概率论与数理统计测试题及答案1范文

合集下载

概率论与数理统计习题(含解答,答案)

概率论与数理统计习题(含解答,答案)

概率论与数理统计习题(含解答,答案)概率论与数理统计复习题(1)⼀.填空.1.3.0)(,4.0)(==B P A P 。

若A 与B 独⽴,则=-)(B A P ;若已知B A ,中⾄少有⼀个事件发⽣的概率为6.0,则=-)(B A P 。

2.)()(B A p AB p =且2.0)(=A P ,则=)(B P 。

3.设),(~2σµN X ,且3.0}42{ },2{}2{=<<≥==>}0{X P 。

4.1)()(==X D X E 。

若X 服从泊松分布,则=≠}0{X P ;若X 服从均匀分布,则=≠}0{X P 。

5.设44.1)(,4.2)(),,(~==X D X E p n b X ,则==}{n X P6.,1)(,2)()(,0)()(=====XY E Y D X D Y E X E 则=+-)12(Y X D 。

7.)16,1(~),9,0(~N Y N X ,且X 与Y 独⽴,则=-<-<-}12{Y X P (⽤Φ表⽰),=XY ρ。

8.已知X 的期望为5,⽽均⽅差为2,估计≥<<}82{X P 。

9.设1?θ和2?θ均是未知参数θ的⽆偏估计量,且)?()?(2221θθE E >,则其中的统计量更有效。

10.在实际问题中求某参数的置信区间时,总是希望置信⽔平愈愈好,⽽置信区间的长度愈愈好。

但当增⼤置信⽔平时,则相应的置信区间长度总是。

⼆.假设某地区位于甲、⼄两河流的汇合处,当任⼀河流泛滥时,该地区即遭受⽔灾。

设某时期内甲河流泛滥的概率为0.1;⼄河流泛滥的概率为0.2;当甲河流泛滥时,⼄河流泛滥的概率为0.3,试求:(1)该时期内这个地区遭受⽔灾的概率;(2)当⼄河流泛滥时,甲河流泛滥的概率。

三.⾼射炮向敌机发射三发炮弹(每弹击中与否相互独⽴),每发炮弹击中敌机的概率均为0.3,⼜知若敌机中⼀弹,其坠毁的概率是0.2,若敌机中两弹,其坠毁的概率是0.6,若敌机中三弹则必坠毁。

(完整word版)概率论和数理统计考试试题和答案解析.doc

(完整word版)概率论和数理统计考试试题和答案解析.doc

一. 填空题(每空题 2 分,共计 60 分)1、A、B是两个随机事件,已知p(A )0.4, P(B) 0.5,p( AB) 0.3 ,则p(A B)0.6 ,p(A - B)0.1,P( A B )= 0.4 ,p(A B)0.6 。

2、一个袋子中有大小相同的红球 6 只、黑球 4 只。

(1)从中不放回地任取 2 只,则第一次、第二次取红色球的概率为:1/3。

(2)若有放回地任取2只,则第一次、第二次取红色球的概率为:9/25。

(3)若第一次取一只球观查球颜色后,追加一只与其颜色相同的球一并放入袋中后,再取第二只,则第一次、第二次取红色球的概率为:21/55。

3、设随机变量 X 服从 B(2,0.5 )的二项分布,则p X 1 0.75, Y 服从二项分布 B(98, 0.5), X 与 Y 相互独立 , 则 X+Y服从 B(100,0.5) ,E(X+Y)= 50 ,方差 D(X+Y)= 25 。

4、甲、乙两个工厂生产同一种零件,设甲厂、乙厂的次品率分别为0.1 、0.15 .现从由甲厂、乙厂的产品分别占60%、40%的一批产品中随机抽取一件。

(1)抽到次品的概率为:0.12 。

(2)若发现该件是次品,则该次品为甲厂生产的概率为:0.5 .5、设二维随机向量( X ,Y)的分布律如右,则 a 0.1, E( X ) 0.4 ,X 0 1X与 Y 的协方差为: - 0.2Y,-1 0.2 0.3Z X Y2的分布律为 : z 1 21 0.4 a概率0.6 0.46、若随机变量X ~ N(2,4)且(1) 0.8413 ,(2) 0.9772 ,则 P{ 2 X 4}0.815,Y 2X 1,则Y~N( 5,16)。

7、随机变量X、Y 的数学期望E(X)= -1,E(Y)=2,方差D(X)=1,D(Y)=2,且X、Y相互独立,则:E(2X Y)-4,D(2X Y)6。

8、设D(X)25,D(Y)1,Cov ( X ,Y ) 2 ,则 D( X Y)309、设X1,, X 26是总体 N (8,16) 的容量为26 的样本,X为样本均值,S2为样本方差。

《概率论与数理统计》习题及答案

《概率论与数理统计》习题及答案

概率论与数理统计 第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。

2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。

3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率为 。

4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。

5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。

6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。

7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。

8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。

9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率为 。

10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A{}Y X B >=,则=)|(A B P 。

11、设B A ,是两事件,则B A ,的差事件为 。

12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。

13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。

14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。

15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。

16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P 。

17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。

(完整版)概率论与数理统计习题集及答案

(完整版)概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案第1章 概率论的基本概念§1 .1 随机试验及随机事件1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ;(2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ;B :两次出现同一面,则= ;C :至少有一次出现正面,则C= .§1 .2 随机事件的运算1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件:(1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则(1)=⋃B A ,(2)=AB ,(3)=B A , (4)B A ⋃= ,(5)B A = 。

§1 .3 概率的定义和性质1. 已知6.0)(,5.0)(,8.0)(===⋃B P A P B A P ,则(1) =)(AB P , (2)()(B A P )= , (3))(B A P ⋃= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = .§1 .4 古典概型1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率,(2)最多有2个女同学的概率,(3) 至少有2个女同学的概率.2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率.§1 .5 条件概率与乘法公式1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。

(完整版)概率论与数理统计试题库

(完整版)概率论与数理统计试题库

《概率论与数理统计》试题(1)判断题(本题共15分,每小题3分。

正确打“V” ,错误打“X” )⑴对任意事件A和B ,必有P(AB)=P(A)P(B) ()⑵ 设A、B是Q中的随机事件,则(A U B)-B=A ()⑶ 若X服从参数为入的普哇松分布,则EX=DX⑷假设检验基本思想的依据是小概率事件原理1 n _⑸ 样本方差S:= —(X i X )2是母体方差DX的无偏估计(n i i、(20分)设A、B、C是Q中的随机事件,将下列事件用A、B、C表示出来(1) 仅A发生,B、C都不发生;(2) 代B,C中至少有两个发生;(3) 代B,C中不多于两个发生;(4) 代B,C中恰有两个发生;(5) 代B,C中至多有一个发生。

