全息光栅的制作方法ppt课件
全息光栅的设计与制作
现代光学系列实验--全息光栅的设计与制作
1. 为什么使用全息干板记录两平行激光束的 干涉 条纹, 只要 是 正确 曝 光 、显影得当, 则所得 到 的光栅为 正弦型,即其 振幅透过 率按 余弦分 布 ? 2. 莫尔条纹是如何形成的?一定要用两块实 际的光栅重叠在一起才能够产生莫尔条纹吗?
2007年4月1日
Ⅰ
ϕ
N ϕ
θ
H
Ⅱ
6
现代光学系列实验--全息光栅的设计与制作
ϕ
当 干板转动 一小角度ϕ时, 对应干涉条纹的空间周期变为
H s ϕ
d d1 1 f 0 ' = ' = cos ϕ = f 0 cos ϕ d d 莫尔条纹的空间频率 ∆f 0 = f 0 '− f 0 = f 0 (1 − cos ϕ )
4
故:
2007年4月1日
现代光学系列实验--全息光栅的设计与制作
复合光栅是指在同一 张 全息 干板上拍摄 两 个 栅 线彼此平行但空间频率不同的光栅。若第一次曝光 拍摄空间频率为f0的光栅,然后保持光栅栅线方向, 仅改变光栅的空间频率,在同一张全息干板上进行 第二次曝光,拍摄空间频率为f0‘的光栅。照明时, 复合光栅将出现莫尔条纹,其空间频率 fm 是 f0和 f0' 的差频,即
f m = ∆f 0 = f 0 − f 0 '
上述制得的即为复合光栅。
2007年4月1日 5
现代光学系列实验--全息光栅的设计与制作
拍摄 复合光栅的光路可 如 图 所 示。为改变 第二次 曝 光时的光栅空间频率, 只须 改变两束准直光之间 的夹角 θ 。改变 θ 角的方 法 有两种,一种是 使 图中的 M1和M2作适当等量的平移 ( 反向 或 相向 ) ;另 一种 方 法 是 沿水平 方 向旋转干 板 H, 以改变 θ ,从而改变 d(或f0)。
全息光栅制作工艺流程
全息光栅制作工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!全息光栅制作工艺流程一、材料准备阶段在进行全息光栅制作之前,需要准备好所需的材料和工具。
全息光栅的制作
全息光栅的制作光栅是一种光学元件,其上有规则地配置着线、缝、槽或光学性质周期性变化的物质。
从广义角度讲,任何一种装置和结构,只要它能给入射光的振幅或相位,或者两者同时加上一个周期性的空间调制,都可以称之为光栅。
换言之,任何一种具有周期性的空间结构或光学性能周期性变化(如透射率、折射率)的衍射屏统称为光栅。
决定光栅性能的基本参数有三个:光栅的周期或空间频率(周期的倒数);槽形(一个周期内的具体结构);光栅的衍射效率。
按照制造光栅的方法来分,光栅可分为刻划光栅、全息光栅。
刻划光栅通常是用精密的刻线机在玻璃或镀有金属膜的玻璃上刻出,它不仅需要昂贵的设备(刻线机),对刻划条件要求很苛刻,而且很费时间,例如刻一块面积2100100mm、空间频率为600~1200/c mm的光栅需要昼夜不停地刻划一个星期。
1948年盖伯(Gabor)发现了全息光学原理,随着六十年代激光技术的发展,出现了用记录激光干涉条纹制作光栅的技术,发展了所谓的全息光栅。
国际上,在1970年就有全息光栅出售(法国Jovin—Yvom公司);西德在1969年制成了边长达1m的全息光栅,用于天文学方面。
我国也有一些单位在研制全息光栅,并有出售。
同刻划光栅比,全息光栅具有很多优点:不存在固有的周期误差,因而不存在罗兰鬼线;杂散光少;光栅的适用范围宽;分辨率高;有效孔径大;生产周期短。
由于全息光栅的上述特点使得它在生产和技术中得到了广泛的应用,它不仅适合于高分辨的得发射、吸收和喇曼光谱分析,在光信息处理中得到广泛的应用,而且已用于激光器件中作为波长选择元件,在集成光学和光通信方面作为光耦合元件将有着极大的应用潜力。
一、实验目的1.验证双光束干涉的基本原理,进一步理解双光束干涉的基本理论;2.学习马赫—泽德干涉仪的光路布置原则和调节方法;3.掌握制作正弦型全息光栅的原理和方法;二、实验原理1. 光的干涉原理当两束相干的平面波以一定的角度相遇时,在他们相遇的区域内便会产生干涉,其干涉图样在某一平面内是一系列平行等距的干涉条纹,其强度分布则是按余弦规律而变化,即干涉图样的强度分布是121212I =I I 2cos()A A ϕϕ++- (1)式中的211I A =、222I A =,1A 、2A 是两列平面波的振幅,1ϕ、2ϕ是对应的空间相位函数。
全息光栅的制作(B纸张_非常完整_BJTU物理设计性实验分析方案)
杨氏双缝干涉是分波面干涉的典型实验装置。由于每条狭缝不可避免有一定的宽度,于是双缝干涉与单缝衍射总是相伴而生的。杨氏双缝干涉法利用光束通过两条缝的0级衍射光在全息干板上进行相干叠加,从而制得全息光栅。
光路如图3所示。双缝间距b,全息干板与双缝的距离D。实验要求每条缝的缝宽较小,使光束通过两条缝的0级衍射条纹较宽,在全息干板可以有较大范围的重叠,从而制得较大面积的全息光栅。同时,所得光栅的光栅常数易于控制,只需改变全息干板与双缝之间的距离D或改变缝间距b即可,因为 。
[1]刘香茹, 巩晓阳, 郝世明, 李立本.“分波面法”制作全息光栅的两种新光路[J].中国科教创新导刊,2008(5>.
