函数单调性,奇偶性,习题课教案设计
函数的奇偶性教案
函数的奇偶性教案一、教学目标1. 知识与技能:(1)理解函数奇偶性的概念;(2)学会判断函数的奇偶性;(3)能够运用函数的奇偶性解决实际问题。
2. 过程与方法:(1)通过观察、分析、归纳,探索函数的奇偶性;(2)利用函数的奇偶性进行函数图像的变换。
3. 情感态度与价值观:(1)培养学生的逻辑思维能力;(2)激发学生对数学的兴趣,提高学习积极性。
二、教学重点与难点1. 教学重点:(1)函数奇偶性的概念及其判断方法;(2)函数奇偶性在实际问题中的应用。
2. 教学难点:(1)函数奇偶性的判断方法;(2)函数奇偶性在实际问题中的应用。
三、教学过程1. 导入新课:(1)复习已学过的函数性质,如单调性、周期性等;(2)提问:同学们,你们知道函数还有其他的性质吗?2. 探究新知:(1)介绍函数奇偶性的概念;(2)通过示例,让学生观察、分析、归纳函数的奇偶性;(3)引导学生掌握判断函数奇偶性的方法。
3. 典例分析:(1)分析函数f(x)=x^3的奇偶性;(2)分析函数f(x)=|x|的奇偶性;(3)分析函数f(x)=sinx的奇偶性。
4. 练习巩固:(2)运用函数的奇偶性解决实际问题。
四、课堂小结本节课,我们学习了函数的奇偶性,掌握了判断函数奇偶性的方法,并能够在实际问题中运用。
希望大家能够继续努力学习,不断提高自己的数学能力。
五、课后作业2. 运用函数的奇偶性解决实际问题:已知函数f(x)=x^2+1的图像关于y轴对称,求函数f(x)在x=-1时的值;3. 探究函数的奇偶性与单调性的关系。
六、教学活动设计1. 小组讨论:让学生分组讨论函数奇偶性的性质,以及如何判断一个函数的奇偶性。
2. 案例分析:通过具体的函数例子,让学生理解并掌握函数奇偶性的判断方法。
3. 互动提问:教师提出问题,引导学生思考并回答,以检查学生对函数奇偶性的理解和掌握程度。
七、教学评价1. 课堂问答:通过提问学生,检查他们对函数奇偶性的概念和判断方法的理解。
函数的基本性质教案
函数的基本性质教案一、教学目标1. 让学生理解函数的概念,掌握函数的基本性质,包括单调性、奇偶性、周期性等。
2. 能够运用函数的基本性质解决实际问题,提高学生的数学应用能力。
3. 培养学生的逻辑思维能力,提高学生分析问题和解决问题的能力。
二、教学内容1. 函数的概念及定义2. 函数的单调性3. 函数的奇偶性4. 函数的周期性5. 函数的基本性质在实际问题中的应用三、教学重点与难点1. 教学重点:函数的基本性质,包括单调性、奇偶性、周期性。
2. 教学难点:函数性质的证明和应用。
四、教学方法1. 采用讲授法,系统地讲解函数的基本性质。
2. 利用实例进行分析,帮助学生理解函数性质的应用。
3. 引导学生进行自主学习,培养学生的逻辑思维能力。
4. 利用小组讨论,提高学生的合作能力。
五、教学过程1. 导入:通过生活中的实例,引导学生认识函数,激发学生的学习兴趣。
2. 讲解:讲解函数的概念,定义,并引入函数的单调性、奇偶性、周期性等基本性质。
3. 分析:分析函数性质的证明方法,并通过实例进行分析,让学生理解函数性质的应用。
4. 练习:布置练习题,让学生巩固所学内容。
5. 总结:对本节课的内容进行总结,强调函数基本性质的重要性。
6. 作业布置:布置课后作业,巩固所学知识。
7. 课后辅导:针对学生学习中遇到的问题进行辅导,提高学生的学习能力。
六、教学评价1. 评价方式:采用课堂表现、课后作业和单元测试相结合的方式进行评价。
2. 评价内容:(1) 函数概念的理解和运用;(2) 函数单调性、奇偶性、周期性的理解和证明;(3) 函数性质在实际问题中的应用能力。
七、教学资源1. 教材:《数学分析》;2. 教学课件;3. 实例素材;4. 练习题库;5. 课后辅导资料。
八、教学进度安排1. 第1周:讲解函数的概念及定义;2. 第2周:讲解函数的单调性;3. 第3周:讲解函数的奇偶性;4. 第4周:讲解函数的周期性;5. 第5周:函数性质在实际问题中的应用。
函数的概念与性质教案
函数的概念与性质教案一、教学目标:1. 理解函数的概念,掌握函数的表示方法。
2. 掌握函数的性质,包括单调性、奇偶性、周期性等。
3. 能够运用函数的性质解决问题。
二、教学内容:1. 函数的概念:函数的定义、函数的表示方法(列表法、解析法、图象法)。
2. 函数的性质:单调性、奇偶性、周期性。
3. 函数性质的应用:解决实际问题。
三、教学重点与难点:1. 重点:函数的概念与表示方法,函数的性质及其应用。
2. 难点:函数的单调性、奇偶性、周期性的理解和应用。
四、教学方法:1. 采用问题驱动法,引导学生主动探究函数的性质。
2. 利用数形结合法,直观展示函数的性质。
3. 运用实例分析法,让学生学会运用函数的性质解决实际问题。
五、教学准备:1. 教学课件:包含函数的概念、性质及其应用的实例。
2. 教学素材:包括函数图象、实际问题等。
3. 学生用书、练习题。
【导入】(此处简要介绍本节课的教学目标和内容,引导学生进入学习状态。
)【新课导入】1. 函数的概念:(1)引导学生回顾数学中的变量概念,引入函数的定义。
(2)讲解函数的表示方法:列表法、解析法、图象法。
2. 函数的性质:(1)单调性:讲解函数单调递增和单调递减的概念,引导学生通过图象观察函数的单调性。
(2)奇偶性:讲解函数奇偶性的定义,引导学生通过图象观察函数的奇偶性。
(3)周期性:讲解函数周期性的定义,引导学生通过图象观察函数的周期性。
【课堂练习】1. 让学生自主完成教材中的练习题,巩固所学内容。
2. 选取部分学生进行答案展示,并讲解答案的得出过程。
【实例分析】1. 给出实际问题,让学生运用函数的性质解决问题。
2. 引导学生总结解题思路和方法,并进行讲解。
【小结】1. 让学生回顾本节课所学内容,总结函数的概念、性质及其应用。
2. 强调函数在实际问题中的重要性。
【作业布置】1. 让学生完成课后作业,巩固所学内容。
2. 鼓励学生进行自主学习,提前预习下一节课的内容。
函数的单调性和奇偶性的综合应用教案
函数的单调性和奇偶性的综合应用教案一、教学目标:1. 知识与技能:(1)理解函数的单调性和奇偶性的概念;(2)掌握判断函数单调性和奇偶性的方法;(3)学会运用函数的单调性和奇偶性解决实际问题。
2. 过程与方法:(1)通过实例引导学生观察、分析函数的单调性和奇偶性;(2)利用图形直观地展示函数的单调性和奇偶性;(3)培养学生运用函数的单调性和奇偶性解决实际问题的能力。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生合作、探究的精神;(3)培养学生运用数学知识解决实际问题的意识。
