(完整word版)天体运动习题及答案

合集下载

天体运动最新精选试题(精校含答案)

天体运动最新精选试题(精校含答案)

============================================================================富顺一中高一星期天辅导( 7)——物理试卷1、一个卫星绕着某一星球作匀速圆周运动,轨道半径为 R1 ,因在运动过程中与宇宙尘埃和小陨石的摩擦和碰撞,导致该卫星发生跃迁,轨道半径减小为 R2 ,如图所示,则卫星的线速度、角速度,周期的变化情况是 [ ]A. 增大,增大,减小;B. 减小,增大,增大;C. 增大,减小,增大;D. 减小,减小,减小。

2、科学家们推测,太阳系的第十颗行星就在地球的轨道上 .从地球上看,它永远在太阳背面,人类一直未能发现它,可以说是“隐居”着的地球的“孪生兄弟” .由以上信息可以推知( )A.这颗行星的公转周期与地球相等B.这颗行星的自转周期与地球相等C.这颗行星的质量与地球质量相等D.这颗行星的密度与地球密度相等3、 2012 年 10 月 25 日,我国在西昌卫星发射中心成功将一颗北斗导航卫星发射升空并送入预定转移轨道。

这是一颗地球静止轨道卫星,将与先期发射的 15 颗北斗导航卫星组网运行,形成区域服务能力。

关于这颗地球静止轨道卫星的说法正确的是A.它的周期与月球绕地球运动的周期相同 B.它在轨道上运动时可能经过北京的上空C.它运动时的向心加速度大于重力加速度 D.它运动的线速度比地球第一宇宙速度小4、(2013 浙江省嘉兴市质检)某同学设想驾驶一辆由火箭提供动力的陆地太空两用汽车,沿赤道行驶并且汽车相对于地球的速度可以任意增加,不计空气阻力。

当汽车速度增加到某一值时,汽车将离开地球成为绕地球做圆周运动的“航天汽车”,下列相关说法正确的是(已知地球半径 R=6400km, g 取9.8m/s2)A. 汽车在地面上速度增加时对地面的压力增大B. 汽车速度达到 7.9km/s 时将离开地球C. 此“航天汽车”环绕地球做匀速圆周运动的最小周期为 24hD . 此“航天汽车”内可用弹簧测力计测重力的大小5、 ( 2013 陕西省西安市五校联考)如图所示, a、b 、c、d 是在地球大气层外的圆形轨道上运行的四颗人造卫星。

天体运动训练题

天体运动训练题

天体运动训练题1.一艘在火星表面进行科学探测的宇宙飞船,在经历了从轨道1→轨道2→轨道3的变轨过程后,顺利返回地球。

若轨道1为贴近火星表面的圆周轨道,已知引力常量为G,下列说法正确的是()A.飞船在轨道2上运动时,P点的速度小于Q点的速度B.飞船在轨道1上运动的机械能大于轨道3上运动的机械能C.测出飞船在轨道1上运动的周期,就可以测出火星的平均密度D.飞船在轨道2上运动到P点的加速度大于飞船在轨道1上运动到P点的加速度2.两颗人造地球卫星做圆周运动,周期之比为TA:TB=1:8,则轨道半径之比和运动速率之比分别为:A.RA:RB=4:1,vA:vB=1:2B.RA:RB=4:1,vA:vB=2:1C.RA:RB=1:4,vA:vB=1:2D.RA:RB=1:4,vA:vB=2:13.火星被认为是太阳系中最有可能存在地外生命的行星,对人类来说充满着神奇,为了更进一步探究火星,发射一颗火星的同步卫星。

已知火星的质量为地球质量的p倍,火星自转周期与地球自转周期相同均为T,地球表面的重力加速度为g。

地球的半径为R,则火星的同步卫星距球心的距离为()A.B.C.D.4.我国志愿者王跃曾与俄罗斯志愿者一起进行“火星500”的实验活动.假设王跃登陆火星后,测得火星的半径是地球半径的,质量是地球质量的.已知地球表面的重力加速度是g,地球的半径为R,王跃在地面上能向上竖直跳起的最大高度是h,忽略自转的影响,下列说法正确的是()A.火星表面的重力加速度是gB.火星的第一宇宙速度与地球的第一宇宙速度之比为C.火星的密度为D.王跃以与在地球上相同的初速度在火星上起跳后,能达到的最大高度是h5.地球赤道上的物体随地球自转的向心加速度为,角速度为,某卫星绕地球做匀速圆周运动的轨道半径为,向心力加速度为,角速度为。

已知万有引力常量为,地球半径为。

下列说法中正确的是A.向心力加速度之比B.角速度之比C.地球的第一宇宙速度等于D.地球的平均密度6.2016年2月11日,美国科学家宣布探测到引力波,证实了爱因斯坦100年前的预测,弥补了爱因斯坦广义相对论中最后一块缺失的“拼图”.双星的运动是产生引力波的来源之一,假设宇宙中有一双星系统由a、b两颗星体组成,这两颗星绕它们连线的某一点在万有引力作用下作匀速圆周运动,测得a星的周期为T,a、b 两颗星的距离为l、a、b两颗星的轨道半径之差为?r,(a星的轨道半径大于b星的),则()A.b星的周期为B.a星的线速度大小为C.a、b两颗星的半径之比为D.a、b两颗星的质量之比为7.我国志愿者王跃曾与俄罗斯志愿者一起进行“火星500”的实验活动。

高二物理天体运动试题答案及解析

高二物理天体运动试题答案及解析

高二物理天体运动试题答案及解析1.(专题卷)发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3,轨道1、2相切于Q点,轨道2、3相切于P点,如图所示。

则在卫星分别在1、2、3轨道上正常运行时,以下说法正确的是:()A.卫星在轨道3上的速率大于在轨道1上的速率。

B.卫星在轨道3上的角速度小于在轨道1上的角速度。

C.卫星在轨道1上运动一周的时间小于于它在轨道2上运动一周的时间。

D.卫星在轨道2上经过P点时的加速度等于它在轨道3上经过P点时的加速度。

【答案】BCD【解析】轨道1和轨道3都是圆周运动轨道,半径越大线速度越小,A错;由角速度公式可知B对;从轨道1在Q点进行点火加速度才能进入轨道2,所以轨道1在q点的速度小于轨道2的速度, D对;由开普勒第三定律可知轨迹2的半长轴较大,周期较大,C对;2.在圆轨道上运动的质量为m的人造地球卫星,它到地面的距离等于地球半径R.地面上的重力加速度为g,则A.卫星运动的速度为B.卫星运动的周期为C.卫星运动的加速度为D.卫星的动能为【答案】BD【解析】本题考查的是天体运动问题。

由,,,可以计算出:只有BD答案正确。

3.(专题卷)发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3,轨道1、2相切于Q点,轨道2、3相切于P点,如图所示。