三、(15分)把长为a的棒任意折成三段,求它们可以构成三角形的概率四、(10分)已知离散型随机变量X的分布列为X 2 1 0 1 31 1 1 1 11P5 6 5 15 302 求Y X的分布列.1五、(10分)设随机变量X具有密度函数f(x) -e|x|, V x V2求X的数学期望和方差•六、(15分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求P(14 X 30).七、(15分)设X1 ,X2,L ,X n是来自几何分布k 1P(X k) p(1 p) , k 1,2,L , 0 p 1 ,的样本,试求未知参数p的极大似然估计•X表示在x 0 0.5 1 1.5 2①(x ) 0.500 0.691 0.841 0.933 0.9772.5 30.994 0.999《概率论与数理统计》试题(1)评分标准⑴ X;(2) X;⑶“;⑷";(5) X o 解(1) ABC(2)ABU AC U BC 或 ABC U ABC U ABC U ABC ;(3) AUBUC 或 ABC U ABC U ABC U ABC U ABC U ABC U ABC ; (4) ABC U ABC U ABC ;(5) AB U AC U BC 或 ABC U ABC U ABC U ABC六解X “ P(14 ^b(k;100,0.20), EX=100 X 0.2=20, DX=100 X 0.2 X 0.8=16.-- --5分 分 30 20 14 20、 X 30) ( --------- )( --------------- ) ------------------ V16 J16 ------10(2.5) ( 1.5)=0.994+0.933—10.927. -------------------------------------n——15分七解n x nL(X 1, L ,x n ;p)p(1 p)x i1 p n(1 p)i1---------5分 -------------------------------------- 10 分每小题4分;解 设A '三段可构成三角形'又三段的长分别为x,y,a x y ,Oxa, 0 ya, Oxy a ,不等式构成平面域S .Aa A 发生 0 x —, 02不等式确定S 的子域A , 所以a a y , x y a2 2------------------------------------ 10A 的面积 1S 的面积 4---------------------------------------- 15则 分分分四 解Y 的分布列为Y 0 1 4 91 7 1 11P — ----- — —5 30 5 30Y 的取值正确得2分, 分布列对一组得 2分; 五 解 EXx 2 凶 dx 0, (因为被积函数为奇函数)2D X EX 22 x 1 |x| 1 —e dx x 2e x dx22 xx e0 2 xe x dx 0------------------------- 4 分 2[ xe x 0e x dx] 2.In L n In p d In L n dp p (X i n )l n(1 p),i 1 X i n @0, --------------------------- 10 分 解似然方程 n n X in i 1 得p 的极大似然估计 ------------------------------------------------------------------- 15 分 《概率论与数理统计》期末试题(2) 与解答一、填空题(每小题 3分,共15分) 1. 设事件 代B 仅发生一个的概率为 0.3,且P(A) P(B) 0.5,则 代B 至少有一个不发 生的概率为 ___________ . 2. __________________________________________________________________________ 设随机变量X 服从泊松分布,且P(X 1) 4P(X 2),则P(X 3) _______________________ . 23. _______________________ 设随机变量X 在区间(0,2)上服从均匀分布,则随机变量Y X 在区间(0,4)内的概率 密度为f Y (y) . 的指数分布,P(X 1) e 2,则4. 设随机变量 X,Y 相互独立,且均服从参数为5._______ , P{min( X ,Y) 1} = ____ 设总体X 的概率密度为 (1)x , 0 x 1, f (x)0, 其它 1.X 1 ,X 2, ,X n 是来自X 的样本,则未知参数 的极大似然估计量为 ___________解:1. P(AB AB) 0.3即 0.3 P(AB) P(AB) P(A) P(AB) P(B) P(AB) 0.5 2P(AB)2所以 P(AB) 0.1P(A B) P(AB) 1 P(AB) 092.P(X 1) P(X 0) P(X 1) e e , P(X 2) e由 P(X 1) 4P(X 2)知e e2 2e即2 21 0解得1,故P(X3)1 1 e . 63•设丫的分布函数为F Y (y), X 的分布函数为F x (x),密度为f x (x)则F Y (V ) P(Y y) P(X 2 y) P( ...y X ,y) FxG.y) F x ( ,y) 因为 X ~U (0, 2),所以 F X ( ,y) 0,即 F Y (y) F X G. y)1.ln x in i 1二、单项选择题(每小题 3分,共15分)1 .设A, B,C 为三个事件,且 A, B 相互独立,则以下结论中不正确的是(A) 若P(C) 1,则AC 与BC 也独立. (B) 若P(C) 1,则AUC 与B 也独立. (C) 若P(C) 0,则AUC 与B 也独立.J(y) F Y (y)1 _2丁x(J)0 y 4, 另解 在(0,2)上函数y 所以 2x 严格单调,反函数为h(y)其它..5f Y (y) Afx(7?)诙4孑 0 ,其它.y 4,4. P(X 1) 1 P(X P{min( X ,Y) 1} 111) eP{min( X,Y) 4 e ・ 1} P(X 1)P(Y 1)5.似然函数为L(X 1 ,L ,X n ;n(i 1n1)Xi(1叽1_ X )解似然方程得 ln L n ln(1)ln x i ln x i i 1@0的极大似然估计为EX X(D )若C B ,则A 与C 也独立• ()2•设随机变量 X~N(0,1), X 的分布函数为(x),贝U P(|X| 2)的值为(A )2[1 (2)] . ( B )2 (2)1 .(C ) 2(2).( D )1 2 (2).()3•设随机变量 X 和Y 不相关,则下列结论中正确的是(A ) X 与 Y 独立. (B ) D(X Y) DX DY .(C ) D(X Y) DX DY .(D ) D(XY) DXDY .()4•设离散型随机变量 X 和Y 的联合概率分布为(X,Y) (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) P1 1 1 1 691832. X ~ N(0,1)所以 P(| X | 2) 1 P(| X | 2)1 P(2 X1 (2) ( 2) 1 [2 (2) 1] 2[1 (2)]若X,Y 独立,则 7的值为2 112(A ) -, —(A ) J—99991 15 1 (C ), — (D ) — , . ()6618185 •设总体X 的数学期望为,X 1,X 2丄,X n为来自X 的样本,则下列结论中正确的是(A ) X i 是的无偏估计量 (B ) X i 是 的极大似然估计量(C ) X 1是 的相合(一致)估计量(D ) X i 不是 的估计量.() 解:1.因为概率为1的事件和概率为 0的事件与任何事件独立,所以( A ), (B ), (C )可见A 与C 不独立.2)应选(A )都是正确的,只能选(事实上由图EX X12 3 P(X 2, Y 2)1 1 1 11— — ■ 1 、69183(- )(-391 1 23321 1丄92 918故应(A).3•由不相关的等价条件知应选(B ) 4•若X,Y 独立则有)P(X 2)P(Y 2)f(o三、(7分)已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02,求(1) 一个产品经检查后被认为是合格品的概率;(2) 一个经检查后被认为是合格品的产品确是合格品的概率解:设A ‘任取一产品,经检验认为是合格品’B ‘任取一产品确是合格品’则(1) P(A) P(B)P(A|B) P(B)P(A|B)0.9 0.95 0.1 0.02 0.857.P(AB) 0.9 0.95 (2) P(B| A) 0.9977 .P(A) 0.857四、(12分)从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是2/5.设X为途中遇到红灯的次数,求X的分布列、分布函数、数学期望和方差.解:X的概率分布为k2 k3 3 kP(X k) cf(5)k(5)3kX 0 1 2即P27 54 36 125 125 12X的分布函数为0 , x 0,27125 ,0 x 1,F(x )81 1 x 2, 125117 2 x3, 1251 , x 3.2 6 EX3 --5 5DX c 2 3 183 --5 5 25五、(10分)设二维随机变量(X,Y)在区域 D匀分布.求(1)(X,Y)关于X的边缘概率密度;38125{(x,y)|x 0, y 0, x y 1}上服从均(2)Z X Y的分布函数与概率密(1) (X ,Y)的概率密度为f(x, y) 2, (x, y) D 0,其它.k 0,1,2,3.2 2x, 0 x 1f(x,y)dy0 ,其它(2)利用公式f Z(z) f (x, z x)dx其中f(x,z x) 2, 0 x 1,0 z x 1 x0,其它2, 0 x 1, x z 1.0,其它.当z 0 或z 1 时f z (z) 0z的分布函数为z z0 z 1 时f z(z) 2 q dx 2x02z 故Z的概率密度为f z(z)2z, 0 z 1,0,其它.0, z 0 0, z 0,fZ⑵z zf Z(y)dy 02ydy,0 z 1 2z , 0 z 1,1,1 z 1.z 1或利用分布函数法0 , z 0,F Z(Z) P(Z z) P(X Y z) 2dxdy, 0 z 1D11 , z 1.0 , z 0,2z , 0 z 1,1 , z 1.f z (z) F z⑵2z,0 ,0 z 1,其它.六、(10分)向一目标射击,目标中心为坐标原点,已知命中点的横坐标X和纵坐标Y相互独立,且均服从N(0,22)分布.求(1)命中环形区域D {( x, y) |1 x2 y2 2}的概率;(2)命中点到目标中心距离Z X Y2的数学期望.D (1)P{X,Y) D} f(x,y)dxdyDx28dxdy 8rdrdf x(X)4 41 2 -8re 8 rdrd1 e 8 r 2dr 8 04 0r2re 丁r 2e T dr 02冷dr阪七、(11分)设某机器生产的零件长度(单位: cm ) X 〜N ( , 2),今抽取容量为样本,测得样本均值 X 10,样本方差s 2 0.16. ( 1)求的置信度为0.952区间;(2)检验假设H 。