二、教学重点与难点:1. 教学重点:(1)函数的单调性和奇偶性的概念;(2)判断函数单调性和奇偶性的方法;(3)运用函数的单调性和奇偶性解决实际问题。
2. 教学难点:(1)函数的奇偶性在实际问题中的应用;(2)函数的单调性在实际问题中的应用。
三、教学准备:1. 教师准备:(1)熟练掌握函数的单调性和奇偶性的概念及判断方法;(2)准备相关实例和练习题;(3)准备多媒体教学设备。
2. 学生准备:(1)掌握函数的基本概念;(2)了解简单的函数图形;(3)具备一定的数学运算能力。
四、教学过程:1. 导入新课:(1)引导学生回顾函数的基本概念;(2)引导学生思考函数的单调性和奇偶性在实际问题中的应用。
2. 知识讲解:(1)讲解函数的单调性概念及判断方法;(2)讲解函数的奇偶性概念及判断方法;(3)结合实例分析函数的单调性和奇偶性在实际问题中的应用。
3. 图形展示:(1)利用图形直观地展示函数的单调性和奇偶性;(2)引导学生观察、分析图形,加深对函数单调性和奇偶性的理解。
4. 课堂练习:(1)布置针对性练习题,让学生巩固所学知识;(2)引导学生互相讨论、交流,共同解决问题。
5. 总结提升:(1)总结本节课所学内容,强调函数的单调性和奇偶性在实际问题中的应用;(2)鼓励学生在日常生活中发现和运用函数的单调性和奇偶性。
高一数学上册《函数的基本性质》教案、教学设计
3.学生在小组合作学习中的参与度有待提高。教师应关注学生的个体差异,调动每个学生的积极性,使他们在合作交流中发挥自己的优势,共同进步。
4.学生对于数学知识在实际生活中的应用认识不足,教师可通过引入实际问题,让学生体会数学知识的价值,激发学生学习数学的兴趣。
6.教学评价,关注成长
在教学过程中,教师应关注学生的成长和发展,采用多元化的评价方式,如课堂表现、作业完成情况、小组合作交流等,全面评估学生的学习效果。
7.创设互动氛围,激发学生学习兴趣
8.融入信息技术,提高教学质量
利用多媒体、网络等信息技术手段,丰富教学资源,提高教学质量。如通过数学软件绘制函数图像,让学生更直观地感受函数性质。
3.结合所学函数性质,尝试解决以下拓展性问题:
(1)已知函数f(x) = x^3 - 6x^2 + 9x + 1,判断其奇偶性,并求单调区间。
(2)已知函数g(x) = 3cos(2x) + 4sin(x),求最小正周期及一个周期内的单调区间。
4.请同学们预习下一节课内容,了解函数的极值及其在实际问题中的应用。
3.鼓励学生积极参与课堂讨论,勇于表达自己的观点,培养学生自信、勇敢的品质。
4.通过解决实际问题,让学生认识到数学知识在生活中的重要作用,增强学生应用数学知识解决实际问题的意识,提高学生的社会责任感。
在本章节的教学过程中,教师应以学生为主体,关注学生的个体差异,充分调动学生的积极性、主动性和创造性。通过讲解、示范、讨论等多种教学手段,使学生在掌握函数基本性质的基础上,提高自身的数学素养和综合素质。同时,注重培养学生的团队合作精神,使其在合作交流中相互学习、共同成长。
函数的基本性质教案设计
函数的基本性质教案设计教案设计:函数的基本性质教学目标:1.理解函数的定义和概念;2.了解函数的基本性质:定义域、值域、奇偶性和单调性;3.掌握函数的基本性质的判定方法和图像描述方法;4.能够运用函数的基本性质解决简单的问题。
教学内容:一、函数的定义和概念1.什么是函数?2.函数的记法和图像表示;3.函数的自变量和因变量;4.函数与方程的关系。
二、函数的基本性质1.定义域:如何确定函数的定义域?a.根据实际问题及函数表达式的限制;b.根据函数的图像和特性进行判断。
2.值域:如何确定函数的值域?a.根据函数的图像和特性进行判断;b.利用函数的性质推导。
3.奇偶性:a.奇函数的定义和特性;b.偶函数的定义和特性;c.奇偶函数的图像特点。
4.单调性:a.递增和递减函数的定义和特性;b.单调函数的图像特点;c.如何判断函数的单调性。
教学过程:第一步:引入问题(5分钟)教师通过提问的方式引入函数的概念,例如:“我们在日常生活中常用到的数学关系是什么?”“你能否举出一个函数的例子?”“函数和方程有什么区别?”等。
第二步:函数的定义和概念(10分钟)通过讲解和示例展示函数的定义和概念,包括函数的记法和图像表示,函数的自变量和因变量,函数与方程的关系。
第三步:函数的定义域和值域(15分钟)通过示例和练习,教师引导学生学习函数的定义域和值域的确定方法,并进行讲解和答疑。
第四步:函数的奇偶性(15分钟)通过讲解和示例,教师介绍奇函数和偶函数的定义和特性,并展示函数的图像特点。
学生在教师指导下进行练习,巩固奇偶函数的判定方法。
第五步:函数的单调性(20分钟)通过讲解和示例,教师介绍递增和递减函数的定义和特性,并展示单调函数的图像特点。
学生在教师指导下进行练习,掌握函数单调性的判定方法。
第六步:综合练习(20分钟)教师布置一些综合练习题,要求学生运用函数的基本性质解决问题,并在教师的指导下进行讨论和解答。
第七步:总结归纳(5分钟)教师引导学生总结函数的基本性质和判定方法,并进行概念梳理。
教案板书设计怎么写【优秀】
教案板书设计怎么写【优秀】一、教学内容本节课我们将学习《高中数学》教材第二章“函数”的2.3节“函数的性质”。
具体内容包括函数的单调性、奇偶性以及函数的极值。
二、教学目标1. 让学生掌握函数单调性、奇偶性的定义,能够判断给定函数的单调性和奇偶性。
2. 使学生了解函数极值的概念,能够找出函数的极值点。
3. 培养学生的逻辑思维能力和解决问题的能力。
三、教学难点与重点教学难点:函数单调性、奇偶性的判断,函数极值的求解。
教学重点:函数单调性、奇偶性的定义,函数极值的概念。
四、教具与学具准备1. 教具:PPT、黑板、粉笔、教鞭。
2. 学具:教材、笔记本、练习本。
五、教学过程1. 实践情景引入(5分钟)通过展示实际生活中的现象,如温度变化、物体高度变化等,引导学生思考这些现象与函数的关系,从而引出本节课的主题。
2. 例题讲解(15分钟)例题1:判断函数f(x) = x^2 2x + 1的单调性和奇偶性。
解答:此函数为二次函数,开口向上,顶点坐标为(1,0)。
因此,函数在x=1处取得最小值0,单调递增区间为(∞,1),单调递减区间为(1,+∞)。
同时,f(x)为偶函数,因为f(x) = (x)^2 2(x) + 1 = x^2 + 2x + 1 = f(x)。
例题2:求函数f(x) = x^3 3x的极值。
解答:求导数f'(x) = 3x^2 3,令f'(x) = 0,得x = ±1。
当x = 1时,f(x)取得极大值2;当x = 1时,f(x)取得极小值2。