[2]刘香茄,陈庆东,李立本. 全息光栅制作光路的比较研究[J]. 大学物理实验, 2008(21>.
[3] 朱庆芳, 岳筱稗. 全息光栅的实验制作与研究[J]. 新乡帅范高等专科学校学报, 2004.
一般在光学稳定的平玻璃坯件上涂上一层给定型厚度的光致抗蚀剂或其他光敏材料的涂层,由激光器发生两束相干光束,使其在涂层上产生一系列均匀的干涉条纹,光敏物质被感光,然后用特种溶剂溶蚀掉被感光部分,即在蚀层上获得干涉条纹的全息像,所制得为透射式衍射光栅。如在玻璃坯背面镀一层铝反射膜,可制成反射式衍射光栅。
2)不要正对着激光束观察,以免损坏眼睛;
3)曝光时间要掌握好,曝光面切勿放反了;
4)由于有多组同学一起实验,处理干片的时候切勿将干片混淆;
5)在处理干片时注意避免光源<手机等)。
六数据与处理
1.测定所制光栅的光栅常数
将所制得的全息光栅置于激光器前,测量所成零级明条纹与一级明条纹的间距 与屏到光栅的距离 。根据干涉加强条件 ,其中 ,且夹角 较小,可以求得光栅常数 。再由 算出每毫M光栅常数。
全息光栅的制作(B5纸张_非常完整版_BJTU物理设计性实验报告)
大学物理实验设计性实验实验题目全息光栅的制作学院班级学号姓名首次实验时间指导老师签字 _______________全息光栅的制作一实验任务设计制作全息光栅并测出其光栅常数(要求所制作的光栅不少于100条/毫米)二实验要求1.设计三种以上制作全息光栅的方法并进行比较(应包括马赫-曾德干涉法);2.设计制作全息光栅的完整步骤(包括拍摄和冲洗中的参数及注意事项),拍摄出全息光栅;3.给出所制作的全息光栅的光栅常数值,计算不确定度、进行误差分析并做实验小结。
三实验基本原理1.全息光栅全息光学元件是指基于光的衍射和干涉原理,采用全息方法制作的,可以完成准直、聚焦、分束、成像、光束偏转、光束扫描等功能的元件。
光全息技术主要利用光相干迭加原理,简单讲就是通过对复数项(时间项)的调整,使两束光波列的峰值迭加,峰谷迭加,达到相干场具有较高的对比度的技术。
常用的全息光学元件包括全息透镜、全息光栅和全息空间滤波器等。
其中全息光栅就是利用全息照相技术制作的光栅,在科研、教学以及产品开发等领域有着十分广泛用途。
一般在光学稳定的平玻璃坯件上涂上一层给定型厚度的光致抗蚀剂或其他光敏材料的涂层,由激光器发生两束相干光束,使其在涂层上产生一系列均匀的干涉条纹,光敏物质被感光,然后用特种溶剂溶蚀掉被感光部分,即在蚀层上获得干涉条纹的全息像,所制得为透射式衍射光栅。
如在玻璃坯背面镀一层铝反射膜,可制成反射式衍射光栅。
作为光谱分光元件,全息光栅与传统的刻划光栅相比,具有以下优点:光谱中无鬼线、杂散光少、分辨率高、有效孔径大、价格便宜等;全息光栅已广泛应用于各种光栅光谱仪中。
作为光束分束器件,全息光栅在集成光学和光学通信中用作光束分束器、光互连器、耦合器和偏转器等;在光信息处理中,可作为滤波器用于图像相减、边沿增强等。
2. 光栅条纹光栅,也称衍射光栅,是基于多缝衍射原理的重要光学元件。
光栅是一块刻有大量平行等宽、等距狭缝(刻线)的平面玻璃或金属片,其狭缝数量很大,一般每毫米几十至几千条。
北京交通大学全息光栅
全息实验专题全息术(holography)是一种利用干涉和衍射原理记录并再现物体光波波前的技术,是当代引人瞩目的新技术,它已经成为了近代光学量余力的一个重要分支。
其在全息干涉量度术、全息光学元件和全息信息存储、全息立体显示、全息变换、特征识别等方面有着广泛的应用前景。
目前全息术在科技、文化、工业、农业、医药、艺术、商业等领域都获得了一定程度的应用。
本专题主要介绍了关于全息术应用的两个方面:全息光栅的制作和全息照相。
包括了三个实验:1.一般分振幅法制作全息光栅;2.马赫-曾德干涉法制作全息光栅;3.全息照相。
实验1一般分振幅法制作全息光栅全息光栅是利用全息照相技术制作的光栅。
利用光的相干叠加原理使两束光在记录材料(全息干板)上发生干涉,将记录下来的干涉条纹进行显影、定影就能得到全息光栅。
全息光栅在光谱研究、光学精密测量和光波调制等方面都有重要的应用。
目前,用于工业自动化数控技术的光栅除了采用复制光栅以外,大都采用全息法制作光栅,全息法制作光栅的特点主要体现在以下几点:1)光路排布灵活,适合制作不同空间频率的光栅;2)光栅尺寸可做得很大;3)制作效率高;4)若制作正交正弦光栅,全息法则更显优越。
