。

(公式)二、整式的加减与乘除1.加法交换律:a+b=b+a。

(定理)2.减法可加法运算:a-b=a+(-b)。

(公式)3.乘法交换律:a×b=b×a。

(定理)4.乘法分配律:a×(b+c)=a×b+a×c。

(定理)5.除法公式:a÷b=a×(1/b)。

(公式)6.乘幂公式:a^m×a^n=a^(m+n)。

(公式)三、因式分解与倍数与公约数1.因式分解:将一个多项式写成几个因式相乘的形式。

(规则)2.公约数:能同时整除两个或多个数的数。

(定义)3.最大公约数:一组数的公约数中最大的一个。

(定义)4.最小公倍数:一组数中能被所有数整除的最小整数。

(定义)四、平方根与勾股定理1.平方根的性质:如果a²=b,则√b=,a。

(定理)2.勾股定理:在直角三角形中,a²+b²=c²。

(定理)五、百分数及其应用1.百分比:以百为基数的计数单位。

(定义)2.百分数计算:a%=a/100。

(公式)3.利率计算:利息=本金×利率×时间。

(公式)4.百分数的增减:数据增加或减少的百分比计算。

(公式)六、方程与不等式1. 一元一次方程:ax + b = 0,x = -b/a。

(定理)2. 一元二次方程求解公式:x = (-b ± √(b² - 4ac))/(2a)。

(公式)3.不等式的性质:同意负号,异号取反,非负数平方不小于0。

(定理)七、平行线与相交线1.平行线的性质:同位角相等,内错角相等,外错角相等。

(定理)2.相交线的性质:同位角互补,内错角互补,外错角互补。

(定理)八、三角形与四边形1.三角形内角和为180°。

初中数学公式定理大全

初中数学公式定理大全

初中数学公式定理大全
一、比例
1、比例定义:两个量的比值称为比例。

2、反比例定理:如果两个数中,一个数的倒数与另一个数成正比,则称这两个数成反比。

3、比例的乘法定理:如果两个比例的乘积等于1,则称这两个比例互相等数。

4、比例的加法定理:若两个比例的和为1,则称这两个比例是相等数。

5、三比例定理:若有三个比例a:b:c,他们的和为1,那么
a+b:b+c:c+a=1
二、平行线定理
1、平行线定义:两条直线不相交,且均与同一平行线相平行,则称这两条直线相平行。

2、平行线分割叉定理:若有两条平行线与另一直线相交,则这两条射线所成的四边形的面积是相等的。

3、垂直平分线定理:若有一条直线与另一条直线相垂直,则这二条直线的中垂线所成的四边形的面积是相等的。

4、向量平分定理:若有两条向量,它们的和所成的新向量与该向量成反比,则称这两条向量相平分。

三、三角形定理
1、三角形定义:三点不共线时,连接这三点构成的图形称为三角形。

2、勾股定理:在直角三角形中,斜边的平方等于两条直角边的平方和。

3、相似三角形定理:若两个三角形的各边按比例相等,则称这两个
三角形是相似的。

4、三角形的中线定理:在直角三角形中。

初中数学所有的公式大全

初中数学所有的公式大全

初中数学所有的公式大全初中数学中常用的公式有很多,下面是其中一些常见的公式说明:1.直角三角形的勾股定理:斜边的平方等于两腰的平方和。

其中a、b为直角边,c为斜边(斜边对应的角为90度)。

c²=a²+b²2.根据两边和夹角求第三边的余弦定理:若一三角形的三边分别为a、b、c,夹角对应的边分别为A、B、C,则有以下关系。

c² = a² + b² - 2abcosC3.根据两边和夹角求第三边的正弦定理:若一三角形的三边分别为a、b、c,夹角对应的边分别为A、B、C,则有以下关系。

a/sinA = b/sinB = c/sinC4.两角的和差化积公式:(1)sin(A±B) = sinAcosB ± cosAsinB(2)cos(A±B) = cosAcosB ∓ sinAsinB(3)tan(A±B) = (tanA ± tanB)/(1 ∓ tanAtanB)5.平行四边形的面积公式:平行四边形的面积等于底边乘以高。