3. 随堂练习(10分钟)练习1:判断函数f(x) = x^3 3x^2 + 2的单调性和奇偶性。
练习2:求函数f(x) = x^2 2x + 1的极值。
4. 课堂小结(5分钟)六、板书设计1. 函数单调性、奇偶性的定义及判断方法。
2. 函数极值的定义及求解方法。
3. 例题及解答。
七、作业设计1. 作业题目:(1)判断函数f(x) = x^3 3x^2 + 2的单调性和奇偶性。
高一数学必修1《函数的基本性质》教案
高一数学必修1《函数的基本性质》教案教学目标:1. 理解函数以及函数的各种表达方式。
2. 掌握函数的基本性质,包括单调性、奇偶性、周期性和零点。
3. 实现函数的简单变换,例如平移、伸缩和反转等。
4. 能够应用函数的基本性质,解决实际问题。
教学重点:1. 理解函数的概念以及函数的各种表达方式。
2. 掌握函数的基本性质,实现函数的简单变换。
3. 能够应用函数的基本性质,解决实际问题。
教学难点:1. 如何理解函数的概念以及函数的各种表达方式。
2. 如何应用函数的基本性质,解决实际问题。
教学方法:一、讲授法。
二、探究法。
三、案例分析法。
教学过程:一. 引入新知识(5分钟):教师简单介绍函数的概念和历史背景,引导学生关注函数在实际生活中的应用,引出本节课的学习目标,激发学生的学习兴趣。
二. 讲解函数的概念(10分钟):1. 函数的定义:任何能够使$x$值唯一对应一个$y$值的规律都称为函数,可以表示为$y=f(x)$。
$x$为自变量,$y$为因变量,函数$f(x)$表示$y$与$x$之间的关系。
2. 函数的图像:函数可以通过绘制它们的图像进行可视化。
函数的图像是平面直角坐标系上的一条曲线。
3. 函数的表示方法:函数可以用表格、图像、公式等多种方式表示。
例如$f(x)=x^2$就是一种表示方式。
三. 掌握函数的基本性质(30分钟):1. 单调性:单调递增和单调递减;2. 奇偶性:奇函数、偶函数和常函数;3. 周期性:周期函数和非周期函数;4. 零点:零点定义以及求零点的方法。
四. 实现函数的简单变换(10分钟):1. 平移变换:表示为$f(x-a)$或$f(x)+b$,注意$a$和$b$的正负性;2. 伸缩变换:表示为$f(kx)$或$f(x)/k$,注意$k$的正负性;3. 反转变换:表示为$f(-x)$或$f(-y)$,注意反转后的坐标轴位置变化。
五. 应用函数的基本性质(10分钟):1. 求函数的最值。
《函数的概念与性质》教案设计范例
《函数的概念与性质》教案设计范例一、教学目标:1. 了解函数的概念,理解函数的三个基本要素:定义域、值域、对应关系。
2. 掌握函数的性质,包括单调性、奇偶性、周期性等。
3. 学会运用函数的性质解决实际问题,提高解决问题的能力。
二、教学内容:1. 函数的概念:函数的定义、函数的表示方法、函数的三个基本要素。
2. 函数的单调性:单调递增函数、单调递减函数、单调性判断方法。
3. 函数的奇偶性:奇函数、偶函数、非奇非偶函数。
4. 函数的周期性:周期函数的定义、周期性判断方法。
5. 函数性质在实际问题中的应用。
三、教学重点与难点:1. 重点:函数的概念与性质,函数的单调性、奇偶性、周期性的判断方法。
2. 难点:函数性质在实际问题中的灵活运用。
四、教学方法:1. 采用讲授法,系统地讲解函数的概念与性质。
2. 利用案例分析法,引导学生运用函数性质解决实际问题。
3. 运用互动教学法,鼓励学生提问、讨论,提高学生的参与度。
五、教学过程:1. 导入:通过生活实例引入函数的概念,激发学生的兴趣。
2. 新课导入:讲解函数的三个基本要素,引导学生理解函数的定义。
3. 案例分析:分析具体函数的单调性、奇偶性、周期性,让学生掌握判断方法。
4. 课堂练习:布置练习题,让学生巩固所学函数性质。
5. 实际问题解决:引导学生运用函数性质解决实际问题,提高解决问题的能力。
7. 作业布置:布置课后作业,巩固所学知识。
六、教学评估:1. 课后作业:布置相关的习题,让学生巩固课堂所学知识。
2. 课堂练习:及时检查学生在课堂上的学习情况,对学生的学习进度进行掌握。
3. 小组讨论:组织小组讨论,让学生分享自己的学习心得,提高学生的合作能力。
七、教学反思:在教学过程中,要时刻关注学生的学习情况,根据学生的反馈及时调整教学方法和教学进度。
针对学生的难点问题,可以进行重点讲解,或者组织课后辅导,确保学生能够掌握函数的概念与性质。
八、教学拓展:1. 深入了解函数在其他领域的应用,如数学分析、物理、化学等。
高一数学教案函数的奇偶性5篇
高一数学教案函数的奇偶性5篇使学生从形与数两方面理解函数单调性的概念,学会利用函数图像理解和研究函数的性质,初步掌握利用函数图象和单调性定义判断、证明函数奇偶性的方法.高一数学教案函数的奇偶性1一、内容与解析 (一)内容:基本初等函数习题课(一)。
(二)解析:对数函数的性质的掌握,要先根据其图像来分析与记忆,这样更形像更直观,这是学习图像与性质的基本方法,在此基础上,我们要对对数函数的两种情况的性质做一个比较,使之更好的'掌握.二、目标及其解析:(一)教学目标(1)掌握指数函数、对数函数的概念,会作指数函数、对数函数的图象,并能根据图象说出指数函数、对数函数的性质,了解五个幂函数的图象及性质及其奇偶性.(二)解析(1)基本初等函数的学习重要是学习其性质,要掌握好性质,从图像上来理解与掌握是一个很有效的办法.(2)每类基本初类函数的性质差别比较大,学习时要有一个有效的区分.三、问题诊断分析在本节课的教学中,学生可能遇到的问题是不易区分各函数的图像与性质,不容易抓住其各自的特点。
四、教学支持条件分析在本节课一次递推的教学中,准备使用P5高一数学教案函数的奇偶性2【教学目标】【知识目标】:使学生从形与数两方面理解函数单调性的概念,学会利用函数图像理解和研究函数的性质,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.【能力目标】通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.【德育目标】通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程. 【教学重点】函数单调性的概念、判断及证明. 函数的单调性是学生第一次接触用严格的逻辑语言证明函数的性质,并在今后解决初等函数的性质、求函数的值域、不等式及比较两个数的大小等方面有广泛的实际应用,【教学难点】归纳抽象函数单调性的定义以及根据定义证明函数的单调性. 由于判断或证明函数的单调性,常常要综合运用一些知识(如不等式、因式分解、配方及数形结合的思想方法等)所以判断或证明函数的单调性是本节课的难点.【教材分析】函数的单调性是函数的重要性质之一,它把自变量的变化方向和函数值的变化方向定性的联系在一起,所以本节课在教材中的作用如下 (1)函数的单调性起着承前启后的作用。
