化工设备课程设计计算书(板式塔)
课程设计板式塔
kg 液体 / h 或 kmol液体 / h
液沫夹带分率ψ:夹带的液体流量占横过塔板液体流量的分数。
故有:
e
eV
qmL e
qmL qmV
eV
所以
2024/10/20
ev
1
qm L qVLs L qm《V化工原理1》课程设q计VVs v
27
ev的计算方法: 方法1:利用Fair关联图求Ψ,进而求出ev。 方法2:用Hunt经验公式计算ev。
③ 溢流堰(出口堰)
作用:维持塔板上一定液层,使液体均匀横向流过。
型式:平直堰、溢流辅堰、三角形齿堰及栅栏堰。
2024/10/20
《化工原理》课程设计
21
堰高 hW:直接影响塔板上液层厚度 过小,相际传质面积过小; 过大,塔板阻力大,效率低。 常、加压塔:40 ~ 80 mm ; 减压塔:25 mm 左右。 堰长 lW :影响液层高度。
6.10 板 式 塔 6.10.1 板式塔结构及性能
(1) 板式塔结构
塔顶气相
进料
回流液
塔底液相
2024/10/20
《化工原理》课程设计
1
塔板结构 ① 气体通道
形式很多,如筛板、浮阀、泡罩等,对塔板性能影响很大。
② 降液管(液体通道) 液体流通通道,多为弓形。
③ 受液盘 塔板上接受液体的部分。
④ 溢流堰 使塔板上维持一定高度的液层,保证两相充分接触。
bs
r
x
lW
双流型弓形降液管塔板:
bd
Aa 2(x
r2
x2
r2
s in 1
x) r
2(x1
r2
x12
r2
s in 1
板式塔设计计算说明书
一、设计任务1. 结构设计任务完成各板式塔的总体结构设计,绘图工作量折合A1图共计4张左右,具体包括以下内容:⑴各塔总图1张A0或A0加长; ⑵各塔塔盘装配及零部件图2张A1。
2. 设计计算内容完成各板式塔设计计算说明书,主要包括各塔主要受压元件的壁厚计算及相应的强度校核、稳定性校核等内容。
二、设计条件1. 塔体内径mm 2000=i D ,塔高m 299.59H i =;2.设计压力p c =2.36MPa ,设计温度为=t 90C ︒;3. 设置地区:山东省东营市,基本风压值q 0=480Pa ,地震设防烈度8度,场地土类别III 类,地面粗糙度是B 类;4. 塔内装有N=94层浮阀塔盘;开有人孔12个,在人孔处安装半圆形平台12个,平台宽度B=900m m ,高度为1200m m ;5. 塔外保温层厚度为δs =100m m ,保温层密度ρ2=3503m /kg ;三、设备强度及稳定性校核计算1. 选材说明已知东营的基本风压值q 0=480Pa ,地震设防烈度8度,场地土类别III 类;塔壳与裙座对接;塔内装有N=94层浮阀塔盘;塔外保温层厚度为δs =100m m ,保温层密度ρ2=3503m /kg ;塔体开有人孔12个,在人孔处安装半圆形平台12个,平台宽度B=900m m ,高度为1200m m ;设计压力 p c =2.36MPa ,设计温度为=t 90C ︒;壳3m m ,裙座厚度附加量2m m ;焊接接头系数取为0.85;塔内径mm 2000=i D 。
通过上述工艺条件和经验,塔壳和封头材料选用Q345R 。
对该塔进行强度和稳定计算。
2. 主要受压元件壁厚计算本部分应包括常压塔的主要筒体及椭圆封头等重要受压元件的壁厚计算,裙座厚度先按经验值取。
l塔壳和封头材料选用Q345R[MPa 185][,325)(t.20p eL ==σR R (16<≤δ36)] 直径mm 2000=i D 段圆筒及封头: 圆筒:15.12mm 36.285.01852200036.2][2ci c =-⨯⨯⨯=-=p D p tφσδ 封头:mm 06.1536.25.085.018521200036.25.0][2ci c h =⨯-⨯⨯⨯⨯=-=p K D p tφσδ 经圆整后,塔壳厚度取为22m m ,封头厚度取为24m m ,裙座壳厚度取为18m m 。
《化工原理》电子教案 —— 板式塔及其工艺设计计算
《化工原理》电子教案——板式塔及其工艺设计计算教案章节:一、板式塔的概述1. 塔设备的分类及应用2. 板式塔的结构及特点3. 板式塔的分类及选用原则二、塔盘结构与性能1. 塔盘的类型及工作原理2. 塔盘性能的评定指标3. 常用塔盘的结构与性能比较三、塔内流体流动与传质过程1. 塔内流体流动特点2. 气液两相流动计算3. 传质过程及计算四、板式塔的设计计算1. 设计计算的基本步骤2. 塔径的计算方法3. 塔高的计算与确定五、板式塔的工艺计算与优化1. 工艺计算的基本内容2. 塔盘效率的计算与提高措施3. 塔内压降的计算与控制教学目标:通过本章的学习,使学生掌握板式塔的基本概念、结构及特点,了解板式塔的分类和选用原则;掌握塔盘的结构与性能,能够根据实际需求选择合适的塔盘;理解塔内流体流动与传质过程,能够进行简单的计算;熟悉板式塔的设计计算方法,能够进行基本的设计与优化。
教学方法:采用讲解、案例分析、互动讨论相结合的方式进行教学。
通过讲解使学生掌握基本概念和原理,通过案例分析使学生了解实际工程中的应用,通过互动讨论激发学生的思考和创新能力。
教学内容:一、板式塔的概述1. 塔设备的分类及应用讲解:塔设备在化工、环保等领域的应用,各类塔设备的特点及适用范围。
2. 板式塔的结构及特点讲解:板式塔的组成部分,各部分的作用及板式塔相较于其他类型塔的优势。
3. 板式塔的分类及选用原则讲解:不同类型板式塔的结构特点及应用领域,选用原则及注意事项。
二、塔盘结构与性能1. 塔盘的类型及工作原理讲解:常见塔盘类型,如平板塔、圆形塔、浮阀塔等,及其工作原理。
2. 塔盘性能的评定指标讲解:塔盘性能的评定指标,如塔盘效率、压降等,及其计算方法。
3. 常用塔盘的结构与性能比较讲解:常用塔盘的结构特点及性能比较,如圆形塔与浮阀塔的优缺点。
三、塔内流体流动与传质过程1. 塔内流体流动特点讲解:塔内气液两相流动的特点,如流动形态、流动参数等。
化工原理课程设计-板式精馏塔设计资料教程
umax C
L V V
umax — 最 大 空 塔 气 速 , m / s
L、V — 分 别 为 液 相 与 气 相 密 度 , kg m 3
负荷系数
C
C
20
20
0 .2
( C20 值 可 由 S m i t h 关 联 图 求 取 )
( 3) 加 料 板 位 置 的 确 定
求 出 精 馏 段 操 作 线 和 提 馏 段 操 作 线 的 交 点 x q 、 y q , 并 以x q 为 分
界线,当交替使用操作线方程和相平衡关系逐板往下计算到
xn xq 且 xn1 xq 时 , 就 以 第 n 块 板 为 进 料 板 。
( 4) 实 际 板 数 的 确 定
对高发泡系统及高压操作的塔,停留时间应加长些。
故在求得降液管的截面积之后,应按下式验算液体在降液管内的
停留时间,即
A f H T LS
5.注意事项: 写出详细计算步骤,并注明选用数据的来源; 每项设计结束后,列出计算结果明细表; 设计说明书要求字迹工整,装订成册上交。
第二部分:筛板式精馏塔设计方法
一. 工艺计算 二. 设备计算 三. 辅助设备计算 四. 塔体结构 五. 带控制点工艺流程图
一.工艺计算
主要内容是(1)物料衡算 (2)确定回流比 (3)确定理论板数 和实际板数 (4)塔的气液负荷计算 (5)热量衡算
(1).堰 长 lW : 依 据 溢 流 型 式 及 液 体 负 荷 决 定 堰 长 , 单 溢 流 型 塔 板 堰
长 lW 一 般 取 为 ( 0 . 6 ~ 0 . 8 ) D ; 双 溢 流 型 塔 板 , 两 侧 堰 长 取 为 ( 0 . 5 ~
课程设计计算书(板式塔)
《化工设备设计基础》课程设计计算说明书学生姓名:学号:所在学院:专业:设计题目:指导教师:2015年月日目录一.设计任务书 (2)二.设计参数与结构简图 (4)三.设备的总体设计及结构设计 (5)四.强度计算 (7)五.设计小结 (13)六.参考文献 (14)一、设计任务书1、设计题目根据《化工原理》课程设计工艺计算内容进行填料塔(或板式塔)设计。
设计题目:各个同学按照自己的工艺参数确定自己的设计题目:填料塔(板式塔)DNXXX设计。
例:精馏塔(DN1800)设计2、设计任务书2.1设备的总体设计与结构设计(1)根据《化工原理》课程设计,确定塔设备的型式(填料塔、板式塔);(2)根据化工工艺计算,确定塔板数目(或填料高度);(3)根据介质的不同,拟定管口方位;(4)结构设计,确定材料。
2.2设备的机械强度设计计算(1)确定塔体、封头的强度计算。
(2)各种开孔接管结构的设计,开孔补强的验算。
(3)设备法兰的型式及尺寸选用;管法兰的选型。
(4)裙式支座的设计验算。
(5)水压试验应力校核。
2.3完成塔设备装配图(1)完成塔设备的装配图设计,包括主视图、局部放大图、焊缝节点图、管口方位图等。
(2)编写技术要求、技术特性表、管口表、明细表和标题栏。
3、原始资料3.1《化工原理》课程设计塔工艺计算数据。
3.2参考资料:[1] 董大勤.化工设备机械基础[M].北京:化学工业出版社,2010.3.[2] 全国化工设备技术中心站.《化工设备图样技术要求》2000版[S].[3] GB150.压力容器[S].[4] 郑晓梅.化工工程制图化工制图[M].北京:化学工业出版社,2002.[5] NB/T47041-2014.塔式容器[S].4、文献查阅要求设计说明书中公式、内容等应明确文献出处;装配图上应写明引用标准号。
5、设计成果1、提交设计说明书一份;2、提交塔设备(填料塔、板式塔)草图一张(A3);2、提交塔设备(填料塔、板式塔)装配图一张(A1)。
化工机械设备课程设计(板式塔)---副本
