物理化学(天津大学第四版)上册答案完整版
物理化学天津大学第四版答案
![物理化学天津大学第四版答案](https://img.taocdn.com/s3/m/8f07d5cd551810a6f5248634.png)
物理化学天津大学第四版答案【篇一:5.天津大学《物理化学》第四版_习题及解答】ass=txt>目录第一章气体的pvt性质 ....................................................................................................... (2)第二章热力学第一定律 ....................................................................................................... . (6)第三章热力学第二定律 ....................................................................................................... .. (24)第四章多组分系统热力学 ....................................................................................................... . (51)第五章化学平衡 ....................................................................................................... .. (66)第六章相平衡 ....................................................................................................... (76)第七章电化学 ....................................................................................................... (85)第八章量子力学基础 ....................................................................................................... . (107)第九章统计热力学初步 ....................................................................................................... ...... 111 第十一章化学动力学 ....................................................................................................... . (117)第一章气体的pvt性质1.1 物质的体膨胀系数与等温压缩率的定义如下试推出理想气体的,与压力、温度的关系。
物理化学(天津大学第四版)课后答案 第六章 相平衡
![物理化学(天津大学第四版)课后答案 第六章 相平衡](https://img.taocdn.com/s3/m/09a5581252d380eb62946dca.png)
0 1.08 1.79 2.65 2.89 2.91 3.09 3.13 3.17 (1) 画出完整的压力-组成图(包括蒸气分压及总压,液相线及气相线);
(2) 组成为
的系统在平衡压力
下,气-液两相平衡,求
课 后 答 案 网
平衡时气相组成 及液相组成 。
(3) 上述系统 5 mol,在
课 后 答 案 网
(3) 某组成为 (含 CCl4 的摩尔分数)的 H2O-CCl4 气体混合物在 101.325 kPa 下恒压冷却到 80 °C 时,开始凝结出液体水,求此混合气体的组成; (4) 上述气体混合物继续冷却至 70 °C 时,气相组成如何; (5) 上述气体混合物冷却到多少度时,CCl4 也凝结成液体,此时气相组成如
(5) 上述气体混合物继续冷却至 66.53 °C 时,CCl4 也凝结成液 体(共沸),此时 H2O 和 CCl4 的分压分别为 26.818 kPa 和 74.507 kPa,因此
课 后 答 案 网
6.12 A–B二组分液态部分互溶系统的液-固平衡相图如附图,试指出各个相区
(2) 当温度由共沸点刚有上升趋势时,系统处于相平衡时存在哪 些相?其质量各为多少?
解:相图见图(6.7.2)。(1)温度刚要达到共沸点时系 统中尚无气相存在,
课 后 答 案 网
只存在两个共轭液相。系统代表点为
。
根据杠
杆原理
(2)当温度由共沸点刚有上升趋势时,L2 消失,气相和 L1 共存,因此
何? (2)外压 101.325 kPa 下的共沸点为 66.53 °C。 (3)开始凝结出液体水时,气相中 H2O 的分压为 43.37 °C,因此
(4) 上述气体混合物继续冷却至 70 °C 时,水的饱和蒸气压,即水在气相中 的分压,为 31.16 kPa,CCl4 的分压为 101.325 – 31.36 = 70.165 kPa,没有达 到 CCl4 的饱和蒸气压,CCl4 没有冷凝,故
物理化学第四版课后答案
![物理化学第四版课后答案](https://img.taocdn.com/s3/m/791b46a202768e9951e738e2.png)
第一章气体的pVT性质1.1物质的体膨胀系数与等温压缩率的定义如下试推出理想气体的,与压力、温度的关系。
解:根据理想气体方程1.5两个容积均为V的玻璃球泡之间用细管连结,泡内密封着标准状态下的空气。
若将其中的一个球加热到100 C,另一个球则维持0 C,忽略连接细管中气体体积,试求该容器内空气的压力。
解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。
标准状态:因此,1.9 如图所示,一带隔板的容器内,两侧分别有同温同压的氢气与氮气,二者均可视为理想气体。
(1)保持容器内温度恒定时抽去隔板,且隔板本身的体积可忽略不计,试求两种气体混合后的压力。
(2)隔板抽取前后,H2及N2的摩尔体积是否相同?(3)隔板抽取后,混合气体中H2及N2的分压立之比以及它们的分体积各为若干?解:(1)等温混合后即在上述条件下混合,系统的压力认为。
(2)混合气体中某组分的摩尔体积怎样定义?(3)根据分体积的定义对于分压1.11 室温下一高压釜内有常压的空气,为进行实验时确保安全,采用同样温度的纯氮进行置换,步骤如下:向釜内通氮气直到4倍于空气的压力,尔后将釜内混合气体排出直至恢复常压。
重复三次。
求釜内最后排气至恢复常压时其中气体含氧的摩尔分数。
解:分析:每次通氮气后至排气恢复至常压p,混合气体的摩尔分数不变。
设第一次充氮气前,系统中氧的摩尔分数为,充氮气后,系统中氧的摩尔分数为,则,。
重复上面的过程,第n次充氮气后,系统的摩尔分数为,因此。
1.13 今有0 C,40.530 kPa的N2气体,分别用理想气体状态方程及van der Waals 方程计算其摩尔体积。
实验值为。
解:用理想气体状态方程计算用van der Waals计算,查表得知,对于N2气(附录七),用MatLab fzero函数求得该方程的解为也可以用直接迭代法,,取初值,迭代十次结果1.16 25 C时饱和了水蒸气的湿乙炔气体(即该混合气体中水蒸气分压力为同温度下水的饱和蒸气压)总压力为138.7 kPa,于恒定总压下冷却到10 C,使部分水蒸气凝结为水。
物理化学第四版课后答案
![物理化学第四版课后答案](https://img.taocdn.com/s3/m/de91b940172ded630a1cb604.png)
第一章气体的pVT性质物质的体膨胀系数与等温压缩率的定义如下试推出理想气体的,与压力、温度的关系。
解:根据理想气体方程两个容积均为V的玻璃球泡之间用细管连结,泡内密封着标准状态下的空气。
