大型桥梁及施工外文翻译--大跨度桥梁

大型桥梁及施工外文翻译--大跨度桥梁
大型桥梁及施工外文翻译--大跨度桥梁

Large Span Bridge

1.Suspension Bridge

The suspension bridge is currently the only solution in excess of 600 m, and is regarded as competitive for down to 300. The world’s longest bridge at present is the Verrazano Narrows bridge in New York. Another modern example is the Severn Bridge in England.

The components of a suspension bridge are: (a) flexible cables, (b) towers, (c) anchorages, (d) suspenders, (e) deck and ,(f) stiffening trusses. The cable normally consists of parallel wires of high tensile steel individually spun at site and bound into one unit .Each wire is galvanized and the cable is cover with a protective coating. The wire for the cable should be cold-drawn and not of the heat-treated variety. Special attention should be paid to aesthetics in the design of the rowers. The tower is high and is flexible enough to permit their analysis as hinged at both ends. The cable is anchored securely anchored to very solid anchorage blocks at both ends. The suspenders transfer the load form the deck to the cable. They are made up of high tensile wires and are normally vertical. The deck is usually orthotropic with stiffened steel plate, ribs or troughs,floor beam, etc. Stiffening trusses, pinned at the towers, are providing. The stiffening system serves to control aerodynamic movements and to limit the local angle changes in the deck. If the stiffening system is inadequate, torsional oscillations due to wind might result in the collapse of the structure, as illustrated in the tragic failure in 1940 of the first Tacoma Narrows Bridge.

The side span to main span ratio varies from 0.17 to 0.50 .The span to depth ratio for the stiffening truss in existing bridge lies between 85 and 100 for spans up to 1,000m and rises rather steeply to 177. The ratio of span to width of deck for existing bridges ranges from 20 to 56. The aerodynamic stability will have be to be investigated thoroughly by detailed analysis as well as wind tunnel tests on models.

2.The cable-stayed bridge

During the past decade cable-stayed bridges have found wide application, s\especially in Western Europe, and to a lesser extent in other parts of the world.

The renewal of the cable-stayed system in modern bridge engineering was due to the tendency of bridge engineering in Europe, primarily Germany, to obtain optimum structural performance from material which was in short supply-during the post-war years.

Cable-stayed bridges are constructed along a structural system which comprises an

orthotropic deck and continuous girders which are supported by stays, i.e. inclined cables passing over or attached to towers located at the main piers.

The idea of using cables to support bridge span bridge span is by no means new, and a number of examples of this type of construction were recorded a long time ago. Unfortunately the system in general met with little success, due to the fact that the statics were not fully understood and that unsuitable materials such as bars and chains were used to form the inclined supports or stays. Stays made in this manner could not be fully tensioned and in a slack condition allowed large deformations of the deck before they could participate in taking the tensile loads for which they were intended.

Wide and successful application of cable-stayed systems was realized only recently, with the introduction of high-strength steels, orthotropic decks, development of welding techniques and progress in structural analysis. The development and application of electronic computers opened up new and practically unlimited possibilities for exact solution of these highly statically indeterminate systems and for precise stoical analysis of their three-dimensional performance.

Existing cable-stayed bridges provide useful data regarding design, fabrication, erection and maintenance of the mew system. With the construction of these bridges many basic problems encountered in their engineering are shown to have been successfully solved. However, these important data have apparently never before been systematically presented.

The application of inclined cable gave a new stimulus to construction of large bridges. The importance of cable-stayed bridges increased rapidly and within only one decade they have become so successful that they have taken their rightful place among classical bridge system. It is interesting to note now how this development which has so revolutionized bridge construction, but which in fact is no new discovery, came about.

The beginning of this system, probably, may be traced back to the time when it was realized that rigid structures could be formed by joining triangles together. Although most of these earlier designs were based on sound principles and assumptions, the girder stiffened by inclined cables suffered various misfortunes which regrettably resulted in abandonment of the system. Nevertheless, the system in itself was not at all unsuitable. The solution of the problem had unfortunately been attempted in the wrong way.

The renaissance of the cable-stayed, however, was finally successfully achieved only

during the last decade.

Modern cable-stayed present a three-dimensional system consisting of stiffening girders, transverse and longitudinal bracings, orthotropic-type deck and supporting parts such as towers in compression and inclined cables in tension. The important characteristics of such a three-dimensional structure is the full participation of the transverse construction in the work of the main longitudinal structure. This means a considerable increase in the moment of inertia of the construction which permits a reduction in the depth of the girders and economy in steel.

Long span concrete bridges are usually of post-tensioned concrete and constructed either as conditions beams types or as free versatile structures. Many methods have been developed for continuous deck construction. If the clearance between the ground and bottom of the deck is small and the soil is firm, the superstructure can be built on staging. This method is becoming obsolete. Currently, free-cantilever and movable scaffold systems are increasingly used to save time and improve safety.

The movable scaffold system employs movable forms stiffened by steel frames. These forms extend one span length and are supported by steel girders which rest on a pier at one end and can be moved from span to span on a second set of auxiliary steel girders.

An economical construction technique known as incremental push-launching method is developed by Baur-Leonhard team. The total continuous deck is subdivided longitudinally into segments of 10 to 30 m length depending on the length of spans and the time available for construction. Each of these segments is constructed immediately behind the abutment of the bridge in steel framed forms, which remain in the same place for concreting all segments .The forms are so designed as to be capable of being moved transversely or rotated on hinges to facilitate easy stripping after sufficient hardening of concrete. At the head of the first segment, a steel nose consisting of a light truss is attached to facilitate reaching of the first and subsequent piers without including a too large can yielder moment during construction . The second and the following segments are concreted directly on the face of the hardened portion and the longitudinal reinforcement can continue across the construction joint . The pushing is achieved by hydraulic jacks which act against the abutment .Since the coefficient of friction of Teflon sliding bearings is only about 2 percent, low capacity hydraulic jacks would suffice to move the bridge even over long lengths of several hundred metres . This method can be used for straight and continuously curved bridges up to a span of about 120 m .

The free-cantilever system was pioneered by Dyckerhoff and Willmann in Germany .In this system , the superstructure is erected by means of cantilever truck in sections generally of 3.5 m .The cantilever truck ,whose cost is relatively small and which is attached firmly to permanent construction , emits by repeated use the construction of large bridges . The

avoidance of scaffold from below, the speed of work and the saving in labor cost result in the construction being very economical. The free-cantilever system is ideally suited for launched girders with a large depth above the pier cantilever system is ideally suited for launched girders with a large depth above the pier cantilevering to the middle of the span.