函数的单调性和奇偶性的综合应用教案
函数的单调性和奇偶性的综合应用教案第一章:函数的单调性1.1 单调性的定义引导学生理解函数单调性的概念,了解函数单调递增和单调递减的定义。
通过示例来说明函数单调性的判断方法。
1.2 单调性的性质引导学生了解单调性的几个重要性质,如单调性的传递性、复合函数的单调性等。
通过示例来演示这些性质的应用。
第二章:函数的奇偶性2.1 奇偶性的定义引导学生理解函数奇偶性的概念,了解奇函数和偶函数的定义。
通过示例来说明函数奇偶性的判断方法。
2.2 奇偶性的性质引导学生了解奇偶性的几个重要性质,如奇偶性的对称性、奇偶性与单调性的关系等。
通过示例来演示这些性质的应用。
第三章:单调性和奇偶性的综合应用3.1 单调性和奇偶性的关系引导学生了解单调性和奇偶性之间的关系,如奇函数的单调性、偶函数的单调性等。
通过示例来说明单调性和奇偶性在解决问题时的综合应用。
3.2 单调性和奇偶性的应用实例给出一些实际问题,引导学生运用单调性和奇偶性的知识来解决这些问题。
通过示例来说明单调性和奇偶性在实际问题中的应用。
第四章:函数的单调性和奇偶性的判断4.1 单调性和奇偶性的判断方法引导学生了解判断函数单调性和奇偶性的方法,如导数法、图像法等。
通过示例来说明这些方法的运用。
4.2 单调性和奇偶性的判断实例给出一些具体的函数,引导学生运用判断方法来确定这些函数的单调性和奇偶性。
通过示例来说明单调性和奇偶性的判断过程。
第五章:函数的单调性和奇偶性的综合应用练习5.1 单调性和奇偶性的综合应用练习题提供一些练习题,引导学生运用单调性和奇偶性的知识来解决问题。
通过练习来巩固学生对单调性和奇偶性的理解和应用能力。
5.2 练习题解答和解析对练习题进行解答和解析,帮助学生理解和巩固解题思路和方法。
通过解答和解析来提高学生对单调性和奇偶性的应用能力。
第六章:函数的单调性和奇偶性在图像分析中的应用6.1 图像的单调区间引导学生如何通过函数图像来判断函数的单调区间。
函数单调性和奇偶性数学教案
函数单调性和奇偶性数学教案教学建议一、知识结构(1)函数单调性的概念。
包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系.(2)函数奇偶性的概念。
包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像.二、重点难点分析(1)本节教学的重点是函数的单调性,奇偶性概念的形成与认识.教学的难点是领悟函数单调性,奇偶性的本质,掌握单调性的证明.(2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它.这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫.单调性的证明是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证明,也没有意识到它的重要性,所以单调性的证明自然就是教学中的难点.三、教法建议(1)函数单调性概念引入时,可以先从学生熟悉的一次函数,,二次函数.反比例函数图象出发,回忆图象的增减性,从这点感性认识出发,通过问题逐步向抽象的定义靠拢.如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来.在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的认识就可以融入其中,将概念的形成与认识结合起来.(2)函数单调性证明的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,特别是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律.函数的奇偶性概念引入时,可设计一个课件,以的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值开始,逐渐让在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来.经历了这样的过程,再得到等式时,就比较容易体会它代表的是无数多个等式,是个恒等式.关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象(如)说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件.函数的奇偶性教学设计方案教学目标1.使学生了解奇偶性的概念,回会利用定义判断简单函数的奇偶性.2.在奇偶性概念形成过程中,培养学生的观察,归纳能力,同时渗透数形结合和特殊到一般的思想方法.3.在学生感受数学美的同时,激发学习的兴趣,培养学生乐于求索的精神.教学重点,难点重点是奇偶性概念的形成与函数奇偶性的判断难点是对概念的认识教学用具投影仪,计算机教学方法引导发现法教学过程一.引入新课前面我们已经研究了函数的单调性,它是反映函数在某一个区间上函数值随自变量变化而变化的性质,今天我们继续研究函数的另一个性质.从什么角度呢?将从对称的角度来研究函数的性质.对称我们大家都很熟悉,在生活中有很多对称,在数学中也能发现很多对称的问题,大家回忆一下在我们所学的内容中,特别是函数中有没有对称问题呢?(学生可能会举出一些数值上的对称问题,等,也可能会举出一些图象的对称问题,此时教师可以引导学生把函数具体化,如和等.)结合图象提出这些对称是我们在初中研究的关于轴对称和关于原点对称问题,而我们还曾研究过关于轴对称的问题,你们举的例子中还没有这样的,能举出一个函数图象关于轴对称的吗?学生经过思考,能找出原因,由于函数是映射,一个只能对一个,而不能有两个不同的,故函数的图象不可能关于轴对称.最终提出我们今天将重点研究图象关于轴对称和关于原点对称的问题,从形的特征中找出它们在数值上的规律.二.讲解新课2.函数的奇偶性(板书)教师从刚才的图象中选出,用计算机打出,指出这是关于轴对称的图象,然后问学生初中是怎样判断图象关于轴对称呢?(由学生回答,是利用图象的翻折后重合来判定)此时教师明确提出研究方向:今天我们将从数值角度研究图象的这种特征体现在自变量与函数值之间有何规律?学生开始可能只会用语言去描述:自变量互为相反数,函数值相等.教师可引导学生先把它们具体化,再用数学符号表示.(借助课件演示令比较得出等式,再令,得到,详见课件的使用)进而再提出会不会在定义域内存在,使与不等呢?