(完整版)概率论与数理统计试卷与答案

(完整版)概率论与数理统计试卷与答案

《概率论与数理统计》课程期中试卷班级 姓名 学号____________ 得分注意:答案写在答题纸上,标注题号,做在试卷上无效。

考试不需要计算器。

一、选择题(每题3分,共30分)1. 以A 表示事件“泰州地区下雨或扬州地区不下雨”,则其对立事件A :( ) A .“泰州地区不下雨” B .“泰州地区不下雨或扬州地区下雨” C .“泰州地区不下雨,扬州地区下雨” D .“泰州、扬州地区都下雨”2. 在区间(0,1)中任取两个数,则事件{两数之和小于25}的概率为( ) A .225 B .425 C .2125 D .23253. 已知()0.7P A =,()0.5P B =,()0.3P A B -=,则(|)P A B =( ) A .0.5 B . 0.6 C .0.7 D . 0.84. 设()F x 和()f x 分别是某随机变量的分布函数和概率密度,则下列说法正确的是( ) A .()F x 单调不增 B . ()()xF x f t dt -∞=⎰C .0()1f x ≤≤D .() 1 F x dx +∞-∞=⎰.5. 设二维随机变量(,)X Y 的概率分布为已知随机事件{X = A . a=0.2,b=0.3 B . a=0.4,b=0.1 C . a=0.3,b=0.2 D . a=0.1,b=0.4 6. 已知()0.7P A =,()0.5P B =,(|)0.8P A B =,则()P A B -=( ) A .0.1 B . 0.2 C .0.3 D . 0.47. 设两个随机变量X 和Y 相互独立且同分布:{}{}1112P X P Y =-==-=,{}{}1112P X P Y ====,则下列各式成立的是( ) A .{}12P X Y ==B {}1P X Y ==C .{}104P X Y +==D .{}114P XY == 8. 设随机变量~(2,),~(3,),X B p Y B p 若19{1}27P Y ≥=,则{1}P X ≥= ( ) A .13 B .23 C .49D .599. 连续随机变量X 的概率密度为⎪⎩⎪⎨⎧≤<-≤≤=其它,021,210,)(x x x x x f ,则随机变量X 落在区间 (0.4, 1.2) 内的概率为( )A .0.42B .0.5C .0.6D .0.64 10. 将3粒红豆随机地放入4个杯子,则杯子中盛红豆最多为一粒的概率为( ) A .332B .38C .116D .18二、填空题(每题4分,共20分)11. 设概率()0.3,()0.5,()0.6P A P B P A B ==+=, 则()P AB = . 12. 设随机变量X 服从参数为1的泊松分布,则{3}P X == . 13. 某大楼有4部独立运行的电梯,在某时刻T ,各电梯正在运行的概率均为43,则在此时刻恰好有1个电梯在运行的概率为 .14. 某种型号的电子的寿命X (以小时计)的概率密度210001000()0x f x x ⎧>⎪=⎨⎪⎩其它任取1只,其寿命大于2500小时的概率为 .15. 设随机变量X 的分布函数为:0(1),0.2(12),()0.5(23),1(3).x x F x x x <⎧⎪≤<⎪=⎨≤<⎪⎪≤⎩当时当时当时当时则 X 的分布律为 . 三、解答题(每题10分,共50分)16. 已知0.30.40.5+P A P B P AB P A A B ===()()()(|),,,求17. 从只含3红, 4白两种颜色的球袋中逐次取一球, 令1,,0,i i X i ⎧=⎨⎩第次取出红球第次取出白球,1,2i =. 在不放回模式下求12,X X 的联合分布律, 并考虑独立性(要说明原因).18. 某工厂有两个车间生产同型号家用电器,第1车间的次品率为0.15,第2车间的次品率为0.12.两个车间生产的成品都混合堆放在一个仓库中,假设1、2车间生产的成品比例为2:3,今有一客户从成品仓库中随机提台产品,求该产品合格的概率.19. 设某城市成年男子的身高()2~170,6X N (单位:cm )(1)问应如何设计公交车车门高度,使得男子与车门碰头的概率小于0.01? (2)若车门高为182cm ,求100个成年男子中没有人与车门顶碰头的概率. ( 2.330.9920.9772Φ=Φ=(),())20. 已知随机变量(,)X Y 的分布律为问:(1)当,αβ为何值时,X 和Y 相互独立;(2)在上述条件下。

概率论与数理统计

概率论与数理统计

概率论与数理统计 习题参考答案(仅供参考) 第一章
第 2 页 (共 62 页)
4.设 P(A)=0.7,P(A-B)=0.3,试求P(AB)
解 由于 AB = A – AB, P(A)=0.7 所以 P(AB) = P(AAB) = P(A)P(AB) = 0.3,
所以 P(AB)=0.4, 故 P(AB) = 10.4 = 0.6.
(4) 取到三颗棋子颜色相同的概率.

(1) 设 A={取到的都是白子} 则
P( A) C83 14 0.255. C132 55
(2) 设 B={取到两颗白子, 一颗黑子}
P(B)
C82C41 C132
0.509 .
(3) 设 C={取三颗子中至少的一颗黑子}
P( C) 1 P (A ) 0 . 7. 4 5
P( A2
|B
) P( Ai )P B( P(B )
A| i
) 0 . 1 5 0 .39 0
0.1268
0.8624
P( A3
|B
) P( Ai )P B( P(B )
A| i
) 0 . 0 5 0 .31 0 0 . 0 0 0 1 0.8624
由于 P( A1|B) 远大于 P( A3|B), P( A2|B), 因此可以认为这批货物的损坏率为 0.2.
2. 设 A、B、C 为三个事件,用 A、B、C 的运算关系表示下列事件: (1)A 发生,B 和 C 不发生; (2)A 与 B 都发生,而 C 不发生; (3)A、B、C 都发生; (4)A、B、C 都不发生; (5)A、B、C 不都发生; (6)A、B、C 至少有一个发生; (7)A、B、C 不多于一个发生; (8)A、B、C 至少有两个发生. 解 所求的事件表示如下

概率论与数理统计试题与答案完整版

概率论与数理统计试题与答案完整版

概率论与数理统计试题与答案HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】概率论与数理统计试题与答案(2012-2013-1)概率统计模拟题一一、填空题(本题满分18分,每题3分)1、设,3.0)(,7.0)(=-=B A P A P 则)(AB P = 。