若将其中的一个球加热到 100 C,另一个球则维持 0 C,忽略连接细管中气体体积,试求该容器内空气的压力。
解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。
标准状态:因此,如图所示,一带隔板的容器内,两侧分别有同温同压的氢气与氮气,二者均可视为理想气体。
(1)保持容器内温度恒定时抽去隔板,且隔板本身的体积可忽略不计,试求两种气体混合后的压力。
(2)隔板抽取前后,H2及N2的摩尔体积是否相同(3)隔板抽取后,混合气体中H2及N2的分压立之比以及它们的分体积各为若干解:(1)等温混合后即在上述条件下混合,系统的压力认为。
(2)混合气体中某组分的摩尔体积怎样定义(3)根据分体积的定义对于分压室温下一高压釜内有常压的空气,为进行实验时确保安全,采用同样温度的纯氮进行置换,步骤如下:向釜内通氮气直到4倍于空气的压力,尔后将釜内混合气体排出直至恢复常压。
重复三次。
求釜内最后排气至恢复常压时其中气体含氧的摩尔分数。
解:分析:每次通氮气后至排气恢复至常压p,混合气体的摩尔分数不变。
设第一次充氮气前,系统中氧的摩尔分数为,充氮气后,系统中氧的摩尔分数为,则,。
重复上面的过程,第n次充氮气后,系统的摩尔分数为,因此。
今有0 C, kPa的N2气体,分别用理想气体状态方程及van der Waals方程计算其摩尔体积。
实验值为。
解:用理想气体状态方程计算用van der Waals计算,查表得知,对于N2气(附录七),用MatLab fzero函数求得该方程的解为也可以用直接迭代法,,取初值,迭代十次结果25 C时饱和了水蒸气的湿乙炔气体(即该混合气体中水蒸气分压力为同温度下水的饱和蒸气压)总压力为 kPa,于恒定总压下冷却到10 C,使部分水蒸气凝结为水。
物理化学第四版课后答案
![物理化学第四版课后答案](https://img.taocdn.com/s3/m/791b46a202768e9951e738e2.png)
第一章气体的pVT性质1.1物质的体膨胀系数与等温压缩率的定义如下试推出理想气体的,与压力、温度的关系。
解:根据理想气体方程1.5两个容积均为V的玻璃球泡之间用细管连结,泡内密封着标准状态下的空气。
若将其中的一个球加热到100 C,另一个球则维持0 C,忽略连接细管中气体体积,试求该容器内空气的压力。
解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。
标准状态:因此,1.9 如图所示,一带隔板的容器内,两侧分别有同温同压的氢气与氮气,二者均可视为理想气体。
(1)保持容器内温度恒定时抽去隔板,且隔板本身的体积可忽略不计,试求两种气体混合后的压力。
(2)隔板抽取前后,H2及N2的摩尔体积是否相同?(3)隔板抽取后,混合气体中H2及N2的分压立之比以及它们的分体积各为若干?解:(1)等温混合后即在上述条件下混合,系统的压力认为。
(2)混合气体中某组分的摩尔体积怎样定义?(3)根据分体积的定义对于分压1.11 室温下一高压釜内有常压的空气,为进行实验时确保安全,采用同样温度的纯氮进行置换,步骤如下:向釜内通氮气直到4倍于空气的压力,尔后将釜内混合气体排出直至恢复常压。
重复三次。
求釜内最后排气至恢复常压时其中气体含氧的摩尔分数。
解:分析:每次通氮气后至排气恢复至常压p,混合气体的摩尔分数不变。
设第一次充氮气前,系统中氧的摩尔分数为,充氮气后,系统中氧的摩尔分数为,则,。
重复上面的过程,第n次充氮气后,系统的摩尔分数为,因此。
1.13 今有0 C,40.530 kPa的N2气体,分别用理想气体状态方程及van der Waals 方程计算其摩尔体积。
实验值为。
解:用理想气体状态方程计算用van der Waals计算,查表得知,对于N2气(附录七),用MatLab fzero函数求得该方程的解为也可以用直接迭代法,,取初值,迭代十次结果1.16 25 C时饱和了水蒸气的湿乙炔气体(即该混合气体中水蒸气分压力为同温度下水的饱和蒸气压)总压力为138.7 kPa,于恒定总压下冷却到10 C,使部分水蒸气凝结为水。
天津大学《物理化学》第四版习题及解答(统计热力学初步)
![天津大学《物理化学》第四版习题及解答(统计热力学初步)](https://img.taocdn.com/s3/m/9db433d0a0116c175f0e48ce.png)
第九章统计热力学初步
1.按照能量均分定律,每摩尔气体分子在各平动自由度上的平均动能为。
现有1 mol CO气体于0 ºC、101.325 kPa条件下置于立方容器中,试求:
(1)每个CO分子的平动能;
(2)能量与此相当的CO分子的平动量子数平方和
解:(1)CO分子有三个自由度,因此,
(2)由三维势箱中粒子的能级公式
2.某平动能级的,使球该能级的统计权重。
解:根据计算可知,、和只有分别取2,4,5时上式成立。
因此,该能级的统计权重为g = 3! = 6,对应于状态。
3.气体CO分子的转动惯量,试求转动量子数J为4与3两能级
的能量差,并求时的。
解:假设该分子可用刚性转子描述,其能级公式为
4.三维谐振子的能级公式为,式中s为量子数,即。
试证明能级的统计权重为
解:方法1,该问题相当于将s个无区别的球放在x,y,z三个不同盒子中,每个盒子容纳的球数不受限制的放置方式数。
x盒中放置球数0,y, z中的放置数s + 1
x盒中放置球数1,y, z中的放置数s
……………………………………….
x盒中放置球数s,y, z中的放置数1
方法二,用构成一三维空间,为该空间的一个平面,其与三个轴均相交于s。
该平面上为整数的点的总数即为所求问题的解。
这些点为平
面在平面上的交点:
由图可知,
5.某系统由3个一维谐振子组成,分别围绕着
A, B, C三个定点做振动,总能量为。
试
列出该系统各种可能的能级分布方式。
解:由题意可知方程组
的解即为系统可能的分布方式。
方程组化简为,其解为。
物理化学(天津大学第四版)上册答案完整版
![物理化学(天津大学第四版)上册答案完整版](https://img.taocdn.com/s3/m/50ed106425c52cc58bd6be9b.png)
一章气体的pVT关系1.1 物质的体膨胀系数与等温压缩率的定义如下试推出理想气体的,与压力、温度的关系。
解:根据理想气体方程1.2 气柜内贮有121.6 kPa,27℃的氯乙烯(C2H3Cl)气体300 m3,若以每小时90 kg的流量输往使用车间,试问贮存的气体能用多少小时?解:假设气柜内所贮存的气体可全部送往使用车间。
1.3 0℃,101.325kPa的条件常称为气体的标准状况,试求甲烷在标准状况下的密度?解:将甲烷(M w=16g/mol)看成理想气体: PV=nRT , PV =mRT/ M w甲烷在标准状况下的密度为=m/V= PM w/RT=101.32516/8.314273.15(kg/m3)=0.714 kg/m31.4 一抽成真空的球形容器,质量为25.0000g充以4℃水之后,总质量为125.0000g。
若改充以25℃,13.33 kPa的某碳氢化合物气体,则总质量为 25.0163g。
试估算该气体的摩尔质量。
水的密度1g·cm3计算。
解:球形容器的体积为V=(125-25)g/1 g.cm-3=100 cm3将某碳氢化合物看成理想气体:PV=nRT , PV =mRT/ M wM w= mRT/ PV=(25.0163-25.0000)8.314300.15/(1333010010-6)M w =30.51(g/mol)1.5 两个容积均为V 的玻璃球泡之间用细管连结,泡内密封着标准状态下的空气。
若将其中的一个球加热到 100℃,另一个球则维持 0℃,忽略连接细管中气体体积,试求该容器内空气的压力。
解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。
标准状态:因此,1.6 0℃时氯甲烷(CH 3Cl )气体的密度ρ随压力的变化如下。
试作p p-ρ图,用外推法求氯甲烷的相对分子质量。
1.7 今有20℃的乙烷-丁烷混合气体,充入一抽成真空的200 cm3容器中,直至压力达101.325 kPa,测得容器中混合气体的质量为0.3897 g。