Another technique is the use of the pneumatic caisson .The caisson is a huge cylinder with a bottom edge that can cut into the water bed. When compressed is pumped into it ,the water is forced out .Caissons must be used with extreme care .for one thing, workers can only stay in the compression chamber for short periods of time .For another , if they come up to normal atmospheric pressure too rapidly ,they are subject to the bends ,or caisson disease as it is also called , which is a crippling or even fatal condition caused by excess nitrogen in the blood .When the Eads Bridge across the Mississippi River at St.Louis was under construction between 1867and 1874 , at a time when the danger of working in compressed air was not fully understood ,fourteen deaths was caused by the bends .

When extra strength is necessary in the piers, they sometimes keyed into the bedrock-that is ,they are extended down into the bedrock .This method was used to build the piers for the Golden Gate Bridge in San Francisco ,which is subject to strong tidies and high winds ,and is located in an earthquake zone .The drilling was carried out under water by deep-sea divers .

Where bedrock cannot be reached ,piles are driven into the water bed .Today ,the piles in construction are usually made of prestressed concrete beams .One ingenious technique ,used for the Tappan Zee Bridge across the Hudson River in New York ,is to rest a hollow concrete box on top of a layer of piles .When the box is pumped dry ,it becomes buoyant enough to support a large proportion of the weight of the bridge .

Each type of bridge indeed each individual bridge presents special construction problems. With some truss bridges , the span is floated into position after the piers have been erected and then raised into place by means of jacks or cranes .Arch bridges can be constructed over a false work ,or temporary scaffolding. This method is usually employed with reinforced concrete arch bridges .With steel arches ,however ,a technique has been developed whereby the finished sections are held in place by wires that supply a cantilever support .Cranes move along the top of the arch to place new sections of steel while the tension in the cables increases .

With suspension bridges ,the foundations and the towers are built first .Then a cable is run from the anchorage-concrete block in which the cable is fastened-up to the tower and across to the opposite tower and anchorage .A wheel that unwinds wire from a reel puns along this cable .When the reel reaches the other side ,another wire is placed on it ,and the wheel returns to its original position .When all the wires have been put in place ,another machine moves along the cable to compact and to bind them .Construction begins on the deck when the cables are in place ,with work progressing toward the middle from each end of the structure .

The loads to be considered in the design of substructures and bridge foundations include loads and forces transmitted from the superstructure, and those acting directly on the substructure and foundation.

AASHTO loads .Section 3 of AASHTO specifications summarizes the loads and forces to be considered in the design of bridges (superstructure and substructure). Briefly , these are dead load ,live load , impact or dynamic effect of live load , wind load , and other forces such as longitudinal forces , centrifugal force ,thermal forces , earth pressure , buoyancy , shrinkage and long term creep , rib shortening , erection stresses , ice and current pressure , collision force , and earthquake stresses .Besides these conventional loads that are generally quantified , AASHTO also recognizes indirect load effects such as friction at expansion bearings and stresses associated with differential settlement of bridge components .The LRFD specifications divide loads into two distinct categories : permanent and transient .

大跨度桥梁

1.悬索桥

悬索桥是现行的跨径超过600m大桥的唯一解决方案,而且对跨径在300m以上的桥梁它也是被认为是一种很有竞争力的方案。现在世界上最大跨径的桥梁是纽约的威拉查诺(Verrazano)海峡大桥,另一个是英国的塞温(Savern)大桥。

悬索桥的组成部分有:柔性,主塔,锚碇,吊索(挂索),桥面板和加劲桁架。主缆是有一组平行的单根高强钢丝在现场扭在一起并绑扎成型的钢丝束组成的。每根钢丝都是经过渡锌处理的,并且整个用保护层覆盖着。所用的钢丝应该是冷拔钢丝而不是经过热处理的各种钢丝。在进行主塔设计时应该特别注意其在美学上的要求。主塔很高而且具有足够的柔性,使其每一座塔顶都可认为是与主缆铰接。主缆的两端很安全的锚固在非常坚实的锚碇上。吊索把桥面板上的荷载传递到主主缆上。吊索也是有高强钢丝制成的而且通常是竖直的。桥面板通常是有加劲钢板,肋或槽型板,横梁制成的异性结构。提供一些加劲梁连接在其主塔之间,能够起到控制空气动力运动并限制桥面板局部倾角变化。如果加劲系统不适当,由于风引起的竖向振动也许会导致结构倾斜,就像塔科玛(Tacoma)海峡大桥的悲剧性的破坏所表明的那样。

边跨与主跨的跨径比的变化范围是0.17~0.50。在现有的采用加劲梁的桥梁上,当跨径高大1000米时跨径与桥梁的建筑高度之比为85与100之间。现有的桥梁的跨径与桥面板宽度之比约为20~56。桥梁结构的空气动力稳定性必须得通过对其模型的风洞试验及细部分析进行全面的研究。

2.斜拉桥体系

在过去的十年间,斜拉桥得以广泛的应用,尤其实在欧洲,而在世界其它地区,应用相对少一些。

在现代桥梁工程中,斜拉桥体系的重新兴旺起来是由于欧洲(主要是德国)的桥梁工程师有一种趋势,即从因为战争而短缺的材料上获得最佳的结构性能。斜拉桥是有按各向异性桥面板和由吊索支撑的连续梁构成的体系建造起来的,这些吊索是一些穿过或固定的位于主桥墩的索塔顶上的倾斜主缆。

用主缆来支撑桥跨并不是一种新思想,在很早以前就有大量此类结构的的记载。不幸的是这一体系只有很少成功的例子,这是由于人们对静力学的原理没有完全弄明白,并且还没有构成倾斜支撑或吊索的适当的材料,例如主缆和钢链等。这种吊索在它们能够按计划承担拉力之前不能完全被拉紧,而应处于允许桥面板产生较大变形的松弛状

态。

斜拉体系的广泛的成功的应用只在近年来,随着高强钢,各种异性桥面板的引入、焊接技术的发展和结构分析方法的进步才得以实现。电子计算机的发展和应用,导致了解决高次超静定体系的精确值及它们的三维空间性能的精确静力分析的新的无实际限制的可能性。

现有的斜拉桥提供了许多关于设计、制造、安装和维修的有用的数据。随着这些桥梁的建造,许多工程中遇到的基本问题已表明的到了成功的解决。然而这些重要的数据很显然在这以前决没有被系统的揭示出来。