其中b为底边,h为高。

S=b×h6.三角形的面积公式:三角形的面积可以通过底边与高或两边的长度和夹角正弦来计算。

(1)S=1/2×底边×高(2)S = 1/2 × a × b × sinC7.圆的周长和面积公式:(1)周长C=2πr,其中r为半径。

(2)面积S=πr²8.等差数列的通项公式:若一个数列中任意两个相邻的项的差值都是相等的,称为等差数列。

其通项公式如下:an = a1 + (n - 1)d其中a1为首项,n为第几项,d为公差。

9.等比数列的通项公式:若一个数列中任意两个相邻的项的比值都是相等的,称为等比数列。

an = a1 × r^(n - 1)其中a1为首项,n为第几项,r为公比(不为0)。

初中数学常用公式和定理大全

初中数学常用公式和定理大全

初中数学常用公式和定理大全
一、一元二次方程公式
一元二次方程的解一般式:
$$ax^2+bx+c=0$$
解为: $$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$
其中,a、b、c都是实数,且a≠0
二、立方根公式
定理:任意一个非负数都可以表示为三个整数立方根之和的形式也就是:$$a=x^3+y^3+z^3$$
其中,x,y,z都是整数
三、勾股定理
定理:在直角三角形中,斜边的平方等于两个直角边的平方和
也就是:
$$c^2=a^2+b^2$$
其中,a、b、c分别表示直角三角形的三边
四、三角函数公式
正弦定理:
在任意直角三角形中,有
$$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R$$
其中,a、b、c分别是直角三角形的三边,A、B、C是其对应的角,R
是三角形的外接圆半径。

余弦定理:
在任意直角三角形中,有
$$a^2=b^2 + c^2 -2bc\cos A $$
$$b^2=a^2 + c^2 -2ac\cos B $$
$$c^2=a^2 + b^2 -2ab\cos C $$
其中,a、b、c分别表示直角三角形的三边,A、B、C分别表示其对
应的角。

五、椭圆面积公式
定理:椭圆的面积可以用下面公式计算:
$$S=\pi ab$$
其中,a和b分别表示椭圆的长半轴和短半轴的长度,π表示圆周率。

初中数学必背公式及定理

初中数学必背公式及定理

初中数学必背公式及定理数学是一门重要的学科,也是一门需要掌握公式和定理的学科。

初中数学中的公式和定理是学习数学的基础,掌握了这些公式和定理,能够更好地解题和理解数学知识。

下面是初中数学必背的公式和定理。

一、代数中的公式1. 二次方程的求根公式:对于一元二次方程ax²+bx+c=0,其根可以通过以下公式求得:x = (-b ± √(b²-4ac))/(2a)2. 平方差公式:(a±b)² = a²±2ab+b²3. 二次完全平方公式:a²+2ab+b²=(a+b)²4. 立方差公式:(a±b)³=a³±3a²b+3ab²±b³5.平方根的乘法公式:√a*√b=√(a*b)二、几何中的公式1.矩形的周长和面积:对于矩形,其周长C=2(l+w),面积S=l*w,其中l表示矩形的长度,w表示矩形的宽度。