【1】有多种方法可以制作全息光栅,而用光波相干叠加的方法制作全息光栅的光路有两类,一类称为“分振幅法”,即利用分光镜,使同一光波一分为二,一部分透射,另一部分反射,然后使两束光相遇发生干涉,干涉条纹即为光栅;另一类称为“分波面法”,它将同一光波的波面一分为二,然后使两束光相遇发生干涉。
本专题采用的两种方法都为分振幅法,但光路略有不同。
实验目的(1)熟悉光路的安排及调节,熟悉暗室技术。
(2)按照一般分振幅法制作一维全息光栅,观察光栅光谱,并测量光栅有关特性。
实验器材全息平台,光学元件架六个,分束镜,扩束镜,平面反射镜两个,激光器,准直透镜,平晶,全息干板,带小孔的白屏,洗相设备。
实验原理1.全息法制作正弦光栅的原理【2】U 1U 2 θx图1实验原理图有两束平面波,其复振幅分布分别为θsin 21;ikx Be U A U ==,它们传播方向的夹角为θ,如图1所示,在空间屏幕上的光强分布为)sin cos(222sin sin 222sin 221θθθθkx AB B A ABe ABe B A Be A U U I ikx ikx ikx ++=+++=+=+=-(1)屏幕上将得到一组垂直于x 方向的直条纹。
全息光栅的设计
摘要本文讲的主要是全息光栅的制作和对所做光栅的光栅常数的测量。
光栅是利用多缝衍射原理使光发生色散的光学元件。
它是一块刻有大量平行等宽、等距狭缝(刻线)的平面玻璃或金属片。
光栅的狭缝数量很大,单色平行光通过光栅每个缝的衍射和各缝间的干涉,形成暗条纹很宽、明条纹很细的图样,这些锐细而明亮的条纹称作谱线。
利用两束相干涉的平行光形成的明暗条纹也可以制作光栅,利用光强不同的明暗条纹经曝光后在全息干板上留下条纹,即可得到全息光栅。
此实验主要应用马赫-曾德干涉原理来制作全息光栅,并测得光栅常数。
关键词激光技术;半导体激光器;受激辐射;光场AbstractThis paper is mainly about the holographic grating production and to do the grating constant measurement of the grating. Use the slit diffraction grating is the principle that light dispersion happens optical elements. It is a large and wide, with parallel isometric slit (scribed line) of flat glass or metal. The grating slit a large quantity, monochromatic parallel light through the grating diffraction and the gap of each seam the interference between, form dark stripe is very wide, Ming stripe very fine pattern, the sharp thin and bright stripe called spectrum line. The use of two phase of parallel light beam interference of the formation of the light and shade stripe can also make grating, the use of light intensity of light and shade the different stripe after exposure in the holographic GanBan leave behind the stripe, can get holographic grating. This experiment is mainly used CengDe interference principle to Mach-making holographic