2、设随机变量p)B(3,~Y p),B(2,~X ,若95)1(=≥X p ,则=≥)1(Y p 。

3、设X 与Y 相互独立,1,2==DY DX ,则=+-)543(Y X D 。

4、设随机变量X 的方差为2,则根据契比雪夫不等式有≤≥}2EX -X {P 。

5、设)X ,,X ,(X n 21 为来自总体)10(2χ的样本,则统计量∑==n1i i X Y 服从分布。

6、设正态总体),(2σμN ,2σ未知,则μ的置信度为α-1的置信区间的长度=L 。

(按下侧分位数)二、选择题(本题满分15分,每题3分)1、 若A 与自身独立,则( )(A)0)(=A P ; (B) 1)(=A P ;(C) 1)(0<<A P ; (D) 0)(=A P 或1)(=A P2、下列数列中,是概率分布的是( )(A) 4,3,2,1,0,15)(==x xx p ; (B) 3,2,1,0,65)(2=-=x x x p (C) 6,5,4,3,41)(==x x p ; (D) 5,4,3,2,1,251)(=+=x x x p 3、设),(~p n B X ,则有( )(A) np X E 2)12(=- (B) )1(4)12(p np X D -=-(C) 14)12(+=+np X E (D) 1)1(4)12(+-=+p np X D4、设随机变量),(~2σμN X ,则随着σ的增大,概率()σμ<-X P ( )。

(A)单调增大 (B)单调减小 (C)保持不变 (D)增减不定5、设),,,(21n X X X 是来自总体),(~2σμN X 的一个样本,X 与2S 分别为样本均值与样本方差,则下列结果错误..的是( )。

概率论与数理统计_第一章测验题答案

概率论与数理统计_第一章测验题答案

第一章测验题答案一. 填空(共20分,每题4分)1. 设A, B, C 为三个随机事件,则用A, B, C 的运算关系表示事件A 发生、B 与C 不发生为ABC .2. 设在15只同类型的零件中有2只是次品,在其中取3次,每次任取1只,做不放回抽样,则取出次品的只数为1的概率为___12/35_____.3. 设一箱产品共有60件,其中次品有6件,现有顾客从中随机买走10件,则下一顾客买1件产品买到次品的概率为 0.1 . (抽签与顺序无关!)4. 设A,B 为随机事件,且()0.6,()0.4,(|)0.5,P A P B P B A ===则(|)P A B =0.75 .5. 设()0.7,()0.3P A P A B =-=,则()P A B ⋃= 0.6 .6. 若()()0.7,()0.3,P A P B P AB +==则()P AB AB += 0.1 .7. 假设一批产品中一、二、三等品各占60%,30%,10%,从中随机取出一件,结果不是三等品,则取到的是一等品的概率为_2/3__. 8. 设三次独立试验中,A 出现的概率相等,若已知A 至少出现一次的概率等于19/27,则A 在一次试验中出现的概率为__1/3__.(n 重伯努利试验) 解:设()P A p =, 则三次试验中事件A 至少出现一次的概率31(1)p --,即33191(1),278(1),271.3p p p =-⇒-⇒==-二. 选择(共40分,每题4分)1. 设随机事件A, B 满足()1,P A B ⋃=则[C].(A) A, B 为对立事件 (B) A, B 互不相容(C) A B ⋃不一定为必然事件 (D)A B ⋃一定为必然事件 2. 若()0P AB =,则[ C ](A) A 和B 互不相容 (B) A B S ⋃=(C) A B ⋃未必是必然事件 (D) 0()0()P A P B ==或 3. 若()()0P A P B >, 且AB =∅,则[ D ](A) A 和B 互不相容 (B) A 和B 相容 (C) ()()()P AB P A P B = (D) ()()P A B P A -= 4. 设事件A,B 同时发生必然导致事件C 发生,则必有[C].(A) ()()P C P AB ≥ (B) ()()P C P AB = (C)()()P C P A B =⋃ (D)()()P C P AB ≤5. 设随机试验中事件A 发生的概率为p ,现重复进行n 次独立试验,则事件A 至多发生一次的概率为[D].(A)1n p - (B)n p(C)1(1)n p -- (D)1(1()1)n n np p p -+-- 6. 设随机事件A, B 满足0()1,0()1,(|)(),|1P A P B P A B A B P <<<<+=则下列各式正确的是[B].(见第7题解)(A)A 和B 互不相容 (B)A 和B 相互独立 (C) A 和B 互斥 (D) A 和B 不独立 7. 设0()1,()0P A P B <<>, 且(|)(|)1,P B A P B A +=则必有[ C ] (A) (|)(|)P A B P A B = (B) (|)(|)P A B P A B ≠ (C) ()()()P AB P A P B = (D) ()()()P AB P A P B ≠ 解:,A B 相互独立 ()()()P AB P A P B ⇔=(|)()P B A P B ⇔= (()0P A >)(|)()P B A P B ⇔= (()0P A >) (|)(|)P B A P B A ⇔=(|)(|)1P B A P B A ⇔+=.8. 设A,B,C 是三个相互独立的随机事件,且0()1P C <<,则下列给定的4对时间中不互相独立的是[B].(A)C A B ⋃与 (B)AC C 与 (C)A B C -与 (D) AB C 与 三. 解答题(请写明求解过程,共40分,每题10分)1. (15分)一袋中装有10个球,其中3个黑球7个白球,每次从中任取一球,然后放回,求下列事件的概率:(1) 若取3次,A={3个球都是黑球};(2) 若取10次,B={10次中恰好取到3次黑球},C={10次中能取到黑球}; (3) 若未取到黑球就一直取下去,直到取到黑球为止, D={恰好取3次}, E={至少取3次}. 解:还原有序抽样。

概率论与数理统计考试试卷(附答案)

概率论与数理统计考试试卷(附答案)

概率论与数理统计考试试卷(附答案)一、选择题(共6小题,每小题5分,满分30分) 1. 事件表达式B A -的意思是 ( ) (A) 事件A 与事件B 同时发生 (B) 事件A 发生但事件B 不发生 (C) 事件B 发生但事件A 不发生(D) 事件A 与事件B 至少有一件发生2. 假设事件A 与事件B 互为对立,则事件A B ( ) (A) 是不可能事件 (B) 是可能事件 (C) 发生的概率为1(D) 是必然事件3. 已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) (A) 自由度为1的χ2分布 (B) 自由度为2的χ2分布 (C) 自由度为1的F 分布(D) 自由度为2的F 分布4. 已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( )(A) X +Y ~P (4) (B) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D) X +Y ~N (0,3)5. 样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) (A) X 1+X 2+X 3是μ的无偏估计(B)1233X X X ++是μ的无偏估计(C) 22X 是σ2的无偏估计(D) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计6. 随机变量X 服从在区间(2,5)上的均匀分布,则X 的方差D (X )的值为( ) (A) 0.25(B) 3.5(C) 0.75(D) 0.5二、填空题(共6小题,每小题5分,满分30分。