第1章绪论............................................. .错误!未指定书签1.1 课程设计的目的................................... 错误!未指定书签1.2 课程设计的要求................................... 错误!未指定书签1.3 课程设计的内容................................... 错误!未指定书签1.4 课程设计的步骤................................... 错误!未指定书签第2章塔体的机械计算................................... 错误!未指定书签2.1 按计算压力计算塔体和封头厚度.................... 错误!未指定书签2.1.1 塔体厚度的计算 .............................. 错误!未指定书签2.1.2 封头厚度计算 ................................ 错误!未指定书签2.2 塔设备质量载荷计算.............................. 错误!未指定书签2.2.1 筒体圆筒、封头、裙座质量 .................... 错误!未指定书签2.2.2 塔内构件质量 ................................ 错误!未指定书签2.2.3 保温层质量 .................................. 错误!未指定书签2.2.5 操作时物料质量 ............................... 错误!未指定书签2.2.6 附件质量 ..................................... 错误!未指定书签2.2.7 充水质量 .................................... 错误!未指定书签2.2.8 各种载荷质量汇总 ............................. 错误!未指定书签2.3 风载荷与风弯矩的计算............................. 错误!未指定书签2.3.1 风载荷计算 .................................. 错误!未指定书签2.3.2 风弯矩的计算 ................................. 错误!未指定书签2.4 地震弯矩计算..................................... 错误!未指定书签2.5 偏心弯矩的计算................................... 错误!未指定书签2.6 各种载荷引起的轴向应力.......................... 错误!未指定书签2.6.1 计算压力引起的轴向应力 ...................... 错误!未指定书签2.6.2 操作质量引起的轴向压应力 ..................... 错误!未指定书签2.6.3 最大弯矩引起的轴向应力 ...................... 错误!未指定书签2.7 塔体和裙座危险截面的强度与稳定校核............... 错误!未指定书签2.7.1 截面的最大组合轴向拉应力校核 ................ 错误!未指定书签2.7.2 塔体与裙座的稳定性校核 ....................... 错误!未指定书签2.8 塔体水压试验和吊装时代应力校核.................. 错误!未指定书签2.8.1 水压试验时各种载荷引起的应力....... 错误!未指定书签2.8.2 水压试验时应力校核................. 错误!未指定书签2.9 根底环设计............................. 错误!未指定书签2.9.1 根底环尺寸.................................. 错误!未指定书签2.9.2 根底环的应力校核................... 错误!未指定书签2.9.3 根底环的厚度................................ 错误!未指定书签2.10 地脚螺栓计算.......................... 错误!未指定书签2.10.1 地脚螺栓承受的最大拉应力 .......... 错误!未指定书签2.10.2 地脚螺栓的螺纹小径......................... 错误!未指定书签第3章塔结构设计............................. 错误!未指定书签3.1 塔盘结构............................... 错误!未指定书签3.2 塔盘的支承............................. 错误!未指定书签参考文献 .................................. 错误!未指定书签自我总结..................................... 自误!未指定书签1.1 课程设计的目的(1)把化工工艺与化工机械设计结合起来, 稳固和强化有关机械课程的根本理论和知识根本知识.(2)培养对化工工程设计上根本技能以及独立分析问题、解决问题的水平.(3)培养识图、制图、运算、编写设计说明书的水平.1.2 课程设计的要求(1)树立正确的设计思想.(2)具有积极主动的学习态度和进取精神.(3)学会正确使用标准和标准,使设计有法可依、有章可循.(4)学会正确的设计方法,统筹兼顾,抓主要矛盾.(5)在设计中处理好尺寸的圆整.(6)在设计中处理好计算与结构设计的关系.1.3 课程设计的内容塔设备的机械设计.2200 1.91.4 课程设计的步骤(1)全面考虑按压力大小、温度上下、腐蚀性大小等因素来选材.(2)选用零部件.(3)计算外载荷,包括内压、外压、设备自重,零部件的偏载、风载、地震载荷等.(4)强度、刚度、稳定性设计和校核计算(5)传动设备的选型、计算.(6)绘制设备总装配图.第2章塔体的机械计算2.1 按计算压力计算塔体和封头厚度2.1.1 塔体厚度的计算考虑厚度附加量 C = 2 ,经圆整,取6n =222.1.2 封头厚度计算米用标准椭圆封头:1.9 22002 170 0.85 -0.5 1.9考虑厚度附加量C =2,经圆整,取6n =222.2 塔设备质量载荷计算2.2.1 筒体圆筒、封头、裙座质量 m 01圆筒质量: m 1 =1205 36.79 -44331.95封头质量: m 2 =2 :V =2 :S 、n= 2 7800 5.5229 22 = 1895.46裙座质量:m 3 =1205 3.06 =3687.3m 0 = m 1m 2 m 3 = 44331.95 1895.46 3687.3 = 49914.71说明:1塔体圆筒总高度为 H O= 36.79 m ;2 查得2200 mm,厚度22 mm 的圆筒质量为1205 kg;23查得 2200封头,内外表积为5.229 m 3裙座高度3060 mm 〔厚度按22计〕.P c D i2[二]t - P c1.9 2200 2 170 0.85 -1.9=14.56mmP c D i2[-]t-0.5p c=14.51mm2.2.2塔内构件质量m022 _ __ _____ __ _ _ 2 _ ___ _______ ___m02 = —D j 75 70 =0.785 2.2 75 70 =19946.854浮阀塔盘质量为75 kg22.2.3 保温层质量m03 、2 、2-・・m03 = —[(D j 2『2、)2 -(D i 2、n)2]H0:2 2:2V03 = 4= 0.785[(2.2 2 0.022 2 0.1)2 -(2.2 2 0.022)2] 36.79 3002 (1.99 -1.55) 300= 8387.412.2.4 平台与扶梯质量m04m04 =][(Di 2、n 2 2B)2 - (Di 2、n 2 )2] (nq p q F H F_ _ _ _ _ __ _____ __ ___2 _ ________________ __2_ _ _ _ _= 0.785[(2.2 2 0.022 2 0.1 2 0.9) -(2.2 2 0.022 2 0.1) ] 0.5 8 150 40 39 =7230.09说明:平台质量p1502;笼式扶梯质量q p40;笼式扶梯高度F39m,平台数82.2.5 操作时物料质量m05m05 = 一Di2h w N:1 — Di2h°N:1 V f " 4 4= 0.785 2.220.1 70 800 0.785 2.22 1.8 800 1.55 800二27987.76说明:物料密度a=800kg/m3,封头容积V f =1.55m3.