则在卫星分别在1、2、3轨道上正常运行时,以下说法正确的是:()A.卫星在轨道3上的速率大于在轨道1上的速率。

B.卫星在轨道3上的角速度小于在轨道1上的角速度。

C.卫星在轨道1上运动一周的时间小于于它在轨道2上运动一周的时间。

D.卫星在轨道2上经过P点时的加速度等于它在轨道3上经过P点时的加速度。

【答案】BCD【解析】轨道1和轨道3都是圆周运动轨道,半径越大线速度越小,A错;由角速度公式可知B对;从轨道1在Q点进行点火加速度才能进入轨道2,所以轨道1在q点的速度小于轨道2的速度, D对;由开普勒第三定律可知轨迹2的半长轴较大,周期较大,C对;4.(专题卷)2007年10月24日,我国发射了第一颗探月卫星——“嫦娥一号” ,使“嫦娥奔月”这一古老的神话变成了现实.嫦娥一号发射后先绕地球做圆周运动,经多次变轨,最终进入距月面h=200公里的圆形工作轨道,开始进行科学探测活动.设月球半径为R,月球表面的重力加速度为g,万有引力常量为G,则下列说法正确的()A.嫦娥一号绕月球运行的周期为B.由题目条件可知月球的平均密度为C.嫦娥一号在工作轨道上的绕行速度为D.在嫦娥一号的工作轨道处的重力加速度为【答案】BD【解析】本题考查的是万有引力定律问题,,,g=,可得月球的平均密度为;在嫦娥二号的工作轨道处的重力加速度为,D正确;嫦娥二号绕月球运行的周期为,A错误;嫦娥二号在工作轨道上的绕行速度为,C错误;5.(专题卷)(10分)2008年9月25日21时10分,神舟七号飞船成功发射,共飞行2天20小时27分钟,绕地球飞行45圈后,于9月28日17时37分安全着陆。

天体运动基础习题及答案

天体运动基础习题及答案

天体运动基础习题及答案天体运动基础习题及答案天体运动是天文学中的重要内容,它研究的是天体在空间中的运动规律。

通过对天体运动的研究,我们可以更好地了解宇宙的结构和演化。

下面是一些关于天体运动的基础习题及答案,希望对大家的学习有所帮助。

习题一:地球的自转和公转1. 地球的自转是指什么?它的周期是多久?答:地球的自转是指地球绕自身轴线旋转的运动。

它的周期是24小时。

2. 地球的公转是指什么?它的周期是多久?答:地球的公转是指地球绕太阳运动的运动。

它的周期是365.25天。

3. 地球的自转和公转对我们生活有什么影响?答:地球的自转和公转决定了昼夜的交替和季节的变化。

它们的运动使得我们能够感受到白天和黑夜的变化,同时也影响了气候的变化。

习题二:月球的运动1. 月球绕地球运动的周期是多久?答:月球绕地球运动的周期是27.3天。

2. 月球的自转周期是多久?答:月球的自转周期和它的公转周期是一样的,都是27.3天。

3. 为什么我们只能看到月球的一面?答:月球的自转周期和它的公转周期是一样的,所以我们只能看到月球的一面。

这是因为月球的自转速度和它的公转速度相同,所以它总是用同一面朝向地球。

习题三:行星的运动1. 行星的运动轨道是什么形状?答:行星的运动轨道是椭圆形的。

2. 什么是近日点和远日点?答:近日点是指行星运动轨道上离太阳最近的点,远日点是指行星运动轨道上离太阳最远的点。

3. 为什么行星在近日点运动速度比在远日点快?答:根据开普勒第二定律,行星在近日点附近运动速度较快,而在远日点附近运动速度较慢。

这是因为行星在近日点附近离太阳较近,受到的引力较大,所以运动速度较快;而在远日点附近离太阳较远,受到的引力较小,所以运动速度较慢。

通过以上习题的学习,我们对天体运动的基础知识有了更深入的了解。

天体运动的规律是复杂而又美妙的,它们揭示了宇宙的奥秘。

希望大家能够继续深入学习天文学知识,探索更多关于宇宙的奥秘。

天体运动试题及答案

天体运动试题及答案

天体运动试题及答案1. 请简述开普勒第一定律的内容。

答案:开普勒第一定律,也称为椭圆定律,指出所有行星围绕太阳运动的轨道都是椭圆形状,太阳位于椭圆的一个焦点上。

2. 根据开普勒第三定律,行星公转周期与其轨道半长轴的关系是怎样的?答案:开普勒第三定律,也称为调和定律,表明所有行星绕太阳公转周期的平方与它们轨道半长轴的立方成正比。