斜吊索的应用对大型桥梁建造带来了一个新刺激。斜拉桥的重要性迅速增加起来,并且在仅三十年间这种桥梁类型就变的这样成功,已使其在古典桥梁体系中取得了它应有的地位。如果我们注意到这种桥梁建造带来如此彻底的变革的发展是怎样发生的话,我们都会感兴趣的,因为这一发展事实上并没有什么任何新发现。

这一体系的开始也许可以追溯到人们开始认识到通过三角形连接在一起能够构成刚性结构的时代。

尽管大多数这种设计是基于结构坚固的原理和假定的,但斜拉加劲梁还是遭受各种各样的不幸事故,而最终令人遗憾的导致了这一体系被放弃。尽管这样,这一体系并不是完全不适应,只是问题的解决被不幸的应用错误的方式去尝试。

然而,斜拉体系的复兴只是在近十年来才最终获得成功。

现代的斜拉桥提出了加劲梁、横向及纵向联系梁、各项异性桥面板和支撑部分(例如处于受压状态的索塔及受拉状态的斜吊索)组成的三维空间体系。象这种空间三维结构的重要特征是横向结构全部参与主要纵向结构的工作状态。这就意味着结构的惯性矩大大增加,这使的桥的建筑高度可以减少,并且使用钢材是最经济的。

大跨度桥梁经常是连续梁形式或悬臂梁形式的预应力混凝土桥梁。以前许多的施工方法已发展为连续梁桥的施工方法。如果模板和地面之间的距离较小并且土质坚硬,桥梁的上部结构可以使用支架施工方法。不过这种施工方法已经越来越过时了。目前,自由悬臂法和移动模架法的应用渐广并能节省时间和提高安全性。

移动模架法是利用固定在钢制台架上的移动系统而形成,这种系统能够达到一跨长并支承在一端支承在桥墩上并借助于第二根钢导梁逐跨移动的钢梁上。

一种经济的施工方法是被广泛知晓的由Baur-leonhard团队所发展的使用广泛的顶推法。整个的连续梁被划分成10-30米长度的节段,这种划分主要依据跨径和能够利用的施工时间。每个节段在桥台后面的钢模上能够快速浇注,钢模可以周转使用而浇注所有的节段。这样设计模板是为了能够横向移动或在铰上转动,以便在混凝土充分硬化后

脱模。在第一节段的顶端安装上一个由轻型桁架组成的钢导梁,以实现第一节段以后的节段顺利架设而防止在施工出现过大的悬臂部分。第二节段及以后的节段可以直接在第一节段的硬化面上浇注并在施工过程中将节段连接起来。顶推是通过支承在桥台上的液压千斤顶实现的,由于聚四氟乙烯的滑块的摩擦系数只有0.02,低效能的千斤顶就足够完成长度甚至达数百米的桥梁的顶推。这种方法可以应用在长度在120米左右的直线桥梁或曲线桥梁上。

自由悬臂法是由法国的Dyckerhoff和Willmann所创始。这种施工方法中,桥梁的上部结构是通过节段长度基本在3.5米的悬臂机上施工,悬臂机的费用相对比较低并且固定在桥梁承重结构上,由于它的重复利用性使它能在长桥上使用。由于施工速度的加快和时间的节省使得这种施工方法的费用比较低从而避免了使用台架施工,自由悬臂法比较适用于桥墩较高并且悬臂能伸到跨径中部的桥梁上。

另一种施工方法是整体沉箱法。沉箱是一种底边有刃脚的大型圆筒,其刃脚可以切入水底。当压缩空气进入沉箱内部时水就会被排出。沉箱的利用必须严加注意。首先,工人们只能在这种压缩空气的空间里呆很短的时间;另一方面,如果工人们从沉箱进入正常的大气压条件下过于迅速,他们将比较容易患上潜水病(也被称作沉箱病),这在能使人致残的甚至致命的环境中由于血液中氧气过多所引起的一种病。当St.louis市的密西西比河Eads上的桥在1867-1874年施工时,由于人们对在压缩空气中工作的危险性认识不足,最后由于患潜水病而导致14人死亡。

当在桥墩上有外力作用时,基桩经常需要嵌入基岩,也就是说它们的下部一直延伸到基岩。这种方法曾经用来建造位于强风和地震区域的旧金山金门大桥的桥墩。钻孔是在水下由深水潜水员进行的。在不能到达基岩的地方,桩通常被打进河床。今天,在施工的基桩基本上是预应力混凝土结构。在建造纽约哈德逊河上的泰平.吉桥时所采用的一种巧妙技术是将一个空心混凝土箱置于桥桩层上,当它里面的水被抽干时,它的浮力足够支承桥梁重力的一大部分。

每一种类型的桥梁实际上代表了特殊的问题。许多桁架桥的施工是先将桥上桁架运到已施工完毕的基桩位置,然后在利用千斤顶或起重机架设到适当位置。拱桥是在脚手架或临时脚手架上施工的,这种方法通常用于预应力混凝土拱桥。然而对钢拱桥来说已发展了一种技术,用这种技术将已装好的部分借助起支承作用的主缆控制就位(钢拱在安装过程中还没有合拢前,是两个悬臂,需要用主缆拉住两个悬臂以免倾倒)。当主缆中的拉力增加时,起重机就沿着拱桥的顶部移动以架设新的钢拱。

对悬索桥来说,需要首先施工基础和索塔。这时主缆从锚碇(一个固定主缆的大混凝土块)穿过直至索塔并且通过另一索塔而锚固在锚碇上,然后从卷线盘上放松主缆的轮子沿着主缆运动,当卷线盘到达另一面时,另一根钢丝又装进卷线盘并最终到达它的原位置。当所有的主缆被放在固定的位置后,另一台机器沿着主缆移动并对其进行张拉锚固。当主缆施工完毕时,逐渐开始在支架上从两端向中间施工。

在桥梁下部结构和基础设计中要考虑的荷载包括:从上部结构传下来的荷载和直接作用于下部结构的基础的荷载。

AASHTO荷载。 AASHTO规范第三部分总结了桥梁设计(上、下部结构)要考虑的荷载和作用力。主要有:恒载、活载、活载冲击力或动力作用、风荷载以及其他荷载——如纵向力、离心力、温度力、土压力、浮力、收缩及徐变、拱肋缩短、安装应力、冰及水流压力、冲撞力及地震应力。除了这些通常能够量化大的典型荷载外,AASHTO同样认识到诸如活动支座处产生的摩擦以及由于桥梁的沉降差而产生的应力等间接荷载效应。