把答案填在题中横线上) 1. 已知P (A )=0.6, P (B |A )=0.3, 则P (AB )= __________2. 三个人独立地向一架飞机射击,每个人击中飞机的概率都是0.4,则飞机被击中的概率为__________3. 一个袋内有5个红球,3个白球,2个黑球,任取3个球恰为一红、一白、一黑的概率为_____4. 已知连续型随机变量,01,~()2,12,0,.x x X f x x x ≤≤⎧⎪=-<≤⎨⎪⎩其它 则P {X ≤1.5}=_______.5. 假设X ~B (5, 0.5)(二项分布), Y ~N (2, 36), 则E (2X +Y )=__________6. 一种动物的体重X 是一随机变量,设E (X )=33, D (X )=4,10个这种动物的平均体重记作Y ,则D (Y )=_____________________ _______三、有两个口袋,甲袋中盛有两个白球,一个黑球,乙袋中盛有一个白球,两个黑球。

概率论与数理统计试题及答案

概率论与数理统计试题及答案

概率论与数理统计试题及答案概率论与数理统计是应用广泛的数学学科,用于研究随机现象的规律与统计推断。

下面为您提供一系列概率论与数理统计试题及答案,希望能对您的学习和理解有所帮助。

题目一:某超市近一周每天销售的商品数量数据如下:23、45、17、34、26、37、19。

1. 请计算这组数据的平均值、中位数和众数。

2. 计算数据的方差和标准差。

答案一:1. 平均值 = (23 + 45 + 17 + 34 + 26 + 37 + 19) / 7 = 26中位数 = 排序后的中间值 = 26众数 = 无,因为没有重复的值2. 计算方差:方差 = [(23-26)² + (45-26)² + (17-26)² + (34-26)² + (26-26)² + (37-26)²+ (19-26)²] / 7= (9 + 361 + 81 + 64 + 0 + 121 + 49) / 7= 140 / 7= 20题目二:一辆汽车在高速公路上行驶,每小时的速度数据如下:100、90、110、80、120。

请计算这组数据的以下统计量:1. 平均速度2. 速度的中位数3. 速度的众数4. 方差和标准差答案二:1. 平均速度 = (100 + 90 + 110 + 80 + 120) / 5 = 1002. 排序后的速度数据为:80、90、100、110、120。

中位数 = 1003. 众数 = 无,因为没有重复的值4. 计算方差:方差 = [(100-100)² + (90-100)² + (110-100)² + (80-100)² + (120-100)²] / 5= (0 + 100 + 100 + 400 + 400) / 5= 200题目三:甲乙两枚硬币独立抛掷一次,甲的硬币正面向上的概率为0.4,乙的硬币正面向上的概率为0.6。

《概率论与数理统计》考试练习题及参考答案

《概率论与数理统计》考试练习题及参考答案

《概率论与数理统计》考试练习题及参考答案一、单选题1. 设X~N(2,9),Y~N(2,1),E(XY)=6,则D(X-Y)之值为A 、14B 、6C 、12D 、4答案:B2. 设X,Y的方差存在,且不等于0,则D(X+Y)=DX+DY是X,YA 、不相关的充分条件,但不是必要条件B 、独立的必要条件,但不是充分条件C 、不相关的必要条件,但不是充分条件D 、独立的充分必要条件答案:B3. 已知P(A)=0.3 ,P(B)=0.5 ,P(A∪B)=0.6,则P(AB)=A 、0.2B 、0.1C 、0.3D 、0.4答案:A4. 已知随机变量X服从二项分布,且EX=2.4,DX=1.44,则二项分布中的参数n,p的值分别为A 、n=4 ,p=0.6B 、n=6 ,p=0.4C 、n=8 ,p=0.3D 、n=24 ,p=0.1答案:B5. 若随机变量X与Y的方差D(X), D(Y)都大于零,且E(XY)=E(X)E(Y),则有A 、X与Y一定相互独立B 、X与Y一定不相关C 、D(XY)=D(X)D(Y)D 、D(X-Y)=D(X)-D(Y)答案:B6. 同时抛掷3枚硬币,则至多有1枚硬币正面向上的概率是A 、1/8B 、1/6C 、1/4D 、1/2答案:D7. 将长度为1的木棒随机地截成两段,则两段长度的相关系数为A 、1B 、1/2C 、2D 、-1答案:D8. 假设一批产品中一、二、三等品各占60% 、30% 、10%,今从中随机取一件产品,结果不是三等品,则它是二等品的概率为A 、1/3B 、1/2C 、2/3D 、1/4答案:A9. 袋中有50个乒乓球,其中20个黄球,30个白球,甲、乙两人依次各取一球,取后不放回,甲先取,则乙取得黄球的概率为A 、2/5B 、3/5C 、1/5D 、4/5答案:A10. 设随机变量X服从正态分布N(1 ,4) ,Y服从[0 ,4]上的均匀分布,则E(2X+Y )=A 、1B 、2C 、3D 、4答案:D11. 某电路由元件A 、B 、C串联而成,三个元件相互独立,已知各元件不正常的概率分别为:P(A)=0.1 ,P(B)=0.2 ,P(C)=0.3,求电路不正常的概率A 、0.496B 、0.7C 、0.25D 、0.8答案:A12. 一套五卷选集随机地放到书架上,则从左到右或从右到左卷号恰为1 ,2 ,3 ,4 ,5顺序的概率为A 、1/120B 、1/60C 、1/5D 、1/2答案:B13. 设随机变量X与Y独立同分布,记随机变量U=X+Y ,V=X-Y,且协方差Cov(U.V)存在,则U和V必然A 、不相关B 、相互独立C 、不独立D 、无法判断答案:A14. 设P(A)>0,P(B)>0,则下列各式中正确的是A 、P(A-B)=P(A)-P(B)B 、P(AB)=P(A)P(B)C 、P(A+B)=P(A)+P(B)D 、P(A+B)=P(A)+P(B)-P(AB)答案:D15. 随机变量X的所有可能取值为0和x ,且P{X=0}=0.3,E(X)=1,则x=A 、10/7B 、4/5C 、1D 、0答案:A16. 已知人的血型为O 、A 、B 、AB的概率分别是0.4;0.3;0.2;0.1。

概率论与数理统计试题库及答案(考试必做)[1]

概率论与数理统计试题库及答案(考试必做)[1]

概率论与数理统计<概率论>试题一、填空题1.设 A 、B 、C 是三个随机事件。

试用 A 、B 、C 分别表示事件1)A 、B 、C 至少有一个发生2)A 、B 、C 中恰有一个发生3)A 、B 、C 不多于一个发生2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。

则P(B )A =3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7, 则α=4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)kP X k A k ===⋅⋅⋅则A=______________7. 已知随机变量X 的密度为()f x =⎩⎨⎧<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a =________ b =________8. 设X ~2(2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为8081,则该射手的命中率为_________10.若随机变量ξ在(1,6)上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是 11.设3{0,0}7P X Y ≥≥=,4{0}{0}7P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<=13.用(,X Y )的联合分布函数F (x,y )表示P{X a,b}Y <<=14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D 上服从均匀分布,则(x,y )关于X 的边缘概率密度在x = 1 处的值为 。

(完整word版)概率论与数理统计考试题及答案(word文档良心出品)

(完整word版)概率论与数理统计考试题及答案(word文档良心出品)