3. 描述牛顿万有引力定律的主要内容。

答案:牛顿万有引力定律指出,宇宙中任何两个物体之间都存在引力,其大小与两物体的质量的乘积成正比,与它们之间的距离的平方成反比。

4. 请解释什么是地球的公转和自转。

答案:地球的公转是指地球围绕太阳的运动,周期大约为一年。

地球的自转是指地球围绕自己的轴线旋转,周期大约为一天。

5. 简述潮汐现象是如何产生的。

答案:潮汐现象是由于地球、月球和太阳的引力作用,导致地球上的海水周期性地涨落。

6. 为什么我们通常看不到月球的背面?答案:月球的自转周期与公转周期相同,这种现象称为潮汐锁定,因此我们总是看到月球的同一面。

7. 描述地球在太阳系中的位置。

答案:地球是太阳系中的第三颗行星,位于金星和火星之间。

8. 请解释什么是日食和月食。

答案:日食是指月球位于地球和太阳之间,遮挡住太阳的现象;月食是指地球位于太阳和月球之间,地球的阴影遮挡住月球的现象。

9. 简述恒星和行星的区别。

答案:恒星是能够通过核聚变产生能量的天体,而行星是围绕恒星运行的较小天体,不能产生能量。

10. 请解释什么是黑洞。

答案:黑洞是一种天体,其质量极大,引力极强,以至于连光都无法逃逸,因此无法直接观测到。

高一物理天体运动试题答案及解析

高一物理天体运动试题答案及解析

高一物理天体运动试题答案及解析1.16世纪,哥白尼根据天文观测的大量资料,经过40多年的天文观测和潜心研究,提出了“日心说”的如下四个基本观点,目前看来这四个观点中存在缺陷的是 ().A.宇宙的中心是太阳,所有行星都在绕太阳做匀速圆周运动B.地球是绕太阳做匀速圆周运动的行星,月球是绕地球做匀速圆周运动的卫星,它绕地球运转的同时还跟地球一起绕太阳运动C.天穹不转动,因为地球每天自西向东自转一周,造成天体每天东升西落的现象D.与日地距离相比,恒星离地球都十分遥远,比日地间的距离大得多【答案】ABC【解析】行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上;行星在椭圆轨道上运动的周期T和轨道半长轴满足=恒量,故所有行星实际并不是在做匀速圆周运动.太阳不是宇宙的中心,整个宇宙在不停地运动.2.设行星绕恒星运动轨道为圆形,则它运动的周期平方与轨道半径的三次方之比T2/R3=K为常数,此常数的大小:()A.只与恒星质量有关,恒星质量越大,K值越小B.与恒星质量和行星质量均有关,二者质量乘积越大,K值越大C.只与行星质量有关D.与恒星和行星的速度有关【答案】A【解析】开普勒第三定律中的公式,可知半长轴的三次方与公转周期的二次方成正比.A、式中的k只与恒星的质量有关,与行星质量无关,故A正确;B、式中的k只与恒星的质量有关,与行星质量无关,故B错误;C、式中的k只与恒星的质量有关,故C错误;D、式中的k只与恒星的质量有关,与行星质量无关,故D错误;故选:A【考点】万有引力定律及其应用.点评:行星绕太阳虽然是椭圆运动,但我们可以当作圆来处理,同时值得注意是周期是公转周期3.关于公式R3/T2=k,下列说法中正确的是:()A.公式只适用于围绕太阳运行的行星B.不同星球的行星或卫星,k值均相等C.围绕同一星球运行的行星或卫星,k值不相等D.以上说法均错【答案】D【解析】适合一切天体的运动,A错误,k值和中心天体的质量有关,所以不同星球的行星或者卫星的k值不同,同一中心天体的k值相同,BC错误,D正确故选D【考点】考查了对开普勒第三定律的理解点评:关键是知道公式中的k值与中心天体有关,不同中心天体k值不同,同一中心天体k值相同4.某行星绕太阳运行的椭圆轨道如图所示,F1和F2是椭圆轨道的两个焦点,行星在A点的速率比在B点的大,则太阳是位于( )A.F2B.A C.F1D.B【答案】A【解析】开普勒第二定律的内容,对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积.如图所示,行星沿着椭圆轨道运行,太阳位于椭圆的一个焦点上.如果时间间隔相等,即t2-t1=t4-t3,那么面积t2F1t1=面积t4F2t3由此可知行星在远日点B的速率最小,在近日点A的速率最大。

高一物理专题训练:天体运动(带答案)

高一物理专题训练:天体运动(带答案)

高一物理专题训练:天体运动一、单选题1.如图所示,有两个绕地球做匀速圆周运动的卫星.一个轨道半径为,对应的线速度,角速度,向心加速度,周期分别为,,,;另一个轨道半径为,对应的线速度,角速度,向心加速度,周期分别为,,,.关于这些物理量的比例关系正确的是( )A.B.C.D.【答案】D2.设在地球上和某天体上以相同的初速度竖直上抛一物体的最大高度比为k(均不计阻力),且已知地球与该天体的半径之比也为k,则地球与此天体的质量之比为() A.1B.k2C.kD.【答案】C3.假设火星和地球都是球体,火星的质量与地球质量之比,火星的半径与地球半径之比,那么火星表面的引力加速度与地球表面处的重力加速度之比等于(忽略行星自转影响)A.B.C.D.【答案】B4.土星最大的卫星叫“泰坦”(如图),每16天绕土星一周,其公转轨道半径约1。

2×106 km,土星的质量约为A .5×1017 kgB .5×1026 kgC .7×1033 kgD .4×1036 kg【答案】B5.有一质量为M 、半径为R 、密度均匀的球体,在距离球心O 为2R 的地方有一质量为m 的质点.现从M 中挖去半径为12R 的球体,如图所示,则剩余部分对m 的万有引力F 为( )A .2736GMm R B .278GMm R C .218GMm R D .2732GMm R 【答案】A6.已知地球的质量是月球质量的81倍,地球半径大约是月球半径的4倍,不考虑地球、月球自转的影响,以上数据可推算出 [ ]A .地球表面的重力加速度与月球表面重力加速度之比为9:16B .地球的平均密度与月球的平均密度之比为9:8C .靠近地球表面沿圆轨道运动的航天器的周期与靠近月球表面沿圆轨道运行的航天器的周期之比约为8:9D .靠近地球表面沿圆轨道运行的航天器的线速度与靠近月球表面沿圆轨道运行的航天器的线速度之比约为81:4【答案】C7.中新网2018年3月4日电:据外媒报道,美国航空航天局(NASA)日前发现一颗名为WASP-39b 的地外行星,该行星距离地球约700光年,质量与土星相当,它白天温度为776.6摄氏度,夜间也几乎同样热,因此被科研人员称为“热土星"。

《万有引力与天体运动》习题及答案

《万有引力与天体运动》习题及答案

地球abc 万有引力航天一、“中心天体-圆轨道”模型【应用知识】由万有引力提供环绕天体做圆周运动的向心力,据牛顿第二定律列出圆周运动的动力学方程。

1、对中心天体可求质量和密度2、对环绕天体可求线速度、角速度、周期、向心加速度、向心力、轨道所在处的重力加速度3、可求第一宇宙速度例1.如图所示,a 、b 、c 是环绕地球在圆形轨道上运行的3颗人造卫星,它们质量关系是m a =m b <m c ,则: A .b 、c 的线速度大小相等,且大于a 的线速度 B .b 、c 的周期相等,且小于a 的周期C .b 、c 的向心加速度大小于相等,且大于a 的向心加速度D .b 所需向心力最小例2、我国将要发射一颗绕月运行的探月卫星“嫦娥1号”。

设该卫星的轨道是圆形的,且贴近月球表面。

已知月球的质量约为地球质量的181 ,月球的半径约为地球半径的14,地球上的第一宇宙速度约为7.9km/s ,则该探月卫星绕月运行的速率约为( D )A .0.4km/sB .1.8km/sC .11km/sD .36km/s二、“同步卫星”模型同步卫星具有四个一定1、 定轨道平面2、 定运行周期:T =24h3、 定运动高度:km R GMT h 4322106.34⨯=-=π4、 定运行速率:s km /0.3=υ例3.某颗地球同步卫星正下方的地球表面上有一观察者,他用天文望远镜观察被太阳照射的此卫星,试问,春分那天(太阳光直射赤道)在日落12h 内有多长时间该观察者看不见此卫星?已知地球半径为R ,地球表面处的重力加速度为g ,地球的自转周期为T ,不考虑大气对光的折射。

例4.地球赤道上有一物体随地球的自转而做圆周运动,所受的向心力为F 1,向心加速度为a 1,线速度为v 1,角速度为ω1;绕地球表面附近做圆周运动的人造卫星受的向心力为F 2,向心加速度为a 2,线速度为v 2,角速度为ω2;地球同步卫星所受的向心力为F 3,向心加速度为a 3,线速度为v 3,角速度为ω3.地球表面重力加速度为g ,第一宇宙速度为v ,假设三者质量相等.则( )A.F 1=F 2>F 3B.a 1=a 2=g >a 3 3122)4arcsin(gT R T t ππ=C.v 1=v 2=v >v 3D.ω1=ω3<ω2三、“天体相遇”模型 两天体相遇,实际上是指两天体相距最近,条件是)3,2,1(221 ==-n n t t πωω 两天体相距最远,条件是)3,2,1()12(21 =-=-n n t t πωω例5.A 是地球的同步卫星,另一卫星B 的圆形轨道位于赤道平面内,离地面高度为h ,已知地球半径为R ,地球自转角速度ω0,地球表面的重力加速度为g ,O 为地球中心。

物理试题天体运动及答案

物理试题天体运动及答案

物理试题天体运动及答案一、选择题(每题2分,共10分)1. 以下哪项不是开普勒描述的行星运动定律?A. 行星沿椭圆轨道绕太阳运动B. 行星绕太阳运动的角速度是恒定的C. 行星绕太阳运动的周期的平方与轨道半长轴的立方成正比D. 行星与太阳的连线在相等时间内扫过的面积相等2. 根据牛顿的万有引力定律,两个物体之间的引力大小与它们的质量的乘积成正比,与它们之间的距离的平方成反比。