塔釜圆筒局部深度h0=1.8,塔板层数70,塔板上7层高度h w=0.1m按经验取附件质量m a = O.25m0i = 12241.752.2.7 充水质量m w:■- 2 2 _________________ _ ____ _________ ___ m w = —Di 2H o: w 2V f :w =0.785 2.22 36.79 1000 2 1.55 1000 = 142879.93kg 4其中二w = 1000kg/m32.2.8 各种载荷质量汇总表2-1质量汇总塔段0〜1 1〜2 2〜3 3〜4 4〜5 5〜顶合计塔段长度1000 2000 7000 10000 10000 10000 40000 人孔与平台数0 0 1 3 2 2 8 塔板数0 0 9 22 22 17 70m O1 1205 3358 8435 12050 12050 12817 49915 m:2 一一2565 6269 6269 4844 19947m O3 一132 **** **** 2208 2293 8387 m:4 40 80 988 2526 1818 1778 7230 m:5 一1240 8207 6688 6688 5165 27988 m a 301 840 2109 3013 3013 3204 12479 m w 一1550 26593 37990 37990 38757 142880 m e 一2800 5200 一一一8000 m O 1546 8450 29050 32754 32246 30101 133946 各塔段最小质量1546 5911 18214 22446 20917 21159 90000 全塔操作质量m°= m O1 m02 m°3 m04 m05 m e m a =133946全塔最小质量m min = m01 0.2m02 m03 m04 m a m e =90000水压试验时最大质量m max =m01 m02 m03 m04 - m a m w m e =2488382.3风载荷与风弯矩的计算2.3.1 风载荷计算2—3段计算风载荷旦P 3 =K i K 23q 0 f3%D e3 10 -(N)式中: K i =0.72 q o =400f 3 =1.00 l 3 =7000mm、3 -0.7210 —1.31s= 2.40z3=0.113按下式计算,取a, b 中较大者a De3 =D°i 2、s3 K4 K3b De 3 =Doi 2、s3 K4 do 2、ps取七=400 mm , &=,s =100mm表2-2载荷汇总2.40 0.72 0.111.00= 1.190 ,K 42% A2 1 900 10007000=257 mm计q 0管 liKi V i2iU 平D ei P ik 2i f iH itk 4台K23=1段1 1000 400 0.7 0.72 0.0075 2.80 1.02 0.64 1 0 0 2620 4812 2000 400 0.7 0.72 0.0375 2.80 1.11 0.723 0 0 2620 11673 7000 400 0.7 0.72 0.110 2.80 1.22 1.00 10 1 257 2877 68904 10000 400 0.7 0.79 0.350 2.80 1.62 1.25 20 3 540 3160 179065 10000 400 0.7 0.82 0.665 2.80 2.07 1.42 30 2 360 2980 245856 10000 400 0.7 0.85 1.000 2.80 2.53 1.56 40 2 360 2980 328802.3,2风弯矩的计算截面0—0M,=吟BQ l 另P3(l l l2 I3) .... P6(l l I2 …勺1000 / 2000、/ 7000、=556父 --- +1338 黑(1000 + ------ ) +7699 “1000 + 2000 +----------- )+2 2 210000、19205 父(1000 +2000 +7000 + ------- ) +26162 工(1000 + 2000 + 7000 +210000、/ 10000、10000 + -------- ) +34317 父(1000 +2000 +7000 +10000 +10000 +----------- )2 2=278000 2676000 50043500 288075000 654050000 1202195000= 2.1962 109N mm截面’1 1MT = P2 + P3(l2 +=)+.... +P6(l2 +I3 +...+=)2 2 2/2000、/ 7000、/ 10000、= 1338父(-- )十7699父(2000+----- )+19205父(2000+ 7000+ ------- )2 2 2/ 10000、/+ 26162父(2000 + 7000 + 10000 + --- )+34317M(2000+7000+10000+1000042=2338000 42344500 268870000 627888000 1166778000一一一一9= 2.1072 10 N mm截面2—2M 二二 P 3,... P 6(l 3 l 4...以7000、 / 10000、 / 10000、=7699 父 --- )+19205 父(7000 + --------- ) +26162 乂(7000 +10000 + -------- )2 2 210000、+ 34317 父(7000 +10000 +10000 + ------- )2 = 1.9311 109 N mm2.4 地震弯矩计算1=0.02T 1 = 1.31s1=0.02 (0.05 - 1)/9 =0.02 (0.05 -0.02)/9 =0.023% =0.086 ,H /D i =40000/2200 =18.18 . 15 按以下方法计算地震弯矩 截面0—0. 16 169M E =一 :1m 0gH = 0.086 133946 9.81 40000 =2.066 109 N mm35 350 _0 0 _0' Q QM E =1.25M E =1.25 2.066 109 = 2.583 109N mm截面’1 1M E 4' = 81m0g (10H 3.5 -14H 2.5h 4h 3.5)175H 2.53.5 2.5 3.5(10 40000-14 40000 1000 4 1000 )__ 9= 1.944 10 N mmME" =1.25M E4 = 1.25 父1.944 M 109 = 2.493 X 109N mm=0.9+ 0.05-1 0.5+5 5= 0.95:八0.05一 10.06 1.7 1 二1 0.05 -0.020.06 1.7 0.02= 1.319 , 等直径等厚度的塔, 8 0.086 133946 9.81 175 400002.58 1m02g(10H 3.5 -14H 2.5h 4h 3.5) 175H 2.5(10 400003.5 -14 400002.5 3000 4 30003.5)9一= 1.849 10 N mm2 2 2 2' 9 9M E =1.25M E =1.25父1.849M10 =2.311父10 N mm .2.5 偏心弯矩的计算偏心弯矩 M e =m e ge =8000 9.81 2000 =1.57 108N mm2.6 各种载荷引起的轴向应力2.6.1 计算压力引起的轴向应力2.6.2 操作质量引起的轴向压应力$2截面0 —0其中、es =22 —2 =20mm 截面1—11 4 m °g = 132400 9.81 A sm 1.435 105其中 m :‘=133946-1546=132400 , A sm = 1.435 父 105 mm 2 截面2—2截面2—28 0.086 133946 9.81175 400002.5P c D i 4 e1.9 22004 20= 52.25MPa0 .0二 20 -0 m °g 二D 「ei133946 9.813.14 2200 20=9.51MPa= 9.05MPa2 2二产二3二 122404 9.81 =8.69MPa其中 m/ =132400 -1546 - 8450 = 1224042.6.3 最大弯矩引起的轴向应力§3截面0 —00_0 0 0 _9_8___ _9M max = M : M e = 2.196 1091.57 108 =2.353 109N mmM 黑=M E" +0.25M :" +Me =2.583X108 + 0.25父 2.196 父 108 +1.57 父108max匚e= 3.289 108N mm截面1—1截面2—2=M 『 M e =1.931 109 1.57 108 =2.088 109N mm =M E"+ 0.25M ." + M e = 2.311 父108 + 0.25 父 1.931M 108 +1.57 父108 一一_ 9= 2.951 10 N mmMm:92.951 109 20.785 22002 20=38.81MPa二 D i 、ei 3.14 2200 20 0 _0 --30 _0 Mmax3.289 109 20.785 22002 20=43.26MPa2 _29Mmax4 2.436 10ZsmL = 41.75MPa7.606 10M 14 max二 M/M e =2.107 109 1.57 108 = 2.264 109N mmM 14 max=M 『+0.25M / + M e = 2.493 父108 +0.25 父 2.107 父 108 +1.57父108= 3.176 108N mm Z sm =7.606 107NmmM 」M 」2.7塔体和裙座危险截面的强度与稳定校核2.7.1 截面的最大组合轴向拉应力校核截面2-2k- t =170 Mp a= 0.85K =1.2K " =1.2 170 0.85 =173.4 Mp a2 _2 2_22_2_ ___ 二max =二1 - 二2 二3 =52.5-8.69 38.81 -82.62MPa =82.62MPa :二K[二]t =173.4MPa满足要求2.7.2塔体与裙座的稳定性校核截面2-2A 0.094、6一R i 0.094 20 =0.00171100138[二]t=1701.22 .22-2 2 -2 —二max =二2 二 3 =8.69 38.81 =47.5MPa2-2 _ __ t_ _二max =47.5MPa T]cr =min{KB,K[二]} = min{ 166,204} 满足要求截面1-1A = 118 0.094 1 