《物理化学》课后习题答案(天津大学第四版)
![《物理化学》课后习题答案(天津大学第四版)](https://img.taocdn.com/s3/m/128d9765f46527d3240ce077.png)
因此,由标准摩尔生成焓
由标准摩尔燃烧焓
2.37 已知25 °C甲酸甲脂(HCOOCH3, l)的标准摩尔燃烧焓 为 ,甲酸(HCOOH, l)、甲醇(CH3OH, l)、水 (H2O, l)及二氧化碳(CO2, g)的标准摩尔生成焓 分别 为 、 、 及 应用这些数据求25 °C时下列反应的标准摩尔反应焓。 解:显然要求出甲酸甲脂(HCOOCH3, l)的标准摩尔生成焓
2.14 容积为27 m3的绝热容器中有一小加热器件,器壁上有一小孔与 100 kPa的大气相通,以维持容器内空气的压力恒定。今利用加热器 件使器内的空气由0 °C加热至20 °C,问需供给容器内的空气多少 热量。已知空气的 假设空气为理想气体,加热过程中容器内空气的温度均匀。 解:在该问题中,容器内的空气的压力恒定,但物质量随温度 而改变
-46.11
NO2(g) 33.18
90.25
HNO3(l) -174.10
-241.818
Fe2O3(s) -824.2
-285.830 CO(g) -110.525
(1) (2) (3)
2.35 应用附录中有关物资的热化学数据,计算 25 °C时反应 的标准摩尔反应焓,要求: (1) 应用25 °C的标准摩尔生成焓数据; (2) 应用25 °C的标准摩尔燃烧焓数据。 解:查表知
可由
表出(Kirchhoff公式)
设甲烷的物质量为1 mol,则 最后得到
,
,
,
第三章 热力学第二定律
3.1 卡诺热机在 的高温热源和 的低温热源间工作。 求(1) 热机效率 ; (2) 当向环境作功 时,系统从高温热源吸收的热 及 向低温热源放出的热 。
物理化学 天津大学第四版 课后答案 第九章 统计热力学初步
![物理化学 天津大学第四版 课后答案 第九章 统计热力学初步](https://img.taocdn.com/s3/m/6ed5e18583d049649b6658c1.png)
0
0
2
4
6
8
10
12
c QuantumNumber J
差 ∆ε = 0.426 ×10−23 J ,试求 300
. K
时
I2
分子的 Θv
、 qv
、
q
0 v
及
f
0 v
。
hν ∆ε
w ∆ε
解:分子的振动特征温度为
=
hν , Θv
=
k
=
k
= 308.5 K
a 分子的振动配分函数为
d 1
1
q = e − e = e − e v
. nj+1 w nj
= exp(− ∆ε
kT
)
=
⎧5.409 ⎨
×
10 −7
for
⎩0.3553 for I 2
HCl
课 后 答 案 网
a 12.试证明离域子系统的平衡分布与定域子系统同样符合波尔兹曼分布,即
d ni =
N q
gi
exp {-
ei
kT }
h 略。
k 14.2 mol N2 置于一容器中,T = 400 K, p = 50 kPa ,试求容器中 N2 分子的平动 . 配分函数。
能级上粒子的分布数 n 与基态能级的分布数 n0 之比。
解:根据 Boltzma nn 分布
n n0
=
g g0
exp{− (ε
− ε0)
kT} =
g g0
exp{− 11× 0.1kT
kT}
g = 0.3329
g0
( ) 基态的统计权重 g0 = 1,能级
nx2
天津大学《物理化学》第四版上、下册部分习题解答
![天津大学《物理化学》第四版上、下册部分习题解答](https://img.taocdn.com/s3/m/8af76388680203d8ce2f2417.png)
面向21世纪课程教材 天津大学物理化学教研室编 高等教育出版社《物理化学》(上、下册)第四版习题解答上册P94(热力学第一定律):15.恒容绝热,ΔU=Q V =0ΔU=ΔU Ar +ΔU Cu =(nC V ,m ΔT)Ar +(nC p,m ΔT)Cu =4(20.786-R)(T -273.15)+2×24.435(T -423.15)=0 T=347.38KΔH=ΔH Ar +ΔH Cu =(nC p,m ΔT)Ar +(nC p,m ΔT)Cu =4×20.786(347.38-273.15)+2×24.435(347.38-423.15)=2469J 19.恒压绝热,ΔH=Q p =0ΔH=ΔH A +ΔH B =(nC p,m ΔT)A +(nC p,m ΔT)B =2×2.5R(T -273.15)+5×3.5R(T -373.15)=0 T=350.93KW=ΔU=ΔU A +ΔU B =(nC V ,m ΔT)A +(nC V ,m ΔT)B =2×1.5R(350.93-273.15)+5×2.5R(350.93-373.15)= -369.2J 35.(1) Δr H øm =Δf H øm,酯+2Δf H øm,水-2Δf H øm,醇-Δf H øm,氧= -379.07+2(-285.83)-2(-238.66)-0= -473.41kJ .mol -1 (2) Δr H øm =2Δc H øm,醇+Δc H øm,氧-Δc H øm,酯-2Δc H øm,水=2(-726.51)+0-(-979.5)-0= -473.52 kJ .mol -137.由 HCOOCH 3+2O 2==2CO 2+2H 2OΔc H øm,酯=Δr H øm =2Δf H øm,二氧化碳+2Δf H øm,水-Δf H øm,酯 Δf H øm,酯=2Δf H øm,二氧化碳+2Δf H øm,水-Δc H øm,酯=2(-393.509)+2(-285.83)-(-979.5)= -379.178 kJ .mol -1由 HCOOH+CH 3OH==HCOOCH 3+H 2O Δr H øm =Δf H øm,酯+Δf H øm,水-Δf H øm,酸-Δf H øm,醇= -379.178+(-285.83)-(-424.72)-(-238.66)= -1.628 kJ .mol -1P155(热力学第二定律):1. (1) η=1-T 2/T 1=1-300/600=0.5(2) η= -W/Q 1Q 1= -W/η=100/0.5=200kJ 循环 ΔU=0,-W=Q=Q 1+Q 2 -Q 2=Q 1+W=200-100=100kJ10.理想气体恒温 ΔU=0,ΔS 系统=nR ln (p 1/p 2)=1×8.3145ln (100/50)=5.763J .K -1(1) Q= -W=nRT ln (p 1/p 2) =1×8.3145×300ln (100/50)=1729J 可逆 ΔS 总=0(2) Q= -W=p ex ΔV=22111247J 2nRT nRT p nRT p p -==⎛⎫⎪⎝⎭-11247 4.157J K 300Q Q S T T--∆====-⋅环境环境环境ΔS 总=ΔS 系统+ΔS 环境=5.763-4.157=1.606J .K -1 (3) Q= -W=0 ΔS 环境=0ΔS 总=ΔS 系统+ΔS 环境=5.763J .K -1 19.恒压绝热,ΔH=Q p =0ΔH=ΔH 冷+ΔH 热=(C p ΔT)冷+(C p ΔT)热 =100×4.184(T -300.15)+200×4.184(T -345.15)=0 T=330.15KΔS=ΔS 冷+ΔS 热=C p,冷ln (T/T 1)+C p,热ln (T/T 1) =100×4.184ln (330.15/300.15)+200×4.184 ln (330.15/345.15)=2.678J .K -1 23.