以下哪个选项正确描述了这一定律?A. 引力与两物体质量的乘积成正比,与距离的平方成正比B. 引力与两物体质量的乘积成反比,与距离的平方成反比C. 引力与两物体质量的乘积成正比,与距离的平方成反比D. 引力与两物体质量的乘积成反比,与距离的平方成正比3. 地球的自转周期大约是24小时,这导致了什么现象?A. 季节变化B. 潮汐现象C. 昼夜交替D. 地球的公转4. 月球绕地球公转的周期大约是27.3天,这与地球自转周期的不同步导致了什么现象?A. 季节变化B. 潮汐现象C. 月食D. 日食5. 根据牛顿的第二定律,以下哪个选项正确描述了力与加速度的关系?A. 力与加速度成正比B. 力与加速度成反比C. 力与加速度成正比,与质量成反比D. 力与加速度成反比,与质量成正比二、填空题(每题2分,共10分)1. 地球绕太阳公转的轨道近似为_________。

2. 根据开普勒第三定律,行星绕太阳运动的周期的平方与轨道半长轴的立方成正比,这个定律也被称为_________定律。

3. 牛顿的万有引力定律公式为_________,其中G是引力常数,m1和m2是两个物体的质量,r是它们之间的距离。

4. 地球的自转轴与公转轨道平面的夹角称为_________,其大小约为23.5°。

5. 潮汐现象是由于_________和_________之间的引力作用造成的。

三、简答题(每题5分,共10分)1. 简述牛顿的万有引力定律及其在天体运动中的应用。

物理天体运动试题及答案

物理天体运动试题及答案

物理天体运动试题及答案一、选择题1. 以下哪项是描述天体运动的物理定律?A. 牛顿第一定律B. 牛顿第二定律C. 牛顿第三定律D. 牛顿万有引力定律答案:D2. 地球绕太阳公转的周期大约是:A. 24小时B. 365天C. 1年D. 12个月答案:B3. 以下哪项不是开普勒行星运动定律的内容?A. 行星沿椭圆轨道绕太阳运动B. 行星公转周期的平方与轨道半长轴的立方成正比C. 行星公转速度与轨道半径成反比D. 行星公转速度与轨道半径成正比答案:D二、填空题4. 地球的自转周期是____小时。

答案:245. 地球绕太阳公转的轨道形状是____。

答案:椭圆三、简答题6. 简述牛顿万有引力定律的主要内容。

答案:牛顿万有引力定律指出,任何两个物体之间都存在引力,其大小与两物体质量的乘积成正比,与两物体间距离的平方成反比。

7. 描述一下地球的自转和公转对我们的生活有什么影响。

答案:地球的自转导致了昼夜交替和时间的差异,而地球的公转则导致了季节的变化和太阳高度角的变化。

四、计算题8. 已知地球质量为5.97×10^24千克,月球质量为7.34×10^22千克,地月平均距离为3.84×10^8米。

根据万有引力定律,计算地月之间的引力大小。

答案:根据万有引力定律,F = G * (m1 * m2) / r^2,其中G为万有引力常数,取值6.674×10^-11 N(m/kg)^2。

代入数值计算得:F = 6.674×10^-11 * (5.97×10^24 * 7.34×10^22) /(3.84×10^8)^2F ≈ 2×10^20 N五、论述题9. 论述开普勒行星运动定律对天文学和物理学的影响。

答案:开普勒行星运动定律揭示了行星运动的规律,不仅为天文学提供了精确的行星位置预测方法,也为牛顿后来提出万有引力定律奠定了基础。

天体运动练习题

天体运动练习题

天体运动练习题一、选择题1. 下列关于天体运动的说法,正确的是:A. 地球自转的方向是自西向东B. 地球公转的方向是自东向西C. 月球绕地球转动的周期为24小时D. 太阳系共有九大行星2. 在开普勒定律中,第一定律描述的是:A. 行星轨道为圆形B. 行星轨道为椭圆形,太阳位于椭圆的一个焦点上C. 行星轨道速度恒定D. 行星轨道半径与公转周期成正比二、填空题1. 地球自转的周期约为____小时,地球公转的周期约为____天。

2. 太阳系中,距离太阳最近的行星是____,距离太阳最远的行星是____。

3. 开普勒第三定律表明,行星公转周期的平方与其轨道半长轴的立方成____比。

三、判断题1. 地球自转产生的现象是昼夜更替。

()2. 所有行星的轨道都是完全相同的椭圆。

()3. 月球绕地球转动的速度始终不变。

()四、简答题1. 简述地球自转和公转的方向。

2. 请列举开普勒定律的三个主要内容。

3. 为什么地球上有季节变化?五、计算题1. 已知地球公转周期为365天,轨道半长轴为1个天文单位,求地球轨道的偏心率。

2. 一颗行星的轨道半长轴为2个天文单位,公转周期为1440天,求该行星的轨道偏心率。

3. 月球绕地球转动的周期为27.3天,求月球轨道的平均半径。

六、综合题1. 分析地球自转和公转产生的地理现象。

2. 试述太阳系八大行星的排列顺序及其特点。

3. 结合实际,解释为什么地球上的昼夜温差较大。

七、应用题1. 假设地球公转速度突然增加一倍,会对地球的气候和生态系统产生哪些影响?2. 如果月球停止绕地球转动,地球上的潮汐现象会发生哪些变化?3. 请设计一个实验方案,验证开普勒第二定律(面积定律)。

八、分析题1. 分析太阳系中行星轨道的形状与太阳的位置关系,并解释其原因。

2. 试比较地球自转和公转速度的变化对地球表面温度的影响。

3. 从天体运动的角度,分析地球极地地区和赤道地区气候差异的原因。

九、论述题1. 论述地球自转和公转在天文学和地理学中的意义。

高一物理专题训练:天体运动(带答案)

高一物理专题训练:天体运动(带答案)

高一物理专题训练:天体运动(带答案)
为“特里斯坦”的小行星,其轨道与地球的轨道非常接近,被称为“地球近距离
掠过天体”。

根据报道,特里斯坦直径约为500米,将于2018年10月13日掠过地球。

距离地球表面仅约7.9万公里。

这一距离相当于地球到月
球距离的五分之一,但NASA
强调,___不会对地球造成任何威胁。

这个消息引起了人
们的关注,也引发了人
们对于小行星与地球的关系的思考。

据外媒报道,___(NASA)在2018年3月4日发现了一
颗名为“特里斯坦”的小行星。

这颗小行星的直径约为500米,
其轨道与地球的轨道非常接近,因此被称为“地球近距离掠过
天体”。

据报道,___将于2018年10月13日掠过地球,距离
地球表面仅约7.9万公里,相当于地球到月球距离的五分之一。

尽管这个消息引起了人们的关注,但NASA强调,特里斯坦
不会对地球造成任何威胁。

这一消息引发了人们对于小行星与地球的关系的思考。

高一物理专题训练:天体运动2(带答案)

高一物理专题训练:天体运动2(带答案)