一、填空题(每小题3分,共30分)1、“事件,,A B C 中至少有一个不发生”这一事件可以表示为 .2、设()0.7,()0.3P A P AB ==,则()P A B =________________.3、袋中有6个白球,5个红球,从中任取3个,恰好抽到2个红球的概率 .4、设随机变量X 的分布律为(),(1,2,,8),8aP X k k ===则a =_________.5、设随机变量X 在(2,8)内服从均匀分布,则(24)P X -≤<= .6、设随机变量X 的分布律为21011811515515kX p -- 则2Y X =的分布律是 .7、设随机变量X 服从参数为λ的泊松分布,且已知,X X E 1)]2)(1[(=-- 则=λ .8、设129,,,X X X 是来自正态总体(2,9)N -的样本,X 是样本均植,则X 服从的分布是. 9、设总体()~10,X b p ,12,,,n X X X 是来自总体X 的样本,则参数p 的矩估计量为 .10、设123,,X X X 是来自总体X 的样本,12311ˆ23X X X μλ=++是()E X μ=的无偏估计,则λ= .二、(本题12分)甲乙两家企业生产同一种产品.甲企业生产的60件产品中有12件是次品,乙企业生产的50件产品中有10件次品.两家企业生产的产品混合在一起存放,现从中任取1件进行检验.求: (1)求取出的产品为次品的概率;(2)若取出的一件产品为次品,问这件产品是乙企业生产的概率.三、(本题12分)设随机变量X 的概率密度为,03()2,3420,kx x x f x x ≤<⎧⎪⎪=-≤≤⎨⎪⎪⎩其它 (1)确定常数k ; (2)求X 的分布函数()F x ;(3)求712P X ⎧⎫<≤⎨⎬⎩⎭.四、(本题12分)设二维随机向量(,)X Y 的联合分布律为\01210.10.20.120.10.2Y X a 试求: (1) a 的值; (2)X 与Y 的边缘分布律; (3)X 与Y 是否独立?为什么?五、(本题12分) 设随机变量X 的概率密度为(),01,2,12,0,.x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他 求()(),E X D X .六、(本题12分)设离散型随机变量X 的分布律为(),0,1,2,!x e P X x x x θθ-=== , 0θ<<+∞其中θ为未知参数,n x x x ,,,21 为一组样本观察值,求θ的极大似然估计值.七、(本题10分)某种零件的尺寸方差为2 1.21σ=,对一批这类零件检查6件得尺寸数据(毫米):32.56, 29.66, 31.64, 30.00, 21.87, 31.03设零件尺寸服从正态分布,问这批零件的平均尺寸能否认为是32.50毫米(0.05α=)? (附:()()()0.0250.0250.0250.050.0255 2.5706,6 2.4469,7 2.3646, 1.65, 1.96,6 2.45t t t z z ======一、填空题(每小题3分,共30分) 1、ABC 或A BC2、0.63、2156311C C C 或411或0.3636 4、15、136、2014131555kX p 7、1 8、(2,1)N - 9、10X 10、16二、(本题12分)甲乙两家企业生产同一种产品.甲企业生产的60件产品中有12件是次品,乙企业生产的50件产品中有10件次品.两家企业生产的产品混合在一起存放,现从中任取1件进行检验.求: (1)求取出的产品为次品的概率;(2)若取出的一件产品为次品,问这件产品是乙企业生产的概率.解 设12,A A 分别表示取出的产品为甲企业和乙企业生产,B 表示取出的零件为次品,则由已知有1212606505121101(),(),(|),(|)1101111011605505P A P A P B A P B A ========...............2分 (1)由全概率公式得112261511()()(|)()(|)1151155P B P A P B A P A P B A =+=⨯+⨯=......................................7分 (2)由贝叶斯公式得22251()()5115()1()115P A P B A P A B P B ⨯=== ......................................................................12分三、(本题12分)设随机变量X 的概率密度为,03()2,3420,kx x x f x x ≤<⎧⎪⎪=-≤≤⎨⎪⎪⎩其它(1)确定常数k ; (2)求X 的分布函数()F x ; (3)求712P X ⎧⎫<≤⎨⎬⎩⎭.解 (1)由概率密度的性质知340391()21224x f x dx kxdx dx k +∞-∞⎛⎫=+-=+= ⎪⎝⎭⎰⎰⎰故16k =. .................................................................................................................................3分(2)当0x ≤时,()()0xF x f t dt -∞==⎰;当03x <<时, 2011()()612xxF x f t dt tdt x -∞===⎰⎰;当34x ≤<时, 320311()()223624x x t F x f t dt tdt dt x x -∞⎛⎫==+-=-+- ⎪⎝⎭⎰⎰⎰;当4x ≥时, 34031()()2162x t F x f t dt tdt dt -∞⎛⎫==+-= ⎪⎝⎭⎰⎰⎰;故X 的分布函数为220,01,0312()123,3441,4x x x F x x x x x ≤⎧⎪⎪<<⎪=⎨⎪-+-≤<⎪⎪≥⎩..............................................................................9分(3) 77151411(1)22161248P X F F ⎧⎫⎛⎫<≤=-=-=⎨⎬ ⎪⎩⎭⎝⎭.............................................................12分四、(本题12分)设二维随机向量(,)X Y 的联合分布律为\01210.10.20.120.10.2Y X a 试求:(1) a 的值; (2)X 和Y 的边缘分布律; (3)X 与Y 是否独立?为什么? 解 (1)由分布律的性质知 01.0.20.10.10.a +++++=故0.3a = ..................................................................................................................................4分 (2)(,)X Y 分别关于X 和Y 的边缘分布律为0120.40.30.3X p ........................................................................................................6分120.40.6Y p .................................................................................................................8分(3)由于{}0,10.1P X Y ===,{}{}010.40.40.16P X P Y ===⨯=,故 {}{}{}0,101P X Y P X P Y ==≠== 所以X 与Y 不相互独立. .........................................................................................................12分 五、(本题12分) 设随机变量X 的概率密度为(),01,2,12,0,.x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他求()(),E X D X . 解 2131223201011()()d d (2)d 1.33x E X xf x x x x x x x x x +∞-∞⎡⎤⎡⎤==+-=+-=⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰............................6分122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=⎰⎰⎰ ..........................................................9分 221()()[()].6D XE X E X =-= ...........................................................................................12分六、(本题12分)设离散型随机变量X 的分布律为(),0,1,2,!x e P X x x x θθ-===,0θ<<+∞其中θ为未知参数,n x x x ,,,21 为一组样本观察值,求θ的极大似然估计值.解 似然函数()1111!!niii x nnx n i i i i eL e x x θθθθθ=--==∑==∏∏ ............................................................................4分 对数似然函数()111ln ln ln !nni i i i L n x x θθθ===-+⋅+∑∏........................................................................6分 1ln L nii xd n d θθ==-+∑ .....................................................................................................8分 解似然方程ln L 0d d θ=得11ˆn i i x x n θ===∑. ................................................................................10分 所以θ的极大似然估计值为ˆ.x θ= ........................................................................................12分 七、(本题10分)某种零件的尺寸方差为2 1.21σ=,对一批这类零件检查6件得尺寸数据(毫米):32.56, 29.66, 31.64, 30.00, 21.87, 31.03设零件尺寸服从正态分布,问这批零件的平均尺寸能否认为是32.50毫米(0.05α=)?(附:()()()0.0250.0250.0250.050.0255 2.5706,6 2.4469,7 2.3646, 1.65, 1.96t t t z z =====) 解 总体()2~,X N μσ,总体方差已知,检验总体期望值μ是否等于32.50.(1) 提出待检假设0010:32.50;:32.50.H H μμμμ==≠= ...........................................1分(2) 选取统计量0/X Z nμσ-=,在0H 成立的条件下(0,1)Z ~N ......................................2分(3) 对于给定的检验水平0.05α=,查表确定临界值/20.025 1.96z z α==于是拒绝域为(, 1.96)(1.96,).W =-∞-+∞ ...........................................................................5分 (4) 根据样本观察值计算统计量Z 的观察值:()132.5629.6631.6430.0021.8731.0329.445, 1.16x σ=+++++==0029.44532.50 2.45 6.8041.1/x z nμσ--==⨯=- ........................................................8分(5)判断: 由于0z W ∈,故拒绝H 0,即不能认为这批零件的平均尺寸是32.50毫米...............................................................................................................................................10分。