出处:安瑞克.大跨径桥梁结构形式[J].建筑实录(美),2010,37—42

施工组织设计外文翻译

摘要: 建筑工程在施工过程中,施工组织方案的优劣不仅直接影响工程的质量,对工期及施工过程中的人员安全也有重要影响。施工组织是项目建设和指导工程施工的重要技术经济文件。能调节施工中人员、机器、原料、环境、工艺、设备、土建、安装、管理、生产等矛盾,要对施工组织设计进行监督和控制,才能科学合理的保证工程项目高质量、低成本、少耗能的完成。 关键词: 项目管理施工组织方案重要性 施工组织设计就是对工程建设项目整个施工过程的构思设想和具体安排,是施工组织管理工作的核心和灵魂。其目的是使工程速度快、质量好、效益高。使整个工程在施工中获得相对的最优效果。 1.编制施工组织设计重要性的原因 建筑工程及其施工具有固定性与流动性、多样性与单件性、形体庞大与施工周期长这三对特点。所以,每一建筑工程的施工都必须进行施工组织设计。这是因为:其它一般工业产品的生产都有着自己固定的、长期适用的工厂。而建筑施工具有流动性的特点,不可能建立这样的工厂,只能是当每一个建筑工程施工时,建立一个相应的、临时性的,如同工厂作用性质的施工现场准备,即工地。施工单件性特点与施工流动性特点,决定了每一建筑工程施工都要选择相应的机具和劳动力组织。选择施工方法、拟定施工技术方案及其劳动力组织和机具配置,统称为施工作业能力配置。施工周期的特点,决定了各种劳动力、机具和众多材料物资技术的供应时间也比较长,这就产生了与施工总进度计划相适应的物资技术的施工组织设计内容。由此可见,施工组织设计在项目管理中是相当重要的。 2.施工组织设计方案的重要性 建筑产品作为一种商品,在项目管理中工程质量在整个施工过程中起着极其重要的作用。工程建设项目的施工组织设计与其工程造价有着密切的关系。施工组织设计基本的内容有:工程概况和施工条件的分析、施工方案、施工工艺、施工进度计划、施工总平面图。还有经济分析和施工准备工作计划。其中,施工方案及施工工艺的确定更为重要,如:施工机械的选择、水平运输方法的选择、土方的施工方法及主体结构的施工方法和施工工艺的选择等等,均直接影响着工程预算价格的变化。在保证工程质量和满足业主使用要求及工期要求的前提下,优化施工方案及施工工艺是控制投资和降低工程项目造价的重要措施和手段。 2.1施工组织方案在很大程度上影响着工程质量,因此合理的施工组织方案不仅是确保工程顺利完成的基础,也是工程安全的依据。施工组织设计是建筑工

桥梁工程毕业设计外文翻译箱梁

桥梁工程毕业设计外文翻译箱梁

西南交通大学本科毕业设计(论文) 外文资料翻译 年级: 学号: 姓名: 专业: 指导老师:

6 月

外文资料原文: 13 Box girders 13.1 General The box girder is the most ?exible bridge deck form. It can cover a range of spans from25 m up to the largest non-suspended concrete decks built, of the order of 300 m. Single box girders may also carry decks up to 30 m wide. For the longer span beams, beyond about 50 m, they are practically the only feasible deck section. For the shorter spans they are in competition with most of the other deck types discussed in this book. The advantages of the box form are principally its high structural ef?ciency (5.4), which minimises the prestress force required to resist a given bending moment, and its great torsional strength with the capacity this gives to re-centre eccentric live loads, minimising the prestress required to carry them.

大跨径桥梁施工控制与监测

大跨径桥梁施工控制与监测 摘要:本文介绍了大跨径桥梁施工控制的目的、意义、主要内容及原理,并对各控制理论做出简要分析。 关键词:大跨径桥梁;施工控制;控制理论 1桥梁施工监控概述 1.1桥梁施工监控的目的 桥梁施工监测与控制是桥梁施工技术的重要组成部分,它以设计成桥状态为实现目标,在整个施工过程中,通过实时监测桥梁结构的实际状态和环境状况,获得桥梁结构实际状态与理想状态之间的差异(误差),运用现代控制理论,对误差进行识别、调整、预测,使桥梁施工状态最大限度地接近理想状态,从而保证桥梁结构在施工过程中的安全,最终达到桥梁结构成桥状态满足设计和施工规范要求。 1.2桥梁施工监控的意义 任何桥梁施工,特别是大跨径桥梁的施工,都是一个系统工程。在该系统中,设计图只是目标,而在自开工到竣工整个为实现设计目标而必须经历的过程中,将受到许许多多确定和不确定因素的影响,包括设计计算、桥用材料性能、施工精度、荷载、大气温度等诸多方面在理想状态与实际状态之间存在的差异,施工中如何从各种受误差影响而失真的参数中找出相对真实的数值,对施工状态进行实时识别(监测)、调整(纠偏)、预测,对设计目标的实现是至关重要的。桥梁施工监控是确保桥梁施工宏观质量的关键。衡量一座桥梁的施工宏观质量标准就是其成桥状态的线形以及受力情况符合设计要求。对于桥梁的下部结构,只要基础埋置深度和尺寸以及墩台尺寸准确就能达到标准要求,且容易检查和控制。而对采用多工序、多阶段施工的桥梁上部结构,要求结构内力和标高的最终状态符合设计要求,就不那么容易了。 桥梁施工监控又是桥梁建设的安全保证。为了安全可靠地建好每座桥,施工监控将变得非常重要。因为每种体系的桥梁所采用的施工方法均按预定的程序进行,施工中的每一阶段,结构的内力和变形是可以预计的,同时可通过监测得到各施工阶段结构的实际内力和变形,从而完全可以跟踪掌握施工进程和发展情况。当发现施工过程中监测的实际值与计算值相差过大时,就要进行检查和原因分析,而不能再继续施工,否则,将可能出现事故。 桥梁施工监控不仅是桥梁建设中的安全系统,也是桥梁运营中安全性和耐久