高一物理专题训练:天体运动二1.我国的“天宫一号”航天器绕地球运动可看作匀速圆周运动.若其运动周期为T,线速度为v,引力常量为G,则下列说法正确的是()A.飞船运动的轨道半径为B.飞船运动的加速度为C.地球的质量为D.飞船的质量为【答案】A2.使物体脱离行星的引力束缚,不再绕该行星运行,从行星表面发射所需的最小速度称为第二宇宙速度,行星的第二宇宙速度与第一宇宙速度的关系是.已知某行星的半径为地球半径的三倍,它表面的重力加速度为地球表面重力加速度的,不计其它行星的影响和地球自转对其表面重力加速度的影响。

已知地球的第一宇宙速度为8 km/s,则该行星的第二宇宙速度为()A.4 km/s B.8 km/s C.D.【答案】B3.2016年10月19日凌晨,“神舟十一号”载人飞船与距离地面393km的圆轨道上的“天宫二号”交会对接。

已知地球半径为R=6400km,万有引力常量,“天宫二号”绕地球飞行的周期为90分钟,地球表面的重力加速度为,则A.由题中数据可以求得地球的平均密度B.“天宫二号”的发射速度应小于7.9 km/sC.“天宫二号”的向心加速度小于同步卫星的向心加速度D.“神舟十一号”与“天宫二号”对接前处于同一轨道上【答案】A4.随着“嫦娥奔月”梦想的实现,我国不断刷新深空探测的“中国高度”。

嫦娥卫星整个飞行过程可分为三个轨道段:绕地飞行调相轨道段、地月转移轨道段、绕月飞行轨道段。

我们用图所示的模型来简化描绘嫦娥卫星飞行过程,假设调相轨道和绕月轨道的半长轴分别为a、b,公转周期分别为T1、T2。

关于嫦娥卫星飞行过程,下列说法正确的是()A.嫦娥卫星在地月转移轨道上运行的速度应不小于11.2km/sB.C.从调相轨道切入到地月转移轨道时,卫星在P点必须加速D.从地月转移轨道切入到绕月轨道时,卫星在Q点必须加速【答案】C5.1916年爱因斯坦建立广义相对论后预言了引力波的存在,2017年引力波的直接探测获得了诺贝尔物理学奖。

高二物理天体运动试题答案及解析

高二物理天体运动试题答案及解析

高二物理天体运动试题答案及解析1.均匀分布在地球赤道平面上空的三颗同步通信卫星能够实现除地球南北极等少数地区外的“全球通信”。

已知地球半径为R,地球表面的重力加速度为g,地球自转周期为T,三颗卫星中任意两,下面列出的是同步卫星所在位置处的重力加速度,其中正确的是()颗卫星间距离为sA.B.C.D.【答案】AC【解析】由三颗卫星的距离及角度关系可求得卫星半径为,卫星所在位置的万有引力等于该位置的重力,由可求得重力加速度为,AC正确2.(专题卷)发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3,轨道1、2相切于Q点,轨道2、3相切于P点,如图所示。

则在卫星分别在1、2、3轨道上正常运行时,以下说法正确的是:()A.卫星在轨道3上的速率大于在轨道1上的速率。

B.卫星在轨道3上的角速度小于在轨道1上的角速度。

C.卫星在轨道1上运动一周的时间小于于它在轨道2上运动一周的时间。

D.卫星在轨道2上经过P点时的加速度等于它在轨道3上经过P点时的加速度。

【答案】BCD【解析】轨道1和轨道3都是圆周运动轨道,半径越大线速度越小,A错;由角速度公式可知B对;从轨道1在Q点进行点火加速度才能进入轨道2,所以轨道1在q点的速度小于轨道2的速度, D对;由开普勒第三定律可知轨迹2的半长轴较大,周期较大,C对;3.在圆轨道上运动的质量为m的人造地球卫星,它到地面的距离等于地球半径R.地面上的重力加速度为g,则A.卫星运动的速度为B.卫星运动的周期为C.卫星运动的加速度为D.卫星的动能为【答案】BD【解析】本题考查的是天体运动问题。

由,,,可以计算出:只有BD答案正确。

4.(9分)“嫦娥一号”的成功发射,为实现中华民族几千年的奔月梦想迈出了重要的一步。

已知“嫦娥一号”绕月飞行轨道近似圆周,距月球表面高度为H,飞行周期为T,月球的半径为R,已知引力常量G,试求:月球的质量M是多少?【答案】【解析】设“嫦娥一号”质量为m1,圆周运动时,万有引力提供向心力,则① 5分② 3分本题考查万有引力定律提供向心力,其中半径r为距离球心间的距离5.两颗质量相等的人造地球卫星,绕地球运动的轨道半径r1=2r2.下面说法正确的是()A.由公式F=m知道,轨道半径为r1的卫星的向心力为另一颗卫星的一半B.由公式F=mω2r知道,轨道半径为r1的卫星的向心力为另一颗卫星的两倍C.由公式F=G知道,轨道半径为r1的卫星的向心力为另一颗卫星的四分之一D.因不知地球质量和卫星质量,无法比较两卫星所受向心力的大小【答案】C【解析】由公式F=G知道,轨道半径为r1的卫星的向心力为另一颗卫星的四分之一,所以C正确。

