实验十四___酵母蔗糖酶的提取纯化及活力测定
酵母蔗糖酶的提取实验报告
酵母蔗糖酶的提取实验报告一、实验目的本实验旨在学习酵母蔗糖酶的提取方法,并掌握其酶活力的测定方法。
二、实验原理酵母蔗糖酶是一种重要的生物催化剂,广泛应用于食品工业、医药工业等领域。
其提取方法主要包括细胞破碎法和超声波法。
细胞破碎法是将酵母细胞经过离心、洗涤后,在低温下使用高压均质机或超声波仪器进行破碎,使得蛋白质与其他杂质分离。
而超声波法则是将细胞悬液经过超声波处理,使得细胞壁裂开,释放出内部的蛋白质。
三、实验步骤1. 酵母菌体培养:将活性酵母菌体接种到含有10%蔗糖和0.5%酵母粉的液体培养基中,在30℃下静置48小时。
2. 细胞破碎:将培养好的菌体通过离心后洗涤两次,然后在低温下使用高压均质机进行破碎,使得蛋白质与其他杂质分离。
3. 超声波处理:将菌体悬液经过超声波处理,使得细胞壁裂开,释放出内部的蛋白质。
4. 酶活力测定:取一定量的提取液,加入含有蔗糖的缓冲液,在37℃下反应30分钟后用硫酸铜试剂测定还原糖的含量。
四、实验结果通过细胞破碎和超声波法两种方法提取酵母蔗糖酶,测得其酶活力分别为10.5 U/g和12.8 U/g。
五、实验分析1. 细胞破碎法和超声波法都可以用于酵母蔗糖酶的提取,但是超声波法更加快速、高效。
2. 酵母菌体培养条件对于酵母蔗糖酶的产生有较大影响,应该注意培养基成分和温度等因素。
3. 酵母蔗糖酶的测定方法可以采用硫酸铜法,但是也可以采用其他方法,如比色法和光度法等。
六、实验结论本实验通过细胞破碎和超声波法两种方法提取酵母蔗糖酶,并测定了其酶活力。
结果表明,超声波法更加高效。
同时,酵母菌体培养条件对于酵母蔗糖酶的产生有较大影响,应该注意调整培养条件。
最后,硫酸铜法可以用于测定酵母蔗糖酶的活力。
酵母蔗糖酶提取纯化及酶活测定的改进方法
一、背景介绍酵母蔗糖酶是一种重要的酶类,它在葡萄糖代谢途径中起着关键作用。
酵母蔗糖酶的提取纯化及酶活测定是生物化学与分子生物学研究中常见的实验操作。
在这个过程中,酵母蔗糖酶的纯化程度和酶活测定的准确性直接影响着后续的实验结果。
二、传统提取纯化及酶活测定方法存在的问题1. 低纯度:传统的提取纯化方法往往不能够完全去除其他蛋白质或杂质,导致提取的酵母蔗糖酶纯度较低。
2. 酶活测定不精准:常见的酶活测定方法对于活性较低的酶样本测定效果较差,难以得到准确的酶活性数据。
3. 操作繁琐:传统方法需要多次离心、沉淀和洗涤等步骤,耗时且操作繁琐。
三、改进方法鉴于传统方法存在的问题,我们提出了一种改进的酵母蔗糖酶提取纯化及酶活测定方法,主要包括以下几个关键步骤:1. 酵母蔗糖酶提取(1)酵母细胞破碎:采用超声波破碎或高压破碎技术,将酵母细胞有效破碎,释放出蔗糖酶。
(2)蛋白质沉淀:利用差速离心法或特定沉淀剂沉淀出目标蛋白质,提高酶的纯度。
2. 酶活测定(1)比色法测定:采用改良的Folin-Phenol比色法,提高对酶活性的测定准确性。
(2)酶活性计算:采用新的酶活性计算公式,更准确地反映酶的活性水平。
四、结果与讨论我们采用改进方法对酵母蔗糖酶进行提取纯化及酶活测定,得到的结果表明,与传统方法相比,改进方法在以下几个方面有了显著改善:1. 提取纯化效果显著:采用改进方法提取的酵母蔗糖酶纯度明显提高,杂质含量大幅降低。
2. 酶活测定更准确:采用改进方法测定的酶活性数据更为准确可靠,对活性较低的酶样本也能够进行精准测定。
3. 操作简便高效:改进方法简化了提取纯化的操作步骤,减少了操作时间,提高了实验效率。
五、结论我们的改进方法在酵母蔗糖酶提取纯化及酶活测定中取得了良好的效果,显著提高了酶的纯度和活性测定的准确性,为相关领域的研究提供了重要的实验技术支持。
该方法的推广应用将有助于推动相关研究领域的发展,促进酵母蔗糖酶的深入研究和应用。
酵母蔗糖酶的提取实验报告
酵母蔗糖酶的提取实验报告酵母蔗糖酶的提取实验报告1. 引言酵母蔗糖酶是一种重要的酶,在许多生物过程中起着关键作用。
通过提取酵母蔗糖酶,我们可以深入了解其结构和功能,以及其在实际应用中的潜力。
本实验旨在通过一系列步骤,从酵母细胞中提取酵母蔗糖酶,并评估其活性和效果。
2. 方法和材料2.1 材料- 新鲜酵母菌浆液- 蒸馏水- 磷酸缓冲液- 蔗糖溶液- 高速冷离心机- 低速冷离心机- 离心管- 离心管架- 塑料吸管- 双室温度计- 分光光度计- 试管2.2 实验步骤步骤1:制备酵母酶提取液a) 将10ml新鲜酵母菌浆液倒入离心管中,并以1500rpm的速度在低温下离心10分钟。
b) 将上清液转移至另一个离心管中,再次进行高速离心,以去除细胞碎片。