2.三角形的周长和面积:对于三角形,其周长C=a+b+c,面积S=1/2*b*h,其中a、b、c表示三角形的三边长,h表示三角形的高。

3.圆的周长和面积:对于圆,其周长C=2πr,面积S=πr²,其中π取近似值3.14,r表示圆的半径。

4.直角三角形的勾股定理:对于直角三角形,设c为斜边,a、b为两直角边,则满足a²+b²=c²。

5.同心圆弦的等分定理:如果两条弦(或弦和直径)在同一个圆的同一边相交,那么它们所夹的弧(或弧和弦所夹的角)相等。

三、概率与统计中的公式1.事件的概率:设S为一个随机试验的样本空间,E为S的子集(即事件),则事件E的概率P(E)定义为E中的样本点数除以S中的样本点数。

2.互斥事件的概率:设A、B为两个事件,如果A和B不可能同时发生,称A和B为互斥事件,概率计算公式为P(A∪B)=P(A)+P(B)。

初中数学公式定理大全

初中数学公式定理大全

初中数学公式定理大全1.代数公式- 两个数的乘积等于它们的积:ab = ba- 两个数乘积的倒数等于它们的倒数的乘积:(ab)^-1 = a^-1 * b^-1- 两个数的平方和等于它们的平方和的两倍加上它们的积:(a + b)^2 = a^2 + 2ab + b^2- 两个数的平方差等于它们的平方差的两倍减去它们的积:(a -b)^2 = a^2 - 2ab + b^22.平面几何定理- 锐角三角形的三条边的平方之和等于两倍的三个角的余弦值之和:a^2 + b^2 + c^2 = 2(abcosC + bccosA + cacosB)-三角形内角和定理:三角形的三个内角的和等于180度:A+B+C=180度-等腰三角形底角定理:等腰三角形的底角等于顶角的一半:A=B/2 -相似三角形的对应边成比例:a/b=c/d3.空间几何定理-空间直角三角形的斜边的平方等于两个直角边的平方的和:c^2=a^2+b^2-空间三角形内角和定理:空间三角形的三个内角的和等于180度:A+B+C=180度-垂直平分线定理:平面内相交的两条直线的垂直平分线互相垂直4.数列与数学归纳法-等差数列的通项公式:an = a1 + (n - 1)d-等差数列的前n项和公式:Sn = (n/2)(a1 + an)-等比数列的通项公式:an = a1 * r^(n - 1)-等比数列的前n项和公式(当r不等于1时):Sn=a1*(1-r^n)/(1-r) -数学归纳法:若数学命题在数的一部分上成立且下一部分数的成立是依赖于上一部分数的成立,则该数学命题在全体正整数上成立5.概率-事件的概率:P(A)=n(A)/n(S),其中n(A)表示事件A中的有利结果数,n(S)表示样本空间中的总结果数-互斥事件的概率和:P(A+B)=P(A)+P(B),其中A和B是互斥事件- 事件的相对频率概率:P(A) = lim(n(A) / n),其中n表示试验次数6.函数- 一次函数的解析式:y = kx + b,其中k表示斜率,b表示截距- 二次函数的解析式:y = ax^2 + bx + c,其中a表示二次项系数,b表示一次项系数,c表示常数项这只是初中数学常用的一些公式和定理的简要介绍,数学含有广泛且深奥的知识。

(完整版)初中数学公式定理大全

(完整版)初中数学公式定理大全

一、锐角三角函数:初中数学公式定理大全sin A =∠A 的对边cos A =∠A 的邻边① ∠A 是 Rt △ABC 的任一锐角,则∠A 的正弦:tan A = ∠A 的对边斜边 ,∠A 的余弦: 斜 边 ,∠A 的正切:∠A 的邻边; 并且 sin 2A +cos 2A =1. 0<sin A <1,0<cos A <1,tan A >0. ∠A 越大,∠A 的正弦和正切值越大,余弦值反而越小.② 余角公式:sin(90º-A )=cos A ,cos(90º-A )=sin A .铅垂高度=ℎ ℎ③ 斜坡的坡度:i =水平宽度 ④ 特殊角的三角函数值:l .设坡角为 α,则 i =tan α=l . l二、二次函数: y = ) 1.定义:一般地,如果 ,那么 y 叫做 x 的二次函数. 2. 抛物线的三要素:开口方向、对称轴、顶点.①a 的符号决定抛物线的开口方向:当a > 0时,开口向上;当a < 0时,开口向下;|a |相等,抛物线的开口大小、形状相同。

②平行于 y 轴(或重合)的直线记作x = ℎ,特别地,y 轴记作直线x = 0。

y = ax 2 + bx + c = a(x + b )2 + 4ac ‒ b2(‒ b , 4ac ‒ b 2) x = ‒ b(1)公式法:2a4a,∴顶点是 2a4a,对称轴是直线2a(2)配方法:运用配方的方法,将抛物线的解析式化为y = a (x ‒ ℎ)2+ k 的形式,得到顶点为(h,k),对称轴是直线x = ℎ(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,对称轴与抛物线的交点是顶点。