天体运动习题及答案修订稿

天体运动习题及答案修订稿

天体运动习题及答案 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】1.若知道太阳的某一颗行星绕太阳运转的轨道半径为r,周期为T,引力常量为G,则可求得( B)A.该行星的质量B.太阳的质量C.该行星的平均密度D.太阳的平均密度2.有一星球的密度与地球的密度相同,但它表面处的重力加速度是地面表面处重力加速度的4倍,则该星球的质量将是地球质量的(D )A.14B.4倍C.16倍D.64倍3.火星直径约为地球直径的一半,质量约为地球质量的十分之一,它绕太阳公转的轨道半径约为地球绕太阳公转半径的1.5倍.根据以上数据,下列说法中正确的是(AB ) A.火星表面重力加速度的数值比地球表面小B.火星公转的周期比地球的长C.火星公转的线速度比地球的大D.火星公转的向心加速度比地球的大4.若有一艘宇宙飞船在某一行星表面做匀速圆周运动,设其周期为T,引力常量为G,那么该行星的平均密度为(B )A.GT23πB.3πGT2C.GT24πD.4πGT25.为了对火星及其周围的空间环境进行监测,我国预计于2011年10月发射第一颗火星探测器“萤火一号”.假设探测器在离火星表面高度分别为h1和h2的圆轨道上运动时,周期分别为T1和T2.火星可视为质量分布均匀的球体,且忽略火星的自转影响,引力常量为G.仅利用以上数据,可以计算出( A )A.火星的密度和火星表面的重力加速度B.火星的质量和火星对“萤火一号”的引力C.火星的半径和“萤火一号”的质量D.火星表面的重力加速度和火星对“萤火一号”的引力6.设地球半径为R,a为静止在地球赤道上的一个物体,b为一颗近地绕地球做匀速圆周运动的人造卫星,c为地球的一颗同步卫星,其轨道半径为r.下列说法中正确的是( D )A.a与c的线速度大小之比为r RB.a与c的线速度大小之比为R rC.b与c的周期之比为r RD .b 与c 的周期之比为R r R r7.2008年9月27日“神舟七号”宇航员翟志刚顺利完成出舱活动任务,他的第一次太空行走标志着中国航天事业全新时代的到来.“神舟七号”绕地球做近似匀速圆周运动,其轨道半径为r ,若另有一颗卫星绕地球做匀速圆周运动的轨道半径为2r ,则可以确定( AB ) A .卫星与“神舟七号”的加速度大小之比为1∶4B .卫星与“神舟七号”的线速度大小之比为1∶2C .翟志刚出舱后不再受地球引力D .翟志刚出舱任务之一是取回外挂的实验样品,假如不小心实验样品脱手,则它将做 自由落体运动8.一物体静置在平均密度为ρ的球形天体表面的赤道上.已知万有引力常量为G ,若由于天体自转使物体对天体表面压力恰好为零,则天体自转周期为( .D )A .⎝ ⎛⎭⎪⎫4π3Gρ12B .⎝ ⎛⎭⎪⎫34πGρ12C .⎝ ⎛⎭⎪⎫πGρ12 D .⎝ ⎛⎭⎪⎫3πGρ12 9.如图1所示,图1a 、b 是两颗绕地球做匀速圆周运动的人造卫星,它们距地面的高度分别是R 和2R(R 为地球半径).下列说法中正确的是(CD )A .a 、b 的线速度大小之比是2∶1B .a 、b 的周期之比是1∶22C .a 、b 的角速度大小之比是36∶4D .a 、b 的向心加速度大小之比是9∶410.一个半径是地球3倍、质量是地球36倍的行星,它表面的重力加速度是地面重力加速度的( A ).【1.5】(A)4倍 (B)6倍 (C)13.5倍 (D)18倍11.两颗人造地球卫星,它们质量的比m 1:m 2=1:2,它们运行的线速度的比是v 1:v 2=1:2,那么( ABCD).【1.5】(A)它们运行的周期比为8:1 (B)它们运行的轨道半径之比为4:1(C)它们所受向心力的比为1:32 (D)它们运动的向心加速度的比为1:1612.土星周围有许多大小不等的岩石颗粒,其绕土星的运动可视为圆周运动.其中有两个岩石颗粒A 和B 与土星中心的距离分别为r A =8.0×104 km 和r B =1.2×105 km ,忽略所有岩石颗粒间的相互作用.(结果可用根式表示)(1)求岩石颗粒A 和B 的线速度之比.(2)土星探测器上有一物体,在地球上重为10 N ,推算出它在距土星中心3.2×105 km处受到土星的引力为0.38 N .已知地球半径为 6.4×103 km ,请估算土星质量是地球质量的多少倍.(1)万有引力提供岩石颗粒做圆周运动的向心力,所以有G Mmr 2=mv 2/r .故v =GM r 所以v A v B =r B r A = 1.2×105km 8.0×104 km =62.(2)设物体在地球上重为G 地,在土星上重为G 土,则由万有引力定律知:G 地=G M 地m R 2地,G 土=G M 土m R 2土又F 万=G M 土m r 2,故G 土R 2土=F 万r 2 所以M 土M 地=G 土R 2土G 地R 2地=F 万r 2G 地R 2地=0.38×3.2×105210×6.4×1032=95. 13.中子星是恒星演化过程中的一种可能结果,它的密度很大.现有一中子星,观测到它的自转周期为T =130 s .问该中子星的最小密度应是多少才能维持该星体的稳定,不致因自转而瓦解(计算时星体可视为均匀球体,万有引力常量G =6.67×10-11m 3/(kg ·s 2))设中子星的密度为ρ,质量为M ,半径为R ,自转角速度为ω,位于赤道处的小块物体质量为m ,则有GMm R 2=mω2R ,ω=2πT ,M =43πR 3ρ 由以上各式得ρ=3πGT 2 代入数据解得ρ=1.27×1014 kg/m 3。

高中物理天体运动练习题及讲解

高中物理天体运动练习题及讲解

高中物理天体运动练习题及讲解### 高中物理天体运动练习题及讲解#### 练习题一:卫星的轨道周期题目:一颗人造卫星绕地球做匀速圆周运动,已知地球的质量为 \( M \),卫星的质量为 \( m \),卫星到地球中心的距离为 \( r \)。

求卫星的周期 \( T \)。

解答:根据万有引力定律和牛顿第二定律,我们有:\[ F = \frac{G M m}{r^2} \]\[ F = m \frac{4\pi^2 r}{T^2} \]其中 \( G \) 是万有引力常数。

将两个等式相等,得到:\[ \frac{G M m}{r^2} = m \frac{4\pi^2 r}{T^2} \]解得卫星的周期 \( T \) 为:\[ T = 2\pi \sqrt{\frac{r^3}{G M}} \]#### 练习题二:地球的引力加速度题目:在地球表面,忽略地球的自转,求一个物体因地球引力而获得的加速度 \( g \)。

解答:在地球表面,物体受到的引力 \( F \) 等于其质量 \( m \) 乘以引力加速度 \( g \):\[ F = m g \]根据万有引力定律,这个力也等于:\[ F = \frac{G M m}{R^2} \]其中 \( R \) 是地球的半径。

将两个等式相等,得到:\[ m g = \frac{G M m}{R^2} \]解得引力加速度 \( g \) 为:\[ g = \frac{G M}{R^2} \]#### 练习题三:月球绕地球运动题目:月球绕地球做匀速圆周运动,已知月球的质量为 \( m_{\text{moon}} \),地球的质量为 \( M \),月球到地球中心的距离为\( r_{\text{moon}} \)。

求月球的周期 \( T_{\text{moon}} \)。

解答:月球绕地球运动的周期 \( T_{\text{moon}} \) 可以通过与卫星周期的公式类比得出:\[ T_{\text{moon}} = 2\pi \sqrt{\frac{r_{\text{moon}}^3}{G M}} \]#### 练习题四:双星系统的总质量题目:两颗星体构成一个双星系统,它们围绕共同的质心做匀速圆周运动,已知两颗星体的质量分别为 \( m_1 \) 和 \( m_2 \),到质心的距离分别为 \( r_1 \) 和 \( r_2 \),求双星系统的总质量\( M_{\text{total}} \)。

(完整word版)高中物理天体运动知识

(完整word版)高中物理天体运动知识

“万有引力定律”习题归类例析一、求天体的质量(或密度)1.根据天体表面上物体的重力近似等于物体所受的万有引力,由天体表面上的重力加速度和天体的半径求天体的质量由mg=G 得 .(式中M、g、R分别表示天体的质量、天体表面的重力加速度和天体的半径.)[例1]宇航员站在一星球表面上的某高处,沿水平方向抛出一小球,经过时间t,小球落在星球表面,测得抛出点与落地点之间的距离为L,若抛出时的初速度增大到2倍,则抛出点与落地点间的距离为L,已知两落地点在同一水平面上,该星球的半径为R,引力常量为G,求该星球的质量M和密度ρ.[解析]此题的关键就是要根据在星球表面物体的运动情况求出星球表面的重力加速度,再根据星球表面物体的重力等于物体受到的万有引力求出星球的质量和星球的密度.根据平抛运动的特点得抛出物体竖直方向上的位移为设初始平抛小球的初速度为v,则水平位移为x=vt.有○1当以2v的速度平抛小球时,水平位移为x'= 2vt.所以有②在星球表面上物体的重力近似等于万有引力,有mg=G ③联立以上三个方程解得而天体的体积为,由密度公式得天体的密度为。