grating, the grating constant.Keywords: grating ;holographic grating ;grating constant目录摘要 (I)Abstract ........................................................................................................................................ I I 第1章绪论 . (1)1.1 课题背景 (1)1.2 本文研究内容 (2)第2章全息光栅实验设计 (4)2.1 设计要求 (4)2.2 设计原理 (4)2.2.1光栅产生的原理 (4)2.2.2马赫—曾德干涉仪法原理 (5)2.2.3激光法测光栅常数原理 (5)2.3设计步骤 (6)2.3.1制作全息光栅 (6)2.3.2拍摄全息光栅 (6)2.3.3测定所制光栅的光栅常数 (7)第3章全息光栅实验处理 (8)3.1 实验数据记录 (8)3.2 实验数据处理 (8)结论 (10)参考文献 (12)第1章绪论1.1 课题背景光栅是利用多缝衍射原理使光发生色散(分解为光谱)的光学元件。
全息光栅的制作方法
课程结业论文课程名称:普通物理实验院系专业:物理学系物理学学号:201211141928姓名:马宏志用全息照相法制作光栅及实验结果的分析作者:马宏志(201211141928) 单位:北京师范大学物理系2012级师范班论文摘要光栅是具有周期性透光性质的光学分光元件,不透明屏上N 个等宽等间距的狭缝就形成了一个光栅。
全息光栅的基本原理是全息照相技术。
光全息技术,主要是利用光相干叠加原理,简单地将就是通过对复数项(时间项)的调整,使两束光波列的峰值叠加,峰谷叠加,达到相干场具有较高的对比度的技术。
利用相干光叠加,在记录平面上形成亮暗相间的的干涉条纹,再经过显影,定影处理,就形成了呈平行排列的光栅,一般单位宽度上的光栅数密度很大,从几百条到几千条不等。
制作好的光栅可以用来测定它的光栅常数,还可以用作分光器件使白光发生色散,利用光栅方程sin d k θλ=测出不同色光的波长。
最后利用空间滤波原理对全息照相技术加以改进,消除不利条件的影响,提高照片质量。
关键词:全息照相、光的干涉、空间滤波、光栅、光栅常数。
引言光学是物理学的一个很重要的分支,光学中有很多奇特的光现象和许多精密的光学元件。
这些光学元件的制作都要建立在严密的科学理论之上,同时也需要很高的实验操作技能。
光栅作为一种精度很高且很重要的光学元件,在许多领域有着很广泛的作用。
光栅的研究开始于18世纪中叶,主要代表人物有李敦豪斯、夫琅和费,伍德,迈克尔逊等人。
最初的光栅种类少,精度不高,每毫米的光栅条数只有几到几十条,主要是刻画光栅和复制光栅。
随着科技的发展,光栅制作技术日渐成熟。
伽伯发明的全息照相技术是光栅制作史上一次伟大的革命,通过使两束激光在胶片上叠加,形成亮暗相间的干涉条纹,再用化学试剂洗去亮条纹区域,由于光波很短,条纹间距很小,这就为制作高精度的光栅创造了有利的条件。
光栅种类较多,常见的有反射光栅和透射光栅,用途也十分广泛,在很多领域起着极其重要的作用。
全息平面光栅的制作及其参数测定
全息平面光栅的制作及其参数测定一、 实验目的1. 掌握空间频率较低的全息平面光栅的制作方法。
2.学会在全息台上光学元件的共轴调节技术、扩束与准直的基本方法,熟练地获得和检验平行光。
3. 用几何光学和物理光学方法测定全息光栅的光栅常数。
二、 仪器及用具光学平台(全息台),He---Ne 激光器,定时器,快门,50%分束镜,平面镜,全息干板,像屏,底片夹,透镜,显定影用具,读数显微镜等。
三、 实验原理全息光栅是用全息照相的方法制作的一种分光元件。
与用普通方法制作的刻划光栅和复制光栅相比,全息光栅没有周期性误差,杂散光少,分辨率和衍射效率高,制作的环境条件要求较低,因而其应用越来越广泛。
两列同频率的相干平面光波以一定夹角相交时,在两光束重叠区域将产生干涉现象。