步骤2:沉淀酵母蔗糖酶a) 将上一步中得到的上清液倒入一个含有7ml蔗糖溶液的试管中。
b) 在室温下孵育搅拌2小时,让酵母蔗糖酶与蔗糖结合形成沉淀。
c) 用低速离心将沉淀分离。
收集上清液备用。
步骤3:测定酵母蔗糖酶活性a) 在分光光度计中设置波长为540nm。
b) 取1ml上清液和1ml磷酸缓冲液混合,作为空白对照。
c) 另取1ml上清液和1ml含20%蔗糖溶液的试管中,作为实验组。
d) 在不同时间点(例如0、1、2、3、4分钟)测定两个试管的吸光度,并记录数据。
e) 计算酵母蔗糖酶的活性。
3. 结果与讨论通过以上实验步骤,我们成功地提取了酵母蔗糖酶,并可以测定其活性。
根据测定结果,我们观察到酵母蔗糖酶在一定时间范围内对蔗糖的降解表现出线性增加的趋势。
这表明酵母蔗糖酶在一定程度上具有稳定的催化作用。
通过本实验,我们还可以根据酵母蔗糖酶的活性表征其在不同条件下的稳定性、催化效率和适应性。
我们可以改变温度和pH值,观察对酵母蔗糖酶活性的影响,从而了解其最适宜的操作条件。
通过进一步的研究,我们还可以探索酵母蔗糖酶在生物制药、食品加工和能源生产等领域的应用潜力。
总结回顾:通过酵母蔗糖酶的提取实验,我们深入了解了酵母蔗糖酶的结构、功能和应用前景。
酵母蔗糖酶的提取分离纯化及其蛋白质浓度和酶活力测定(126)
酵母蔗糖酶的提取、分离纯化及其 蛋白质浓度和酶活力测定
蔗糖酶催化底物蔗糖分解成葡萄糖和果糖 蔗糖酶在酵母细胞中存在着两种形式 :
存在于细胞膜外细胞壁中的高度糖基化的外蔗糖酶,其活 力占蔗糖酶活力的大部分,是含有50%(质量分数)糖成 分的糖蛋白,该酶是蔗糖酶的主要形式
存在于细胞膜内侧细胞质中的低糖基化的内蔗糖酶。
定。
分实验二:蔗糖酶各级分酶活力的测定 一、实验目的
掌握蔗糖酶活力测定方法
二、实验原理
蔗糖酶能催化非还原性双糖(蔗糖)的1,2-
糖苷键裂解,释放出等量的果糖和葡萄糖。每
摩尔蔗糖水解产生两摩尔还原糖,蔗糖的裂解
速率可以通过斐林试剂法测定还原糖的产生数
量来测定。
蔗糖 葡萄糖
果糖
蔗糖酶
+
斐林试剂法测还原糖含量灵敏度较高,其原理是:
离心去除酵母菌体而得到蔗糖酶溶液
加热去除热不稳定的杂蛋白
乙醇沉淀获得粗提酶。三、实验材料、仪器和剂 实验材料:安琪酵母
仪器和试剂:
研钵,离心管,滴管,量筒,恒温水浴锅,烧杯, 高速冷冻离心机, pH值试纸 二氧化硅,去离子水,冰,食盐,1mol/L乙酸, 95%乙醇.
四、操作步骤
提取
分转入水相中。
(4)平衡,4℃、10000rpm离心10min (5)将上清液倒入量筒,量出体积并记录,转入清洁烧杯中。 (6)用pH试纸检查上清pH值,用1mol/L 乙酸将pH值调至5.0。 (7)将其置于50℃的水浴,经常缓慢搅拌,30min。 (8)于冰浴中迅速冷却,倒入100ml的离心管中,4℃,离心 10分钟。 (9)取上清液,量体积并记录,得粗酶液1,同时预留2.0 ml 测定用。
酵母蔗糖酶的提取分离纯化及其蛋白质浓和酶活力测定
分实验一:蔗糖酶的提取与初步纯化
一、实验目的
➢ 学习蔗糖酶分离提取的原理
➢ 学习掌握细胞破壁、有机溶剂沉淀蛋白质的原理 与操作
二、实验原理 细胞破碎的方法
高压匀浆破碎法(homogenization)
பைடு நூலகம்
机械法
振荡珠击破碎法 (Skaking Bead) 高速搅拌珠研磨破碎法(fine grinding)
蔗糖酶催化底物蔗糖分解成葡萄糖和果糖 蔗糖酶在酵母细胞中存在着两种形式 :
存在于细胞膜外细胞壁中的高度糖基化的外蔗糖酶,其活 力占蔗糖酶活力的大部分,是含有50%(质量分数)糖成 分的糖蛋白,该酶是蔗糖酶的主要形式
存在于细胞膜内侧细胞质中的低糖基化的内蔗糖酶。
本实验提取纯化的主要是外蔗糖酶
酵母细胞结构图
(4)平衡,4℃、10000rpm离心10min
(5)将上清液倒入量筒,量出体积并记录,转入清洁烧杯中。
(6)用pH试纸检查上清pH值,用1mol/L 乙酸将pH值调至5.0。
(7)将其置于50℃的水浴,经常缓慢搅拌,30min。
(8)于冰浴中迅速冷却,倒入100ml的离心管中,4℃,离心 10分钟。
酶是生物体内具有催化活性的物质,可据酶蛋 白的结构和性质来选择分离提纯方法和含量测 定。
酶的分离提纯是为了提高纯度(或比活力)及 收率;依据其性质(分子大小、溶解度、电荷、 吸附等)进行分离; 同时用测定酶活力的方法了 解酶的去向、衡量酶提纯的程度和得率。
本实验由四个分实验组成:
✓蔗糖酶的提取与初步纯化 ✓蔗糖酶各级分酶蛋白质浓度的测定 ✓蔗糖酶各级分酶活力的测定 ✓离子交换柱层析纯化蔗糖酶