恒压 Q=ΔH=n Δvap H m =(1000/32.042)×35.32=1102.3kJW= -p ex ΔV= -p(V g -V l )= -pV g = -nRT= -(1000/32.042)×8.3145×337.80= -87655J ΔU=Q+W=1102.3-87.655=1014.6kJ可逆相变 ΔS=ΔH/T=1102.3/337.80=3.2632kJ .K -136. H 2O(l) 101.325kPa ,393.15K H 2O(g)ΔH 1=C p ΔT=1×4.224(-20)= -84.48kJ ΔH 3=C p ΔT=1×2.033×20= 40.66kJ ΔS 1=C p ln (T 2/T 1)=4.224ln (373.15/393.15) ΔS 3=C p ln (T 2/T 1)=2.033ln (393.15/373.15)=-0.2205kJ .K -1 =0.1061kJ .K -1H 2O(l) 101.325kPa,373.15KH 2O(g)ΔH 2=2257.4kJΔS 2=ΔH 2/T=2257.4/373.15=6.0496kJ .K -1ΔH=ΔH 1+ΔH 2+ΔH 3= -84.48+2257.4+40.66=2213.58kJ ΔS=ΔS 1+ΔS 2+ΔS 3= -0.2205+6.0496+0.1061=5.9352kJ .K -1 ΔG=ΔH -T ΔS=2213.58-393.15×5.9352= -119.84kJ或由22112211T T T p T T p T T T H H C dTC dT S S T∆=∆+∆∆∆=∆+⎰⎰计算40.(1) Δr H øm =2Δf H øm,CO +2Δf H øm,H2-Δf H øm,CH4-Δf H øm,CO2=2(-110.525)+0-(-74.81)-(-393.509)=247.269kJ .mol -1 Δr S øm =2S øm,CO +2S øm,H2-S øm,CH4-S øm,CO2=2×197.674+2×130.684-186.264-213.74=256.712J .K -1.mol -1 Δr G øm =Δr H øm -T Δr S øm =247.269-298.15×256.712/1000=170.730 kJ .mol -1 (2) Δr G øm =2Δf G øm,CO +2Δf G øm,H2-Δf G øm,CH4-Δf G øm,CO2=2(-137.168)+0-(-50.72)-(-394.359)=170.743kJ .mol -1(3) 反应物(150kPa) 产物(50kPa)ΔS 1=nR ln (p 1/p 2)=2R ln (150/100)=6.742 ΔS 2=nR ln (p 1/p 2)=4R ln (100/50)=23.053 ΔG 1=-nRT ln (p 1/p 2)=-2010 ΔG 1=-nRT ln (p 1/p 2)=-6873反应物(100kPa) 产物(100kPa)Δr S øm Δr G ømΔr S m =Δr S øm +ΔS 1+ΔS 2=256.712+6.742+23.053=286.507J .K -1.mol -1Δr G m =Δr G øm +ΔG 1+ΔG 2=170.743-2.010-6.873=161.860 kJ .mol -1 或 先求出各压力下的S m 、Δf G m 值或 由等温方程Δr G m =Δr G øm +RT ln J p (见第五章化学平衡) P208(多组分系统热力学):2. (1)/////(1)/0.095/0.1801580.01040.095/0.180158(10.095)/0.0180153B B BB BB B AB B A AB B B An m M mw M x n n m M m M mw M m w M ===+++-==+-(2) -3/0.0951036.5546mol m /0.180158B B B B B Bn m M w c V m M ρρ⨯=====⋅(3) -1//0.095/0.1801580.583mol kg (1)10.095B B BB B B AAB n m M mw M b m m m w =====⋅--7. k B =p B /x B =101.325/0.0425=2384kPa由 p=p A +p B =p A *x A +k B x B 101.325=10.0(1-x B )+2384x B x B =0.03847//36.4610.03847///36.461100/78.114B B BB B B AB B A AB n m M m x n n m M m M m ====+++m B =1.867g24.b B =ΔT f /K f =0.200/1.86=0.1075mol .kg -1**1000/18.01533.167 3.161kPa 1000/18.01530.1075A A A A A A Bn p p p x p n n ===⋅=⨯=++25.-30.400010000.16136mol m 8.3145298.15B c RT∏⨯===⋅⨯4-13/10 6.2010g mol0.16136110B B BB B B B n m M c VV m M c V-=====⨯⋅⨯⨯27.b B =ΔT f /K f =0.56/1.86=0.301mol .kg -1(1) Π=c B RT=ρb B RT=1000×0.301×8.3145×310.15=7.76×105Pa(2) /B B B BB An n m M b m m Vρ=≈=30.301100010342.30103g B B B m b VM ρ-==⨯⨯⨯=P245(化学平衡):5. 反应之间的关系为:(3)=2(2)-(1)故 Δr G øm,3=2Δr G øm,2-Δr G øm,1-RTlnK ø3=2(-RTlnK ø2)-(-RTlnK ø1) K ø3=( K ø2)2/ K ø16. SO 2Cl 2 == SO 2 + Cl 2开始压力 0 44.786 47.836 平衡压力 p 44.786-p 47.836-p平衡总压Σ=p+44.786-p+47.836-p=86.096 得p=6.526kPa22222222(44.786 6.526)(47.836 6.526)2.4226.526100SOCl SO ClSO Cl SO Cl p p p p ppK p p ppφφφφφ⋅⋅--====⋅⨯8. (1) PCl 5 == PCl 3 + Cl 2开始量 1 0 0平衡量 1-a a a 平衡总量Σ=1+a摩尔分数 1 111αααααα-+++ 325210.31211PCl ClPCl p p p p p p K p pppφφφφφφαααα⋅⋅+===-⋅+⎛⎫ ⎪⎝⎭代入p=200kPa ,p ø=100kPa ,得a =0.367 (2) PCl 5 == PCl 3 + Cl 2 开始量 1 0 5平衡量 1-a a 5+a 平衡总量Σ=6+a摩尔分数 15 666αααααα-++++ 3255660.31216PClClPCl p p p p pp p p K p pppφφφφφφφαααααα+⋅⋅⋅++===-⋅+⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭代入p=101.325kPa ,p ø=100kPa ,得a =0.26810.32266.66/20.1111100NH H Sp p K p p φφφ=⋅==⎛⎫ ⎪⎝⎭(1) NH 4HS (s) == NH 3 + H 2S 开始压 0 39.99平衡压 p 39.99+p 平衡总压Σ=39.99+2p 3239.990.111110010018.87kPa39.99277.73kPaNH H Sp p p p K ppp p φφφ+=⋅=⋅==∑=+=(2) 即要求Δr G m >0,也即J p =32NH H Sp p ppφφ⋅>K ø6.6660.1111100100p⨯> p>166.7kPa17.AgCl 的溶度积即反应AgCl==Ag ++Cl -的平衡常数Δr G øm =Δf G øm,Ag++Δf G øm,Cl --Δf G øm,AgCl=77.107+(-131.22)-(-109.789)=55.676kJ .mol -1105-355.6761000ln 22.4598.3145298.151.7610 1.3310mol dmr m G K RTK s c c φφφ--+-∆⨯=-=-=-⨯=⨯====⨯⋅下册P46(电化学): 10.