如图1(a )所示,在z=0的xy 平面(该平面垂直于纸面)上将接收到一组平行于y 轴的明暗相间的直条纹,其光强分布和条纹间距分别为 )]sin (sin 2cos 1[2210θθλπ-+=x I I (1))(21cos )(21sin 21sin sin 212121θθθθθθλ-+=-=d (2)式中:1θ、2θ分别为两束相干光与(x y )平面的法线夹角,θθθ=+21为两束光的会聚角。
当两束光对称入射即221θθθ==时,有(a) (b)图12sin 2λ=d (3)令ν为干涉条纹的空间频率,则λθν)2sin(21==d (4) 如果在0=z 处平行于xy 平面放置一块全息干板H (图1 b ),则经曝光、显影、定影等处理后,即可获得一张全息光栅。
当空间频率ν比较小时,称之为低频全息光栅。
四、 实验光路本实验采用马赫—曾特尔干涉仪光路,如图2所示。
它主要是有两块50%的分束器1BS 、2BS 和两块全反射镜1M 、2M 组成。
四个反射面互相平行,中心图2 光路构成一个平行四边形。
扩束镜C 和准直透镜L 共焦以后产生平行光,平行光射到1BS 上分成两束,这两束光经1M 、2M 反射后在2BS 上相遇发生干涉,在2BS 后面的观察屏P 上可观察到干涉条纹。
全息光栅的制作(实验报告)
全息光栅的制作一.【实验目的】1、了解全息光栅的原理;2、复习用马赫-曾德干涉仪搭光路并拍照;3、学习对全息光栅的后处理。
二.【主要仪器及设备】1.光学防震平台一个,支架、支杆及底座若干,旋转平台一个,带三维调节架及φ15 ~25μm针孔的针孔滤波器组合两套。
2.扩束透镜(20~40 倍显微物镜)两个,已知焦距的透镜一个,反射镜若干,分束器一个,光束衰减器两套。
3. 20mW He-Ne 激光器一台。
4.天津I 型全息干板,显影、定影设备和材料。
5.电子快门和曝光定时器一套。
三.【实验原理】全息光栅的制作原理是:两束具有特定波面形状的光束干涉,在记录平面上形成亮暗相间的干涉条纹,用全息记录介质记录干涉条纹,经处理得到全息光栅。
采用不同的波面形状可得到不同用途的全息光栅,采用不同的全息记录介质和处理过程可得到不同类型或不同用途的全息光栅(如正余弦光栅、矩形光栅、平面光栅和体光栅)。
当参考光波和物光波都是点光源且与全息干板对称放置时可以在干板上形成平行直条纹图形,这便是全息光栅。
采用线性曝光可以得到正弦振幅型全息光栅。
从光的波动性出发,以光自身的干涉进行成像,并且利用全息照相的办法成像制作全息光栅。
有多种光路可以制作全息光栅。
其共同特点是①将入射细光束分束后形成两个点光源,经准直后形成两束平面波;②采用对称光路,可方便地得到等光程。
我们常采用马赫-曾德干涉仪光路。
(一)马赫-曾德干涉仪法(1)光栅制作原理与光栅频率的控制用全息方法制作光栅, 实际上就是拍摄一张相干的两束平行光波产生的干涉条纹的照相底片, 如图1所示,当波长为λ的两束平行光以夹角θ交迭时, 在其干涉场中放置一块全息干版H , 经曝光、显影、定影、漂白等处理, 就得到一块全息光栅。
相邻干涉条纹之间的距离即为光栅的空间周期d(实验中常称为光栅常数) 。
图1相干光干涉形成光栅的示意图图2 全息光栅制作实验光路图马赫-曾德干涉仪光路测全息光栅。
实验1-全息光栅制作技术
全息摄影实验指导材料实验一 全息光栅拍摄技术[实验目的]1、了解用全息干涉法制作光栅的基本原理;2、掌握全息实验光路以及光学元器件的基本调节方法;3、观察全息光栅的衍射现象,加深了解光的衍射规律;4、初步掌握卤化银乳胶干板的化学处理方法。
[实验仪器]全息防震平台(2m×1.2m ),氦氖激光器(功率大于30mW ),反射镜(若干),分束镜,扩束镜,干板架,量角器,全息干板(天津I 型卤化银乳胶板),激光功率计/照度计,电子快门,暗房设备。
[实验原理]光栅是重要的分光元件之一,由于它的分辨率优于棱镜,因而许多光学仪器中都采用光栅代替棱镜作为分光的主要元件,如单色仪、光谱仪、摄谱仪等。
此外,光栅在现代光学中的应用日趋广泛,如光通信中用作光耦合器、光互连中用作互连元件、激光器用作选频元件、光信息处理用作编码器、调制器、滤波器等等。
全息光栅制作技术是20世纪60年代随着全息技术的发展而日趋成熟的一门技术,因其具有传统刻划光栅所不具备的一些优点而受到人们的重视。
目前,全息光栅在某些方面已经取代刻划光栅,在光栅家族中占有了一席之地。