2.根据绕中心天体运动的卫星的运行周期和轨道半径,求中心天体的质量卫星绕中心天体运动的向心力由中心天体对卫星的万有引力提供,利用牛顿第二定律得若已知卫星的轨道半径r和卫星的运行周期T、角速度或线速度v,可求得中心天体的质量为[例2]下列几组数据中能算出地球质量的是(万有引力常量G是已知的)()A.地球绕太阳运行的周期T和地球中心离太阳中心的距离rB.月球绕地球运行的周期T和地球的半径rC.月球绕地球运动的角速度和月球中心离地球中心的距离rD.月球绕地球运动的周期T和轨道半径r[解析]解此题关键是要把式中各字母的含义弄清楚,要区分天体半径和天体圆周运动的轨道半径.已知地球绕太阳运行的周期和地球的轨道半径只能求出太阳的质量,而不能求出地球的质量,所以A项不对.已知月球绕地球运行的周期和地球的半径,不知道月球绕地球的轨道半径,所以不能求地球的质量,所以B 项不对.已知月球绕地球运动的角速度和轨道半径,由可以求出中心天体地球的质量,所以C项正确.由求得地球质量为,所以D项正确.二、人造地球卫星的运动参量与轨道半径的关系问题根据人造卫星的动力学关系可得由此可得线速度v与轨道半径的平方根成反比;角速度与轨道半径的立方的平方根成反比,周期T与轨道半径的立方的平方根成正比;加速度a与轨道半径的平方成反比.[例3两颗人造卫星A、B绕地球做圆周运动,周期之比为,则轨道半径之比和运动速率之比分别为()A.B.C.D.[解析]由可得卫星的运动周期与轨道半径的立方的平方根成正比,由可得轨道半径,然后再由得线速度。

天体运动习题及答案(可编辑修改word版)

天体运动习题及答案(可编辑修改word版)