0.094 20------------- =------------------------ = 0.0017Ri 1100166MPa[二]t =105MPa1.2 1 1 1 1 _____ 1J /_ _ ____ ___=二-2 二 3 =9.05 41.74 =50.80MPac m a;1 1 _ __ _____ __ t_ _ _ _____________ ____二mat =50.80MPa 二[二]Cr =min{KB,K[二]} = min{ 141.6,126} =126MPa 满足要求截面0-0: 0.094、ei = 0.094 200.0017AR i 1100B =118MPa[二]t =105MPa 1.2二m:=二7 二0' =9.541 43.26 = 52.77MPa仃mt =52.77MPa <[.]5=min{ KB, K叵],=min{141.6,126} = 126MPa 满足要求计算危险截面项目----------------------------------------------------------------0-0 1-1 2-2塔体与裙座有效厚度6e,20 20 20 截面以上的操作质量m'6' ,133946 132400 122404 计算截面面积A, mm2138230 143500 138230 计算截面的截面系数Zi1, mm376.03 10676.61 10676.31 106i-i最大弯矩M max,N mm93.289 10993.176 10992.951 109最大允许轴向拉应力K b ];;MPa 173.4 一一141.6 141.6 165.6最大允许压应力K !126 126 204 计算压力引起的轴向拉应力二- 1 0 0 52.25 操作质量引起的轴向压力;少9.51 9.05 8.69 最大弯矩引起的轴向压力;寸43.26 41.75 38.81 最大组合轴向拉应力;:;ma x52.77 50.80 47.50 最大组合轴向拉应力;喀派一一82.62强度一一2工t . 二max:K[二]满足要求强度与稳定校核稳定性, 0 -0「max :二[-]cr二min{ KB,K[二])满足要求_ 1」-- max :二[-]cr二min{ KB, K[二])满足要求2N--max :二4]cr二min{ KB,K[二])满足要求表2-3各危险截面强度校核汇总2.8塔体水压试验和吊装时代应力校核2.8.1 水压试验时各种载荷引起的应力(1)试验压力和液柱静压力引起的环向应力P T D i 2.375 2200------- = =65.31 M P a2.8.2 水压试验时应力校核 (1)筒体环向应力校核0.9 s =0.9 345 0.85 = 263.9MPa二T =154.01MPa :二0.9;%=263.9MPa 满足要求(2)最大组合轴向应力校核C-二二 二二二65.31 17.58 9.68 = 57.41MPa max ।2 30.9 1 =0.9 0.85 345 = 263.9MPa二la 2 =57.41MPa :0.9 1 =263.9MPa 满足要求(3)最大组合轴向压应力校核二I : -;「二 二丁 二17.58 9.68 =27.26MPa max二1["二]cr =min{ KB,0.9;s } =min{138.4,310.5} =138MPa(P T +液柱静压力)(D i +6ei )(2.375 + 0.4)(2200 +20)2、:ei2 20=154.01MPaP T[二] 170=1.25 p — =1.25 1.92.375M Pa[打 170液柱静压力=H =1000 40 =0.4MPa(2) 试验压力引起的轴向拉应力4、e 4 20 (3) 最大质量引起的轴向压应力2 _2二 2m ma2g 247653 9.81D i J e 3.14 2200 20= 17.58M P a(4) 弯矩引起的轴向应力2_2二(0.3MZ M e )98(0.3 1.93 1091.57 108)二 2—D i e 40.785 22002 20= 9.68M P a满足要求2.9根底环设计2.9.1根底环尺寸2.9.2 根底环的应力校核取以上两者中的较大值c-bmax -3.85MPa 选用100号混凝土, R a =5.0 MPa二 bmax =3.84 :二 R a满足要求.2.9.3 根底环的厚度[5b =140MPa ; C =3 mm . 11b[D 0b -(D is 2 es )] [2500 -(2200 2 20)] -130mm 22假设螺栓直径为M56, l =160 mm , b =空 =0.65l 160取 D ob = D is 300 =2200300 : 2500 mmD ib=D is-300 = 2200 -300 =1900 mm!二1 ax= max{0 - 0 M maxzbm o gAb.0.3 M w+ M e+ mm axg ;,Z A其中A b =~ D2ob2 Db=0.785 (2500 2 -1900 2) = 2073000 mm 2Z b二(D04b -D :)32 D ob_______ 4 ____ 43.14(2500 -1900 ) 32 2500=10 .2210 8mmM max 0 m 0 g _ 3.289 10 9 132761 9.81Z b A b - 1.02210 8 273000=3 .85 MPa 二 bmax0.3M - M e . m max gZ bA b0.3 2.196 109 1 .57 10 810 .22 10 8247653 9.812073000=1.91 MPa2 2M x =-0.2360 c b max b =-0.2360 3.85 130 =-15355.3N mm22M y =0.0532 1 '.■ b max l =0.0532 3.85 200 =8192.8N mm取其中较大值,故 M s =15355.3N mm3-29.62圆整后取、;b =34mm2.10地脚螺栓计算2.10.1 地脚螺栓承受的最大拉应力0 _00 _00 _0仃=max{ M 【+Me _ mming M E 1 40.25M 1*Me _ m °g }“bZbA b 'ZbA b其中m min =88815kg0 -0 _ 9M E=2.583 10 N mm M 片=21.96 109N mmm 0 =132761kgZ b =10.22 108 mm 3 A b =2073000 mm 30-00-0M E 0.25M W M e _ 2.583 109 0.25 2.196 109 1.57 108 Z b 10.22 108取以上两数中的较大值,故 入=3.22MPaM W M eZ bm min g A b2.196 109 1.57 10888815 9.81 10.22 1082073000= 1.88 MPa=3.22MPad b6 15355.31302.10.2 地脚螺栓的螺纹小径仃b >0,取36,[仃]b =147MPa , C2 = 3mm4b B A b 4x3.223x2073000di 3=43.075mm,J 2 J -----------------------------------------二n[、]bt, 3.14 36147查得M56螺栓的螺纹小径d1 =56mm ,应选用36个M56的地脚螺栓,满足要求.第3章塔结构设计3.1 塔盘结构选用分块式浮阀塔塔盘3.2 塔盘的支承采用支撑梁结构支持圈参考文献[1]刁玉玮,王立业,喻健良.化工设备机械根底〔第六版〕[M].大连理工大学,2006, 12.[2]蔡纪宁,张秋翔,化工机械根底课程设计指导书.[M].化学工业出版社,2021,8.自我总结通过此次课程设计,使我更加扎实的掌握了有关化工机械设备方面的知识, 在设计过程中虽然遇到了一些问题,但经过一次又一次的思考,一遍又一遍的检查终于找出了原因所在,也暴露出了前期我在这方面的知识欠缺和经验缺乏.实践出真知,通过亲自动手制作,使我们掌握的知识不再是纸上谈兵.在课程设计过程中,我们不断发现错误,不断改正,不断领悟,不断获取.最终,这次课程设计终于顺利完成了,在设计中遇到了很多问题,最后在老师的指导下,终于游逆而解.在今后社会的开展和学习实践过程中, 一定要不懈努力, 不能遇到问题就想到要退缩,一定要不厌其烦的发现问题所在,然后一一进行解决,只有这样,才能成功的做成想做的事,才能在今后的道路上劈荆斩棘,而不是知难而退,那样永远不可能收获成功,收获喜悦,也永远不可能得到社会及他人对你的认可!通过这次课程设计,我掌握了如何将化工工艺条件与化工设备设计有机的结合起来,使所学有关机械课程的根本理论和根本知识得以稳固和强化,为今后设计化工化工设备及机械打下一定的根底.实验过程中,也对团队精神的进行了考察,让我们在合作起来更加默契,在成功后一起的喜悦心情,果然是团结就是力量.只有互相之间默契融洽的配合才能换来最终完美的结果.我认为,在这学期的实验中,在收获知识得同时,还收获了阅历,收获了成熟,在此过程中,我请教老师和同学,使我在专业知识好动手实践方面都得到了很好的提升,在此,要对老师和同学表示衷心的感谢.附录A主要符号说明根底环面积:裙座筒体的截面积:A^根底环伸长宽度:b厚度附加量:C塔内直径:D i弹性模量:E塔体高度:H笼式扶梯高度:H F塔盘介质层高度:h w风压高度变化系数:K i 地震弯矩:M E'风弯矩:M W充液质量:m W塔盘数:N人孔个数:n 设计压力:P平台质量:q p p笼式扶梯质量:q F各类土场的特征周期:Tg 自振周期:T1设计温度:t裙座筒体的截面系数:Z sm 常温屈服点:、飞介质密度::塔外保温层厚度:飞圆筒计算厚度:名义厚度:有效厚度:1保温材料密度:「2根本振型参数:k地震影响系数:1脉动增大系数:’根本风压值:q 0载荷组合系数:k附录B塔设备的装配图地震影响系数::・ 风压高度变化系数:f i自振周期地震影响系数:: 设计温度弹性模量:E t。