超声波破碎法(ultrasonication) 渗透压冲击破碎法(osmotic shock)
实验十四___酵母蔗糖酶的提取纯化及活力测定
掌握酶活力测定的方法; 学会用Folin-酚法测定蛋白质的浓度; 熟悉酶活力蛋白浓度的计算方法。
二、实验原理
蔗糖酶专一性地水解蔗糖为等量的葡萄糖和果糖。同时, 每水解1mol蔗糖,就能生成2mol还原糖。本实验采用3.5 -二硝基水杨酸法测定还原糖的含量,由此可得出蔗糖酶 水解速度。其原理是3.5-二硝基水杨酸与还原糖共热被 还原成棕红色的氨基化合物,在一定范围内还原糖的含量 与棕红色物质的颜色深浅成正比。因此可利用分光光度计 进行比色测定,求得样品中的含糖量。本法操作简便、快 速,杂质干扰较少。
中备用,在室温放置7-10天以后使用。
2、1 g /L 葡萄糖
3、5% 蔗糖
4、250ug/mL牛血清溶液(用Tris-HCl 缓冲液配制)
5、0.2mol/L乙酸缓冲液
6、Folin-酚试剂
A液:按下列比例:4%Na2CO3 : 0.2mol/L NaOH: 2%酒石酸钾(钠):1% CuSO4.5H2O=50:50:1:1(v/v)混合后一天有效。
第二部分 DEAE-Sepharose FF柱层析
DEAE—Sepharose FF处理:( 按说明书处理)
取适量DEAE- Sepharose Fast Flow,加入0.5mol/L NaOH溶液(约50ml),轻轻搅拌,浸泡0.5小时, 用玻璃砂漏斗抽滤,并用去离子水洗至近中性, 抽干后,放入小烧杯中,加50ml 0.5 mol/L HCl, 搅 匀,浸泡0.5小时,同上,用去离子水洗至近中性, (DEAE- Sepharose Fast Flow,用后务必回收)。 浸入0.02 mol/L pH 7.3 Tris-HCl 缓冲液中。
甲液:溶解6.9g 结晶酚于15.2ml 10%NaOH溶液中,并用水稀释至 69ml,在此溶液中加6.9g亚硫酸氢钠。
生化综合实验-酵母蔗糖酶的提取及其性质的研究
酵母蔗糖酶的提取及其性质的研究一、蔗糖酶的制备1、提取称取14.997g干酵母粉于250ml小烧杯中,少量多次地加入50ml蒸馏水,搅拌均匀。
成糊状后加入1.499g乙酸钠、25ml乙酸乙酯,搅匀。
再于35℃恒温水浴中搅拌30min,然后补加30ml蒸馏水,搅匀,盖好,于35℃恒温过夜。
之后,1000r/min离心10min,抽取酯层后再次离心,得到无细胞提取液。
用1M HCl将其PH调至5.0,即可得到级分Ⅰ。
(取出3ml于冰箱中保存)2、热处理(1)盛有粗级分Ⅰ的离心管放入50℃水浴中保温30min,在保温过程中不断轻摇离心管。
(2)取出离心管,于冰浴中迅速冷却,用4℃,1000r/min离心10min。
(3)上清液即为热级分Ⅱ。
(取出3ml于冰箱中保存)3、乙醇沉淀将热级分Ⅱ转入小烧杯中,放入冰浴,逐滴加入等体积预冷的95%乙醇,同时轻轻搅拌(此过程共需30 min)。
然后在冰浴中静置10 min,以沉淀完全。
然后4℃,1000r/min离心10min。
倾去上清,并滴干。
将沉淀保存于离心管中,冷冻保存,此即级分Ⅲ。
二、蔗糖酶的纯化将3ml级分Ⅲ加入洗脱柱中进行梯度洗脱。
及洗脱峰图如下:三、蔗糖酶各级分活性及蛋白质含量的测定(一)还原糖含量测定1、各级分稀释倍数的确定级分Ⅰ:取50μl稀释至1.5ml(30倍)级分Ⅱ:取50μl稀释至1.5ml(30倍)级分Ⅲ:取50μl稀释至15ml(300倍)取20μl稀释至2ml(100倍)释100倍。
在上述表格中,Glu含量是由标准曲线求得的,E'=Glu含量*稀释倍数/(10 min*0.6 ml)Units=0.6 ml/Glu平均含量/2/10min/稀释倍数由洗脱峰可知,第二个和第三个峰最有可能是目标蛋白(第一个峰一般情况下是杂蛋备注:由测定数据可知,第二个峰不是目标蛋白,第三个峰为目标蛋白。
(二)蛋白质含量测定1、各级分稀释倍数的确定由以上数据可知,级分Ⅰ和级分Ⅱ不需稀释,级分Ⅲ需稀释5倍。
蔗糖酶的提取、分离、纯化及活性检测
蔗糖酶的提取、分离、纯化及活性检测摘要随着分子生物学的发展,不论对酶分子本身作用机制的研究还是其他研究,越来越需要纯度更高的酶制剂,这就要求我们熟悉酶提纯的一般操作步骤及酶的提纯及活力测定等重要的生物实验技术。
本次实验主要通过提取啤酒酵母中的蔗糖酶并经过两次纯化测定其活力与Km。
在实验过程中用乙醇分级分离法,DEAE-Cellulose柱层析,分子筛(凝胶过滤)层析提取纯化蔗糖酶。
在实验过程中,虽然我们很努力,但由于我们对实验的程序不熟悉,因此在实验的一些过程中有一些明显的操作失误,使得实验的最后测定结果与理论值有一定出入。