(x ,y ) (x ,y ) x = x 1 + x 2 若已知抛物线上两点 1 、 2 (及 y 值相同),则对称轴方程可以表示为:2 4.抛物线y = ax 2 + bx + c 中,a ,b ,c 的作用(1)a 决定开口方向及开口大小,这与y = ax 2中的a 完全一样. b a y = ax 2 + bx + c x =‒ bb = 0 (2) 和 共同决定抛物线对称轴的位置.由于抛物线 的对称轴是直线 2a ,故:① 时,对b > 0a b< 0 a称轴为 y 轴;②a (即 、b 同号)时,对称轴在 y 轴左侧;③a (即 、b 异号)时,对称轴在 y 轴右侧.(3)c 的大小决定抛物线y = ax 2+ bx + c 与 y 轴交点的位置. 当x = 0时,y=c ,∴抛物线y = ax 2+ bx + c 与 y 轴有且只有一个交点(0,c )① c = 0,抛物线经过原点; ②c > 0,与 y 轴交于正半轴;③c < 0,与 y 轴交于负半轴b < 0α以上三点中,当结论和条件互换时,仍成立。

初中数学必背公式及定理

初中数学必背公式及定理

初中数学必背公式及定理初中数学中,有很多重要的公式和定理需要掌握。

下面是一些必备的公式和定理:一、基础运算法则:1.加法交换律:a+b=b+a2.减法的定义:a-b=a+(-b)3.减法与加法的关系:a-b=a+(-b)=a+(-1)×b4.乘法交换律:a×b=b×a5.乘法结合律:(a×b)×c=a×(b×c)6.乘法分配律:a×(b+c)=a×b+a×c二、整数运算公式:1.同号相乘,异号相反:正×正=正,负×负=正,正×负=负,负×正=负2.乘方运算:a^m×a^n=a^(m+n),(a^m)^n=a^(m×n)3.含有分数运算:a/b×c/d=(a×c)/(b×d),a/b÷c/d=(a×d)/(b×c)4.分数乘方运算:(a/b)^n=a^n/b^n,a^(1/n)=b,则a=b^n5.注意计算顺序:先乘方,再乘除,最后加减三、平方与立方公式:1. (a+b)² = a² + 2ab + b²2. (a-b)² = a² - 2ab + b²3.a²-b²=(a+b)(a-b)4. (a+b)³ = a³ + 3a²b + 3ab² + b³5. (a-b)³ = a³ - 3a²b + 3ab² - b³四、勾股定理:1.直角三角形的斜边平方等于两直角边平方和:c²=a²+b²五、等腰三角形定理:1.等腰三角形的两底边相等:AB=AC2.等腰三角形的两底角相等:∠B=∠C3.等腰三角形的顶角底角和为180°:∠A+∠B+∠C=180°六、平行线定理:1.同位角相等:如果两条直线被一条直线截断,同位角相等2.内错角相等:平行线被截断时,内错角相等3.顶角、底角和补角的关系:顶角与底角之和为补角4.平行线间的平行线相等:若有两条直线分别与另外两条直线平行,那么这两条直线也平行。

初中数学常用公式定理推论结论归纳总结

初中数学常用公式定理推论结论归纳总结

初中数学常用公式定理推论结论归纳总结数学是一门严谨而又具有一定难度的学科,其中包含了大量的公式、定理、推论和结论。

掌握这些数学知识点对于学生来说至关重要。

下面将对初中数学常用的公式、定理、推论和结论进行归纳总结。

一、常用公式1.平均数的计算公式:平均数=总和/数据个数2.相反数公式:a的相反数为-b,b的相反数为-a。

3.两个数的和等于它们的差加上它们的和的一半:a+b=(a-b)+a+b)/24.两个数的差等于它们的和减去它们的差的一半:a-b=(a+b)-(a-b)/25.a的n次方的倒数等于a的-n次方:a的n次方的倒数=1/a^n二、常见定理1.勾股定理:直角三角形中,直角边的平方等于斜边两个边长的平方和。

c^2=a^2+b^22.中线定理:三角形中,连接三角形的一个顶点和中点的线段被称为中线,三条中线交于一点,且交点离三个顶点的距离相等。

3.等腰三角形的两底角相等。

4.相似三角形的对应角相等,对应边成比例。

5.两个角的和等于180度:∠A+∠B=180°6.弧度与角度的转换公式:弧度=角度*π/180角度=弧度*180/π三、常见推论1.相邻角是补角,即两个角的和等于90度。