《化工原理》电子教案-板式塔及其设计计算
欢迎来到《化工原理》电子教案系列!在本节课中,我们将介绍板式塔及其 设计计算,帮助您深入了解这一关键概念,提升化工工程技能!
什么是板式塔
板式塔是化工工程中常用的分离设备,用于将混合物分离为不同组分。它结 构紧凑,高效可靠,广泛应用于石油、化工、制药等行业。
板式塔的结构和原理
通过分Байду номын сангаас混合物的组分、物理性质和工作条件,确定板式塔的输入和输出条 件。这对于塔设计的准确性和性能优化非常重要。
理论计算与模拟软件的应用
利用化学工程原理和计算方法,进行板式塔的理论计算。同时,计算软件如 Aspen Plus等也为塔设计和优化提供了强大的工具。
实际案例分析
通过实际案例的分析,深入了解板式塔设计和操作中的挑战和解决方案。这 将帮助您应对实际工程中的各种情况。
板式塔由一系列水平放置的平板组成,通过不同级别的填料和板间的液体-气体接触,实现物质的分离。 它运用传质和传质过程来促进组分之间的分离。
板式塔设计计算的基本步骤
板式塔的设计计算包括确定输入和输出条件、理论计算和模拟软件的应用。 了解这些步骤可以帮助您更好地设计和优化板式塔的操作。
确定输入和输出条件
总结和展望
在本节课中,我们回顾了板式塔的概念、结构、工作原理以及设计计算的基本步骤。接下来,我们将进 一步探索相关的研究和最新进展。
《化工原理》电子教案 板式塔及其工艺设计计算
《化工原理》电子教案板式塔及其工艺设计计算一、教学目标1. 理解板式塔的基本概念和工作原理。
2. 掌握板式塔的工艺设计计算方法。
3. 能够应用板式塔的设计计算方法解决实际工程问题。
二、教学内容1. 板式塔的分类和结构填料塔、板式塔的分类塔盘的结构和工作原理2. 板式塔的性能评价塔盘效率的计算塔盘压降的计算3. 板式塔的工艺设计计算设计计算的基本步骤设计计算的参数选择设计计算的公式和计算方法4. 板式塔的优化设计塔盘类型的选择塔盘布置的优化5. 板式塔的设计计算案例分析案例一:简单蒸馏塔的设计计算案例二:吸收塔的设计计算三、教学方法1. 讲授法:讲解板式塔的基本概念、工作原理和设计计算方法。
2. 案例分析法:分析实际工程案例,加深学生对板式塔设计计算的理解。
3. 互动教学法:引导学生提问和讨论,提高学生的参与度和思考能力。
四、教学资源1. 教材:《化工原理》相关章节。
2. 课件:板式塔的图片、示意图和设计计算公式。
3. 案例资料:实际工程案例的数据和计算结果。
五、教学评价1. 课堂参与度:学生提问、回答问题和参与讨论的情况。
2. 作业完成情况:学生完成作业的正确率和完整性。
3. 考核成绩:学生的考试成绩和设计计算案例的分析能力。
六、教学重点与难点1. 教学重点:板式塔的分类和结构特点板式塔的性能评价方法板式塔的工艺设计计算流程板式塔的优化设计方法2. 教学难点:板式塔设计计算公式的推导和应用板式塔优化设计中的参数选择和分析实际工程案例中板式塔设计计算的灵活运用七、教学进程安排1. 第一课时:板式塔的分类和结构介绍,理解填料塔与板式塔的区别。
2. 第二课时:板式塔的性能评价方法讲解,学习塔盘效率和压降的计算。
3. 第三课时:板式塔的工艺设计计算流程学习,了解设计计算的基本步骤。
4. 第四课时:板式塔优化设计的内容讲解,学习塔盘类型选择和布置优化。
5. 第五课时:板式塔设计计算案例分析,通过案例一和案例二加深理解。
《化工原理》电子教案 —— 板式塔及其工艺设计计算
《化工原理》电子教案——板式塔及其工艺设计计算教案章节:一、板式塔的分类及基本结构1.1 板式塔的分类1.2 板式塔的基本结构1.3 板式塔的优点与缺点二、塔板的设计与计算2.1 塔板的设计原则2.2 塔板的计算方法2.3 塔板效率的计算与提高三、塔板的类型及其特点3.1 固定泡沫塔板3.2 动态泡沫塔板3.3 流动泡沫塔板3.4 其他类型的塔板四、塔的工艺设计计算4.1 塔的直径计算4.2 塔的高度计算4.3 塔的内件设计4.4 塔的流体力学计算五、塔板塔的应用案例分析5.1 案例一:苯甲酸乙酯的合成5.2 案例二:硫酸铵的结晶分离5.3 案例三:异构体的分离5.4 案例四:乙二醇的脱水反应《化工原理》电子教案——板式塔及其工艺设计计算教案章节:六、塔板塔的流体力学计算6.1 塔内流体的流动模型6.2 塔板塔的流动阻力计算6.3 塔板塔的压力降计算6.4 塔板塔的气液负荷计算七、塔板塔的物料与热量平衡7.1 塔板塔的物料平衡计算7.2 塔板塔的热量平衡计算7.3 塔板塔的热量传递与热效率7.4 塔板塔的节能措施八、塔板塔的模拟与优化8.1 塔板塔的模拟方法8.2 塔板塔的优化目标与方法8.3 塔板塔的工艺参数优化8.4 塔板塔的操作条件优化九、塔板塔的安全与环保考虑9.1 塔板塔的安全设计9.2 塔板塔的安全操作规程9.3 塔板塔的环境影响评估9.4 塔板塔的环保措施十、综合案例分析与实践10.1 案例五:塔板塔在合成氨厂的应用10.2 案例六:塔板塔在石油炼制中的应用10.3 案例七:塔板塔在精细化工中的应用10.4 案例八:塔板塔在环境保护中的应用《化工原理》电子教案——板式塔及其工艺设计计算教案章节:十一、塔板塔的操作与控制11.1 塔板塔的操作流程11.2 塔板塔的控制系统11.3 塔板塔的操作参数监控11.4 塔板塔的故障处理与维护十二、塔板塔的现代化改造与创新12.1 塔板塔的现代化改造技术12.2 塔板塔的创新设计理念12.3 塔板塔的新型材料应用12.4 塔板塔的智能化发展十三、塔板塔在不同领域的应用13.1 塔板塔在化学工业中的应用13.2 塔板塔在制药工业中的应用13.3 塔板塔在食品工业中的应用13.4 塔板塔在其他领域的应用案例十四、实验与实践教学14.1 塔板塔的实验设计14.2 塔板塔的实验操作步骤14.3 塔板塔的实验数据处理14.4 塔板塔的实验结果分析十五、课程总结与展望15.1 塔板塔的主要概念与原理回顾15.2 塔板塔工艺设计计算的关键点15.3 塔板塔在化工领域的未来发展趋势15.4 塔板塔在技术创新中的机遇与挑战重点和难点解析本教案主要围绕板式塔的分类、结构、设计计算、流体力学、物料与热量平衡、模拟与优化、安全与环保、操作与控制、现代化改造与创新、应用领域、实验与实践以及课程总结与展望等方面进行讲解。
化工原理板式塔课程设计
化工原理板式塔课程设计一、课程目标知识目标:1. 理解化工原理中板式塔的基本概念、分类和结构;2. 掌握板式塔的流体力学特性和传质单元操作原理;3. 学会运用板式塔的物料和能量平衡方程,分析实际工艺过程中的塔内流动和传质现象;4. 了解板式塔在化工生产中的应用和常见问题。
技能目标:1. 能够运用板式塔的设计方法,进行塔板数、塔径和塔高的初步计算;2. 掌握板式塔内流体流动和传质的模拟与优化方法;3. 能够运用相关软件(如Aspen Plus)对板式塔进行模拟和性能分析;4. 培养解决实际工程问题,如塔内液泛、漏液、堵塞等问题的能力。
情感态度价值观目标:1. 培养学生对化工原理学科的兴趣,激发学习热情;2. 培养学生的团队协作意识,学会与他人共同解决问题;3. 增强学生的环保意识,认识到化工生产过程中节能减排的重要性;4. 培养学生的创新精神和实践能力,为将来从事化工领域工作打下基础。
本课程针对高年级化工原理相关专业学生,结合课程性质、学生特点和教学要求,明确以上课程目标。
通过本课程的学习,学生能够掌握板式塔的基本理论、设计方法和应用技能,为实际工程问题的解决和未来职业发展奠定基础。
同时,注重培养学生的团队协作、创新精神和环保意识,提高学生的综合素养。
后续教学设计和评估将围绕以上具体学习成果展开。
二、教学内容1. 板式塔基本概念与结构- 板式塔的定义、分类及特点;- 常见塔板类型及其结构。
2. 板式塔流体力学特性- 单板塔的流体流动现象;- 塔内液相和气相流动的压降计算;- 液泛和漏液的判断及防止措施。
3. 传质单元操作原理- 传质的基本理论;- 传质单元数的计算;- 影响传质效率的因素。
4. 板式塔物料和能量平衡- 板式塔内物料和能量的平衡方程;- 塔内流动和传质的模拟与优化;- 实际工艺过程中的案例分析。
5. 板式塔设计方法- 塔板数、塔径和塔高的初步计算;- 塔内流体流动与传质的模拟;- 设计软件(如Aspen Plus)的应用。
化工原理课程设计《板式塔课程设计》
三、设计内容:
三、设计内容: 1、确定设计方案 ( 精馏装置流程设计与论证 )。 2、板式塔的工艺计算: (1). 确定塔顶,塔底产品的质量与流量; (2). 确定塔顶,塔底控制温度; (3). 求算最小回流比,确定操作回流比; (பைடு நூலகம்). 求算理论板层数 N ,确定加料位置; (5). 确定实际板层数,实际加料板位置; (6). 全塔热平衡,计算塔顶冷凝,冷却器热负荷及冷却水消耗量;塔底再沸器热负荷及加热蒸汽消耗量;
计算а、μ(以定性温度下、进料组成计算)
ET=0.49(аμ)-0.245
关联图
校验
将工艺计算结果列表
接管尺寸
冷却剂用量
加热剂用量
(3)冷却剂、加热剂用量
(2)各接口尺寸
注意u的选择:根据第1章流体流动选择合适的流速
进料管:泵加料 u= 1-3m/s;高位槽进料u= 0.5-1m/s
回流液管:泵回流 u= 1.5-3m/s;重力回流u= 0.5-1m/s
绘图
物料流程图: 塔板结构图: 塔体工艺图:
只标设备名称,物料组成、流量。
总高、管口位置、板间距、管口方位、管口表、技术特性表。
塔板分块、孔的排列、降液管的尺寸;