(可用课件帮助演示让动起来观察,发现结论,这样的是不存在的)从这个结论中就可以发现对定义域内任意一个,都有成立.最后让学生用完整的语言给出定义,不准确的地方教师予以提示或调整.(1)偶函数的定义:如果对于函数的定义域内任意一个,都有,那么就叫做偶函数.(板书) (给出定义后可让学生举几个例子,如等以检验一下对概念的初步认识) 提出新问题:函数图象关于原点对称,它的自变量与函数值之间的数值规律是什么呢?(同时打出或的图象让学生观察研究)学生可类比刚才的方法,很快得出结论,再让学生给出奇函数的定义.(2)奇函数的定义:如果对于函数的定义域内任意一个,都有,那么就叫做奇函数.(板书) (由于在定义形成时已经有了一定的认识,故可以先作判断,在判断中再加深认识) 例1.判断下列函数的奇偶性(板书)(1);(2);(3);;(5);(6).(要求学生口答,选出1-2个题说过程)解:(1)是奇函数.(2)是偶函数.(3),是偶函数.前三个题做完,教师做一次小结,判断奇偶性,只需验证与之间的关系,但对你们的回答我不满意,因为题目要求是判断奇偶性而你们只回答了一半,另一半没有作答,以第(1)为例,说明怎样解决它不是偶函数的问题呢?学生经过思考可以解决问题,指出只要举出一个反例说明与不等.如即可说明它不是偶函数.(从这个问题的解决中让学生再次认识到定义中任意性的重要)从(4)题开始,学生的答案会有不同,可以让学生先讨论,教师再做评述.即第(4)题中表面成立的=不能经受任意性的考验,当时,由于,故不存在,更谈不上与相等了,由于任意性被破坏,所以它不能是奇偶性.教师由此引导学生,通过刚才这个题目,你发现在判断中需要注意些什么?(若学生发现不了定义域的特征,教师可再从定义启发,在定义域中有1,就必有-1,有-2,就必有2,有,就必有,有就必有,从而发现定义域应关于原点对称,再提出定义域关于原点对称是函数具有奇偶性的什么条件?可以用(6)辅助说明充分性不成立,用(5)说明必要性成立,得出结论.(3)定义域关于原点对称是函数具有奇偶性的必要但不充分条件.(板书)由学生小结判断奇偶性的步骤之后,教师再提出新的问题:在刚才的几个函数中有是奇函数不是偶函数,有是偶函数不是奇函数,也有既不是奇函数也不是偶函数,那么有没有这样的函数,它既是奇函数也是偶函数呢?若有,举例说明.经学生思考,可找到函数.然后继续提问:是不是具备这样性质的函数的解析式都只能写成这样呢?能证明吗?例2.已知函数既是奇函数也是偶函数,求证:.(板书)(试由学生来完成)证明:既是奇函数也是偶函数,=,且,=.,即.证后,教师请学生记住结论的同时,追问这样的函数应有多少个呢?学生开始可能认为只有一个,经教师提示可发现,只是解析式的特征,若改变函数的定义域,如,,,,它们显然是不同的函数,但它们都是既是奇函数也是偶函数.由上可知函数按其是否具有奇偶性可分为四类 (4)函数按其是否具有奇偶性可分为四类:(板书)例3.判断下列函数的奇偶性(板书)(1);(2);(3).由学生回答,不完整之处教师补充.解:(1)当时,为奇函数,当时,既不是奇函数也不是偶函数.(2)当时,既是奇函数也是偶函数,当时,是偶函数.(3)当时,于是,当时,,于是=,综上是奇函数.教师小结(1)(2)注意分类讨论的使用,(3)是分段函数,当检验,并不能说明具备奇偶性,因为奇偶性是对函数整个定义域内性质的刻画,因此必须均有成立,二者缺一不可.三.小结1.奇偶性的概念2.判断中注意的问题四.作业略五.板书设计2.函数的奇偶性例1.例3.(1)偶函数定义(2)奇函数定义(3)定义域关于原点对称是函数例2.小结具备奇偶性的必要条件(4)函数按奇偶性分类分四类探究活动(1)定义域为的任意函数都可以表示成一个奇函数和一个偶函数的和,你能试证明之吗?(2)判断函数在上的单调性,并加以证明.在此基础上试利用这个函数的单调性解决下面的问题:设为三角形的三条边,求证:.。
函数的单调性和奇偶性的综合应用教案
函数的单调性和奇偶性的综合应用教案一、教学目标1. 让学生理解函数的单调性和奇偶性的概念。
2. 让学生掌握判断函数单调性和奇偶性的方法。
3. 培养学生运用函数的单调性和奇偶性解决实际问题的能力。
二、教学内容1. 函数的单调性:单调递增函数、单调递减函数。
2. 函数的奇偶性:奇函数、偶函数。
3. 函数的单调性和奇偶性的判断方法。
4. 函数的单调性和奇偶性在实际问题中的应用。
三、教学重点与难点1. 教学重点:函数的单调性和奇偶性的概念及判断方法。
2. 教学难点:运用函数的单调性和奇偶性解决实际问题。
四、教学方法1. 采用讲授法讲解函数的单调性和奇偶性概念及判断方法。
2. 利用案例分析法引导学生运用函数的单调性和奇偶性解决实际问题。
3. 开展小组讨论法,让学生互相交流心得,提高解题能力。
五、教学过程1. 引入新课:通过生活中的实例,如商品打折、气温变化等,引导学生思考函数的单调性和奇偶性。
2. 讲解概念:讲解函数的单调性和奇偶性的定义,并通过图象进行演示。
3. 判断方法:教授判断函数单调性和奇偶性的方法,并进行练习。
4. 应用实例:分析实际问题,如物体的运动、经济的增长等,运用函数的单调性和奇偶性进行解答。
5. 课堂小结:总结本节课所学内容,强调函数的单调性和奇偶性在实际问题中的应用。
6. 课后作业:布置相关练习题,巩固所学知识。
六、教学评估1. 课堂提问:通过提问了解学生对函数单调性和奇偶性概念的理解程度。
2. 练习题解答:检查学生判断函数单调性和奇偶性的方法掌握情况。
3. 课后作业:分析学生完成作业的情况,了解学生对课堂所学知识的掌握程度。
七、教学反思1. 针对课堂教学过程,反思教学方法是否适合学生的学习需求。
2. 针对学生的反馈,调整教学策略,提高教学效果。
3. 探索更多实际问题,丰富教学案例,激发学生的学习兴趣。
八、拓展与延伸1. 探讨函数的单调性和奇偶性在高等数学中的应用。
2. 引导学生关注函数的单调性和奇偶性在其他领域的应用,如物理、化学等。
《函数的单调性与奇偶性》教学设计
(1)配方法:即将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的最值.
(2)换元法:通过变量式代换转化为求二次函数在某区间上的最值.
(3)数形结合法:利用函数图象或几何方法求出最值.
1.3《函数的单调性与奇偶性》教学设计
【教学目标】
1. 理解增函数、减函数、单调区间、单调性等概念;掌握增(减)函数的证明和判别;学会运用函数图象理解和研究函数的性质;
2.理解函数单调性的概念及证明方法、判别方法,理解函数的最大(小)值及其几何意义;
3. 理解奇函数、偶函数的概念及图象的特征,能熟练判别函数的奇偶性.