2.锐角三角函数的值在[0,1]之间,且随着角度的增大而增大。

3.勾股定理的推论:直角边平方和大于斜边的平方,直角边平方和小于斜边的平方。

4.直角三角形的两个锐角是互补角。

5.扇形面积公式:扇形面积=(弧长*半径)/26.球的体积公式:球的体积=(4/3)*π*半径^3四、常见结论1.平行四边形的对角线互相平分。

2.对于等腰三角形,底边上的角平分线、中线和高交于一点。

3.根式的乘法和除法:根号a * 根号b = 根号(ab)根号a/根号b=根号(a/b)4.等差数列的前n项和公式:S(n)=(首项+尾项)*项数/25.等差数列的通项公式:第n项=首项+公差*(n-1)以上就是初中数学中常用的公式、定理、推论和结论的归纳总结。

初中数学公式定理大全

初中数学公式定理大全

初中数学公式定理大全1.代数公式:- 二次方程求根公式:对于一元二次方程ax^2+bx+c=0,其根的公式为x=(-b±√(b^2-4ac))/(2a)。

-平方差公式:(a+b)(a-b)=a^2-b^2- 完全平方公式:(a+b)^2=a^2+2ab+b^2- 三次方差公式:(a+b)(a^2-ab+b^2)=a^3+b^32.几何公式:-长方形面积:面积=长×宽。

-正方形面积:面积=边长×边长。

-三角形面积:面积=底边长×高/2-圆的面积:面积=πr^2-圆的周长:周长=2πr。

3.三角函数定理:- 正弦定理:在任意三角形ABC中,a/sinA=b/sinB=c/sinC。

- 余弦定理:在任意三角形ABC中,c^2=a^2+b^2-2abcosC。

4.概率统计公式:-计算概率:概率=事件发生的次数/总的可能次数。

- 期望值:期望值=E(x)=x1p1+x2p2+...+xnpn。

5.立体几何公式:-立方体的体积:体积=a^3-球的体积:体积=4/3πr^36.相似三角形定理:-AA相似定理:若两个三角形的两个角分别相等,则它们相似。

-AAA相似定理:若两个三角形的对应角相等,则它们相似。

7.数列公式:-等差数列通项公式:an=a1+(n-1)d。

-等比数列通项公式:an=a1*r^(n-1)。

8.二次函数定理:- 平移定理:设y=a(x-h)^2+k是抛物线y=ax^2的图像上任意一点,那么点(h,k)就是抛物线的顶点。

- 判别式定理:一元二次方程ax^2+bx+c=0的判别式Δ=b^2-4ac来判断方程的解的性质。

这些是初中数学中的一些重要公式定理,它们帮助我们更好地理解和应用数学知识,提高解题能力。

当然,这里列举的仅仅是一部分,数学世界是庞大而深奥的,还有很多其他的公式和定理等待我们去发现和探索。

希望大家能在学习数学的过程中,善于总结和应用这些公式定理,将其运用到实际问题中,提升数学水平。

初中数学常用公式定理

初中数学常用公式定理

初中数学常用公式定理在初中数学中,有许多常用的公式和定理,下面将列举一些重要的。

一、常用公式:1.两点间距离公式:设两点的坐标分别为(x₁,y₁)和(x₂,y₂),则两点之间的距离为√((x₂-x₁)²+(y₂-y₁)²)。

2.两点间的中点公式:设两点的坐标分别为(x₁,y₁)和(x₂,y₂),则两点连线的中点坐标为((x₁+x₂)/2,(y₁+y₂)/2)。

3. 一次函数公式:设直线方程为y = kx + b,则其中k为直线的斜率,b为直线在y轴上的截距。

4. 二次函数顶点坐标公式:设二次函数的标准形式为y = ax² + bx + c,则二次函数的顶点坐标为(-b/(2a), f(-b/(2a))),其中f(x)为二次函数。