5、设计说明书内容
1.设计任务书 2.目录 3.符号表 4.精馏方案的选择 5.工艺计算 6.精馏塔的工艺尺寸设计 7.参考文献 8.结束语:评价、感受
正文
每项单独一页
每项单独一页
设计任务书 一、设计题目:年产 A 吨乙醇板式精馏塔工艺设计。 二、已知条件: 1.原料组成:含 B %(质量)的粗乙醇溶液,其余为水。 2.产品要求:含量≥ 93.5 %(质量)的乙醇。 3.塔底残液要求:含乙醇≤0.1%(质量)。 4.加热剂:经压力调节后为0.2MPa(表压)的饱和水蒸气。 5.冷却剂:30℃的循环冷却水。 6、进料状况:
化工设备课程设计计算书(板式塔)
目录一.设计任务书 (2)二.设计参数与结构简图 (4)三.设备的总体设计及结构设计 (5)四.强度计算 (7)五.参考文献 (14)一、设计任务书1、设计题目根据《化工原理》课程设计工艺计算内容进行填料塔设计。
2、设计任务书2.1设备的总体设计与结构设计(1)根据《化工原理》课程设计,确定塔设备的型式;(2)根据化工工艺计算,确定塔板数目(或填料高度);(3)根据介质的不同,拟定管口方位;(4)结构设计,确定材料。
2.2设备的机械强度设计计算(1)确定塔体、封头的强度计算。
(2)各种开孔接管结构的设计,开孔补强的验算。
(3)设备法兰的型式及尺寸选用;管法兰的选型。
(4)裙式支座的设计验算。
(5)水压试验应力校核。
2.3完成塔设备装配图(1)完成塔设备的装配图设计,包括主视图、局部放大图、焊缝节点图、管口方位图等。
(2)编写技术要求、技术特性表、管口表、明细表和标题栏。
3、设计成果1、提交设计说明书一份。
2、提交塔设备(填料塔、板式塔)装配图一张(A1)二. 设计参数与结构简图1、设计参数精馏塔设计的工艺条件由化工原理课程设计计算而得。
工作温度°C:120 设计温度°C:150 工作压力MPa:0.1 设计压力MPa:0.11 塔体内径mm:1800 塔板数块:38 介质:苯-甲苯混合物2、结构简图图1 精馏塔结构简图三. 精馏塔的总体设计及结构设计1、根据《化工原理》课程设计,确定塔设备的型式(填料塔、板式塔)。
本设计的精馏塔型式为板式塔2、根据化工工艺计算,确定塔板数目(或填料高度)。
由化工工艺计算塔板数目为30块3、根据介质条件的不同,拟定管口方位。
4、结构设计,设备法兰的型式及尺寸选用,管法兰等零部件选型。
1)零部件材料的选取根据精馏塔工艺条件(介质的腐蚀性、设计压力、设计温度)、材料的焊接性能、零件的制造工艺及经济合理性进行选材:塔体:16MnR 封头:16MnR接管:20 塔盘、底座:Q235-B容器法兰:16MnR 管法兰:16MnII材料许用应力[]t(MPa)Q345R(16MnR) 170Q235-B 11316MnII 17020 1332)塔盘结构根据工艺条件、塔体直径,塔盘结构选为单液流分块式塔盘.3)工艺接管接管的选取根据介质流量,参照GB12771-91,接管的选取如下表:4 )压力容器法兰和接管法兰压力容器法兰的选取按照《化工设备机械基础》选JB/T4700~4707-2000标准。
化工课程设计板式塔
化工课程设计板式塔化工课程设计板式塔是指在化工过程中用于分离或提取物质的设备,本文将从定义、组成、工作原理、设计要点、操作维护等方面进行详细介绍。
一、定义板式塔是指利用板式结构实现液相和气相交换、物质分离或应用的一种装置。
也可称为板塔、塔板或塔盘。
二、组成板塔的主要组成部分为塔壳、进出口管路、塔板和填料层。
1. 塔壳:塔壳是板塔的外壳,可以由钢板、不锈钢或玻璃钢制成,但需要满足工作压力和温度的需求。
2. 进出口管路:进出口管路是塔体内部进出液体、气体的通道。
3. 塔板:塔板是板塔的关键部分,由网格、滴板、方格或管道组成。
不同类型的塔板具有不同的分离效率和流体力学性能。
4. 填料层:填料层是用于增加化学反应表面积和触点数的分散剂,在分离和转化反应过程中起到重要的作用,能够提高反应的效率。
三、工作原理板塔的工作原理是利用板式结构制造液相和气相间的联系界面,在板内形成液滴和气泡着,并在板上提供一个平衡的场所以实现物质的分离。
当气体从塔底进入塔体时,经过填料层形成气泡,与从塔顶倾倒而下的液体形成液滴。
气泡和液滴在塔板上相互接触并进行质量交换。
气体中的揮发性组分就在接触面借助蒸汽能量与液体相互传递,使液滴中的揮发性组分从液相向气相转移。
非揮发性组分则从气相传到液相。
这样,在塔板的作用下,相互传递和交换的物质逐渐分离和进一步分级。
四、设计要点板式塔的设计是根据不同的物理、化学或生物反应过程,选择塔内填充材料、塔板类型和填料高度等参数,使塔的运行能够实现预期的生产效果。
下面是板式塔设计的主要要点:1. 填料的类型和表面积。
不同填料的表面积不同,因此要根据化学反应和环境要求来选择不同类型的填料。
一般而言,比表面积越大、填料容纳性越强的填料能使反应更为高效。
2. 填料的高度。
填料高度极大影响了反应的效率,过低的填料会导致反应不足,而过高的填料会降低实际分离效果。
因此,填料高度是根据实际生产过程来制定的。
3. 塔板的选择和设计。
化工原理课程设计—板式精馏塔的设计
板式精馏塔的设计1.1 概述塔设备是炼油、化工、石油化工等生产中广泛应用的气液传质设备。
根据塔内气液接触部件的结构型式,可分为板式塔和填料塔。
板式塔内设置一定数目的塔板,气体以鼓泡或喷射形式穿过板上液层进行质热传递,气液相组成呈阶梯变化,属逐级接触逆流操作过程。
填料塔内装有一定高度的填料层,液体自塔顶沿填料表面下流,气体逆流向上(也有并流向下者)与液相接触进行质热传递,气液相组成沿塔高连续变化,属微分接触操作过程。
工业上对塔设备的主要要求是:(1)生产能力大;(2)传热、传质效率高;(3)气流的摩擦阻力小;(4)操作稳定,适应性强,操作弹性大;(5)结构简单,材料耗用量少;(6)制造安装容易,操作维修方便。
此外,还要求不易堵塞、耐腐蚀等。
板式塔大致可分为两类:(1)有降液管的塔板,如泡罩、浮阀、筛板、导向筛板、新型垂直筛板、蛇形、S型、多降液管塔板;(2)无降液管的塔板,如穿流式筛板(栅板)、穿流式波纹板等。
工业应用较多的是有降液管的塔板,如浮阀、筛板、泡罩塔板等。
(一)泡罩塔泡罩塔是最早使用的板式塔,是Celler于1813年提出的,其主要构件是泡罩、升气管及降液管。
泡罩的种类很多,国内应用较多的是圆形泡罩。
泡罩塔的主要优点是:因升气管高出液层,不易发生漏液现象,操作弹性较大,液气比范围大,适用多种介质,操作稳定可靠,塔板不易堵塞,适于处理各种物料;但其结构复杂,造价高、安装维修不便,板上液层厚,气体流径曲折,塔板压降大,因雾沫夹带现象较严重,限制了起诉的提高。
现虽已为其他新型塔板代替,但鉴于其某些优点,仍有沿用。
(a b)图1 泡罩塔(二)浮阀塔浮阀塔广泛用于精馏、吸收和解吸等过程。
其主要特点是在塔板的开孔上装有可浮动的浮阀,气流从浮阀周边以稳定的速度水平地进入塔板上液层进行两相接触。
浮阀可根据气体流量的大小而上下浮动,自行调节。
浮阀有盘式、条式等多种,国内多用盘式浮阀,此型又分为F-1型(V-1型)、V-4型、十字架型、和A型,其中F-1型浮阀结构较简单、节省材料,制造方便,性能良好,故在化工及炼油生产中普遍应用,已列入部颁标准(JB-1118-81)。
《化工原理》电子教案 板式塔及其工艺设计计算
一、教案基本信息《化工原理》电子教案板式塔及其工艺设计计算适用课程:化工原理课时安排:2课时(90分钟)教学目标:1. 让学生了解板式塔的基本结构和工作原理;2. 让学生掌握板式塔的工艺设计计算方法;3. 培养学生运用理论知识解决实际问题的能力。
教学重点:1. 板式塔的基本结构;2. 板式塔的工艺设计计算方法。
教学难点:1. 板式塔的工艺设计计算方法的运用;2. 实际工程中的板式塔设计。
二、教学准备教材:《化工原理》教具:多媒体教学设备、板书、教案、计算器三、教学过程1. 导入(5分钟)教师简要介绍板式塔在化工工艺中的应用,激发学生学习兴趣。
2. 板式塔的基本结构(15分钟)教师讲解板式塔的结构组成,包括塔本体、塔板、塔内件等,并通过图片展示板式塔的实物图。
3. 板式塔的工作原理(15分钟)教师讲解板式塔的工作原理,包括气液两相流动、传质传热过程等。
4. 板式塔的工艺设计计算方法(15分钟)教师讲解板式塔的工艺设计计算方法,包括塔径计算、塔板设计、塔高计算等。
5. 案例分析(15分钟)教师给出一个板式塔设计的实际案例,让学生运用所学知识进行分析和计算,培养学生的实际操作能力。
四、课堂练习(10分钟)教师布置一些有关板式塔工艺设计计算的练习题,让学生在课堂上完成,检验学生对知识的掌握程度。
五、总结与布置作业(5分钟)教师对本节课的主要内容进行总结,布置一些有关板式塔的作业,让学生巩固所学知识。
六、板式塔设计软件演示(10分钟)教师讲解板式塔设计软件的使用方法,让学生了解板式塔设计的现代化手段。
七、课堂互动(10分钟)学生之间进行板式塔设计计算的交流和讨论,提高学生的团队协作能力。
八、课后反思(5分钟)教师让学生谈谈对本节课内容的学习体会,提出改进意见。
九、板式塔设计竞赛(10分钟)教师组织学生进行板式塔设计竞赛,激发学生的学习兴趣和竞争意识。
十、课程评价(5分钟)教师对学生的课堂表现、作业完成情况进行评价,鼓励优秀学生,帮助后进生。
《化工原理》电子教案 —— 板式塔及其工艺设计计算