关键词啤酒酵母蔗糖酶乙醇分级分离 DEAE-Cellulose柱层析分子筛层析Km前言生物体内所发生的一切化学反应,几乎都是在专一性酶的催化下进行的,因此酶的研究对了解生命活动的规律以及生命本质的阐述具有十分重要的意义。
随着分子生物学的发展,不论对酶分子本身作用机制的研究以及分子生物学其他重要课题的研究都越来越多地需要使用作用专一,纯度高的酶制剂。
这就要求人们建立各种方法,以便从各种生物来源的材料中分离提纯酶。
由于酶本身也是蛋白质,因此酶分离提存的方法大体上与蛋白质纯化方法相同,一般来说,没有一种固定的方法,而往往根据实验者所要分离提纯酶的取材以及酶本身的物理﹑化学及生物学性质来确定分离提纯方法。
各种酶的纯化通常有五个阶段:①材料的选择与预处理;②细胞破碎;③抽提;④纯化;⑤浓缩﹑干燥及保存。
酶分离纯化成功与否的重要标志:一是要有较高的收率;二是达到所要求的纯度,这两个指标通常是矛盾的,可根据需要来有所侧重,一般来说,好的方法与步骤应该是简单易行,最终的酶制剂有较高的收率和纯度。
就单独的每种分离提纯的方法而言,有盐析法、有机溶剂分级法、调PH分级沉淀法、选择变性法、吸附法、层析法(纸层析、薄板层析、柱层析等)。
其中盐析法是用于蛋白质和酶分离提纯的最早而且最广泛的一种方法,该方法是根据蛋白质和酶在一定浓度的溶液中溶解度的降低程度的不同而达到彼此分离的方法盐析法常用的中性盐有硫酸铵、硫酸镁、硫酸钠、氯化钠、磷酸钠等,其中用得最多的是硫酸铵,因为它具有温度系数小而溶解度大的优点。
酵母蔗糖酶的提取及性质测定
酵母蔗糖酶的提取及性质测定引论及原理酶的分离制备在酶学以及生物大分子的结构功能研究中有重要意义。
本实验属综合性实验,接近研究性实验,包括八个连续的实验内容,通过对蔗糖酶的提纯和性质测定,了解酶的基本研究过程;同时掌握各种生化技术的实验原理、基本操作方法。
本实验技术多样化,并且多个知识点互相联系,实验内容逐步加深,构成了一个综合性整体,为学生提供一个较全面的实践机会,学习如何提取纯化、分析鉴定一种酶,并对这种酶的性质,尤其是动力学性质作初步的研究。
蔗糖酶(invertase )(β—D —呋喃果糖苷果糖水解酶)(fructofuranoside fructohydrolase )(EC.3.2.1.26)特异地催化非还原糖中的α—呋喃果糖苷键水解,具有相对专一性。
不仅能催化蔗糖水解生成葡萄糖和果糖,也能催化棉子糖水解,生成密二糖和果糖。
每水解1mol 蔗糖,就生成2mol 还原糖。
还原糖的测定有多种方法,本实验采用Nelson 比色法测定还原糖量,由此可得知蔗糖水解的速度。
在研究酶的性质、作用、反应动力学等问题时都需要使用高度纯化的酶制剂以避免干扰。
酶的提纯工作往往要求多种分离方法交替应用,才能得到较为满足的效果。
常用的提纯方法有盐析、有机溶剂沉淀、选择性变性、离子交换层析、凝胶过滤、亲和层析等。
酶蛋白在分离提纯过程中易变性失活,为能获得尽可能高的产率和纯度,在提纯操作中要始终注意保持酶的活性如在低温下操作等,这样才能收到较好的分离效果。
啤酒酵母中,蔗糖酶含量丰富。
本实验用新鲜啤酒酵母为原料,通过破碎细胞,热处理,乙醇沉淀,柱层析等步骤提取蔗糖酶,并对其性质进行测定。
一、蔗糖酶的提取与部分纯化(一)实验目的学习酶的提取和纯化方法,掌握各步骤的实验原理,并为后续实验提供一定量的蔗糖酶。
(二)实验原理(略) (三)实验仪器、材料及试剂 仪器1. 高速冷冻离心机、恒温水浴箱、-20℃冰箱2. 电子天平、研钵(>200ml )、制冰机、50ml 烧杯3. 离心管(2ml ,10ml ,30ml 或50ml )、移液器(1000ul )或滴管、量筒 材料及试剂1. 市售鲜啤酒酵母(低温保存)+ H 2O 蔗糖酶O HH O2.石英砂(海沙)、甲苯(使用前预冷到0℃以下)3.95%乙醇(预冷-20℃)、去离子水(使用前冷至4℃左右)4.Tris-HCl(pH7.3)缓冲液(四)操作步骤1. 提取(1)将市售鲜啤酒酵母2000 rpm,离心10 min,除去大量水分。
生物化学实验论文 从啤酒酵母中提取蔗糖酶
题名:酵母蔗糖酶的提取纯化及活力测定姓名:***学院:长三角绿色制药协同创新中心班级:绿色国际班学号:************2013 年12 月 27日填酵母蔗糖酶的提取纯化及活力测定浙江工业大学绿色制药协同创新中心宋烙摘要:采用自溶法从啤酒酵母中提取蔗糖酶,通过离心、热提取、95%乙醇沉淀提取、Q Sepharose-柱层析法来对蔗糖酶进行纯化。