Λm =κ/c=0.0368/(0.05×1000)=0.000736Ω-1.m 2.mol -1Λm ∞=λ+∞+λ-∞=0.034982+0.00409=0.039072Ω-1.m 2.mol -1 a =Λm /Λm ∞=0.000736/0.039072=0.018842250.050.01884 1.80910110.01884c K φαα-⨯===⨯--19.(1) Pb + Hg 2SO 4 == PbSO 4 + 2Hg(2) Δr G m = -zFE= -2×96485×0.9647= -186.16×103J .mol -1 Δr S m =zF(∂E/∂T)p =2×96485×1.74×10-4=33.58J .K -1.mol -1 Δr H m =Δr G m +T Δr S m = -186.16×103+298.15×33.58= -176.15×103 J .mol -1 Q r,m =T Δr S m =298.15×33.58=10.01×103 J .mol -1 21.Ag + 0.5Hg 2Cl 2 == AgCl + HgΔr S m =S m,AgCl +S m,Hg -S m,Ag -0.5S m,Hg2Cl2=96.2+77.4-42.55-0.5×195.8=33.15J .K -1.mol -1 Δr G m =Δr H m -T Δr S m =5435-298.15×33.15= -4449J .mol -14-144490.04611V19648533.15 3.43610V K 196485r m r m pG E zFS E T zF -∆=-==⨯∆∂===⨯⋅∂⨯⎛⎫ ⎪⎝⎭35.负极反应:2Sb+3H 2O -6e →Sb 2O 3+6H +6*21210.05916lg 0.05916lg 0.05916pH60.05916pH 0.05916pH 0.34510.228pH pH 3.98 5.960.059160.05916H H a a E E E E φφφφϕϕϕϕϕϕϕϕ++----+-+-=+=+=-=-=-+=+--=+=+=37.(1) 反应Fe 2++Ag +==Fe 3++Ag 相应电池为:Pt|Fe 2+,Fe 3+||Ag +|AgE ø=φ+ø-φ-ø=0.7994-0.770=0.0294V1964850.0294ln 1.1448.3145298.153.14zFE K RTK φφφ⨯⨯===⨯=(2) Fe 2+ + Ag + == Fe 3+ + Ag 开始浓度 0 0 0.05 平衡浓度 x x 0.05-x2-30.05 3.140.0439mol dmx K xx φ-===⋅40.(1) 溴化银电极的标准电势即银电极的非标准电势,||||130.05916lg 0.05916lg4.88100.79940.05916lg0.07105V1sp Ag AgBr Br Ag Ag Ag Ag Ag Ag Ag BrK a a φφφϕϕϕϕ-++++--==+=+⨯=+=(2) AgBr 的Δf G øm 即反应Ag+0.5Br 2==AgBr 的Δr G øm该反应相应电池为:Ag,AgBr|Br -|Br 2,Pt E ø=φ+ø-φ-ø=1.065-0.07105=0.99395V Δr G m ø= -zFE ø= -1×96485×0.99395= -95.901×103J .mol -1 P191(界面现象):3.汞γ乙醚-汞=γ水-汞+γ乙醚-水cos θ 0.379=0.375+0.0107cos θ θ=68.050 4. 02lnr p Mp RTrγρ=920.072750.018015ln1.07722.337998.38.3145293.15106.863kPar r p p -⨯⨯==⨯⨯⨯=6. 对水中气泡,66220.05885 1.17710Pa 0.110p r γ-⨯∆===-⨯-⨯ 对空中水滴,66220.05885 1.17710Pa 0.110p rγ-⨯∆===⨯⨯P289(化学动力学):7. CH 3NNCH 3 == C 2H 6 + N 2t=0 21.332 0 0 t=1000s p 21.332-p 21.332-p 总压Σ= p+(21.332-p)+(21.332-p)=22.732得 p=19.932kPa一级反应5-10141/2511121.332l n l n 6.78810s100019.932l n 2l n 21.02110s 6.78810p k t p t k --===⨯===⨯⨯9. 由题意 r 0=k 1c 0=1×10-3r=k 1c=0.25×10-3 两式相除,得 c 0/c=4一级反应 -1011/2111ln ln 40.0231min60ln 2ln 230.0min0.0231c k t c t k ======c 0=1×10-3/k 1=1×10-3/0.0231=0.0433mol .dm -313.二级反应 3-1-1201111110.0333d m m o l m i n1010.251k t c c =-=-=⋅⋅-⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭ 23.由题意,半衰期与初压成反比,可知该反应为二级反应-1-1201/2110.00493kPa s 101.3252k p t ===⋅⨯30.1111lna E k k R T T =--⎛⎫⎪⎝⎭-1103.3100011ln1.56060.2928.3145353.15338.151.390minkk ⨯=--==⎛⎫⎪⎝⎭由速率常数的单位可知反应为一级反应,故1/2ln 2ln 20.4987min 1.390t k === 37.由动力学方程()11001ln1nnc kt cc kt c n --=-=-或可知:反应从某相同初始浓度c 0到达某一定浓度c 时,k 与t 成反比。
物理化学第四版课后习题答案
![物理化学第四版课后习题答案](https://img.taocdn.com/s3/m/3fb5350b7375a417866f8faf.png)
物理化学第四版课后习题答案【篇一:物理化学第四版上册课后答案天津大学第三章】>3.1卡诺热机在(1)热机效率;的高温热源和的低温热源间工作。
求(2)当向环境作功源放出的热。
时,系统从高温热源吸收的热及向低温热解:卡诺热机的效率为根据定义3.5高温热源温度,低温热源。
今有120 kj的热直接从高温热源传给低温热源,龟此过程的解:将热源看作无限大,因此,传热过程对热源来说是可逆过程3.6 不同的热机中作于的高温热源及的低温热源之时,两热源的总熵变间。
求下列三种情况下,当热机从高温热源吸热。
(1)可逆热机效率(2)不可逆热机效率(3)不可逆热机效率。
解:设热机向低温热源放热,根据热机效率的定义因此,上面三种过程的总熵变分别为。
3.7 已知水的比定压热容下列三种不同过程加热成100 ?c的水,求过程的(1)系统与100 ?c的热源接触。
今有1 kg,10 ?c的水经。
(2)系统先与55 ?c的热源接触至热平衡,再与100 ?c的热源接触。
(3)系统先与40 ?c,70 ?c的热源接触至热平衡,再与100 ?c的热源接触。
解:熵为状态函数,在三种情况下系统的熵变相同在过程中系统所得到的热为热源所放出的热,因此3.8 已知氮(n2, g)的摩尔定压热容与温度的函数关系为将始态为300 k,100 kpa下1 mol的n2(g)置于1000 k的热源中,求下列过程(1)经恒压过程;(2)经恒容过程达到平衡态时的解:在恒压的情况下。
在恒容情况下,将氮(n2, g)看作理想气体将代替上面各式中的,即可求得所需各量3.9始态为同途径变化到,,的某双原子理想气体1 mol,经下列不的末态。
求各步骤及途径的。
(1)恒温可逆膨胀;(2)先恒容冷却至使压力降至100 kpa,再恒压加热至;(3)先绝热可逆膨胀到使压力降至100 kpa,再恒压加热至。