《化工原理》电子教案——板式塔及其工艺设计计算教案章节:一、板式塔的概述二、塔板类型及性能三、塔板的设计计算四、塔板塔的工艺设计五、塔板塔的模拟与优化教案内容:一、板式塔的概述1. 塔设备的分类及应用2. 板式塔的结构特点3. 板式塔的优缺点二、塔板类型及性能1. 塔板的基本类型a) 平板塔板b) 圆形塔板c) 三角形塔板d) 弧形塔板2. 不同塔板的性能比较3. 塔板的选用原则三、塔板的设计计算1. 塔板设计的基本参数2. 塔板流体力学计算3. 塔板的压力损失计算4. 塔板的负荷计算5. 塔板的设计步骤四、塔板塔的工艺设计1. 塔板塔的工艺流程2. 塔板塔的操作条件3. 塔板塔的尺寸计算4. 塔板塔的材料选择5. 塔板塔的附件设计五、塔板塔的模拟与优化1. 塔板塔的模拟方法a) 数学模型建立b) 模拟软件的选择c) 模拟结果分析2. 塔板塔的优化方法a) 结构优化b) 操作条件优化c) 塔板塔组合优化3. 塔板塔的模拟与优化案例分析《化工原理》电子教案——板式塔及其工艺设计计算教案章节:六、塔板塔的性能测试与评价七、板式塔的塔板效率与分离效果八、板式塔的塔板液相传质性能九、板式塔的工艺参数优化十、板式塔的应用案例分析六、塔板塔的性能测试与评价1. 塔板塔性能测试方法a) 流体力学性能测试b) 传质性能测试c) 压力损失测试2. 塔板塔性能评价指标a) 塔板效率b) 分离效果c) 液相传质性能3. 性能测试与评价的实验操作步骤4. 性能测试与评价结果的分析与处理七、板式塔的塔板效率与分离效果1. 塔板效率的定义与计算方法2. 影响塔板效率的因素a) 塔板结构b) 操作条件c) 物料特性3. 提高塔板效率的方法4. 分离效果的评估指标与方法5. 提高分离效果的策略八、板式塔的塔板液相传质性能1. 液相传质的基本原理2. 塔板液相传质性能的评估指标a) 传质系数b) 传质单元高度c) 分离因子3. 影响塔板液相传质性能的因素a) 塔板结构b) 操作条件c) 物料特性4. 提高塔板液相传质性能的策略九、板式塔的工艺参数优化1. 工艺参数优化的目标2. 工艺参数优化方法a) 数学优化方法b) 模拟优化方法c) 实验优化方法3. 优化案例分析4. 优化结果的分析与评价十、板式塔的应用案例分析1. 板式塔在化工生产中的应用案例a) 精馏b) 吸收c) 萃取2. 案例分析的内容与方法3. 案例分析的启示与思考4. 板式塔在其他领域的应用前景重点和难点解析一、塔板类型及性能:了解不同塔板的结构特点和性能,对于板式塔的设计和应用至关重要。
《化工原理》电子教案——板式塔及其工艺设计计算
《化工原理》电子教案——板式塔及其工艺设计计算教案章节:一、板式塔的概述1. 塔设备的分类及应用2. 板式塔的定义及特点3. 板式塔的分类及选用原则二、塔板的基本操作原理1. 塔板的作用与要求2. 塔板的流体力学特性3. 塔板的传质性能评价三、塔板的工艺设计计算1. 塔板的设计计算方法2. 塔板的结构形式及参数选择3. 塔板计算实例分析四、塔板的制造与验收1. 塔板的制造工艺及要求2. 塔板的材料选择及性能要求3. 塔板的验收标准及方法五、塔板的操作与维护1. 塔板的操作规程及注意事项2. 塔板的故障处理与维修3. 塔板的性能优化与改进教学目标:1. 了解板式塔的分类、特点及选用原则,掌握板式塔的基本操作原理。
2. 学会塔板的设计计算方法,能够进行塔板的结构形式及参数选择。
3. 熟悉塔板的制造工艺、材料选择及验收标准,掌握塔板的操作与维护方法。
教学内容:1. 通过讲解和案例分析,使学生了解板式塔的分类、特点及选用原则,掌握板式塔的基本操作原理。
2. 讲解塔板的设计计算方法,引导学生通过实例进行塔板的结构形式及参数选择。
3. 介绍塔板的制造工艺、材料选择及验收标准,培养学生对塔板操作与维护的技能。
教学方法:1. 采用多媒体教学,结合图片、图表等形式,生动展示板式塔的分类、特点及选用原则。
2. 利用实例分析,让学生深入了解塔板的基本操作原理,提高学生的实践能力。
3. 开展小组讨论,引导学生主动探索塔板的设计计算方法,培养学生的团队协作能力。
教学评价:1. 课后作业:要求学生完成板式塔的分类、特点及选用原则的相关习题,巩固所学知识。
3. 期末考试:设置板式塔相关题目,测试学生对知识的掌握程度。
教学资源:1. 教案、PPT课件、相关教材及参考书籍。
2. 网络资源:板式塔的设计计算软件、制造厂家资料等。
3. 实践教学资源:板式塔的实物或模型、操作手册等。
《化工原理》电子教案——板式塔及其工艺设计计算教案章节:六、塔板的性能优化与改进1. 塔板性能优化的意义2. 塔板结构的改进与创新3. 塔板性能的进一步提升策略七、塔板的现代化操作技术1. 塔板操作的自动化控制系统2. 塔板操作的智能化发展3. 塔板操作技术的未来趋势八、塔板在典型化工过程中的应用1. 塔板在炼油厂的应用案例2. 塔板在化肥厂的应用案例3. 塔板在其他化工领域的应用案例九、塔板的安全运行与环保要求1. 塔板设备的安全运行措施2. 塔板设备的环保要求与遵守规范3. 塔板设备事故预防与处理十、综合案例分析与实践1. 塔板设计计算的综合案例分析2. 塔板设备操作与维护的实践训练3. 塔板设备在实际化工生产中的应用与优化教学目标:1. 理解塔板性能优化的意义,掌握塔板结构的改进与创新方法,了解塔板性能进一步提升的策略。
(化工原理课设计)板式塔设计
塔截面积 AT = 气体流通截面积 A +降液管面积 Ad
即: A = AT - Ad
塔截面积 AT
A 1 Ad
AT
选取 Ad / AT ,计算塔径 D
D 4AT
计算塔径需圆整,系列化标准:
0.4,
0.5,
0.6,
0.7,
0.8,
0.9,
1.0,
1.2,
1.4,
1.6,
1.8,
2.0m
等
35
15
3 常用塔板类型 塔板是气液两相接触传质的场所, 为提高塔板性能,采用各种形式塔板。
塔板性能要求: 生产能力大, 塔板效率高, 塔板阻力小, 操作弹性大, 结构简单,维修方便,成本低。
16
常用塔板类型 1、泡罩塔板 组成:
升气管和泡罩 优点:
塔板效率高,操作弹性大 对物料适应性强,不易堵 缺点: 生产能力不大,阻力大 结构复杂,成本高。
➢流动性能校核
6
(3)辅助设备设计 (4)管路设计及泵的选择 (5)控制方案的确定 (6)汇总设计结果-设计说明书
7
板式塔
一、 板式塔概述 重要的气-液传质设备
汽、液两相接触方式:(动画)
全塔:逆流接触 塔板上:错流接触
两相流动的推动力: 液体:重力 气体:压力差(塔压降)
8
塔板结构:
1、气体通道 形式很多,如筛板、浮阀、泡罩等。 对塔板性能影响很大。
2 0
44
选择开孔率 ф: 0.05 -- 0.15(大、小) Ao Aa
选择孔径 d0,t
1 2
4
d02
1 t 2 sin 60o
0.907 d0 t
2
板式塔设计计算说明书
一、设计任务1. 结构设计任务完成各板式塔的总体结构设计,绘图工作量折合A1图共计4张左右,具体包括以下内容:⑴各塔总图1张A0或A0加长; ⑵各塔塔盘装配及零部件图2张A1。
2. 设计计算内容完成各板式塔设计计算说明书,主要包括各塔主要受压元件的壁厚计算及相应的强度校核、稳定性校核等内容。
二、设计条件1. 塔体内径mm 2000=i D ,塔高m 299.59H i =;2.设计压力p c =2.36MPa ,设计温度为=t 90C ︒;3. 设置地区:山东省东营市,基本风压值q 0=480Pa ,地震设防烈度8度,场地土类别III 类,地面粗糙度是B 类;4. 塔内装有N=94层浮阀塔盘;开有人孔12个,在人孔处安装半圆形平台12个,平台宽度B=900m m ,高度为1200m m ;5. 塔外保温层厚度为δs =100m m ,保温层密度ρ2=3503m /kg ;三、设备强度及稳定性校核计算1. 选材说明已知东营的基本风压值q 0=480Pa ,地震设防烈度8度,场地土类别III 类;塔壳与裙座对接;塔内装有N=94层浮阀塔盘;塔外保温层厚度为δs =100m m ,保温层密度ρ2=3503m /kg ;塔体开有人孔12个,在人孔处安装半圆形平台12个,平台宽度B=900m m ,高度为1200m m ;设计压力 p c =2.36MPa ,设计温度为=t 90C ︒;壳3m m ,裙座厚度附加量2m m ;焊接接头系数取为0.85;塔内径mm 2000=i D 。
通过上述工艺条件和经验,塔壳和封头材料选用Q345R 。
对该塔进行强度和稳定计算。
2. 主要受压元件壁厚计算本部分应包括常压塔的主要筒体及椭圆封头等重要受压元件的壁厚计算,裙座厚度先按经验值取。
l塔壳和封头材料选用Q345R[MPa 185][,325)(t.20p eL ==σR R (16<≤δ36)] 直径mm 2000=i D 段圆筒及封头: 圆筒:15.12mm 36.285.01852200036.2][2ci c =-⨯⨯⨯=-=p D p tφσδ 封头:mm 06.1536.25.085.018521200036.25.0][2ci c h =⨯-⨯⨯⨯⨯=-=p K D p tφσδ 经圆整后,塔壳厚度取为22m m ,封头厚度取为24m m ,裙座壳厚度取为18m m 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《化工设备设计基础》课程设计计算说明书学生姓名:学号:所在学院:专业:设计题目:指导教师:2011年月日目录一.设计任务书 (2)二.设计参数与结构简图 (4)三.设备的总体设计及结构设计 (5)四.强度计算 (7)五.设计小结 (13)六.参考文献 (14)一、设计任务书1、设计题目根据《化工原理》课程设计工艺计算内容进行填料塔(或板式塔)设计。
设计题目:各个同学按照自己的工艺参数确定自己的设计题目:填料塔(板式塔)DNXXX设计。
例:精馏塔(DN1800)设计2、设计任务书2.1设备的总体设计与结构设计(1)根据《化工原理》课程设计,确定塔设备的型式(填料塔、板式塔);(2)根据化工工艺计算,确定塔板数目(或填料高度);(3)根据介质的不同,拟定管口方位;(4)结构设计,确定材料。
2.2设备的机械强度设计计算(1)确定塔体、封头的强度计算。