(完整版)概率论与数理统计练习题附答案详解

(完整版)概率论与数理统计练习题附答案详解

第一章《随机事件及概率》练习题一、单项选择题1、设事件A 与B 互不相容,且P (A )>0,P (B )>0,则一定有( )(A )()1()P A P B =-; (B )(|)()P A B P A =;(C )(|)1P A B =; (D )(|)1P A B =。

2、设事件A 与B 相互独立,且P (A )>0,P (B )>0,则( )一定成立 (A )(|)1()P A B P A =-; (B )(|)0P A B =;(C )()1()P A P B =-; (D )(|)()P A B P B =。

3、设事件A 与B 满足P (A )>0,P (B )>0,下面条件( )成立时,事件A 与B 一定独立(A )()()()P AB P A P B =; (B )()()()P A B P A P B =U ;(C )(|)()P A B P B =; (D )(|)()P A B P A =。

4、设事件A 和B 有关系B A ⊂,则下列等式中正确的是( )(A )()()P AB P A =; (B )()()P A B P A =U ;(C )(|)()P B A P B =; (D )()()()P B A P B P A -=-。

5、设A 与B 是两个概率不为0的互不相容的事件,则下列结论中肯定正确的是( ) (A )A 与B 互不相容; (B )A 与B 相容;(C )()()()P AB P A P B =; (D )()()P A B P A -=。

6、设A 、B 为两个对立事件,且P (A )≠0,P (B ) ≠0,则下面关系成立的是( ) (A )()()()P A B P A P B =+U ; (B )()()()P A B P A P B ≠+U ;(C )()()()P AB P A P B =; (D )()()()P AB P A P B =。

概率概率论与数理统计试卷附答案

概率概率论与数理统计试卷附答案

一、填空题(每题3分,共15分)1、设X ~()p b ,2,Y ~()p b ,4,若()951=≥X P ,则()=≥1Y P 。

. 2、已知随机变量X 的概率分布为⎥⎦⎤⎢⎣⎡0.40.30.20.14321~ X ,则其分布函数为 。

3、设1X ~()2,1N ,2X ~()3,0N ,3X ~()1,2N ,且321,,X X X 相互独立,设12321+-+=X X X Z ,则~Z .4、若随机变量X 与Y 不相关,其方差分别为3和6,则)2(Y X D -= 。

5、从总体中任取一个容量为5的样本,测得样本值为8,9,10,11,12,则总体期望的无偏估计为________________。

二、选择题(每题2分,共20分)1、设事件A 与B 互不相容,且()0,()0P A P B >>,则下列结论正确的是( )。

A 、(|)()P AB P A = B 、(|)0P A B =C 、()()()P AB P A P B =D 、(|)0P B A >2、设随机变量X 可取无穷多个值0,1,2,…,其概率分布为33(;3),0,1,2,!kp k e k k -== ,则下式成立的是()A 、3EX DX ==B 、13E X D X ==C 、13,3E X D X ==D 、1,93E X D X ==3、设()0P A >,()0P B >, 且 A B 与互逆,则下列命题不成立的是( )A . AB 与不相容 B . A B 与相互独立C . A B 与互不独立D .A B 与互不相容 4、两个随机变量的协方差=),cov(Y X ( )A 、EY EX XY E ⋅-)(B 、DY DX XY D ⋅-)(C 、22)()(EY EX XY E ⋅- D 、)()(EY Y E EX X E -⋅-5、设正态总体期望μ的置信区间长度(1)L n α=-,则其置信度为( )A 、1α-;B 、α ;C 、12α-; D 、12α-.6、 设(),X Y 的联合密度为40()xy x p x y ≤≤⎧=⎨⎩,,y 1,0,其它,若()F x y ,为分布函数,则(0.52)F =,()A 、0B 、14C 、161 D 、17.如果Y X 与满足D =+)2(Y X D )2(Y X -,则必有A. Y X 与独立B. Y X 与不相关C. DXDY XY D =)( D 、0=DXDY 8.设随机变量X 的分布列为: 则常数c=()A 、0B 、1C 、125 D 、125-9.设随机变量X 的密度函数为()f x ,且()()f x f x -=,()F x 为X 的分布函数,则对任意实数a ,有( ) A 、0()1()a F a f x dx -=-⎰B 、 01()()2a F a f x dx -=-⎰C 、 ()()F a F a -=D 、 ()2()1F a F a -=-10.匣中4只球,其中红,黑,白球各一只,另有一只红黑白三色球,现从中任取两只,其中恰有一球上有红色的概率为( )A 、16B 、13C 、12D 、23三、计算题(每题8分,共40分)1.若事件 A 与B 相互独立,()0.8P A = ()0.6P B =。

概率论与数理统计期末考试试题及解答

概率论与数理统计期末考试试题及解答

概率论与数理统计期末考试试题及解答概率论与数理统计》期末试题一、填空题(每小题3分,共15分)1.设事件A,B仅发生一个的概率为0.3,且P(A)+P(B)=0.5,则A,B至少有一个不发生的概率为0.9.解:由题意可得P(AB+AB)=0.3,即0.3=P(AB)+P(AB)=P(A)-P(AB)+P(B)-P(AB)=0.5-2P(AB),所以P(AB)=0.1,P(A∪B)=P(AB)=1-P(AB)=0.9.2.设随机变量X服从泊松分布,且P(X≤1)=4P(X=2),则P(X=3)=1-e^(-6)。

解:由P(X≤1)=P(X=0)+P(X=1)=e^(-λ)+λe^(-λ),P(X=2)=λ^2e^(-λ)/2,且P(X≤1)=4P(X=2),可得λ=1,因此P(X=3)=λ^3e^(-λ)/3!=1-e^(-6)。

3.设随机变量X在区间(0,2)上服从均匀分布,则随机变量Y=X在区间(0,4)内的概率密度为f_Y(y)=1/2,0<y<2;f_Y(y)=1,2<y<4;其它为0.解:设Y的分布函数为F_Y(y),X的分布函数为F_X(x),密度为f_X(x),则F_Y(y)=P(Y≤y)=P(X≤y)=P(-y≤X≤y)=F_X(y)-F_X(-y)。