桥梁专业外文翻译--欧洲桥梁研究

桥梁专业外文翻译--欧洲桥梁研究

附录 Bridge research in Europe A brief outline is given of the development of the European Union, together with the research platform in Europe. The special case of post-tensioned bridges in the UK is discussed. In order to illustrate the type of European research being undertaken, an example is given from the University of Edinburgh portfolio: relating to the identification of voids in post-tensioned concrete bridges using digital impulse radar. Introduction The challenge in any research arena is to harness the findings of different research groups to identify a coherent mass of data, which enables research and practice to be better focused. A particular challenge exists with respect to Europe where language barriers are inevitably very significant. The European Community was formed in the 1960s based upon a political will within continental Europe to avoid the European civil wars, which developed into World War 2 from 1939 to 1945. The strong political motivation formed the original community of which Britain was not a member. Many of the continental countries saw Britain’s interest as being purely economic. The 1970s saw Britain joining what was then the European Economic Community (EEC) and the 1990s has seen the widening of the community to a European Union, EU, with certain political goals together with the objective of a common European currency. Notwithstanding these financial and political developments, civil engineering and bridge engineering in particular have found great difficulty in forming any kind of common thread. Indeed the educational systems for University training are quite different between Britain and the European continental countries. The formation of the EU funding schemes —e.g. Socrates, Brite Euram and other programs have helped significantly. The Socrates scheme is based upon the exchange of students between Universities in different member states. The Brite Euram scheme has involved technical research grants given to

大跨度桥梁施工技术要点分析

大跨度桥梁施工技术要点分析 发表时间:2018-05-28T10:26:19.490Z 来源:《基层建设》2018年第10期作者:唐敏付赵明剑 [导读] 摘要:随着我国经济社会的进一步发展,对交通运输业的要求越来越高,大跨度桥梁的应用大大缩短了交通里程,缓解了交通运输压力,提高了交通速度,对促进我国经济发展有着重要的意义。 潍坊市市政工程设计研究院有限公司山东省潍坊市 261061 摘要:随着我国经济社会的进一步发展,对交通运输业的要求越来越高,大跨度桥梁的应用大大缩短了交通里程,缓解了交通运输压力,提高了交通速度,对促进我国经济发展有着重要的意义。由于大跨度桥梁的施工较为复杂困难,因此做好大跨度桥梁的施工技术研究工作对推动其广泛应用有着重要的积极意义,相信随着相关技术的不断完善,大跨度桥梁比较得到更加广泛的应用。所以本文对大跨度桥梁施工技术要点分析进行分析。 关键词:大跨度;桥梁施工;技术要点;分析 大跨度桥梁是桥梁施工中的要点问题,大跨度桥梁可以解决很多传统的建筑工艺中遇到的难以解决的建筑问题,是桥梁技术中的一个非常重要的方面,大跨度桥梁由于自身的特点,在施工过程中就控制了整个桥梁的设计,一个国家要建设大跨度桥梁,就必须在工业技术上取得一定的成绩和前进的专利,研制出一些巨型的设计设备,其次是工业技术上必须取得进步很创新,确保施工的安全和质量,大跨度桥梁的研究和发展是未来土建和桥建中的一个主流发展方向。 1大跨度桥梁工程施工概述 近年来,我国很多城市出现了不同类型的大跨度桥梁,这些大跨度桥梁是我国工业技术水平向高端进军的象征,这些桥都以超大、超长、悬索、承载重量大、地理位置特殊为特征,其建设规模在我国的建桥史上是空前绝后的,也在我国的工业史上开辟了一个全新的建造篇章,大跨度桥梁的施工建设主要包括了基础工程、塔索工程和上部建筑这三个方面。大跨度桥梁在建设中要注意的主要有以下几个方面,混凝土质量控制——别出现孔洞。预应力控制——预应力管道控制不堵塞;预应力张拉力到位(油表数与伸长量);注浆饱满度控制。桥梁线性控制——控制每个节段的线形,保证顺利合拢。合拢内力控制:保证预压或临时预应力到位,选择有利合拢温度(最好是当天最低温度),防止合拢出现开裂。 2对大跨度桥梁施工技术控制的必要性 大跨度桥梁比一般的桥梁需要更大的强度,由于桥梁的使用以及外界因素的影响,桥梁的质量经受着严峻的考验。施工中由于各种原因导致成桥后,结构、线性等与设计存在偏差,使桥的承载力下降,或者发生局部变形等情况,会影响桥梁的使用以及安全性能。大跨度桥梁的施工控制从桥梁的各环节入手,对各环节予以监测,以及实时的对数据进行分析,对桥梁的整体施工有效的管理,保障施工质量。高质量的桥梁建设为国家发展起着很大的推动作用,其代表着国家的发展水平,也为人们的生产、生活提供保障。 3大跨度桥梁施工技术要点 3.1对桥梁软基进行优化处理 桥梁的软土地基部分过渡段与桥台地基的软基处理方法不同,若处理不好就容易导致两者出现沉降差。桥台地基的软基处理常用刚性钻孔灌注桩技术,经这种技术处理后,桥台地基的软基稳定性高,基本不会发生沉降;但软土地基处理方法不同,一般经常使用换填法、深层搅拌桩法、排水固结法等,在处理完成后需要经过较长时间,其沉降情况才能稳定,并且其地基固结度难以达到100%,整个变形比桥台要大得多,很容易影响使用期间的道路行驶安全。所以,一定要根据现场情况,结合设计要求对桥梁软基进行优化处理,保证工程质量。 3.2沉井施工要点 沉井基础工程主要分为进行地基基础处理、加工与安装钢壳沉井、浇筑混凝土、下放混凝土沉井、清理基底、封闭基底几个部分,多采用空气幕、降排水、射水等技术来辅助下沉施工,并以空气幕、吸泥取土进行纠偏施工,以推动工程的顺利建设。为做好这一部分的施工,设计人员应当为其设计合理的着床时机、高度与状态,同时采用岸边锚地的临时锚固结构作为钢沉井的接高,并对养护人员要经常进行业务知识培训,例行的桥检把伸缩装置检测作为一个重要项,保洁人员及时清理缝隙间的杂物,做好日常管理巡查记录,尤其是雨雾天气。对已经出现病害的伸缩缝要查明原因根据破损程度给予及时维修或彻底更换。 3.3横梁施工要点 施工人员在对塔柱进行施工时,主要应当采取抗倾斜的措施,对具体的工程进行辅助,以避免塔柱出现倾斜。具体来讲,大悬臂施工状态下,塔柱必会受到自重及其他外部的影响,出现倾斜问题,进而在过大的倾斜拉应力影响下,造成开裂问题,所以,施工人员必须采用约束结构或水平支撑等措施,对其倾斜问题加以全面控制,以尽可能地推动其倾斜柱在受力与变形方面的稳定性。目前,施工人员可以使用的抗倾斜技术主要为主动支撑的逐段设置技术,在施工完成之后,将主动支撑拆除,若塔身出现向外倾斜的问题,还应当根据其具体的高度,设置受压支架或受拉拉杆。同时,施工人员还可以追踪棱镜的技术,对索塔的中心位置进行修正,并以测量机器人以及自动检测软件,对索塔进行线形测量与监控。 3.4索塔工程施工技术 3.4.1钢塔 钢塔的构建无论在尺寸还是自重上都较大,塔柱阶段要高空吊装,为了保证整个钢塔的质量安全,必须要求结构连接处要极为紧密。因此,在通常情况下,钢结构连接完成后,都会采取一定程度的加固措施。 3.4.2混凝土塔 施工中充分考虑其塔身高度、安装定位难度等因素,选择同步或异步衡量施工,而且要以横梁尺寸为依据分层施工、分块浇筑,尽量借助合理的张拉预应力完成一次浇筑和张拉,为避免塔柱开裂,应设置一定的水平约束或支撑,以此使其受力合理,减小变形,保持稳定。 3.5超长斜拉索施工 大跨度斜拉桥斜拉索最长索的长度达到500m左右,单根索重达到50t左右。因此,斜拉索的施工根据索长的变化,采用不通达牵引、张拉方式。通常在梁段安装完毕,第一次张拉,桥面吊机行走到下一节段后,第二次张拉。