2.奇函数
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数.
注意:
①函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;
②由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).
答案:(1)可以作为某个函数y=f(x)的图象,并且它的图象关于原点对称;
(2)若点(x,f(x))在函数图象上,则相应的点(-x,-f(x))也在函数图象上,即函数图象上横坐标互为相反数的点,它们的纵坐标也一定互为相反数.
新授课阶段
一、函数的单调性
增函数:设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数;
【导入新课】
1.通过对函数 、 、 及 的观察提出有关函数单调性的问题.
函数单调性与奇偶性教案
函数单调性与奇偶性教案章节一:函数单调性概述1.1 引入:通过生活中的实例,如购物时打折优惠、登山时的斜坡等,让学生感受单调性的概念。
1.2 单调性的定义:一般地,如果函数f(x)在某个区间上的任意两个不同自变量x1和x2(x1 < x2),都有f(x1) ≤f(x2)(或f(x1) ≥f(x2)),就称函数f(x)在这个区间上是单调不降(或单调不增)的。
如果f(x1) > f(x2),函数f(x)是单调递减的;如果f(x1) < f(x2),函数f(x)是单调递增的。
1.3 单调性的性质:单调性是函数的一种重要性质,它与函数的极值、最值等概念密切相关。
章节二:常见函数的单调性2.1 线性函数的单调性:y = kx + b(k≠0),当k>0时,函数单调递增;当k<0时,函数单调递减。
2.2 反比例函数的单调性:y = k/x(k≠0),当k>0时,函数在(-∞,0)和(0,+∞)上单调递减;当k<0时,函数在(-∞,0)和(0,+∞)上单调递增。
2.3 二次函数的单调性:y = ax^2 + bx + c(a≠0),当a>0时,函数在顶点左侧单调递减,在顶点右侧单调递增;当a<0时,函数在顶点左侧单调递增,在顶点右侧单调递减。
章节三:函数奇偶性的概念3.1 奇偶性的定义:如果对于函数f(x)的定义域内的任意一个x,都有f(-x) = f(x),称函数f(x)为偶函数;如果对于函数f(x)的定义域内的任意一个x,都有f(-x) = -f(x),称函数f(x)为奇函数。
3.2 奇偶性的性质:奇函数满足f(-x) = -f(x),偶函数满足f(-x) = f(x)。
奇函数的图像关于原点对称,偶函数的图像关于y轴对称。
章节四:常见函数的奇偶性4.1 线性函数的奇偶性:y = kx + b(k≠0),既不是奇函数也不是偶函数。
4.2 反比例函数的奇偶性:y = k/x(k≠0),为奇函数。
函数的基本性质教案
函数的基本性质教案一、教学目标1. 了解函数的定义及其基本性质,理解函数的概念。
2. 掌握函数的单调性、奇偶性、周期性等基本性质,并能够运用这些性质解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学内容1. 函数的定义及表示方法2. 函数的单调性3. 函数的奇偶性4. 函数的周期性5. 实际问题中的应用三、教学重点与难点1. 教学重点:函数的基本性质,包括单调性、奇偶性、周期性。
2. 教学难点:函数性质的证明和应用。
四、教学方法1. 采用讲授法,讲解函数的基本性质及其证明方法。
2. 利用例题,展示函数性质在实际问题中的应用。
3. 引导学生进行小组讨论,培养学生的合作能力。
4. 利用信息技术辅助教学,提高教学效果。
五、教学过程1. 引入新课:通过复习初中阶段的知识,如一次函数、二次函数的性质,引出高中阶段函数的基本性质。
2. 讲解函数的定义及表示方法,让学生理解函数的概念。
3. 讲解函数的单调性,引导学生掌握单调性的证明方法,并通过例题展示单调性在实际问题中的应用。
4. 讲解函数的奇偶性,引导学生掌握奇偶性的证明方法,并通过例题展示奇偶性在实际问题中的应用。
5. 讲解函数的周期性,引导学生掌握周期性的证明方法,并通过例题展示周期性在实际问题中的应用。
6. 课堂练习:布置有关函数基本性质的练习题,让学生巩固所学知识。
7. 总结:对本节课的内容进行总结,强调函数基本性质的重要性。
8. 布置作业:布置有关函数基本性质的作业,让学生进一步巩固所学知识。
9. 课后反思:根据学生的课堂表现和作业完成情况,对教学进行反思,为下一步教学做好准备。
10. 教学评价:通过课堂表现、作业完成情况和课后反馈,对学生的学习情况进行评价,为后续教学提供参考。
六、教学评价1. 学生能够准确地描述函数的基本性质,包括单调性、奇偶性和周期性。
2. 学生能够理解并应用函数的基本性质解决实际问题。
3. 学生能够通过实例展示对函数性质的理解,并能够进行简单的证明。
《函数的概念与性质》教案设计范例
《函数的概念与性质》教案设计范例一、教学目标1. 了解函数的概念,理解函数的性质,能够运用函数的性质解决实际问题。
2. 掌握函数的表示方法,包括解析式、表格和图象等。
3. 学会运用函数的性质分析问题,提高解决问题的能力。
二、教学内容1. 函数的概念:函数的定义、函数的表示方法、函数的性质。
2. 函数的性质:单调性、奇偶性、周期性。
3. 函数的图像:函数图像的画法、函数图像的特点。
三、教学重点与难点1. 教学重点:函数的概念、函数的性质、函数的图像。
2. 教学难点:函数的单调性、奇偶性、周期性的理解与应用。
四、教学方法与手段1. 教学方法:讲授法、案例分析法、讨论法、实践活动法。
2. 教学手段:多媒体课件、黑板、教学卡片、练习题。
五、教学过程1. 导入新课:通过生活中的实例,引导学生思考函数的概念与性质。
2. 讲解与示范:讲解函数的概念,举例说明函数的表示方法,展示函数的图像,引导学生理解函数的性质。
3. 互动环节:分组讨论函数的性质,分享各自的观点和理解。
4. 练习与巩固:布置练习题,让学生运用函数的性质解决问题。
5. 总结与反思:对本节课的内容进行总结,引导学生思考函数的概念与性质在实际生活中的应用。
教案设计范例仅供参考,具体实施时可根据学生的实际情况进行调整。
六、教学评价1. 评价目标:学生能理解函数的概念,掌握函数的性质,能够运用函数的性质解决实际问题。
2. 评价方法:课堂问答、练习题、小组讨论、课后作业。
3. 评价内容:函数的概念、函数的表示方法、函数的性质、函数的图像。
七、教学拓展1. 函数与方程的关系:引导学生思考函数与方程的联系,理解函数的图像与方程的解的关系。
2. 函数的实际应用:举例说明函数在实际生活中的应用,如线性规划、最优化问题等。