解:(1)对理想气体恒温可逆膨胀,?u = 0,因此(2)先计算恒容冷却至使压力降至100 kpa,系统的温度t:(3)同理,先绝热可逆膨胀到使压力降至100 kpa时系统的温度t:根据理想气体绝热过程状态方程,各热力学量计算如下【篇二:物理化学第四章课后答案傅献彩第五版】lass=txt>第七章电化学7.1 用铂电极电解能析出多少质量的解:电极反应为溶液。
物理化学(天津大学第四版)课后答案 第四章 多组分系统热力学
![物理化学(天津大学第四版)课后答案 第四章 多组分系统热力学](https://img.taocdn.com/s3/m/9672980590c69ec3d5bb75ca.png)
第四章多组分系统热力学4.1有溶剂A 与溶质B 形成一定组成的溶液。
此溶液中B 的浓度为cB ,质量摩尔浓度为bB ,此溶液的密度为。
以MA ,MB 分别代表溶剂和溶质的摩尔质量,若溶液的组成用B 的摩尔分数xB 表示时,试导出xB 与cB ,xB 与bB 之间的关系。
解:根据各组成表示的定义4.2D-果糖溶于水(A )中形成的某溶液,质量分数,此溶液在20°C 时的密度。
求:此溶液中D-果糖的(1)摩尔分数;(2)浓度;(3)质量摩尔浓度。
解:质量分数的定义为4.3在25°C ,1kg 水(A )中溶有醋酸(B ),当醋酸的质量摩w ww .k h d a w .c o m 课后答案网尔浓度bB 介于和之间时,溶液的总体积。
求:(1)把水(A )和醋酸(B )的偏摩尔体积分别表示成bB 的函数关系。
(2)时水和醋酸的偏摩尔体积。
解:根据定义当时4.460°C 时甲醇的饱和蒸气压是84.4kPa ,乙醇的饱和蒸气压是47.0kPa 。
二者可形成理想液态混合物。
若混合物的组成为二者的质量分数各50%,求60°C 时此混合物的平衡蒸气组成,以摩尔分数表示。
解:质量分数与摩尔分数的关系为w w w .k h d a w .c o m 课后答案网求得甲醇的摩尔分数为根据Raoult 定律4.580°C 是纯苯的蒸气压为100kPa ,纯甲苯的蒸气压为38.7kPa 。
两液体可形成理想液态混合物。
若有苯-甲苯的气-液平衡混合物,80°C 时气相中苯的摩尔分数,求液相的组成。
解:根据Raoult 定律4.6在18°C ,气体压力101.352kPa 下,1dm3的水中能溶解O20.045g ,能溶解N20.02g 。
现将1dm3被202.65kPa 空气所饱和了的水溶液加热至沸腾,赶出所溶解的O2和N2,并干燥之,求此干燥气体在101.325kPa ,18°C 下的体积及其组成。
《物理化学》第四版上册(天大)
![《物理化学》第四版上册(天大)](https://img.taocdn.com/s3/m/9859b78c83d049649b665854.png)
2.有纯凝聚态物质参加的理想气体化学反应
3.相关化学反应标准平衡常数之间的关系
4.标准平衡常数K?的测定
5.平衡组成的计算
6.其它的平衡常数
5.3 温度对标准平衡常数的影响
1.范特霍夫方程
2.△rH?为定值时范特霍夫方程的积分式
3.△rH?为温度的函数时范特霍夫方程的积分式
[General Information]
书名=物理化学上册第四版
作者=
页数=318
SS号=11413464
出版日期=
封面
书名
版权
前言
目录
绪论
0.1 物理化学课程的内容
0.2 学习物理化学的要求及方法
0.3 物理量的表示及运算
1.物理量的表示
2.对数中的物理量
2.溶质的化学势
3.其它组成标度表示的溶质的化学势
4.溶质化学势表示式的应用举例——分配定律
4.7 稀溶液的依数性
1.溶剂蒸气压下降
2.凝固点降低(析出固态纯溶剂)
3.沸点升高(溶质不挥发)
4.渗透压
4.8 逸度与逸度因子
1.逸度及逸度因子
2.逸度因子的计算及普遍化逸度因子图
6.4 二组分理想液态混合物的气-液平衡相图
1.压力组成图
2.温度-组成图
6.5 二组分真实液态混合物的气-液平衡相图
1.蒸气压-液相组成图
2.压力-组成图
3.温度-组成图
4.小结
6.6 精馏原理
6.7 二组分液态部分互溶系统及完全不互溶系统的气-液平衡相图
1.部分互溶液体的相互溶解度
物理化学第四版上册课后答案 天津大学 第三章
![物理化学第四版上册课后答案 天津大学 第三章](https://img.taocdn.com/s3/m/2223fc15a76e58fafab003e3.png)
第三章热力学第二定律3.1卡诺热机在的高温热源和的低温热源间工作。
求(1)热机效率;(2)当向环境作功时,系统从高温热源吸收的热及向低温热源放出的热。
解:卡诺热机的效率为根据定义3.5高温热源温度,低温热源。
今有120 kJ的热直接从高温热源传给低温热源,龟此过程的。
解:将热源看作无限大,因此,传热过程对热源来说是可逆过程3.6不同的热机中作于的高温热源及的低温热源之间。
求下列三种情况下,当热机从高温热源吸热时,两热源的总熵变。
(1)可逆热机效率。
(2)不可逆热机效率。
(3)不可逆热机效率。
解:设热机向低温热源放热,根据热机效率的定义因此,上面三种过程的总熵变分别为。
3.7已知水的比定压热容。
今有1 kg,10 C的水经下列三种不同过程加热成100 C的水,求过程的。
(1)系统与100 C的热源接触。
(2)系统先与55 C的热源接触至热平衡,再与100 C的热源接触。
(3)系统先与40 C,70 C的热源接触至热平衡,再与100 C的热源接触。
解:熵为状态函数,在三种情况下系统的熵变相同在过程中系统所得到的热为热源所放出的热,因此, g)的摩尔定压热容与温度的函数关系为3.8已知氮(N2(g)置于1000 K的热源中,将始态为300 K,100 kPa下1 mol的N2求下列过程(1)经恒压过程;(2)经恒容过程达到平衡态时的。
解:在恒压的情况下在恒容情况下,将氮(N, g)看作理想气2体将代替上面各式中的,即可求得所需各量3.9始态为,的某双原子理想气体1 mol,经下列不同途径变化到,的末态。
求各步骤及途径的。
(1)恒温可逆膨胀;(2)先恒容冷却至使压力降至100 kPa,再恒压加热至;(3)先绝热可逆膨胀到使压力降至100 kPa,再恒压加热至。
解:(1)对理想气体恒温可逆膨胀,U = 0,因此(2)先计算恒容冷却至使压力降至100 kPa,系统的温度T:(3)同理,先绝热可逆膨胀到使压力降至100 kPa时系统的温度T:根据理想气体绝热过程状态方程,各热力学量计算如下2.12 2 mol双原子理想气体从始态300 K,50 dm3,先恒容加热至400 K,再恒压加热至体积增大到100 dm3,求整个过程的。
物理化学 天津大学第四版 课后答案 第十一章 化学动力学
![物理化学 天津大学第四版 课后答案 第十一章 化学动力学](https://img.taocdn.com/s3/m/cf2abeaad1f34693daef3ec1.png)
-0.1052 -0.2159 -0.3235 -0.4648 -0.6283
利用 Powell-plot method 判断该反应为一级反应,
课 后 答 案 网
拟合公式
蔗糖转化 95%需时
5. N -氯代乙酰苯胺
异构化为乙酰对氯苯胺
为一级反应。反应进程由加 KI 溶液,并用标准硫代硫酸 钠溶液滴定游离碘来测定。KI 只与 A 反应。数据如下:
略
20,21 略
22. NO 与 进行如下反应:
在一定温度下,某密闭容器中等摩尔比的 NO 与 混合物在不同初压下的半 衰期如下:
50.0 45.4 38.4 32.4 26.9
95
102
140
176
224
课 后 答 案 网
求反应的总级数。
解:在题设条件下,
,速率方程可写作
课 后 答 案 网
解:同上题,
,处理数据如下
120
180
240
330
530
600
32.95 51.75 48.8 58.05 69.0 70.35
拟合求得
。
15. 某气相反应 求。
为二级反应,在恒温恒容下的总压 p 数据如下。
0 41.330
100 34.397
200 31.197
和 B 的饱和蒸气压分别为 10 kPa 和 2 kPa,问 25 ºC 时 0.5 mol A 转化为产物 需多长时间?