GT 2 4π 1. 若知道太阳的某一颗行星绕太阳运转的轨道半径为 r ,周期为 T ,引力常量为 G ,则可求得( B)A. 该行星的质量B .太阳的质量C .该行星的平均密度D .太阳的平均密度2. 有一星球的密度与地球的密度相同,但它表面处的重力加速度是地面表面处重力加 速度的 4 倍,则该星球的质量将是地球质量的(D )1 A . B .4 倍 4C .16 倍D .64 倍3. 火星直径约为地球直径的一半,质量约为地球质量的十分之一,它绕太阳公转的轨 道半径约为地球绕太阳公转半径的 1.5 倍.根据以上数据,下列说法中正确的是(AB )A .火星表面重力加速度的数值比地球表面小B .火星公转的周期比地球的长C .火星公转的线速度比地球的大D .火星公转的向心加速度比地球的大4. 若有一艘宇宙飞船在某一行星表面做匀速圆周运动,设其周期为 T ,引力常量为 G , 那么该行星的平均密度为(B )GT 2 A. 3π 3π B. 2C. 5. 2011 年 10 月发射第一颗火 星探测器“萤火一号”.假设探测器在离火星表面高度分别为h 1 和 h 2 的圆轨道上运动时,周期分别为 T 1 和 T 2.火星可视为质量分布均匀的球体,且忽略火星的自转影响,引力常量为 G.仅利用以上数据,可以计算出( A )A .火星的密度和火星表面的重力加速度B .火星的质量和火星对“萤火一号”的引力C .火星的半径和“萤火一号”的质量D .火星表面的重力加速度和火星对“萤火一号”的引力6. 设地球半径为 R ,a 为静止在地球赤道上的一个物体,b 为一颗近地绕地球做匀速圆周运动的人造卫星,c 为地球的一颗同步卫星,其轨道半径为 r.下列说法中正确的是(D )A .a 与 cB .a 与 c rC .b 与 c 的周期之比为 R R RD .b 与 c 的周期之比为r r7.2008 年 9 月 27 日“神舟七号”宇航员翟志刚顺利完成出舱活动任务,他的第一次 太空行走标志着中国航天事业全新时代的到来.“神舟七号”绕地球做近似匀速圆周运动,其轨道半径为 r ,若另有一颗卫星绕地球做匀速圆周运动的轨道半径为 2r ,则可以确定2 GM r 地 ( AB )A .卫星与“神舟七号”的加速度大小之比为 1∶4B .卫星与“神舟七号”的线速度大小之比为 1∶C .翟志刚出舱后不再受地球引力D .翟志刚出舱任务之一是取回外挂的实验样品,假如不小心实验样品脱手,则它将做自由落体运动8. 一物体静置在平均密度为 ρ 的球形天体表面的赤道上.已知万有引力常量为 G ,若由于天体自转使物体对天体表面压力恰好为零,则天体自转周期为( .D ) 4π 1 3 1 π 13π 1 A .(3Gρ)2 9. 如图 1 所示, B .(4πGρ)2 C .(Gρ)2 D .(Gρ)2图 1a 、b 是两颗绕地球做匀速圆周运动的人造卫星,它们距地面的高度分别是 R 和 2R(R 为地球半径).下列说法中正确的是(CD )A. a 、b 的线速度大小之比是B. a 、b 的周期之比是 1∶2 22∶1C. a 、b 的角速度大小之比是 3 6∶4D. a 、b 的向心加速度大小之比是 9∶410. 一个半径是地球 3 倍、质量是地球 36 倍的行星,它表面的重力加速度是地面重力加速度的( A ).【1.5】(A )4 倍 (B )6 倍 (C )13.5 倍 (D )18 倍11. 两颗人造地球卫星,它们质量的比 m 1:m 2=1:2,它们运行的线速度的比是 v 1:v 2=1:2,那么( ABCD ).【1.5】(A )它们运行的周期比为 8:1 (B )它们运行的轨道半径之比为 4:1(C )它们所受向心力的比为 1:32(D )它们运动的向心加速度的比为 1:1612. 土星周围有许多大小不等的岩石颗粒,其绕土星的运动可视为圆周运动.其中有两个岩石颗粒 A 和 B 与土星中心的距离分别为 r A =8.0×104 km 和 r B =1.2×105 km ,忽略所有岩石颗粒间的相互作用.(结果可用根式表示)(1) 求岩石颗粒 A 和 B 的线速度之比.(2) 土星探测器上有一物体,在地球上重为 10 N ,推算出它在距土星中心 3.2×105 km 处 受到土星的引力为 0.38 N .已知地球半径为 6.4×103 km ,请估算土星质量是地球质量的多少倍?. Mm v A (1) 万有引力提供岩石颗粒做圆周运动的向心力,所以有 G r 2 =m v 2/r .故 v = 所以v r B 1.2 × 105 km 6 = rA = 8.0 × 104 km = 2 . (2) 设物体在地球上重为 G 地,在土星上重为 G 土,则由万有引力定律知: M 地m M 土mG 地=G R 地2 ,G 土=G R 土2 M 土m 又 F 万=G ,故 G 土R 土2 =F 万r 2 r 2 M 土 G 土R 土2 F 万r 2 0.38 × (3.2 × 105)2 所以 = M G 地R 地2 = G 地R 地2 = =95. 10 × (6.4 × 103)2BT = =13. 中子星是恒星演化过程中的一种可能结果,它的密度很大.现有一中子星,观测到1 它的自转周期为 T = s .问该中子星的最小密度应是多少才能维持该星体的稳定,不 30致因自转而瓦解? (计算时星体可视为均匀球体, 万有引力常量 G = 6.67×10- 11m 3/(kg ·s 2))设中子星的密度为 ρ,质量为 M ,半径为 R ,自转角速度为 ω,位于赤道处的小块物体质量为 m ,则有 GMm R 2 =mω2R ,ω 2π,M 4πR 3ρ 3 由以上各式得 ρ= 3π GT 2 代入数据解得 ρ=1.27×1014 kg/m 3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.若知道太阳的某一颗行星绕太阳运转的轨道半径为r ,周期为T ,引力常量为G ,则 可求得( B
)
A .该行星的质量
B .太阳的质量
C .该行星的平均密度
D .太阳的平均密度
2.有一星球的密度与地球的密度相同,但它表面处的重力加速度是地面表面处重力加速
度的4倍,则该星球的质量将是地球质量的(D )
A .14
B .4倍
C .16倍
D .64倍
3.火星直径约为地球直径的一半,质量约为地球质量的十分之一,它绕太阳公转的轨道
半径约为地球绕太阳公转半径的1.5倍.根据以上数据,下列说法中正确的是(AB )
A .火星表面重力加速度的数值比地球表面小
B .火星公转的周期比地球的长
C .火星公转的线速度比地球的大
D .火星公转的向心加速度比地球的大
4.若有一艘宇宙飞船在某一行星表面做匀速圆周运动,设其周期为T ,引力常量为G , 那么该行星的平均密度为(B )
A .GT 23π
B .3πGT
2 C .GT 24π D .4πGT 2
5.为了对火星及其周围的空间环境进行监测,我国预计于2011年10月发射第一颗火星
探测器“萤火一号”.假设探测器在离火星表面高度分别为h 1和h 2的圆轨道上运动时, 周期分别为T 1和T 2.火星可视为质量分布均匀的球体,且忽略火星的自转影响,引力常 量为G .仅利用以上数据,可以计算出( A )
A .火星的密度和火星表面的重力加速度
B .火星的质量和火星对“萤火一号”的引力
C .火星的半径和“萤火一号”的质量
D .火星表面的重力加速度和火星对“萤火一号”的引力
6.设地球半径为R ,a 为静止在地球赤道上的一个物体,b 为一颗近地绕地球做匀速圆 周运动的人造卫星,c 为地球的一颗同步卫星,其轨道半径为r.下列说法中正确的是( D )
A .a 与c 的线速度大小之比为r R
B .a 与c 的线速度大小之比为R r
C .b 与c 的周期之比为r R
D .b 与c 的周期之比为R r R r
7.2008年9月27日“神舟七号”宇航员翟志刚顺利完成出舱活动任务,他的第一次太
空行走标志着中国航天事业全新时代的到来.“神舟七号”绕地球做近似匀速圆周运动,
其轨道半径为r ,若另有一颗卫星绕地球做匀速圆周运动的轨道半径为2r ,则可以确定 ( AB )
A .卫星与“神舟七号”的加速度大小之比为1∶4
B .卫星与“神舟七号”的线速度大小之比为1∶ 2
C .翟志刚出舱后不再受地球引力
D .翟志刚出舱任务之一是取回外挂的实验样品,假如不小心实验样品脱手,则它将做 自由落体运动
8.一物体静置在平均密度为ρ的球形天体表面的赤道上.已知万有引力常量为G ,若由于天体自转使物体对天体表面压力恰好为零,则天体自转周期为( .D )
A .⎝⎛⎭⎫4π3Gρ12
B .⎝⎛⎭⎫34πGρ12
C .⎝⎛⎭⎫πGρ12
D .⎝⎛⎭⎫3πGρ12
9.如图1所示,
图1
a 、
b 是两颗绕地球做匀速圆周运动的人造卫星,它们距地面的高度分别是R 和2R(R 为
地球半径).下列说法中正确的是(CD )
A .a 、b 的线速度大小之比是2∶1
B .a 、b 的周期之比是1∶2 2
C .a 、b 的角速度大小之比是36∶4
D .a 、b 的向心加速度大小之比是9∶4
10.一个半径是地球3倍、质量是地球36倍的行星,它表面的重力加速度是地面重力加速度的( A ).【1.5】
(A )4倍 (B )6倍 (C )13.5倍 (D )18倍
11.两颗人造地球卫星,它们质量的比m 1:m 2=1:2,它们运行的线速度的比是v 1:v 2=1:2,那么( ABCD ).【1.5】
(A )它们运行的周期比为8:1 (B )它们运行的轨道半径之比为4:1
(C )它们所受向心力的比为1:32 (D )它们运动的向心加速度的比为1:16
12.土星周围有许多大小不等的岩石颗粒,其绕土星的运动可视为圆周运动.其中有两个岩石颗粒A 和B 与土星中心的距离分别为r A =8.0×104 km 和r B =1.2×105 km ,忽略所 有岩石颗粒间的相互作用.(结果可用根式表示)
(1)求岩石颗粒A 和B 的线速度之比.
(2)土星探测器上有一物体,在地球上重为10 N ,推算出它在距土星中心3.2×105 km 处 受到土星的引力为0.38 N .已知地球半径为6.4×103 km ,请估算土星质量是地球质量的多少倍?.
(1)万有引力提供岩石颗粒做圆周运动的向心力,所以有G Mm r 2=m v 2/r .故v =GM r
所以v A v B =r B r A = 1.2×105 km 8.0×104 km =62
. (2)设物体在地球上重为G 地,在土星上重为G 土,则由万有引力定律知:
G 地=G M 地m R 2地,G 土=G M 土m R 2土
又F 万=G M 土m r 2,故G 土R 2土=F 万r 2 所以M 土M 地=G 土R 2土G 地R 2地=F 万r 2G 地R 2地
=0.38×(3.2×105)210×(6.4×103)2=95.
13.中子星是恒星演化过程中的一种可能结果,它的密度很大.现有一中子星,观测到
它的自转周期为T =130
s .问该中子星的最小密度应是多少才能维持该星体的稳定,不 致因自转而瓦解?(计算时星体可视为均匀球体,万有引力常量G =6.67×10
-11m 3/(kg ·s 2))
设中子星的密度为ρ,质量为M ,半径为R ,自转角速度为ω,位于赤道处的小块物体质量为m ,则有
GMm R 2=mω2R ,ω=2πT ,M =43
πR 3ρ 由以上各式得ρ=3πGT 2 代入数据解得ρ=1.27×1014 kg/m 3。

相关文档
最新文档