土木工程外文文献翻译

专业资料 学院: 专业:土木工程 姓名: 学号: 外文出处:Structural Systems to resist (用外文写) Lateral loads 附件:1.外文资料翻译译文;2.外文原文。

附件1:外文资料翻译译文 抗侧向荷载的结构体系 常用的结构体系 若已测出荷载量达数千万磅重,那么在高层建筑设计中就没有多少可以进行极其复杂的构思余地了。确实,较好的高层建筑普遍具有构思简单、表现明晰的特点。 这并不是说没有进行宏观构思的余地。实际上,正是因为有了这种宏观的构思,新奇的高层建筑体系才得以发展,可能更重要的是:几年以前才出现的一些新概念在今天的技术中已经变得平常了。 如果忽略一些与建筑材料密切相关的概念不谈,高层建筑里最为常用的结构体系便可分为如下几类: 1.抗弯矩框架。 2.支撑框架,包括偏心支撑框架。 3.剪力墙,包括钢板剪力墙。 4.筒中框架。 5.筒中筒结构。 6.核心交互结构。 7. 框格体系或束筒体系。 特别是由于最近趋向于更复杂的建筑形式,同时也需要增加刚度以抵抗几力和地震力,大多数高层建筑都具有由框架、支撑构架、剪力墙和相关体系相结合而构成的体系。而且,就较高的建筑物而言,大多数都是由交互式构件组成三维陈列。 将这些构件结合起来的方法正是高层建筑设计方法的本质。其结合方式需要在考虑环境、功能和费用后再发展,以便提供促使建筑发展达到新高度的有效结构。这并

不是说富于想象力的结构设计就能够创造出伟大建筑。正相反,有许多例优美的建筑仅得到结构工程师适当的支持就被创造出来了,然而,如果没有天赋甚厚的建筑师的创造力的指导,那么,得以发展的就只能是好的结构,并非是伟大的建筑。无论如何,要想创造出高层建筑真正非凡的设计,两者都需要最好的。 虽然在文献中通常可以见到有关这七种体系的全面性讨论,但是在这里还值得进一步讨论。设计方法的本质贯穿于整个讨论。设计方法的本质贯穿于整个讨论中。 抗弯矩框架 抗弯矩框架也许是低,中高度的建筑中常用的体系,它具有线性水平构件和垂直构件在接头处基本刚接之特点。这种框架用作独立的体系,或者和其他体系结合起来使用,以便提供所需要水平荷载抵抗力。对于较高的高层建筑,可能会发现该本系不宜作为独立体系,这是因为在侧向力的作用下难以调动足够的刚度。 我们可以利用STRESS,STRUDL 或者其他大量合适的计算机程序进行结构分析。所谓的门架法分析或悬臂法分析在当今的技术中无一席之地,由于柱梁节点固有柔性,并且由于初步设计应该力求突出体系的弱点,所以在初析中使用框架的中心距尺寸设计是司空惯的。当然,在设计的后期阶段,实际地评价结点的变形很有必要。 支撑框架 支撑框架实际上刚度比抗弯矩框架强,在高层建筑中也得到更广泛的应用。这种体系以其结点处铰接或则接的线性水平构件、垂直构件和斜撑构件而具特色,它通常与其他体系共同用于较高的建筑,并且作为一种独立的体系用在低、中高度的建筑中。

机械毕业设计英文外文翻译399驱动桥

附录A 英文文献 Drive Axle All vehicles have some type of drive axle/differential assembly incorporated into the driveline. Whether it is front, rear or four wheel drive, differentials are necessary for the smooth application of engine power to the road. Powerflow The drive axle must transmit power through a 90°angle. The flow of power in conventional front engine/rear wheel drive vehicles moves from the engine to the drive axle in approximately a straight line. However, at the drive axle, the power must be turned at right angles (from the line of the driveshaft) and directed to the drive wheels. This is accomplished by a pinion drive gear, which turns a circular ring gear. The ring gear is attached to a differential housing, containing a set of smaller gears that are splined to the inner end of each axle shaft. As the housing is rotated, the internal differential gears turn the axle shafts, which are also attached to the drive wheels. Rear-wheel drive Rear-wheel-drive vehicles are mostly trucks, very large sedans and many sports car and coupe models. The typical rear wheel drive vehicle uses a front mounted engine and transmission assemblies with a driveshaft coupling the transmission to the rear drive axle. Drive in through the layout of the bridge, the bridge drive shaft arranged vertically in the same vertical plane, and not the drive axle shaft, respectively, in their own sub-actuator with a direct connection, but the actuator is located at the front or the back of the adjacent shaft