5. 三角函数:三角函数是一种周期性函数,其中常用的有正弦函数sin(x)、余弦函数cos(x)和正切函数tan(x)。

它们之间存在一些重要的关系式,如sin²(x) + cos²(x) = 1和tan(x) = sin(x)/cos(x)。

6.平均数公式:计算一组数据的平均数,首先将所有数据相加,然后除以数据的个数。

7.集合公式:设A和B为两个集合,则它们的并集记为A∪B,交集记为A∩B,差集记为A-B。

其中,A和B的元素个数之和减去A∩B的元素个数等于A∪B的元素个数。

8.相似三角形的性质:如果两个三角形的对应角度相等,则称这两个三角形相似。

相似三角形的性质包括边长成比例,角度相等。

二、常用定理:1.勾股定理:三角形的一个内角为90°,另外两个内角的边长满足a²+b²=c²,其中a、b、c分别为三角形的两条直角边和斜边。

2.同位角定理:同位角是指两条平行线被一条横截线所切割的对应角,它们的度数相等。

3.垂直角定理:垂直角是指互相垂直的两条直线所形成的角,它们的度数相等。

4.同角曲线性质:同角曲线是指曲线上任意两点与切线所夹的角度相等。

初中数学各种公式大全

初中数学各种公式大全

初中数学各种公式大全初中数学中有很多常用的公式,包括但不限于平方差公式、解一元二次方程公式、勾股定理、正弦定理、余弦定理等等。

下面是一个初中数学各种公式的完整版,详细列举了常用公式及其应用。

一、代数公式1.平方差公式:(a+b)(a-b)=a^2-b^22. 二次方程求根公式:对于一元二次方程ax^2+bx+c=0,其解为:x=(-b±√(b^2-4ac))/2a3. 求等差数列的前n项和公式:Sn=(a1+an)×n/2,其中a1为首项,an为末项,n为项数。

4.求等比数列的前n项和公式:Sn=a1(1-q^n)/(1-q),其中a1为首项,q为公比,n为项数。

5.两点之间的距离公式:设两点A(x1,y1)和B(x2,y2),则AB的距离为:√((x2-x1)^2+(y2-y1)^2)二、几何公式1.勾股定理:直角三角形的斜边的平方等于两直角边的平方之和。

即a^2+b^2=c^22. 正弦定理:在三角形ABC中,边长和对应的正弦值之间有如下关系:a/sinA=b/sinB=c/sinC。

3. 余弦定理:在三角形ABC中,边长和对应的余弦值之间有如下关系:c^2=a^2+b^2-2ab·cosC。

4.面积公式:-三角形面积公式:S=1/2×底×高。

-三角形海伦公式:设三角形的三边长分别为a、b、c,半周长为p=(a+b+c)/2,面积为S=√(p(p-a)(p-b)(p-c))。

5.圆的面积公式:设圆半径为r,则圆的面积为S=πr^2,其中π≈3.146.球的表面积公式:设球的半径为r,则球的表面积为S=4πr^27.球的体积公式:设球的半径为r,则球的体积为V=4/3πr^3三、概率公式1.事件的概率:设事件A发生的可能性为P(A),则事件A的概率为:P(A)=事件A发生的次数/总的可能性。