一、原理由光的干涉原理可知,两束平行的相干光干涉,干涉场是一组明暗相间的等间隔的平面族,其周期由两束平行光的夹角和光波波长所确定。
若将全息记录干板置于该干涉场中,则干板上记录到的干涉条纹将呈等间隔的平行直线条纹,这就是全息光栅。
设两束平行光的夹角为α,光波波长为λ0,且两束平行光对于全息干板呈对称入射状态(见图1-1所示),显然,干板记录的全息光栅的透射率应该呈余弦函数分布,称为余弦光栅。
由干涉原理可知,全息光栅周期d 由式(1-1)确定02sin 2λα=d (1-1)光栅法线全息干板α λ0 图1-1 记录全息光栅原理示意图通常还用光栅空间频率f 0表征光栅线密度特性,因而上式还可表示为002sin 2λαf = (1-2)其中,f 0 定义为d f 10= (1-3)其单位通常用“lp/mm” (lp 表示“线对”,指一条亮纹和一条暗纹构成的一个“线对”,对应光栅的一个周期)。
全息光栅的制作大学物理实验
全息光栅的制作一、实验任务:设计并制作全息光栅,并测出其光栅常数,要求所制作的光栅不少于每毫米100条。
二、实验要求:1、设计三种以上制作全息光栅的方法,并进行比较;2、设计制作全息光栅的完整步骤,拍摄出全息光栅;3、给出所制作的全息光栅的光栅常数值,进行不确定度计算。
误差分析并作实验小结。
三、实验的物理原理:1、光栅产生的原理:光栅也称衍射光栅,是利用多缝衍射原理使光发生色散(分解为光谱)的光学元件。
它是一块刻有大量平行等宽、等距狭缝(刻线)的平面玻璃或金属片。
光栅的狭缝数量很大,一般每毫米几十至几千条。
单色平行光通过光栅每个缝的衍射和各缝间的干涉,形成暗条纹很宽、明条纹很细的图样,这些锐细而明亮的条纹称作谱线。
谱线的位置随波长而异,当复色光通过光栅后,不同波长的谱线在不同的位置出现而形成光谱。
光通过光栅形成光谱是单缝衍射和多缝干涉的共同结果(如图1)。
图12、测量光栅常数的方法:用测量显微镜测量;用分光计,根据光栅方程d·sin =k 来测量;用衍射法测量。
激光通过光栅衍射,在较远的屏上,测出零级和一级衍射光斑的间距△x及屏到光栅的距离L,则光栅常数d= L/△x。
四、实验的具体方案及比较1、洛埃镜改进法:基本物理原理:洛埃镜的特点是一部分直射光和另一部分反射镜的反射光进行干涉,如原始光束是平行光,则可增加一全反镜,同样可做到一部分直射光和一部分镜面反射光进行干涉,从而制作全息光栅(如图2)。
优点:这种方法省去了制造双缝的步骤。
缺点:光源必须十分靠近平面镜。
图22、杨氏双缝干涉法:λ,其中:λ为波长,L为双缝到屏(全息干版)的距离,x∆为=L∆xd双缝间距,d为光栅常数。
优点:使用激光光源相干条件很容易满足。
缺点:所需的实验仪器较复杂,不易得到。
3、马赫—曾德干涉仪法:基本物理原理:只要调节光路中的一面分光镜的方位角,就可以改变透射光和反射光的夹角,从而改变干涉条纹的间距。
优点:这种方法对光路的精确度要求不高,实验效果不错,易于学生操作。
全息光栅
3.5.1 全息术(本文内容选自高等教育出版社《大学物理实验》)人眼看到物体是由于光波到达人眼。
本身发光或间接发光(反射、散射光)的物体都可以被人眼观察到。
根据到达光波的强弱、颜色和方向,人眼可以识别不同的物体,物光波的主要特征是波长(颜色)、振幅(光强)和相位(物点的位置)。
全息照相术是利用干涉和衍射的原理将物体发射的光波以干涉条纹的形式记录下来,再在一定的条件下再现,形成与原物体完全相似的空间像。
由于它记录的是物体原来光波的全部信息(振幅和位相),像十分逼真并具有立体效果,所以做全息照相或全息术。
它与普通照相(只记录了光波的振幅)效果完全不同。
全息术是由英国科学家伽博(D.Gabor )在1947年提出的。
1960年激光出现,有了相干性良好且亮度高的光源,1962年利思(Leith )和厄帕特尼克斯(Uptnieks )提出了离轴全息图,从此全息术进入全面发展阶段,成为光学的重要分支,并在许多方面有了广泛的应用。
本实验的目的是让同学们初步了解全息术的基本原理,并拍摄物体的三维全息图和制作全息光栅。
实验原理全息图种类很多,有菲涅耳全息图、夫琅禾费全息图、傅立叶变换全息图、彩虹全息图、像全息图、体积全息图等。