大跨径桥梁施工控制不确定因素分析

大跨径桥梁施工控制不确定因素分析 随着社会经济的高速发展,各种大型工程应运而生,大跨度桥梁工程在当今交通运输过程中的作用日益提升。然而,由于大跨度桥梁不论是结构还是施工难度都较为复杂,对于工程质量与安全要求度更高但却受到诸多不确定因素的影响。文章就此加以分析,并对其施工质量与安全提出个人的建议。 标签:大跨径桥梁;不确定因素;控制方法 1 影响施工控制的因素 桥梁施工质量与安全不仅关系到桥梁工程自身的使用寿命,更关系到人们生命安全,加强对施工过程中的控制是必不可少的环节。尤其是对于预应力砼桥梁,因其施工材料具有不稳定性,受使用环境中的温度与湿度等气候因素影响较大,同时还受到施工技术与方法的影响但其影响度存在一定差异,以下重点围绕温度效应以及混凝土徐变加以分析。 1.1 温度效应分析 温度应力分为两种:一种是在结构物内部某一构件单元中,因纤维间的温度不同,所产生的应变差受到纤维间的相互约束而引起的应力,称其为温度自约束应力或温度自应力;另一种是结构或体系内部各构件,因内部构件温度之间的差异而导致不同程度上的变形并在结构外支承约束所产生的次内力的相应应力也即温度次约束力,其显著的特点为非线性和时间性。而温度分布指的是,混凝土结构在单位时间内内部结构与其表面之间的温度情况。一般情况下,因内外部热传导性能的差异,外部热传导速度要明显快于内部热传导,导致混凝土内部受到的热传导之间的差异较大,进而形成了非线性的温度分布状态。而影响混凝土温度差异的外部因素主要在于大气温度的变化。例如,太阳光照的强度与变化、昼夜温差的变化、风雪雨等天气变化等;内部因素主要有构件的结构与形状、混凝土内部的物理性质等。 (1)温度载荷。不论是在施工阶段还是竣工的使用过程中,桥梁工程中的混凝土都会受到环境中的温度影响导致其内部存在一定的差异。根据现有理论以及实践,混凝土结构桥梁承受的温度荷载有以下三类:其一,因光照而导致的温度荷载;其二,因温度骤变而引起的温度荷载;其三,因温度常年变化而造成的温度载荷。而引起温度载荷的主要原因就是风速以及温度的变化,第一类载荷主要是由于太阳光照而造成的,对于混凝土的结构均构成严重影响。因此,为确保工程质量与安全,在桥梁的设计与施工阶段应重视温度荷载的不良影响。 (2)温度载荷分析。温度载荷的变化受到气候和天气的影响,当前对于天气变化的监测技术已经较为完善,能够为桥梁施工提供可靠的数据进而设定施工方案。根据所提供的数据以及现有施工案例总结出的规律,对于温度荷载可以通过函数公式加以估算,但要想精准的解除这个函数中的值,还有一定困难。因此,

本科毕业设计桥梁外文翻译

附录一:中文翻译 土木工程师 桥梁工程156 2003年3月发表于BEI 31~37页 2002年1月31日收到 C.詹姆斯 2002年12月9日通过高级土木工程师佩尔 Frischmann ,埃克塞特 关键词:桥梁;河堤;土工布;膜与土工格栅 英国锁城大桥 锁城大桥是横跨住宅发展区的铁路桥梁。由于工程施工受到周围建筑与地形的限制,该工程采取加固桥台、桥墩与桥面的刚构结构,以及预制栏杆等方法提高了大桥的使用安全程度,并降低了大桥建造与维护的费用。因此,城堡大桥科学的设计方案使工程成本降到最低。 一、引言 本文描述的是在受限制地区用最小的费用修建一座铁路桥梁使之成为开放的住宅发展区。锁城地区是位于住宅发展十分紧张的韦斯顿超 图1 锁城大桥位置远景

马雷的东部。监督桥梁建设的客户是城堡建设有限公司,它由二大房建者组成。该区的规划局是北盛捷区议会(NSDC)。该发展地区被分为布里斯托尔和埃克塞特。规划条件规定,直到建成这条横跨的铁路大桥为止,该地区南部区域不可能适应居住。可见锁城大桥的建成对该地区发展的重要性。 发展地区位于萨默塞特的边缘,这个地区地形十分的恶劣,该范围位于韦斯顿以北和A321飞机双程双线分隔线的南面。现在只有一条乡下公路,是南部区域的唯一通道。该地区是交通预期不适合住宅增加的区域。 由于盛捷地区水平高程的限制,新的铁路线在桥台两边必须设有高程差。并且该地区地形限制,允许正常横跨的区域较小,这导致在结构的布局上的一定数量的妥协。为了整个城堡地区的发展,全 图2 锁城大桥地图上位置 桥限速20公里/时,并考虑区域范围内的速度制约。这样在得到客户和NSDC的同意后,桥梁采取了最小半径的方法,这使得桥梁采用了比正常梯度更加陡峭地方法实现高程的跨越。 客户的工程师、工程顾问、一般设计原则和初步认同原则下(AIP)与NSDC发出投标文件。 该合同在2000年7月1授予安迪。投标价值1.31亿美元,合同期定为34周,到2001年4月完成。

施工组织设计外文翻译

XXXXXXXXX 毕业设计(论文)外文翻译 学生姓名: 院(系): 专业班级: 指导教师: 完成日期:

施工组织设计的重要性 摘要: 建筑工程在施工过程中,施工组织方案的优劣不仅直接影响工程的质量,对工期及施工过程中的人员安全也有重要影响。施工组织是项目建设和指导工程施工的重要技术经济文件。能调节施工中人员、机器、原料、环境、工艺、设备、土建、安装、管理、生产等矛盾,要对施工组织设计进行监督和控制,才能科学合理的保证工程项目高质量、低成本、少耗能的完成。 关键词: 项目管理施工组织方案重要性 施工组织设计就是对工程建设项目整个施工过程的构思设想和具体安排,是施工组织管理工作的核心和灵魂。其目的是使工程速度快、质量好、效益高。使整个工程在施工中获得相对的最优效果。 1.编制施工组织设计重要性的原因 建筑工程及其施工具有固定性与流动性、多样性与单件性、形体庞大与施工周期长这三对特点。所以,每一建筑工程的施工都必须进行施工组织设计。这是因为:其它一般工业产品的生产都有着自己固定的、长期适用的工厂。而建筑施工具有流动性的特点,不可能建立这样的工厂,只能是当每一个建筑工程施工时,建立一个相应的、临时性的,如同工厂作用性质的施工现场准备,即工地。施工单件性特点与施工流动性特点,决定了每一建筑工程施工都要选择相应的机具和劳动力组织。选择施工方法、拟定施工技术方案及其劳动力组织和机具配置,统称为施工作业能力配置。施工周期的特点,决定了各种劳动力、机具和众多材料物资技术的供应时间也比较长,这就产生了与施工总进度计划相适应的物资技术的施工组织设计内容。由此可见,施工组织设计在项目管理中是相当重要的。 2.施工组织设计方案的重要性 建筑产品作为一种商品,在项目管理中工程质量在整个施工过程中起着极其重要的作用。工程建设项目的施工组织设计与其工程造价有着密切的关系。施工组织设计基本的内容有:工程概况和施工条件的分析、施工方案、施工工艺、施工进度计划、施工总平面图。还有经济分析和施工准备工作计划。其中,施工方案及施工工艺的确定更为重要,如:施工机械的选择、水平运输方法的选择、土方的施工方法及主体结构的施工方法和施工工艺的选择等等,均直接影响着工程预算价格的变化。在保证工程质量和满足业主使用要求及工期要求的前提下,优化施工方案及施工工艺是控制投资和降低工程项目造价的重要措施和手段。 2.1施工组织方案在很大程度上影响着工程质量,因此合理的施工组织方案 不仅是确保工程顺利完成的基础,也是工程安全的依据。施工组织设计是建筑工程设计文件的重要组成部分,是编制工程投资概预算的主要依据和编制招投标文件的