2.互斥事件的概率:若两个事件A和B互斥且只能发生一个,则它们的概率满足P(AUB)=P(A)+P(B)。

初中数学常见的146条定理和公式

初中数学常见的146条定理和公式

初中数学常见的146条定理和公式
1、几何定理:
(1)直角三角形斜边长的平方等于两直角边长的乘积:a2=b2+c2(2)梯形面积=底边*高/2
(3)三角形面积=底边*高/2
(4)正方形的面积=边长的平方
(5)长方形的面积=长*宽
(6)圆形的面积=πr2
(7)椭圆的面积=πa*b
(8)任意多边形的面积=1/2*a*h
(9)平行四边形面积=对边乘积/2
(10)三角形的周长=a+b+c
(11)正多边形的周长=边数×边长
(12)圆的周长=2πr
(13)椭圆的周长=2π(a+b)/2
(14)正方体的表面积=6a2
(15)正方体的体积=a3
(16)长方体的表面积=2(a+b)h
(17)长方体的体积=a*b*h
(18)圆柱的表面积=2πr(r+h)
(19)圆柱的体积=πr2h
(20)圆锥的表面积=πrl+πr2
(21)圆锥的体积=πr2h/3
(22)球的表面积=4πr2
(23)球的体积=4/3πr3
2、数列定理:
(1)等差数列之和Sn=n(a1+an)/2
(2)等比数列之和Sn=a1(1-qn)/(1-q)
(3)调和数列之和Sn=n2/2(a1+an)
(4)加绝对值的调和数列之和Σ,a,=n(2a1+n-1da/2 ) 3、代数定理:
(1)多项式乘积与乘积分配律:(a+b)(c+d)=ac+ad+bc+bd (2)二次多项式求根公式:X1,2=[-b±√(b2-4ac)]/2a。

初中数学常用定理和公式

初中数学常用定理和公式

初中数学常用定理和公式一、几何定理和公式1.直角三角形定理:直角三角形的斜边的平方等于两个直角边的平方和。

2.勾股定理:直角三角形中,直角边平方和等于斜边平方。

3.边角和定理:三角形的三个内角和等于180度。

4.同位角定理:同位角相等。

5.内切圆定理:三角形的内切圆的半径等于三角形的面积除以半周长。

6.外接圆定理:三角形的外接圆的直径等于三角形的斜边。

7.直线的平行与垂直定理:两条直线互相平行,则其斜率相等;两条直线互相垂直,则其斜率的乘积为-18.余弦定理:在任意三角形中,任意一边的平方等于另外两边的平方之和减去这两边的乘积与该角的二倍积的余弦之积。

9.正弦定理:在任意三角形中,任意一边的长度与该边对应的角的正弦之比等于另外两边与其对应角的正弦之比。

10.钝角三角形中位线定理:对于任意一个钝角三角形,连接其钝角的两边中点所得线段是该钝角三角形的长边所对应的中线。

11.相似三角形定理:两个三角形对应角相等,则这两个三角形相似;两个三角形两对应边成比例,则这两个三角形相似。

二、代数定理和公式1. 分配律:对于任意实数a、b、c,有a(b+c)=ab+ac。

2.公因式提取法则:a×b+a×c=a×(b+c)。

3.差平方公式:(a+b)×(a-b)=a²-b²。

4. 二次根式性质:(a√b)²=ab。

5. 斜截式方程:y = kx+b。

6. 一次函数:y = kx + b。

7. 平方根性质:√a × √b = √(ab)。

8. 一元一次方程:ax + b = 0。

9. 一元二次方程:ax² + bx + c = 0。

10.因式分解法则:将一个多项式表示成几个因式的乘积。

11.高次方程根与系数的关系:对于一个n次方程,有n个复数根。

三、概率与统计定理和公式1.相对频率:其中一事件出现的次数与总次数的比值。

2.排列公式:n个元素中选取r个元素进行排列的方法数为nPr=n!/(n-r)。

初中数学146个常见定理和公式大全

初中数学146个常见定理和公式大全

初中数学146个常见定理和公式大全1.定理1:两点之间的距离公式两点A(x1,y1)和B(x2,y2)之间的距离公式为d=√[(x2-x1)²+(y2-y1)²]。

2.定理2:两点之间的中点公式两点A(x1,y1)和B(x2,y2)的中点公式为M[(x1+x2)/2,(y1+y2)/2]。

3.定理3:两条平行线之间的距离公式平行于x轴的直线l1和l2之间的距离公式为d=,y1-y2;平行于y 轴的直线l1和l2之间的距离公式为d=,x1-x24.定理4:勾股定理直角三角形的斜边的平方等于两直角边的平方和,即a²+b²=c²。