因为X~U(0,2),所以F_X(-y)=0,即F_Y(y)=F_X(y)。

又因为f_Y(y)=F_Y'(y)=f_X(y),所以f_Y(y)=1/2,0<y<2;f_Y(y)=1,2<y<4;其它为0.另解:在(0,2)上函数y=x严格单调,反函数为h(y)=y,所以f_Y(y)=f_X(y)/h'(y)=f_X(y)/2y=1/2,0<y<2;f_Y(y)=f_X(y)/h'(y)=f_X(y)/2y=1,2<y<4;其它为0.4.设随机变量X,Y相互独立,且均服从参数为λ的指数分布,P(X>1)=e^(-2),则λ=2,P{min(X,Y)≤1}=1-e^(-2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论与数理统计测试题
一、填空题(每小题3分,共15分)
1.将3个小球随机地放到3个盒子中去,每个盒子都有1个小球的概率为__________. 2.设A ,B 是两事件,()1/4,(|)1/3P A P B A ==,则()P AB =__________.
3.掷两颗骰子,已知两颗骰子点数之和是5,则其中有一颗是1点的概率是__________.
4.设随机变量X 的分布函数为0,1()ln ,11,x F x x x e x e <⎧⎪
=≤<⎨⎪≥⎩
,则X 的概率密度为__________.
5.设总体X~U[0,1],123,,X X X 是其一个样本,则123{max(,,)1/2}P X X X <=__________. 二、单项选择题(每小题3分,共15分)
1.设两事件A 与B 互不相容,且P(A)>0,P(B)>0,则( )正确. (A )A B 与互不相容; (B )()()()P AB P A P B =; (C )()()()P AB P A P B =; (D )()().P A B P A -=
2.一种零件的加工由两道工序完成,第一道工序、第二道工序的废品率分别为p ,q ,设两道工序的工作是独立的,则该零件的合格品率是 ( )
(A )1p q --;(B) 1pq -; (C) 1p q pq --+;(D) (1)(1)p q -+-. 3.设~(),X t n 则2
X 服从 ( )分布 (A)
2()n χ; (B )(1,)F n ; (C )(,1)F n ; (D )(1,1)F n -.
4.设随机变量X 与Y 的协方差(,)0,Cov X Y =则下列结论正确的是 ( ) (A) X 与Y 独立; (B )()()()D X Y D X D Y +=+; (C )()()()D X Y D X D Y -=-; (D) ()()()D XY D X D Y =
5.设12,,
,n X X X 为来自正态总体2
(,)N μσ的一个样本,2
21
1,(())1n
i i X S X X n ==--∑分别为样本均值和样本方差,则下面结论中不正确的是 ( ) (A)2
~(,
);X N n
σμ(B)22();E S σ=(C)22();1
n
E S n σ=
- (D)222(1)/~(1).n S n σχ--
三、解答题(6个小题,共60分) 1.(10分)设一仓库中有10箱同样规格产品,其中由甲、乙、丙三厂生产的分别为5箱、3箱、2箱,三厂产品的废品率依次为0.1、0.2、0.3,从这10箱产品中任取一箱,再从该箱中任取一件产品.(1)求取到的产品为废品的概率;(2)若已知取到的产品为废品,求该废品是由甲厂生产的概率. 2.(10分)对一批次品率为0.1的产品进行重复抽样检查,现抽取3件产品,以X 表示抽取的3件产品中次品的件数,试求(1)X 的分布律;(2)至少有一件是次品的概率. 3.(12分)设连续型随机变量X 的概率密度为sin ,0()0
,a x x f x π
<<⎧=⎨⎩,
其它求:(1)系数a ; (2) 分布函数();(3){/4/2}F x P X ππ<<. 4.(8分)设二维随机变量(,)X Y 的分布律为
求X 与Y 的协方差Cov (X ,Y )及P{X +Y ≥1}. 5.(10分)设随机变量(X,Y)的概率密度为
6,01
(,)0,y y x f x y <<<⎧=⎨

其它 (1)试求关于X 及Y 的边缘概率密度;(2)判断X 与Y 是否相互独立,并说明理由.
6.(10分)设总体X 的概率密度为(1),01
(;)0
,x x f x θθθ⎧+<<=⎨⎩其它,其中(1)θθ>-是未知
参数,12,,
,n X X X 是X 的样本,求参数θ 的矩估计量与最大似然估计量.
四、证明题(2个小题,共10分)
1. (5分)设随机变量X ~N (0,1),证明随机变量(0)Y X σμσ=+>~2
(,)N μσ.
2.(5分)设4321,,,X X X X 是来自总体N(μ,2
σ)的样本,证明2212342
()()2X X X X Y σ
-+-= 服从2
χ分布,并写出自由度.
一、填空题(每小题3分,共15分) 1.2/9;2.1/12;3.1/2;4. 1/,1()0,x x e
f x <<⎧=⎨
⎩其它
;5.1/8.
二、单项选择题(每小题3分,共15分)1.(D )2. (C);3.(B );4.(B );5. (C). 三、解答题(6个小题,共60分)
1.(10分)解: 123,,A A A 分别表示取得产品是甲、乙、丙厂生产的,B 表示取出的产品为废品,
P(A 1)=0.5,P(A 2)=0.3,P(A 3)=0.2,P(B|A 1)=0.1,P(B|A 2)=0.2,P(B|A 3)=0.3 (3)

(1) P(B)=P(A 1)P(B|A 1)+P(A 2)P(B|A 2)+P(A 3)P(B|A 3) (5)

=0.5⨯0.1+0.3⨯0.2+0.2⨯0.3=0.17 (7)

(2)111()(|)0.50.15
(|)0.29()0.1717
P A P B A P A B P B ⨯=
=== (1)
0分
2.(10分)解:
(1) X ~b(3,0.1), 33{}0.10.9(0,1,2,3)k k k P X k C k -=== (3)

………
7分
(2)P{X ≥1}=1

P{X=0}=0.271 ………10分 3.(12分)解:
(1)0
1
sin 1;2
a xdx a π
=⇒=

………3分
(2)()()x
F x f t dt -∞
=⎰
(6)

00,01
sin ,02
x x tdt x x ππ≤⎧⎪⎪
=<≤⎨⎪
>⎪⎩⎰1
,0
,01cos ,02x x x x ππ≤⎧⎪-⎪=<≤⎨
⎪>⎪⎩1, ………10分
241(3){/4/2}sin 2
4P X xdx π
πππ<<==⎰ (12)

4.(8分)解: E (X )=0.5,E (Y )=0.3,E (XY )=0.1 ………4分
Cov (X ,Y )=E (XY )-E (X )E (Y )=-0.05 (6)

P{X +Y ≥1}=0.2+0.4+0.1=0.7 ………8分
5.(10分)解: (1)()(,)X f x f x y dy ∞
-∞
=

06,010
,x
ydy x ⎧<<⎪=⎨⎪⎩⎰其它23,01
0,x x ⎧<<=⎨
⎩其它 ………4分 ()(,)Y f y f x y dx ∞
-∞
=⎰
16,010
,y ydx y ⎧<<⎪
=⎨⎪⎩⎰其它6(1),01
0,y y y -<<⎧=⎨
⎩其它 ………8分 (2)X 与Y 不相互独立,因为(,)()()X Y f x y f x f y ≠ ………10分 6.(10分)解 (1)矩估计量
1
10
1
()(1)2
E X x x dx θθμθθ+==⋅+=
+⎰ ………3分 1
1121μθμ-⇒=
-12ˆ1
X X θ
-⇒=- ………5分 (2) 最大似然估计量 对于给定样本值12,,
,,n x x x 似然函数为
1
1
()(;)(1)n
n
i i i i L f x x θθθθ====+∏∏12
(1)(),01n n i x x x x θθ=+<< ………7分
1()ln(1)ln n
i i lnL n x θθθ==++∑,1
()ln 01n
i i d n
lnL x d θθθ==+=+∑ ………8分
1
1
ln ˆln n
i
i n
i
i n x x
θ
==+⇒=-∑∑,最大似然估计量为1
1
ln ˆln n
i
i n
i
i n X X
θ
==+=-∑∑ ………10分
四、证明题(2个小题,共10分) 1.证明 :X
的概率密度为22
(),x X f x -
=
………1分
函数,0,(,)y x y y σμσ'=+=>∈-∞∞,1
(),(),y x h y h y μ
σσ
-'=
==
………3分
22
()22()[()]|()|~(,).y u Y X f y f h y h y Y N σμσ--
'==
⇒ ………5分
2
.证明:2
12~(0,2)~(0,1),X X N N σ-⇒
~(0,1),N ………2分 两者独立 ………4分
因此 222
12342
()()~(2)2X X X X Y χσ
-+-= ………5分。

相关文档
最新文档