八、教学资源1. 教材:《数学教材》2. 多媒体课件:函数的图像、案例分析3. 练习题:针对函数的概念、性质和图像的练习题4. 教学卡片:用于小组讨论和分享九、教学进度安排1. 第一课时:函数的概念与表示方法2. 第二课时:函数的性质(单调性、奇偶性)3. 第三课时:函数的性质(周期性)4. 第四课时:函数的图像5. 第五课时:函数的图像分析与应用十、课后作业1. 作业内容:针对本节课的内容,布置相关的练习题,巩固所学知识。
《函数奇偶性》优秀的教学设计
《函数奇偶性》优秀的教学设计《函数奇偶性》优秀的教学设计「篇一」教学分析本节讨论函数的奇偶性是描述函数整体性质的、教材沿用了处理函数单调性的方法,即先给出几个特殊函数的图象,让学生通过图象直观获得函数奇偶性的认识,然后利用表格探究数量变化特征,通过代数运算,验证发现的数量特征对定义域中的“任意”值都成立,最后在这个基础上建立了奇(偶)函数的概念、因此教学时,充分利用信息技术创设教学情境,会使数与形的结合更加自然、值得注意的问题:对于奇函数,教材在给出的表格中留出大部分空格,旨在让学生自己动手计算填写数据,仿照偶函数概念建立的过程,独立地去经历发现、猜想与证明的全过程,从而建立奇函数的概念、教学时,可以通过具体例子引导学生认识,并不是所有的函数都具有奇偶性,如函数y=x与y=2x—1既不是奇函数也不是偶函数,可以通过图象看出也可以用定义去说明、三维目标1、理解函数的奇偶性及其几何意义,培养学生观察、抽象的能力,以及从特殊到一般的概括、归纳问题的能力、2、学会运用函数图象理解和研究函数的性质,掌握判断函数的奇偶性的方法,渗透数形结合的数学思想、重点难点教学重点:函数的奇偶性及其几何意义、教学难点:判断函数的奇偶性的方法与格式、课时安排:1课时教学过程导入新课思路1、同学们,我们生活在美的世界中,有过许多对美的感受,请大家想一下有哪些美呢?(学生回答可能有和谐美、自然美、对称美)今天,我们就来讨论对称美,请大家想一下哪些事物给过你对称美的感觉呢?(学生举例,再在屏幕上给出一组图片:喜字、蝴蝶、建筑物、麦当劳的标志)生活中的美引入我们的数学领域中,它又是怎样的情况呢?下面,我们以麦当劳的标志为例,给它适当地建立平面直角坐标系,那么大家发现了什么特点呢?(学生发现:图象关于y轴对称)数学中对称的形式也很多,这节课我们就同学们谈到的与y轴对称的函数展开研究、思路2、结合轴对称与中心对称图形的定义,请同学们观察图形,说出函数y=x2和y=x3的图象各有怎样的对称性?引出课题:函数的奇偶性、推进新课新知探究提出问题(1)如图1所示,观察下列函数的图象,总结各函数之间的共性、图1(2)如何利用函数的解析式描述函数的、图象关于y轴对称呢?填写表1和表2,你发现这两个函数的解析式具有什么共同特征?表1x—3—2—10123f(x)=x2表2x—3—2—10123f(x)=|x|(3)请给出偶函数的定义、(4)偶函数的图象有什么特征?(5)函数f(x)=x2,x∈[—1,2]是偶函数吗?(6)偶函数的定义域有什么特征?(7)观察函数f(x)=x和f(x)=1x的图象,类比偶函数的推导过程,给出奇函数的定义和性质?活动:教师从以下几点引导学生:(1)观察图象的对称性、(2)学生给出这两个函数的解析式具有什么共同特征后,教师指出:这样的函数称为偶函数、(3)利用函数的解析式来描述、(4)偶函数的性质:图象关于y轴对称、(5)函数f(x)=x2,x∈[—1,2]的图象关于y轴不对称;对定义域[—1,2]内x=2,f(—2)不存在,即其函数的定义域中任意一个x的相反数—x不一定也在定义域内,即f(—x)=f(x)不恒成立、(6)偶函数的定义域中任意一个x的相反数—x一定也在定义域内,此时称函数的定义域关于原点对称、(7)先判断它们的图象的共同特征是关于原点对称,再列表格观察自变量互为相反数时,函数值的变化情况,进而抽象出奇函数的概念,再讨论奇函数的性质、给出偶函数和奇函数的定义后,要指明:①函数是奇函数或是偶函数称为函数的`奇偶性,函数的奇偶性是函数的整体性质;②由函数的奇偶性定义,可知函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则—x也一定是定义域内的一个自变量(即定义域关于原点对称);③具有奇偶性的函数的图象的特征:偶函数的图象关于y轴对称,奇函数的图象关于原点对称;④可以利用图象判断函数的奇偶性,这种方法称为图象法,也可以利用奇偶函数的定义判断函数的奇偶性,这种方法称为定义法;⑤函数的奇偶性是函数在定义域上的性质,是“整体”性质,而函数的单调性是函数在定义域的子集上的性质,是“局部”性质、讨论结果:(1)这两个函数之间的图象都关于y轴对称。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1.3.函数的单调性(一)课型:新授课教学目标:(1)知识与能力:理解增函数、减函数、单调区间、单调性等概念,掌握增(减)函数的证明和判别, 学会运用函数图象理解和研究函数的性质。
(2)过程与方法:引导学生通过观察,归纳,抽象,概括自主构建单调性的概念,使学生领会数形结合的思想方法。
(3)情感,态度,价值观:培养学生主动探索,敢于创新的意识和精神,使学生理性思考生活中的增长和递减的现象。
教学重点:掌握运用定义或图象进行函数的单调性的证明和判别。
教学难点:理解概念。
教学过程:一、复习引入:1.. 观察下列各个函数的图象,并探讨下列变化规律:①随x的增大,y的值有什么变化?②能否看出函数的最大、最小值?2. 画出函数f(x)= x+2、f(x)= x2的图像,并观察。
(小结描点法的步骤:列表→描点→连线)二、讲授新课:1.教学增函数、减函数、单调性、单调区间等概念:(1)增(减)函数:(2)讨论:一次函数、二次函数、反比例函数的单调性及单调区间2.教学增函数、减函数的证明:定义法,步骤如下:(1)设自变量(2)做差变形(3)讨论定号(4)下结论例题讲解例1(P45)证明函数f(x)=2x+1,在R上是增函数例2:(P45)总结:三、巩固练习:1.判断f(x)=|x|、y=x3的单调性并证明。
2.讨论f(x)=x2-2x的单调性。
推广:二次函数的单调性3.课堂练习:书P46.1.2题。
四、小结:1.函数单调性概念2.单调性证明方法五、作业:P46、3—5题板书设计:反思:2.1.3 函数的单调性(二)课 型:新授课教学目标:(1) 知识与能力:更进一步理解函数单调性的概念及证明方法、判别方法,能利用单调性比较大小,理解函数的最大值及其几何意义.(2) 过程与方法:引导学生通过观察,归纳,抽象,概括自主构建单调性的概念,使学生领会数形结合的思想方法。