解:在(1)的情况下,
,速率方程化为
在(2)的情况下,假设 A 和 B 的固体足够多,则在反应过程中气相中 A 和 B 的 浓度不变,既反应速率不变,因此
29. 反应 率常数为
在开始阶段约为 级反应。910 K 时速 ,若乙烷促使压力为(1)13.332 kPa,( 2)39.996
物理化学(天津大学第四版)课后答案 第七章 电化学
![物理化学(天津大学第四版)课后答案 第七章 电化学](https://img.taocdn.com/s3/m/d7bcfc42336c1eb91a375dca.png)
为
。在同一电导池中装入
的
溶液,测得电阻为
。利用表 7.3.2 中的数据计算
的解离度 及解离常熟 。
解:查表知
无限稀释摩尔电导率为
课 后 答 案 网
因此,
7.12 已知 25 ØC 时水的离子积
,
、和 的
分别等于
,
和
。求 25 ØC 时纯水的电导率。
解:水的无限稀释摩尔电导率为
第七章 电化学
7.1 用铂电极电解
溶液。通过的电流为 20 A,经过 15 min 后 ,问:(1)
在阴极上能析出多少质量的 ?(2) 在的 27 ØC,100 kPa 下的
?
解:电极反应为
课 后 答 案 网
电极反应的反应进度为 因此:
7.2 在电路中串联着两个电量计,一为氢电量计,另一为银电量计。当电路中
通电 1 h 后,在氢电量计中收集到 19 ØC、99.19 kPa 的
;在银电
量计中沉积
。用两个电量计的数据计算电路中通过的电流为多少。
解:两个电量计的阴极反应分别为
电量计中电极反应的反应进度为
对银电量计
对氢电量计
课 后 答 案 网
7.3 用银电极电解
溶液。通电一定时间后,测知在阴极上析出
(2)
7.25 写出下列各电池的电池反应,应用表 7.7.1 的数据计算 25 ØC 时各电池 的电动势及各电池反应的摩尔 Gibbs 函数变,并指明各电池反应能否自发进行。
解:(1)
课 后 答 案 网
(2)
,反应可自发进行。
,反应可自发进行。
(2)设平衡时 Fe2+的浓度为 x,则
因此,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一章气体的pVT关系1.1 物质的体膨胀系数与等温压缩率的定义如下试推出理想气体的,与压力、温度的关系。
解:根据理想气体方程1.2 气柜内贮有121.6 kPa,27℃的氯乙烯(C2H3Cl)气体300 m3,若以每小时90 kg的流量输往使用车间,试问贮存的气体能用多少小时?解:假设气柜内所贮存的气体可全部送往使用车间。
1.3 0℃,101.325kPa的条件常称为气体的标准状况,试求甲烷在标准状况下的密度?解:将甲烷(M w=16g/mol)看成理想气体: PV=nRT , PV =mRT/ M w甲烷在标准状况下的密度为=m/V= PM w/RT=101.32516/8.314273.15(kg/m3)=0.714 kg/m31.4 一抽成真空的球形容器,质量为25.0000g充以4℃水之后,总质量为125.0000g。
若改充以25℃,13.33 kPa的某碳氢化合物气体,则总质量为 25.0163g。
试估算该气体的摩尔质量。
水的密度1g·cm3计算。
解:球形容器的体积为V=(125-25)g/1 g.cm-3=100 cm3将某碳氢化合物看成理想气体:PV=nRT , PV =mRT/ M wM w= mRT/ PV=(25.0163-25.0000)8.314300.15/(1333010010-6)M w =30.51(g/mol)1.5 两个容积均为V 的玻璃球泡之间用细管连结,泡内密封着标准状态下的空气。
若将其中的一个球加热到 100℃,另一个球则维持 0℃,忽略连接细管中气体体积,试求该容器内空气的压力。
解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。
标准状态:因此,1.6 0℃时氯甲烷(CH 3Cl )气体的密度ρ随压力的变化如下。
试作p p-ρ图,用外推法求氯甲烷的相对分子质量。
1.7 今有20℃的乙烷-丁烷混合气体,充入一抽成真空的200 cm3容器中,直至压力达101.325 kPa,测得容器中混合气体的质量为0.3897 g。
试求该混合气体中两种组分的摩尔分数及分压力。
解:将乙烷(M w=30g/mol,y1),丁烷(M w=58g/mol,y2)看成是理想气体:PV=nRT n=PV/RT=8.314710-3mol(y130+(1-y1) 58)8.314710-3=0.3897y1=0.401 P1=40.63kPay2=0.599 P2=60.69kPa1.8 试证明理想混合气体中任一组分B的分压力p B与该组分单独存在于混合气体的温度、体积条件下的压力相等。
解:根据道尔顿定律分压力对于理想气体混合物,所以1.9 如图所示,一带隔板的容器内,两侧分别有同温同压的氢气与氮气,二者均可视为理想气体。
(1)保持容器内温度恒定时抽去隔板,且隔板本身的体积可忽略不计,试求两种气体混合后的压力。
(2)隔板抽取前后,H2及N2的摩尔体积是否相同?(3)隔板抽取后,混合气体中H2及N2的分压立之比以及它们的分体积各为若干?解:(1)等温混合后即在上述条件下混合,系统的压力认为。
(2)相同(3)根据分体积的定义对于分压1.11 室温下一高压釜内有常压的空气,为进行实验时确保安全,采用同样温度的纯氮进行置换,步骤如下:向釜内通氮气直到4倍于空气的压力,尔后将釜内混合气体排出直至恢复常压。
重复三次。
求釜内最后排气至恢复常压时其中气体含氧的摩尔分数。
解:分析:每次通氮气后至排气恢复至常压p,混合气体的摩尔分数不变。
设第一次充氮气前,系统中氧的摩尔分数为,充氮气后,系统中氧的摩尔分数为,则,重复上面的过程,第n次充氮气后,系统的摩尔分数为因此1.12 CO2气体在40℃时的摩尔体积为0.381 dm3·mol-1。
设CO2为范德华气体,试求其压力,并比较与实验值 5066.3 kPa的相对误差。
1.13 今有0℃,40.530 kPa的N2气体,分别用理想气体状态方程及范德华方程计算其摩尔体积。
实验值为。