至于活力的测定,首先利用3,5-二硝基水杨酸(DNS)法测定5min内酶能催化生成葡萄糖的量来对得到的各个提取液进行蔗糖酶活力的测定。
然后再通过Folin-酚法测定蔗糖酶蛋白质含量,之后就可以计算出各个提取液的比活力。
最后,用SDS-聚丙烯酰胺凝胶电泳法来测定蔗糖酶的相对分子质量。
关键词:蔗糖酶;提取纯化;酶活力;蛋白质含量;相对分子质量The Extraction Method of Beer Yeast Sucroseand Vitality TestZhejiang University of Technology Green Pharmacy Xietong Chuangxin CentreSong LuoAbstract:The autolysis extracts sucrose from beer yeast. Then, purifying the sucrose by centrifugalization, hot extraction, 95% ethanol sediment extraction, and Q-Sepharose-column chromatography. As for calculate the radio of live, first of all, using 3,5-dinitrosalicylic acid(DNS)to calculate the each extracting solution’s radio of live by measure how much sucrose the sucrose can catalysis. After that, calculating the content of sucrose by using Lowry method., so it’s available to calculate each extracting solution’s specific activity. Finally, we used SDS-polyacrylamide gel eletrophoresis to measure the sucrose’s relative molecular mass.Keyword: sucrose;extraction;vitality;specific activity;relative molecular mass前言:本实验的是一个综合性的教学实验,主要是为了让学生养成规范的科学实验习惯,树立严谨的科研作风。
蔗糖酶的提取、分离、纯化及活性检测
蔗糖酶的提取、分离、纯化及活性检测蔗糖酶是一种能够催化蔗糖水解反应的酶,广泛存在于生命体内,具有重要的应用价值。
本文主要介绍了蔗糖酶的提取、分离、纯化及活性检测方法。
一、蔗糖酶的提取1、选择合适的菌株:蔗糖酶广泛存在于细菌、真菌、植物和动物等生物体中,但不同菌株对蔗糖酶的产生能力存在差异,因此需要根据实际需求选择产酶能力较高的菌株。
2、液态培养:选用适宜的培养基和培养条件,促进菌株生长和蔗糖酶的合成。
一般情况下,最佳培养条件为温度在35℃左右,pH值为7.0左右,培养时间为24-48小时。
3、离心沉淀:将菌液离心,取上清液即为蔗糖酶提取液。
1、离子交换层析:通过调节液相pH值,利用离子交换材料对蔗糖酶进行吸附、洗脱和分离。
2、凝胶过滤层析:利用凝胶材料对蔗糖酶进行筛分,分离出不同分子量的蔗糖酶。
3、亲和层析:在固相材料上引入亲和基团,用于特异性地吸附蔗糖酶,洗脱和分离目标蛋白。
1、透析:通过半透膜对蔗糖酶真空透析,去除杂质。
2、浓缩:利用超滤膜对蔗糖酶进行浓缩。
3、电泳:运用电泳等方法对混合蛋白进行分离和分析,以实现蔗糖酶的纯化。
蔗糖酶的活性检测方法多种多样,以下介绍其中几种常见的方法。
1、邻苯二甲酸法:通过对邻苯二甲酸恒量反应条件下,测量比色产物的吸光度来检测蔗糖酶的活性。
2、甲酚磺酸法:测量甲酚磺酸转化为带电离子的速率,来判断蔗糖酶活性的多少。
3、蔗糖酶显色法:在蔗糖酶的作用下,蔗糖水解生成葡萄糖和果糖,再利用淀粉-碘酒作为指示剂,显色程度来反映蔗糖酶的活性。
总结:蔗糖酶是一种重要的酶类,在生命科学和工业生产等领域具有广泛应用。
其提取、分离、纯化及活性检测方法多种多样,需要根据不同的实验条件和需求来选择合适的方法。
啤酒酵母蔗糖酶的提取、纯化及测定研究
浙江工业大学海洋学院生物化学实验论文专业:食品科学与工程班级:食品1201姓名:徐素媛啤酒酵母蔗糖酶的提纯及相关性质测定研究作者:徐素媛单位:浙江工业大学海洋学院食工1201班摘要:为了了解酶的提取及及初提纯方法,并在此基础上掌握Q Sepharose-柱层析法提纯酶、DNS法测定酶活力、Folin-酚法和微量凯式定氮法测定蛋白含量以及SDS-PAGE测定蛋白质分子量的原理和方法,需要进行一系列的实验,主要实验过程如下:啤酒酵母自溶后经多次分别离心得到初提液A、热提取液B和乙醇提取液C。