(3) 情感,态度,价值观:培养学生主动探索,敢于创新的意识和精神,使学生理性思考生活中的增长和递减的现象。
教学重点:会比较大小,熟练求函数的最值。
教学难点:理解函数的最值,能利用单调性求函数的最值。
教学过程:一、复习引入:1.指出函数f(x)=ax 2+bx +c (a>0)的单调区间及单调性。
2. f(x)=ax 2+bx +c 的最小值的情况是怎样的?3.知识回顾:增函数、减函数的定义。
二、讲授新课:1.教学函数最值的概念:指出下列函数图象的最高点或最低点,→ 能体现函数值有什么特征?()23f x x =-+, [1,2]x ∈-;2()21f x x x =++,[2,2]x ∈- 2.提出单调性的应用:比较大小,求值域举例如下:例题讲解:例1(练习册P28应用2)例2.求函数21y x =-在区间[2,6] 上的最大值和最小值.例3.求函数y x =+三、巩固练习:1. 求下列函数的最大值和最小值:(1)25332,[,]22y x x x =--∈-;(2)|1||2|y x x =+--2.求函数2y x =.四、小结:求函数最值的常用方法有:(1)配方法:即将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值围确定函数的最值.(2)换元法:通过变量式代换转化为求二次函数在某区间上的最值.(3)数形结合法:利用函数图象单调性求出最值.五、作业:练习册板书设计:反思;2.1.4 函数的奇偶性课 型:新授课教学目标:(1) 知识与技能:理解奇函数、偶函数的概念及几何意义,能熟练判别函数的奇偶性。
(2) 过程与方法:通过设置问题情景培养学生判断,推理的能力。
(3) 情感,态度,价值观:通过绘制和展示函数图像冶学生情操,培养学生合作精神,培养学生善于探索的思维品质。
教学重点:熟练判别函数的奇偶性。
教学难点:理解奇偶性。
教学过程:一、复习引入:1.提问:什么叫增函数、减函数2.指出f(x)=2x 2-1的单调区间及单调性。
3.对于f(x)=x 、f(x)=x 2、f(x)=x 3,分别比较f(x)与f(-x)。
并作图,观察图像特点。
二、讲授新课:1.奇函数、偶函数的概念:(1)偶函数:一般地,对于函数()f x 定义域的任意一个x ,都有()()f x f x -=,那么函数()f x 叫偶函数.(2)探究:仿照偶函数的定义给出奇函数的定义.如果对于函数定义域的任意一个x ,都有()()f x f x -=-),那么函数()f x 叫奇函数。
(3) 讨论:定义域特点,与单调性定义的区别,图象特点。
(定义域关于原点对称;整体性)2.奇偶性判别:例1.P48判断下列函数的奇偶性.例2研究函数21()f x x =.的性质并做出它的图像3、奇偶性与单调性综合的问题:①出示例:已知f(x)是奇函数,且在(0,+∞)上是减函数,问f(x)的(-∞,0)上的单调性。
②找一例子说明判别结果(特例法) → 按定义求单调性,注意利用奇偶性和已知单调区间上的单调性。
(小结:设→转化→单调应用→奇偶应用→结论) ③变题:已知f(x)是偶函数,且在[a,b]上是减函数,试判断f(x)在[-b,-a]上的单调性,并给出证明。
三、巩固练习:1、判别下列函数的奇偶性:f(x)=|x +1|+|x -1| 、f(x)=23x 、f(x)=x +x 1、 f(x)=21x x +、f(x)=x 2,x ∈[-2,3]2.设f(x)=ax 7+bx +5,已知f(-7)=-17,求f(7)的值。
3.已知f(x)是奇函数,g(x)是偶函数,且f(x)-g(x)=11+x ,求f(x)、g(x)。
4.已知函数f(x),对任意实数x 、y ,都有f(x+y)=f(x)+f(y),试判别f(x)的奇偶性。
(特值代入)5.已知f(x)是奇函数,且在[3,7]是增函数且最大值为4,那么f(x)在[-7,-3]上是( )函数,且最 值是 。
四、小结本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称,单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质.五、作业P49页1——5板书设计:反思:函数的基本性质(习题课)课 型:练习课教学目标:(1)知识与技能:掌握函数的基本性质(单调性,奇偶性),能应用函数的基本性质解决一些问题。
(2)过程与方法:通过设置问题情景培养学生判断,推理的能力。
(3)情感,态度,价值观:通过绘制和展示函数图像冶学生情操,培养学生合作精神,培养学生善于探索的思维品质。
教学重点:掌握函数的基本性质。
教学难点:应用性质解决问题。
教学过程:一、复习引入:1.讨论:如何从图象特征上得到奇函数、偶函数、增函数、减函数、最大值、最小值?2.提问:如何从解析式得到奇函数、偶函数、增函数、减函数、最大值、最小值的定义?二、教学典型习例:1.函数性质综合题型:例1:作出函数y =x 2-2|x|-3的图像,指出单调区间和单调性。
分析作法:利用偶函数性质,先作y 轴右边的,再对称作。
→学生作 →口答→ 思考:y =|x 2-2x -3|的图像的图像如何作?→讨论推广:如何由()f x 的图象,得到(||)f x 、|()|f x 的图象?例2:已知f(x)是奇函数,在(0,+∞)上是增函数,证明:f(x)在(-∞,0)上也是增函数分析证法 → 教师板演 → 变式训练讨论推广:奇函数或偶函数的单调区间及单调性有何关系?(偶函数在关于原点对称的区间上单调性相反;奇函数在关于原点对称的区间上单调性一致)2.函数性质的应用:例 1:求函数f(x)=x +x1 (x>0)的值域。
分析:单调性怎样?值域呢?→小结:应用单调性求值域。
→ 探究:计算机作图与结论推广例2:某产品单价是120元,可销售80万件。
市场调查后发现规律为降价x 元后可多销售2x 万件,写出销售金额y(万元)与x 的函数关系式,并求当降价多少个元时,销售金额最大?最大是多少?分析:此题的数量关系是怎样的?函数呢?如何求函数的最大值?小结:利用函数的单调性(主要是二次函数)解决有关最大值和最大值问题。
3.基本练习题:1、判别下列函数的奇偶性:y =1+x +1-x 、 y =⎪⎩⎪⎨⎧≤+>+-)0()0(22x x x x x x2、求函数y =x三、巩固练习:1.已知函数f(x)=ax 2+bx+3a+b 为偶函数,其定义域为[a-1,2a],求函数值域。
2. f(x)是定义在(-1,1)上的减函数,如何f(2-a)-f(a -3)<0。
求a 的围。
3. 求二次函数f(x)=x 2-2ax +2在[2,4]上的最大值与最小值。
四、小结:本节课通过讲练结合全面提高对函数单调性和奇偶性的认识,综合运用函数性质解题。
五、作业:练习册板书设计:反思:。