不管哪种全息图都要分成两步来完成:第一步,干涉法记录全息图,即波前记录;第二步,用全息图使原光波波前再现,即波前再现。
1. 波前记录由于所有的记录介质只能对光强有响应,因此普通照相机利用直接成像的方法,只能记录下光波的振幅信息,为了记录物体发射光波的相位信息,人们自然想到利用光的干涉效应。
因此在拍摄全息图时除了物光波外还必须有一束参考光波,这两束光波应当具有良好的相干性,以便记录下清晰的干涉条纹。
图3.5.1-1是一般拍摄离轴全息图(也叫作菲涅耳全息图)的光路图。
为了说明全息图的形成过程,我们只取物体上的某一个发光点O ,并取全息干板平面为Oxy 坐标平面,如图3.5.1-2所示,设物点O 的坐标和参考光点R 的坐标分别为(x 0,y 0,z 0)和(x R ,y R ,z R ),则Oxy 平面上物光的复振幅分布为)],(exp[),(),(00y x j y x O y x O Φ= (1)在Oxy 平面上参考光的复振幅分布为)],(exp[),(),(0y x j y x R y x R R Φ= (2)参考光波和物光波在Oxy 平面上干涉叠加后的光强为)c o s (2****)*)((0002020R R O R O RO OR RR OO R O R O I Φ-Φ++=+++=++= (3)可用作全息记录的感光材料很多,一般最常用的是卤化银乳胶涂布的超微粒干板,称为全息干板,按图3.5.1-1拍摄的全息图也叫做平面全息图,我们用振幅透射率来表示其特性,一般它是一个复函数,具有下面的形式:)],(exp[),(),(0y x j y x y x H ψ=ττ (4)在上式中如果ψ与(x,y )无关,是一个常数,就称为振幅型全息图。
全息光栅的设计制作
全息光栅的设计制作光栅是重要的分光元件之一,由于它的分辨率优于棱镜,因而许多光学仪器中都采用光栅代替棱镜作为分光的主要元件,如单色仪、光谱仪、摄谱仪等。
此外,光栅在现代光学中的应用日趋广泛,如光通信中用作光耦合器、光互连中用作互连元件、激光器用作选频元件、光信息处理用作编码器、调制器、滤波器等等。
全息光栅制作技术是20世纪60年代随着全息技术的发展而出现的,因其具有传统刻划光栅所不具备的一些优点而受到人们的重视。
目前,全息光栅在某些方面已经取代刻划光栅,在光栅家族中占有了一席之地。
[实验目的]1、掌握用全息方法制作光栅的基本原理;2、掌握全息实验光路的基本调节方法和一维光栅的制作技巧;3、了解全息光栅的基本特性和测试方法;4、初步了解全息记录介质—卤化银乳胶的特性和干板的处理方法。
[实验仪器]全息防震平台(2m ×1.5m ),He-Ne 激光器,反射镜(若干),分束镜,针孔滤波器,干板架, 全息干板。
[实验原理]一.全息光栅制作原理由光的干涉原理可知,两束平行的相干光干涉,干涉场是一组明暗相间的等间隔的平面族,其周期由两束平行光的夹角和光波波长所确定。
若将全息记录干板置于该干涉场中,则干板上记录到的干涉条纹将呈等间隔的平行直线条纹,这就是全息光栅。
设两束平行光与光轴的夹角分别为θ1和θ2,光波波长为λ,显然,干板记录的全息光栅的透射率应该呈余弦函数分布,称为余弦光栅。
⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=⎪⎪⎭⎫ ⎝⎛++===⎪⎪⎭⎫ ⎝⎛+=+===---x U x U e e U UU U I e e U U U U e U U e U U x j x j x j x j x j x j λθθπλθθπλθθπλθθπλθπλθπλθπλθπ212202120sin sin 2sin sin 220*2sin 2sin2021sin 202sin 201sin sin cos 4sin sin 2cos 122;;;21212121由干全息光栅常数d 由下式确定:πλθθπ=-d 21sin sin ;LD d f ≈--==21210sin sin ;sin sin 1θθλθθ ;;0λλDL d L D f ==或f 0是光栅空间频率,表征了光栅线密度特性, 其单位通常用“lp/mm ” (lp 表示“线对”,指一条亮纹和一条暗纹构成的一个“线对”,对应光栅的一个周期)。
实验四 全息光栅拍摄