利用Q Sepharose-柱层析法洗脱乙醇提取液C得到洗脱液,通过测定洗脱液的吸光值及酶活力的定性测定,选取活力最高的洗脱液得到柱分离液D。
接着进行定量酶活力测定,根据葡萄糖标准曲线的方程计算4个样品的总活力单位数和酶回收率,并得出随着蔗糖酶的不断提纯,酶的总活力单位数和酶回收率都逐渐减小。
随后用Folin-酚试剂法测样品中蛋白质的含量,与用微量凯氏定氮法测定的结果进行比较,后者测出的总蛋白含量比前者大,并得出A、B、C、D4个样品的比活力在一步步的纯化中逐渐升高,纯化倍数也明显增大,而总酶活、总蛋白和蛋白回收率却在下降。
最后用SDS-聚丙烯酰胺凝胶电泳法通过凝胶对样品的筛选分离、染色、洗脱等步骤测量蛋白质分子和染料的迁移距离来间接测定蔗糖酶的相对分子质量。
关键词:蔗糖酶提纯酶活力Folin-酚法微量凯式定氮法SDS-聚丙烯酰胺凝胶电泳法正文:1、文献综述1.1 总述啤酒酵母也叫营养酵母,为酵母科、酿酒酵母属,可作食用、药用和饲料酵母,还可以从其中提取核酸、谷胱甘肽、蔗糖酶、细胞色素c等营养物质[1]从啤酒酵母中提取蔗糖酶的一般工艺过程包括提取和分离纯化以及相关性质测定[2]。
1.2 蔗糖酶的提取蔗糖酶(Sucrase,EC 3.2.1.26)又称转化酶(Invertase),可作用于β-1,2糖苷键,并将蔗糖水解为D-葡萄糖和D-果糖。
酵母蔗糖酶的制备与活力测定
酵母中蔗糖酶的制备及活力测定一、目的要求1、学习一种酵母中蔗糖酶的制备方法。
2.掌握3,5-二硝基水杨酸试剂(DNS试剂)测定酶活力的原理和方法。
3. 掌握还原糖测定的基本原理和721分光光度计的操作。
二、实验原理蔗糖酶(invertase)(β—D—呋喃果糖苷果糖水解酶)(fructofuranoside fructohydrolase)(EC.3.2.1.26)特异地催化非还原糖中的α—呋喃果糖苷键水解,具有相对专一性。
不仅能催化蔗糖水解生成葡萄糖和果糖,也能催化棉子糖水解,生成密二糖和果糖。
每水解1mol蔗糖,就生成2mol还原糖。
还原糖在碱性条件下加热可被氧化成糖酸及其它产物,而氧化剂3,5-二硝基水杨酸(DNS)则被还原为棕红色的3-氨基-5-硝基水杨酸。
在一定范围内,还原糖的量与棕红色物质颜色的深浅成正比关系,利用分光光度计在520nm波长下测定光密度(OD)值,查对标准曲线并计算,便可求出样品中还原糖的含量。
酶活力单位的定义:在一定条件下,反应5分钟每产生1mg还原糖所需的酶量为一个活力单位(U)。
三、仪器与试剂1. 仪器研钵,天平,离心机,721型分光光度计,恒温水浴,具塞试管25ml,沸水浴,移液器(1000ul、200 ul)2. 试剂市售酵母干粉,石英砂,丙酮(预冷), 1mg/ml葡萄糖溶液,pH4.5醋酸缓冲液, 10%蔗糖溶液,3,5-二硝基水杨酸溶液。
四、实验方法1. 蔗糖酶制备称取10g酵母干粉和少量石英砂放入研钵中,加适量蒸馏水,用力研磨30分钟成糊状,再加蒸馏水100ml,搅匀,6层纱布过滤,滤液加2倍体积冷丙酮搅匀,静置5分钟,离心管中,平衡后3000 rpm离心10 min,弃上清取沉淀。
沉淀用2倍体积丙酮重复操作一次。
沉淀真空干燥后称重。
再称取25mg酶粉加入少量蒸馏水研磨5分钟,用蒸馏水定容至40m l作为酶应用液备用。
2. 蔗糖酶活力测定(1)制作葡萄糖标准曲线取7支具塞刻度试管编号,按表1分别加入浓度为1mg/ml的葡萄糖标准溶液、蒸馏水和DNS试剂,配成不同浓度的葡萄糖反应液。
蔗糖酶分离纯化与活力测定
考马斯亮兰法测定蛋白质含量的原理
考马斯亮兰G 250在酸性溶液时呈茶棕色,最大吸收峰在465nm。 考马斯亮兰G-250在酸性溶液时呈茶棕色,最大吸收峰在465nm。 在酸性溶液时呈茶棕色 465nm 当与蛋白质结合后变成深蓝色,最大吸收峰转至595nm,在10当与蛋白质结合后变成深蓝色,最大吸收峰转至595nm, 10595nm 100μg/mL蛋白质浓度范围内成正比 蛋白质浓度范围内成正比; 100μg/mL蛋白质浓度范围内成正比; 测定各级分蛋白质含量时应稀释适当倍数,使其测定值在标准曲 测定各级分蛋白质含量时应稀释适当倍数, 线的直线范围内 根据所测定的A595nm值 在标准曲线上查出相当于标准蛋白的量, 根据所测定的A595nm值,在标准曲线上查出相当于标准蛋白的量, A595nm 从而计算出未知样品的蛋白质浓度(mg/mL) 从而计算出未知样品的蛋白质浓度(mg/mL)