桥梁专业外文翻译--欧洲桥梁研究

中文1850字 附录 Bridge research in Europe A brief outline is given of the development of the European Union, together with the research platform in Europe. The special case of post-tensioned bridges in the UK is discussed. In order to illustrate the type of European research being undertaken, an example is given from the University of Edinburgh portfolio: relating to the identification of voids in post-tensioned concrete bridges using digital impulse radar. Introduction The challenge in any research arena is to harness the findings of different research groups to identify a coherent mass of data, which enables research and practice to be better focused. A particular challenge exists with respect to Europe where language barriers are inevitably very significant. The European Community was formed in the 1960s based upon a political will within continental Europe to avoid the European civil wars, which developed into World War 2 from 1939 to 1945. The strong political motivation formed the original community of which Britain was not a member. Many of the continental countries saw Britain’s interest as being purely economic. The 1970s saw Britain joining what was then the European Economic Community (EEC) and the 1990s has seen the widening of the community to a European Union, EU, with certain political goals together with the objective of a common European currency. Notwithstanding these financial and political developments, civil engineering and bridge engineering in particular have found great difficulty in forming any kind of common thread. Indeed the educational systems for University training are quite different between Britain and the European continental countries. The formation of the EU funding schemes —e.g. Socrates, Brite Euram and other programs have helped significantly. The Socrates scheme is based upon the exchange of students between Universities in different member states. The Brite Euram scheme has involved technical research grants given to consortia of academics and industrial

城市大跨度桥梁施工的要点分析正式版

In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan.城市大跨度桥梁施工的要点分析正式版

城市大跨度桥梁施工的要点分析正式 版 下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度与方案所计划的时间吻合。文档可以直接使用,也可根据实际需要修订后使用。 摘要:随着城市经济的快速发展,大跨度桥梁在城市当中越来越多的出现,但是大跨度桥梁的施工技术要求高、难度大,对施工过程中的质量控制和管理提出了更高的要求,在施工过程中需要做好几何、应力、稳定和影响因素控制,但是大跨度桥梁本身就有很多种,这无疑增加了施工技术难度。本文根据已有的研究资料详细论述了大跨度桥梁施工过程中应该注意的一些问题,在详细分析影响其施工质量因素的基础上,提出了一些施工质量方面的对策建议,以期能够提高城市大跨度

桥梁的施工水平。 关键词:大跨度;桥梁;施工 1.影响大跨度桥梁施工质量的因素分析 从实践的角度来看,影响大跨度桥梁施工质量的因素有很多,这些因素主要表现在施工材料、技术管理、设备运行等方面上,在大型桥梁施工过程当中应该在做好施工质量控制与过程管理的基础上,要针对影响施工质量的一些重点因素,采取专门的施工管理措施,保障桥梁施工的各个重点控制部分的施工质量,保证整个施工过程中桥梁的质量都处于良好的控制状况。在大型桥梁施工当中,目前应力混凝土结构箱梁与灌注桩是桥梁施工应用最为

工业工程英文文献及外文翻译

附录 附录1:英文文献 Line Balancing in the Real World Abstract:Line Balancing (LB) is a classic, well-researched Operations Research (OR) optimization problem of significant industrial importance. It is one of those problems where domain expertise does not help very much: whatever the number of years spent solving it, one is each time facing an intractable problem with an astronomic number of possible solutions and no real guidance on how to solve it in the best way, unless one postulates that the old way is the best way .Here we explain an apparent paradox: although many algorithms have been proposed in the past, and despite the problem’s practical importance, just one commercially available LB software currently appears to be available for application in industries such as automotive. We speculate that this may be due to a misalignment between the academic LB problem addressed by OR, and the actual problem faced by the industry. Keyword:Line Balancing, Assembly lines, Optimization

桥梁外文翻译

毕业设计/论文 外文文献翻译 院系城市建设学院 专业班级 姓名 原文出处 评分 指导教师 华中科技大学武昌分校 20 12 年3月1日

Study on nonlinear analysis of a redundant cable-stayed bridge 1.Abstract A comparison on nonlinear analysis of a highly redundant cable-stayed bridge is performed in the study. The initial shapes including geometry and prestress distribution of the bridge are determined by using a two-loop iteration method, it is an equilibrium iteration loop and a shape iteration loop. For the initial shape analysis a linear and a nonlinear computation procedure are set up. In the former all nonlinearities of cable-stayed bridges are disregarded, and the shape iteration is carried out without considering equilibrium. In the latter all nonlinearities of the bridges are taken into consideration and both the equilibrium and the shape iteration are carried out. Based on the convergent initial shapes determined by the different procedures, the natural frequencies and vibration modes are then examined in details. Numerical results show that a convergent initial shape can be found rapidly by the two-loop iteration method, a reasonable initial shape can be determined by using the linear computation procedure, and a lot of computation efforts can thus be saved. There are only small differences in geometry and prestress distribution between the results determined by linear and nonlinear computation procedures. However, for the analysis of natural frequency and vibration modes, significant differences in the fundamental frequencies and vibration modes will occur, and the nonlinearities of the cable-stayed bridge response appear only in the modes determined on basis of the initial shape found by the nonlinear computation. 2. Introduction Rapid progress in the analysis and construction of cable-stayed bridges has been made over the last three decades. The progress is mainly due to developments in the fields of computer technology, high strength steel cables, orthotropic steel decks and construction technology. Since the first modern cable-stayed bridge was built in Sweden in 1955, their popularity has rapidly been increasing all over the world. Because of its aesthetic appeal, economic grounds and ease of erection, the

相关文档
最新文档