实验四全息光栅的拍摄光栅按其结构分类,可分为平面光栅、阶梯光栅和凹凸光栅;按衍射条件分类,可分为透射光栅和反射光栅。
光栅的刻制方法有两种:机刻光栅和全息光栅。
机刻光栅是用金刚刀挤压镀于硬质玻璃上的铝反射层而得。
刻制工作量极大,刻制速度极慢,最多能刻到3600线/mm。
由于其制造周期长,成本高,一般只能制得少量的母光栅,而实际应用的多是复制光栅,机刻光栅的缺点是线槽稍有缺陷时就会出现“鬼线”,即位于光谱线两侧的模糊不清的假线。
全息光栅是用全息照相法刻制的高精度光栅。
即用高光强的相干性极好的单色光,如激光,用高分辨的感光材料。
记录干涉条纹,经曝光、化学处理、和真空镀膜可以得到全息反射光栅。
这种光栅几乎没有线槽间的周期误差,几乎没有“鬼线”,杂散光很少。
最大线槽密度可达6500线/mm,最常用的是1200—1500线/mm的全息光栅。
透射全息光栅制作较为简单。
最简单的全息图是用两个平面光波相干叠加而得到的全息图,这种全息图是一组平行等距的直条纹,它可与机刻光栅起到相同的作用,故称为全息光栅。
全息光栅与机刻光栅和复制光机相比,它的制作方法简单、成本低;而且没有周期性误差,杂散光少,对环境条件(如振动、温度、湿度等)要求低。
一、实验目的(1)了解全息光栅的原理和用途。
(2)知道全息图对记录材料分辨率的要求。
(3)掌握全息拍摄的光路构建。
(4)掌握全息干板的化学处理过程。
(5)测量全息光栅的空间频率、衍射效率。
二,实验原理概述透射全息光栅:全息光栅是指有大量平行、等宽和等距的多狭缝的光学元件。
记录全息光栅的光路图如图(4-1)所示,也可用图4-2,图4-3图4-1 全息光栅拍摄光路 L a :氦氖激光器G t :光束提升器(或全反镜) K :光闸 L k :扩束镜 L :准直透镜S :分束镜调节器 M 1 M 2:反射镜 H :干版架图4-2 全息光栅拍摄光路 L a :氦氖激光器 G t :光束提升器(或全反镜) K :光闸S :分束镜调节器 L a1 L a2:扩束镜 L 1 L 2:准直透镜 M 1 M 2:反射镜 H :干版架 图4-3 全息光栅拍摄光路 L a :氦氖激光器 K :光闸 C :扩束镜 L :准直透镜如图可见,干板上记录的是两束平行光(物光和参考光)的干涉条纹。
全息光栅原理
全息光栅原理全息光栅是一种利用光的干涉和衍射原理制成的光学元件,它具有高分辨率、大存储容量和并行处理等优点,在光学信息处理、光学成像、光学通信等领域有着广泛的应用。
全息光栅的原理是基于光的波动性和干涉衍射现象,下面我们将详细介绍全息光栅的原理。
全息光栅是通过记录和再现光波的振幅和相位信息来实现的。
在光的干涉实验中,当两束光波相遇时,它们会发生干涉现象,产生干涉条纹。
而全息光栅是将被记录的物体的振幅和相位信息同时记录下来,通过这种方式实现了三维信息的存储和再现。
全息光栅的制作过程包括记录和再现两个步骤,记录时需要将被记录的物体和参考光波进行干涉,再现时则是通过照射参考光波来再现被记录物体的信息。
在全息光栅的制作过程中,记录时需要将被记录的物体和参考光波进行干涉。
被记录的物体可以是实物,也可以是通过计算机生成的数字图像。
当被记录的物体和参考光波进行干涉时,记录介质上就会形成干涉图样,这个过程就是记录的过程。
在再现的过程中,通过照射参考光波,就可以再现被记录物体的信息,这时就可以看到原始物体的全息图像。
全息光栅的原理是基于光的波动性和干涉衍射现象,因此在全息光栅中,光的波动性和干涉衍射现象起着关键作用。
光的波动性使得光波能够记录物体的振幅和相位信息,而干涉衍射现象则使得这些信息能够被记录下来,并且在再现时能够还原出原始物体的信息。
全息光栅具有高分辨率、大存储容量和并行处理等优点。
由于全息光栅可以记录物体的振幅和相位信息,因此它具有比传统光学元件更高的分辨率。
同时,全息光栅还具有比较大的存储容量,可以同时记录多个全息图像,并且可以通过改变照明条件来实现并行处理。
这些优点使得全息光栅在光学信息处理、光学成像、光学通信等领域有着广泛的应用。
总之,全息光栅是一种利用光的干涉和衍射原理制成的光学元件,它的原理是基于光的波动性和干涉衍射现象。
全息光栅具有高分辨率、大存储容量和并行处理等优点,在光学信息处理、光学成像、光学通信等领域有着广泛的应用。