热处理和乙醇沉淀
预先将恒温水浴调到50℃ 将盛有粗级分I 50℃, (1) 预先将恒温水浴调到50℃,将盛有粗级分I的离心管稳妥 下保温30分钟, 地放入水浴中,50℃下保温30分钟 地放入水浴中,50℃下保温30分钟,在保温过程中不断轻 摇离心管。 摇离心管。 取出离心管, 冰浴中迅速冷却, 4℃,10000rpm, (2) 取出离心管,于冰浴中迅速冷却,用4℃,10000rpm,离 10min。 心10min。 将上清液转入小烧杯中,放入冰盐浴( (3) 将上清液转入小烧杯中,放入冰盐浴(没有水的碎冰撒 入少量食盐),逐滴加入等体积预冷至-20℃的95%乙醇 ),逐滴加入等体积预冷至 乙醇, 入少量食盐),逐滴加入等体积预冷至-20℃的95%乙醇, 同时轻轻搅拌,共需30分钟,再在冰盐浴中放置10分钟, 30分钟 10分钟 同时轻轻搅拌,共需30分钟,再在冰盐浴中放置10分钟, 以沉淀完全。 4℃,10000rpm,离心10min 倾去上清, 10min, 以沉淀完全。于4℃,10000rpm,离心10min,倾去上清, 并滴干,沉淀保存于离心管中,盖上盖子或薄膜封口, 并滴干,沉淀保存于离心管中,盖上盖子或薄膜封口,然 后将其放入冰箱中冷冻保存(称为“级分Ⅱ )。 后将其放入冰箱中冷冻保存(称为“级分Ⅱ”)。
酵母蔗糖酶的提取分离纯化及其蛋白质浓和酶活力测定
蛋白总量 = 蛋白浓度×总体积 总酶活 = 酶活×校正体积 比活力(Unit/mg)=总酶活力/总蛋白 纯化倍数 = 比活力之比 回收率 = 总酶活之比
分实验四:离子交换柱层析纯化蔗糖酶
一、实验目的 学习掌握离子交换柱层析的原理与操作
二 、实验原理
离子交换是指液相中的离子与固相交换 基团中的离子可逆反应。离子交换剂有阳离子 交换剂(如:羧甲基纤维素:CM-纤维素)和阴 离子交换剂(如:二乙氨基乙基纤维素: DEAE-纤维素),当被分离的蛋白质溶液流经 离子交换层析柱时,带有与离子交换剂相反电 荷的蛋白质被吸附在离子交换剂上,随后用改 变pH或离子强度办法将吸附的蛋白质洗脱下来 。
➢在酸性条件下,蔗糖酶催化蔗糖水解,生成葡萄糖和果糖。 ➢葡萄糖、果糖和碱性铜试剂混合加热后被其氧化,二价铜
被还原成棕红色氧化亚铜沉淀。 ➢氧化亚铜与磷钼酸作用生成蓝色溶液,其蓝色深度与还原
糖的量成正比,于650nm测定光吸收值。
三、试剂
碱性铜试剂 磷钼酸试剂 葡萄糖标准溶液 0.2mol/L蔗糖溶液 0.2mol/L乙酸缓冲液,pH4.9
将2-3mL醇级分2用移液管沿着管壁轻轻加到 层析柱中,注意不要扰动柱床,上样后,用大约 30ml缓冲液洗去柱中未吸附的蛋白质,当A280nm 值降低稳定后,可用恒流泵及梯度混合器进行梯度 洗脱 [梯度混合器左侧放入50ml 0.02 mol/L pH值 为7.3的Tris-HCl缓冲液(含1 mol/L NaCl), 右侧放入等量0.02 mol/LpH值为7.3的Tris-HCl 缓冲液]。
10 ──反应10min
B ──每管加入酶液mL数 原始酶液的酶活力 E = (E′/2)×稀释倍数
分实验三:蔗糖酶各级分的蛋白含量测定 (G-250法)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
装柱(层析柱规格1×20cm): 装柱前先将柱下端的出水口关闭,加进5ml(约1/3柱床体 积) 20 mmol/L Tris-HCl、pH7.3的缓冲液,然后将处理 好的DEAE—Sepharose FF轻轻搅匀(注意不能太稀,也 不能太稠,刚好呈流质状态)沿玻棒靠近柱管壁慢慢连续 加进柱内。注意不能带进气泡,待凝胶沉积约1-2cm后松 开层析柱出口,控制流速0.5ml/min;待柱内DEAE— Sepharose FF自然沉降至所需高度并分出水层后,吸去水 层,用玻棒将沉降界面搅匀,再加进处理好的DEAE— Sephadex至距层析柱上端4cm处为止(这时须保持 DEAE—Sepharose FF柱面平整)。用 50ml 20 mmol/L Tris-HCl、pH7.3的缓冲液装进洗脱杯,连通层析柱,进 行柱平衡,直到流出液与缓冲液的pH一致。
2.热处理 将上步所得上清液转入50 ml离心管,迅 速放入50℃恒温水浴中,保持30分钟,并用玻璃 棒温和搅动抽提液,迅速用冰浴冷却,10000rpm 离心10分钟,弃去沉淀,测量上清液体积,留 1.0ml (Ⅱ样品)测定此酶活力和蛋白浓度。
3.酒精沉淀 将热处理后的上清液,加入相同体积 的-20℃95%乙醇,冰浴中温和搅动,(注意边搅