5.定理5:勾股定理的逆定理若三边长度满足a²+b²=c²,则该三边构成一个直角三角形。

6.定理6:正方形的性质正方形每条边的长都相等,且每个角的大小为90°。

7.定理7:矩形的性质矩形相对的边相等,且每个角的大小为90°。

8.定理8:平行四边形的性质平行四边形相对的边平行且相等,相邻角互补(和为180°)。

9.定理9:三角形内角和定理三角形内角和等于180°,即∠A+∠B+∠C=180°。

10.定理10:等腰三角形的性质等腰三角形的两边相等,两底角也相等。

11.定理11:等边三角形的性质等边三角形的三边相等,且每个角的大小为60°。

12.定理12:圆的周长公式圆的周长公式为C=2πr,其中r为圆的半径。

13.定理13:圆的面积公式圆的面积公式为A=πr²,其中r为圆的半径。

14.定理14:同心圆的面积公式半径分别为r1和r2的两个同心圆的面积之比为(r1/r2)²。

15.定理15:棱台的体积公式棱台的体积公式为V=(1/3)Ah,其中A为底面积,h为高。

16.定理16:平行四边形的面积公式平行四边形的面积公式为A = bh,其中b为底边长,h为高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学常用公式定理-CAL-FENGHAI.-(YICAI)-Company One1初中数学常用公式定理大全初中数学学习过程中,同学们会接触到大量的公式定理。

有的要依靠记忆,更多的要依靠去理解,大家学习的过程中,一定要细心听老师讲解,弄清楚其中规律,才能融会贯通。

(来自都江堰南山中学实验学校)1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理 n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 面积S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。

110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2 圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116定理一条弧所对的圆周角等于它所对的圆心角的一半117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线L和⊙O相交 d<r②直线L和⊙O相切 d=r③直线L和⊙O相离 d>r122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理圆的切线垂直于经过切点的半径124推论1 经过圆心且垂直于切线的直线必经过切点125推论2 经过切点且垂直于切线的直线必经过圆心126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等128弦切角定理弦切角等于它所夹的弧对的圆周角129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134如果两个圆相切,那么切点一定在连心线上135①两圆外离 d>R+r ②两圆外切 d=R+r③两圆相交 R-r<d<R+r(R>r)④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139正n边形的每个内角都等于(n-2)×180°/n140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积Sn=pnrn/2 p表示正n边形的周长142正三角形面积√3a/4 a表示边长143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144弧长计算公式:L=n兀R/180145扇形面积公式:S扇形=n兀R^2/360=LR/2146内公切线长= d-(R-r) 外公切线长= d-(R+r)乘法与因式分(a+b)^2=a^2+2ab+b^2?(a-b)^2=a^2-2ab+b^2?a^2-b^2=(a+b)(a-b)a^3+b^3=(a+b)(a^2-ab+b^2)a^3-b^3=(a-b)(a^2+ab+b^2)三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解根与系数的关系 X1+X2=-b/a X1×X2=c/a 注:韦达定理判别式b^2-4ac=0 注:方程有两个相等的实根b^2-4ac>0 注:方程有两个不等的实根b^2-4ac <0?注:方程没有实根,有共轭复数根圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0抛物线标准方程 y^2=2px y^2=-2px x^2=2py x^2=-2py直棱柱侧面积 S=c×h 斜棱柱侧面积 S=c'×h正棱锥侧面积?S=1/2c×h'正棱台侧面积S=1/2(c+c') ×h'圆台侧面积 S=1/2(c+c')l=兀×(R+r)l 球的表面积 S=4兀×r^2圆柱侧面积 S=c×h=2兀×h 圆锥侧面积 S=1/2×c×l=兀×r×l弧长公式 l=a×r a是圆心角的弧度数r >0 扇形面积公式 s=1/2×l×r锥体体积公式 V=1/3×S×H 圆锥体体积公式 V=1/3×兀×r^2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式 V=s×h 圆柱体 V=兀×r^2h某些数列前n项和?1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2?1+3+5+7+9+11+13+15+…+(2n-1)=n2?2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6?13+23+33+43+53+63+…n3=n2(n+1)2/4?1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径余弦定理b^2=a^2+c^2-2accosB注:角B是边a和边c的夹角三角函数公式两角和公式?sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式?正弦 sin2A=2sinA·cosA余弦=Cos^2(a)-Sin^2(a)=1-2Sin^2(a)=2Cos^2(a)-1即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a)正切 tan2A=(2tanA)/(1-tan^2(A))。

相关文档
最新文档