1.16 25℃时饱和了水蒸气的湿乙炔气体(即该混合气体中水蒸气分压力为同温度下水的饱和蒸气压)总压力为138.7 kPa,于恒定总压下冷却到10℃,使部分水蒸气凝结为水。
试求每摩尔干乙炔气在该冷却过程中凝结出水的物质的量。
已知25℃及10℃时水的饱和蒸气压分别为3.17 kPa及1.23 kPa。
解:该过程图示如下设系统为理想气体混合物,则1.17 一密闭刚性容器中充满了空气,并有少量的水。
当容器于300K条件下达平衡时,容器内压力为101.325kPa。
若把该容器移至373.15K的沸水中,试求容器中达到新平衡时应有的压力。
设容器中始终有水存在,且可忽略水的任何体积变化。
300K时水的饱和蒸气压为3.567kPa。
解:300K空气的分压力为:101.325kPa-3.567kPa=97.758kPa373.15K该气体的分压力为:97.758kPa×373.15K/300K=121.58kPa373.15K水的饱和蒸气压为101.325kPa,故分压力为101.325kPa容器中达到新平衡时应有的压力为:101.325kPa+121.58kPa=222.92kPa1.18 把25℃的氧气充入 40dm3的氧气钢瓶中,压力达 202 7×102kPa。
试用普遍化压缩因子图求钢瓶中氧气的质量。
氧气的T C=-118.57℃,P C=5.043MPa氧气的T r=298.15/(273.15-118.57)=1.93, P r=20.27/5.043=4.02Z=0.95PV=ZnRTn=PV/ZRT=202.7×105×40×10-3/(8.314×298.15)/0.95=344.3(mol) 氧气的质量m=344.3×32/1000=11(kg)第二章 热力学第一定律2.1 1mol 理想气体在恒定压力下温度升高1℃,求过程中系统与环境交换的功。
解:理想气体n = 1mol对于理想气体恒压过程,应用式(2.2.3)W =-p amb ΔV =-p(V 2-V 1) =-(nRT 2-nRT 1) =-8.314J2.2 1mol 水蒸气(H 2O,g)在100℃,101.325kPa 下全部凝结成液态水。
求过程的功。
假设:相对于水蒸气的体积,液态水的体积可以忽略不计。
解: n = 1mol恒温恒压相变过程,水蒸气可看作理想气体, 应用式(2.2.3)W =-p amb ΔV =-p(V l -V g ) ≈ pVg = nRT = 3.102kJ2.3 在25℃及恒定压力下,电解1mol 水(H 2O,l),求过程的体积功。
H 2O(l) = H 2(g) + 1/2O 2(g) 解: n = 1mol恒温恒压化学变化过程, 应用式(2.2.3)W=-p amb ΔV =-(p 2V 2-p 1V 1)≈-p 2V 2 =-n 2RT=-3.718kJ2.4 系统由相同的始态经过不同途径达到相同的末态。
若途径a 的Q a =2.078kJ,Wa=-4.157kJ ;而途径b 的Q b =-0.692kJ 。
求W b .解: 热力学能变只与始末态有关,与具体途径无关,故 ΔU a = ΔU b由热力学第一定律可得 Qa + Wa = Q b + W b ∴ W b = Q a + W a -Q b = -1.387kJ2.5 始态为25℃,200 kPa 的5 mol 某理想气体,经途径a ,b 两不同途径到达相同的末态。
途经a 先经绝热膨胀到 -28.47℃,100 kPa ,步骤的功;再恒容加热到压力200 kPa 的末态,步骤的热。
途径b 为恒压加热过程。
求途径b 的及。
解:先确定系统的始、末态3111061902000001529831485m ...P nRT V =××==32101601000005824431485m ...P nRT V V =××=== kJ .kJ )..(Q W U Δa a 85194225575=+=+=-对于途径b ,其功为kJ .J ..V Δp W b 932706190101602000001-)-(--===根据热力学第一定律2.6 4mol 某理想气体,温度升高20℃, 求ΔH -ΔU 的值。
解:根据焓的定义2.7 已知水在25℃的密度ρ=997.04kg·m-3。
求1mol水(H2O,l)在25℃下:(1)压力从100kPa增加至200kPa时的ΔH;(2)压力从100kPa增加至1Mpa时的ΔH。
假设水的密度不随压力改变,在此压力范围内水的摩尔热力学能近似认为与压力无关。
解: 已知ρ= 997.04kg·m-3 M H2O = 18.015 × 10-3 kg·mol-1凝聚相物质恒温变压过程, 水的密度不随压力改变,1molH2O(l)的体积在此压力范围可认为不变, 则V H2O = m /ρ= M/ρΔH -ΔU = Δ(pV) = V(p2 -p1 )摩尔热力学能变与压力无关, ΔU = 0∴ΔH = Δ(pV) = V(p2 -p1 )1) ΔH -ΔU = Δ(pV) = V(p2 -p1 ) = 1.8J2) ΔH -ΔU = Δ(pV) = V(p2 -p1 ) = 16.2J2.8 某理想气体C v,m=3/2R。
今有该气体5mol在恒容下温度升高50℃。
求过程的W,Q,ΔH和ΔU。
解: 理想气体恒容升温过程 n = 5mol C V,m = 3/2RQ V =ΔU = n C V,mΔT = 5×1.5R×50 = 3.118kJW = 0ΔH = ΔU + nRΔT = n C p,mΔT= n (C V,m+ R)ΔT = 5×2.5R×50 = 5.196kJ2.9 某理想气体C v,m=5/2R。
今有该气体5mol在恒压下温度降低50℃。
求过程的W,Q,ΔU和ΔH。
解: 理想气体恒压降温过程 n = 5molC V,m = 5/2R C p,m = 7/2RQ p =ΔH = n C p,mΔT = 5×3.5R×(-50) = -7.275kJW =-p ambΔV =-p(V2-V1) =-(nRT2-nRT1) = 2.078kJΔU =ΔH-nRΔT = nC V,mΔT = 5×2.5R×(-50) = -5.196kJ2.10 2mol某理想气体,C p,m=7/2R。