(2)各种开孔接管结构的设计,开孔补强的验算。
(3)设备法兰的型式及尺寸选用;管法兰的选型。
(4)裙式支座的设计验算。
(5)水压试验应力校核。
2.3完成塔设备装配图(1)完成塔设备的装配图设计,包括主视图、局部放大图、焊缝节点图、管口方位图等。
(2)编写技术要求、技术特性表、管口表、明细表和标题栏。
3、原始资料3.1《化工原理》课程设计塔工艺计算数据。
3.2参考资料:[1] 董大勤.化工设备机械基础[M].北京:化学工业出版社,2003.[2] 全国化工设备技术中心站.《化工设备图样技术要求》2000版[S].[3] GB150-1998.钢制压力容器[S].[4] 郑晓梅.化工工程制图化工制图[M].北京:化学工业出版社,2002.[5] JB/T4710-2005.钢制塔式容器[S].4、文献查阅要求设计说明书中公式、内容等应明确文献出处;装配图上应写明引用标准号。
5、设计成果1、提交设计说明书一份。
2、提交塔设备(填料塔、板式塔)装配图一张(A1)。
(精馏塔设计例题)二. 设计参数与结构简图1、设计参数精馏塔设计的工艺条件由化工原理课程设计计算而得。
工作温度°C:120 设计温度°C:150工作压力MPa:0.1 设计压力MPa:0.11 塔体内径mm:1800 塔板数块:38 介质:苯-甲苯混合物2、结构简图(根据自己的设计题手画)图1 精馏塔结构简图三. 精馏塔的总体设计及结构设计1、根据《化工原理》课程设计,确定塔设备的型式(填料塔、板式塔)。
本设计的精馏塔型式为板式塔2、根据化工工艺计算,确定塔板数目(或填料高度)。
由化工工艺计算塔板数目为30块3、根据介质条件的不同,拟定管口方位。
4、结构设计,设备法兰的型式及尺寸选用,管法兰等零部件选型。
1)零部件材料的选取根据精馏塔工艺条件(介质的腐蚀性、设计压力、设计温度)、材料的焊接性能、零件的制造工艺及经济合理性进行选材:塔体:16MnR 封头:16MnR接管:20 塔盘、底座:Q235-B容器法兰:16MnR 管法兰:16MnII(材料的许用应力按照《化工设备机械基础》表8-7查并列表)材料许用应力[]t(MPa)Q345R(16MnR) 170Q235-B 11316MnII 17020 1332)塔盘结构根据工艺条件、塔体直径,塔盘结构选为单液流分块式塔盘,具体塔盘结构及尺寸的选取见第十七章第三节(p430-438)。
(自选)3)工艺接管接管的选取根据介质流量,参照GB12771-91,接管的选取如下表:4 )压力容器法兰和接管法兰压力容器法兰的选取按照《化工设备机械基础》选JB/T4700~4707-2000标准。
(按照《化工设备机械基础》(p263)写出选取过程)设计条件:工作温度°C:120 设计温度°C:150工作压力MPa:0.1 设计压力MPa:0.11塔体内径mm:1800 介质:苯-甲苯混合物(a)法兰类型DN=1800,p=0.11MPa,表10-1选甲型平焊;(b)p=0.11MPa,t=150℃,查表10-10材料为16MnR,定PN=0.25MPa,150℃时允许[p]=0.25MPa>p,所以PN=0.25MPa。
(c)确定结构尺寸(p254)。
(d)法兰标记法兰-RF 1800-0.25 JB/T4701-2000选取结果如下表:管法兰选取结果汇总:5)法兰密封垫片的选取法兰密封垫片的选取参照《化工设备机械基础》表10-30法兰密封垫片选非金属软垫片PN=0.25MPa (JB/T4704-2000)P265垫片1800-0.25 JB/T4704-20006)裙座选取裙座的选取根据参照《化工设备机械基础》图17-21确定裙座各尺寸。
支座选取裙式支座7)人孔设置人孔的选取根据筒体直径和公称压力参照《化工设备机械基础》表11-1和表11-6,本设计中选用带颈平焊法兰人孔,公称压力1.0MPa,公称直径500 mm,标准号为HG20594-95。
8)手孔设置手孔选取同上,本设计中选用不锈钢板式平焊人孔(仅限凸面),公称压力0.6MPa,公称直径150mm,标准号为HG20597-95。
9)视镜和液位计的选取视镜和液位计的选取根据《化工设备机械基础》表11-9、表11-11选取10)焊接接头形式和和焊接材料的选取焊接接头形式的选取参照《化工设备机械基础》第十四章第二节(p367-377),焊接接头形式按HG20583-1998,A、B类焊接接头按照HG20583-1998中DU4,D类焊接接头按照HG20583-1998中G2,带补强圈D类焊接接头按照JB/T4736-2002中C,焊接材料的选取参照第十四章《化工设备机械基础》第四节(p379-382),标准GB/T5117-95、GB/T5118-95 GB/T983-95焊接接头的检验《化工设备机械基础》第十四章第三节(p378)11)压力容器类别的划分压力容器类别的划分按《压力容器安全技术监察规程》,《化工设备机械基础》p386 本设计塔器为低压分离设备,介质为易燃、中毒危害介质,故划分为一类压力容器。
四、强度计算1、塔体壁厚计算(筒体的设计参照第八章第二节p172-185)。
塔体圆筒体壁厚计算按照GB150-1998《钢制压力容器》式5-1 计算壁厚: 2[]c itcp D p δσϕ=- (4-1)式中 δ:塔体的理论计算壁厚,mmp c :塔体的计算压力,MPa D i :塔体内径,mm[]tσ:钢板在设计温度下的许用应力,MPaϕ:焊接接头系数;名义厚度: n C δδ=++∆; (4-2)12C C C =+;e n C δδ=-;式中 n δ:名义厚度;C 1:腐蚀裕量; C 2:钢板负偏差;∆:圆整量;e δ:有效厚度;查表《化工设备机械基础》表8-7[]t σ=170 MPa p c :取塔体的设计压力,0.11 MPa 焊缝为双面焊,局部射线检测,ϕ=0.85代入数据到式(4-1)得:2[]c itcp D p δσϕ=-=0.11180021700.850.11⨯⨯⨯-=0.69 mmC 1 =1 mm C 2 =0 mm代入数据到式(4-2)得:名义厚度: n C δδ=++∆= 2 mm 按最小厚度δmin 要求 取 n δ= 6 mm2) 封头的强度计算(封头的设计参照第八章第二节p175-185)。
塔体封头壁厚计算按照GB150-1998《钢制压力容器》式7-1 计算壁厚: 2[]0.5c itcp D p δσϕ=- (4-3)式中 δ:塔体封头的理论计算壁厚,mmp c :塔体的计算压力,MPa D i :塔体内径,mm[]tσ:钢板在设计温度下的许用应力,MPaϕ:焊接接头系数;名义厚度: n C δδ=++∆;12C C C =+;e n C δδ=-;式中 n δ:名义厚度;C 1:腐蚀裕量; C 2:钢板负偏差;∆:圆整量;e δ:有效厚度;查表《化工设备机械基础》表8-7[]t σ=170 MPa p c :取塔体的设计压力,0.11 MPa 焊缝为双面焊,100%射线检测,取ϕ=1代入数据到式(4-3)得: 2[]0.5c itcp D p δσϕ=-=0.111800217010.50.11⨯⨯⨯-⨯=0.59 mmC 1 =1 mmC 2 =0 mm代入数据到式(4-2)得:名义厚度: n C δδ=++∆= 2 mm 按标准椭圆封头最小厚度δmin 〉0.15%D i 要求 取 n δ= 6 mm 查《化工设备机械基础》(p196)选标准椭圆形封头JB/T4746-2002封头直边高度h 0取25mm 封头高度h 取450mm 3)开孔补强计算开孔补强结构选用JB/T4736-2002补强圈结构,补强圈尺寸按照《化工设备机械基础》p327(列出所选尺寸),焊接坡口尺寸选《化工设备机械基础》第十四章第二节p375 C 型。
开孔补强计算采用等面积补强法,其公式参照第十二章第一节(p326-p335)。
例:人孔开孔补强计算:人孔选公称压力1.0MPa ,公称直径500 mm ,标准号为HG20594-95 接管¢530⨯8(p302) 材料:20 a. 开孔所需补强面积 ; A=d δ+2δδet(1-r f )(4-4)式中 r f :强度削弱系数 d :开孔直径 mm δ:塔体的计算壁厚mm δet :接管的有效厚度mm d=di+2Ct=(530-16)+2(1+0)=518 mm δet=δnt- Ct=8-1=7 mm塔体材料:16MnR []t σ =170 MPa接管材料:20 []t σt=130 MPa[][]tt r tf σσ==130170=0.78 代入式(4-4) A=d δ+2δδet(1-r f )=5180.69⨯+2⨯0.69⨯7(1-0.78) = 359.5 mm 2b. 有效补强范围内的补强面积: ①有效补强范围有效宽度: B=2d=2⨯518=1036 mm 外伸高度:h 1==64.4 mm 内伸高度:h 2= 0 mm②壳体多余截面积A1=(B-d)( e δ-δ)-2δet ( e δ-δ)(1-r f ) (4-5) 代入式(4-5)A1=(1036-518)(7-0.69)-2⨯7(7-0.69)(1-0.78) = 1211.2 mm 2 ③接管多余截面积A2=2h 1(δet-δt) r f +2h 2(δet-C2) r f (4-6) 接管计算厚度δt=2[]c itcp d p δσϕ=-=0.11514213010.11⨯⨯⨯-=0.22 mm式中 di :接管内直径 mm di=530-16=514 mm代入式(4-6) A2=2h 1(δet-δt) r f +2h 2(δet-C2) r f=2⨯64.4(7-0.22)0.78=681 mm 2④焊缝金属截面积 A3=6⨯6=36 mm 2A1+A2+A3>A 满足不另行补强条件,所以不需补强。