洗脱液通过检测器,用部分收集器自动收集洗脱液,每6 min收集一管(约3~4ml)。洗脱至混合器中液体流完为止, 比较各管的酶活力的大小,将最高活力的若干管酶液集中, 均分在几个小管中,低温保存,用于性质测定。留液(Ⅳ) 测定酶活和蛋白量。(洗脱时,流速为0.5ml/分钟-1ml/分 钟、4ml接收一管)
慢加,滴加乙醇时滴与滴之间不能连成线!!!) 放置30min,然后10000rpm离心10min,弃去上清
液,试管中沉淀放置冰箱保存或将酒精处理后的 沉淀溶于7ml 20 mmol/L Tris-HCl、pH7.3 buff(Ⅲ样 品,留1.0 ml样液测活),上样前用7ml离心管 5000rpm离心10min,待上样。
理一步外,尽可能低温)
第一部分 样品的制备:
1.称取10.0克干酵母粉于研钵内,加3.0克石英砂, 10ml buff(先量取总体积buff30 ml),在研钵内研 磨成糊状,约30分钟,再分次加buff 10ml并研磨 10分钟,, 研磨时间大约60分钟。转入50mL离心管, 12000r/min离心10分钟,取上清液,并量取体积, 留1.0ml 上清液(定为第一步骤的样品Ⅰ),用于测 定酶活力和蛋白浓度。
九、实验结果与分析
附:仪器调节指标
恒流泵
流速:3ml/10min
核酸蛋白自动检测仪 A: 0.2
纪录仪
V: 20mv 走纸速度:0.5mm/min
自动收集器
6min/tube 共25tube
上样量
5ml
装填平衡后的凝胶柱用肉眼观察应均匀,无纹路,无气泡。
蔗糖酶活力及蛋白浓度的测定
一、实验目的和要求
五、实验的主要仪器
1.冷冻离心机 2.研钵 3.恒温水浴箱 4.-20℃冰箱 5.梯度混合器 6.层析柱 (1×20cm)
六、实验操作流程
干酵母粉→加缓冲液研磨→离心→热处理→酒 精沉淀→离心→上清夜→上DEAE—Sepharose FF柱→层析→活力检测
七、实验关键步骤:(以下各步骤除热处
加样,洗脱:
将平衡好的DEAE—Sepharose FF上端的水小心吸干,留 下一薄层液面,用长滴管将样品液5 ml,沿管壁环形慢慢 加进柱内,待样品液全部进入DEAE—Sepharose FF内, 只剩下一薄层液面时,用buff环形缓慢填满层析柱,
立即连上梯度洗脱杯(梯度洗脱杯中靠出口处的杯中装 20mmol/L Tris-HCl pH7.3 buff 50ml,另一杯中装50ml buff含0.5mol/LNaCl),打开洗脱杯控制开关,开动磁力 搅拌器,用蠕动泵控制流速为3 ml/ 对称放入,盖好盖子。 2、层析柱跟水平面要垂直。胶面要平,装柱时注意
操作压; 3、装柱用的树脂不能太浓也不能太稀;柱内不能有
气泡,,不能干胶,不能有断层。流速不能过快。 4、整个操作过程防止液面低于凝胶;清除管道内气
泡。 5、记录仪上zero勿动否则是一条直线。
第二部分 DEAE-Sepharose FF柱层析
DEAE—Sepharose FF处理:( 按说明书处理)
取适量DEAE- Sepharose Fast Flow,加入0.5mol/L NaOH溶液(约50ml),轻轻搅拌,浸泡0.5小时, 用玻璃砂漏斗抽滤,并用去离子水洗至近中性, 抽干后,放入小烧杯中,加50ml 0.5 mol/L HCl, 搅 匀,浸泡0.5小时,同上,用去离子水洗至近中性, (DEAE- Sepharose Fast Flow,用后务必回收)。 浸入0.02 mol/L pH 7.3 Tris-HCl 缓冲液中。
酶活力检测:
取试管若干支编号,各加入0.5mL 5%蔗糖 (pH4.6),每隔一管取100uL收集液,按先后顺 序分别加入上述含0.5mL 5%的蔗糖的试管中混匀, 置50℃水浴10min。再加入0.5mL 3,5-二硝基水杨 酸,于沸水浴中煮沸5min,用自来水冷却,直接 目测。即可确定酶活力高峰范围。
DEAE-Sepharose F F柱预先用20mmol/L Tris-HCl, pH7.3 buff 平衡(约30ml流出液即可),以流出液pH 与 buff 一致为准。上样后,用20 m mol/L Tris-HCl, pH7.3 buff 进行NaCl梯度洗脱(NaCl 为0.5mol/L),层 析柱连上梯度混合器,混合器中分别为50ml、 20mmol/L Tris-HCl, pH7.3缓冲液和50ml 20mmol/L Tris-HCl,pH7.3缓冲液,其中含0.5mol/L NaCl。
掌握酶活力测定的方法; 学会用Folin-酚法测定蛋白质的浓度; 熟悉酶活力蛋白浓度的计算方法。