(完整版)武汉大学版仪器分析知识点总结(适用考中科院的同学)

合集下载

(完整版)仪器分析知识点整理..

(完整版)仪器分析知识点整理..

(完整版)仪器分析知识点整理..教学内容绪论分子光谱法:UV-VIS、IR、F原子光谱法:AAS电化学分析法:电位分析法、电位滴定色谱分析法:GC、HPLC质谱分析法:MS、NRS第一章绪论⒈经典分析方法与仪器分析方法有何不同?经典分析方法:是利用化学反应及其计量关系,由某已知量求待测物量,一般用于常量分析,为化学分析法。

仪器分析方法:是利用精密仪器测量物质的某些物理或物理化学性质以确定其化学组成、含量及化学结构的一类分析方法,用于微量或痕量分析,又称为物理或物理化学分析法。

化学分析法是仪器分析方法的基础,仪器分析方法离不开必要的化学分析步骤,二者相辅相成。

⒉仪器的主要性能指标的定义1、精密度(重现性):数次平行测定结果的相互一致性的程度,一般用相对标准偏差表示(RSD%),精密度表征测定过程中随机误差的大小。

2、灵敏度:仪器在稳定条件下对被测量物微小变化的响应,也即仪器的输出量与输入量之比。

3、检出限(检出下限):在适当置信概率下仪器能检测出的被检测组分的最小量或最低浓度。

4、线性范围:仪器的检测信号与被测物质浓度或质量成线性关系的范围。

5、选择性:对单组分分析仪器而言,指仪器区分待测组分与非待测组分的能力。

⒊简述三种定量分析方法的特点和应用要求一、工作曲线法(标准曲线法、外标法)特点:直观、准确、可部分扣除偶然误差。

需要标准对照和扣空白应用要求:试样的浓度或含量范围应在工作曲线的线性范围内,绘制工作曲线的条件应与试样的条件尽量保持一致。

二、标准加入法(添加法、增量法)特点:由于测定中非待测组分组成变化不大,可消除基体效应带来的影响应用要求:适用于待测组分浓度不为零,仪器输出信号与待测组分浓度符合线性关系的情况三、内标法特点:可扣除样品处理过程中的误差应用要求:内标物与待测组分的物理及化学性质相近、浓度相近,在相同检测条件下,响应相近,内标物既不干扰待测组分,又不被其他杂质干扰第2章光谱分析法引论习题1、吸收光谱和发射光谱的电子能动级跃迁的关系吸收光谱:当物质所吸收的电磁辐射能与该物质的原子核、原子或分子的两个能级间跃迁所需要的能量满足ΔE=hv的关系时,将产生吸收光谱。

仪器分析 知识点总结

仪器分析 知识点总结

仪器分析知识点总结一、基本原理1. 仪器分析的基本原理仪器分析是通过利用物理、化学、生物等现代科学技术的原理,将样品中所含的各种化学成分,或隐性特征转化为测定结果的工作过程。

其基本原理是将样品与仪器设备相结合,通过检测样品的光学、电学、热学、声学等性质,从而分析出样品中所含的成分、结构和性质。

2. 仪器分析的应用范围仪器分析广泛应用于生产、科研、医疗、环保、食品安全等领域。

在食品安全领域,通过仪器分析可以检测食品中的化学污染物、毒素、添加剂等,确保食品安全。

在医疗领域,可以使用仪器分析对生物样品进行分析,诊断疾病。

在环保领域,可以利用仪器分析监测环境中的污染物含量,保护环境。

二、常见的仪器设备1. 红外光谱仪红外光谱仪是一种分析化学仪器,主要用于分析样品的结构和成分。

其原理是通过测量样品对红外辐射的吸收情况,从而对样品进行分析。

红外光谱仪可以用于有机物、无机物、生物大分子等样品的分析,广泛应用于化学、医学、生物等领域。

2. 质谱仪质谱仪是一种高灵敏度、高分辨率的分析仪器,可以用于分析样品中的各种化合物和元素。

其原理是通过对样品离子化、分子裂解和质谱分析,从而获得样品的成分和结构信息。

质谱仪广泛应用于化学、生物、环境等领域,可以用于检测样品中的有机物、无机物、生物大分子等。

3. 气相色谱仪气相色谱仪是一种用于分离和分析样品中化合物的仪器设备。

其原理是通过气相色谱柱对样品中的化合物进行分离,再通过检测器对分离后的化合物进行检测。

气相色谱仪可以用于分析样品中的有机物、小分子有机化合物、环境中的污染物等,是化学、环境等领域中常用的仪器设备。

4. 离子色谱仪离子色谱仪是一种用于离子分析的仪器设备,主要用于分析水样中的离子成分和浓度。

其原理是通过离子交换柱对水样中的离子进行分离,再通过检测器对分离后的离子进行检测。

离子色谱仪广泛应用于环境、食品安全、医疗等领域,可以对水样中的无机离子、有机离子进行分析。

三、样品处理技术1. 样品前处理样品前处理是仪器分析中一个重要的环节,其目的是提高仪器分析的准确度和可靠性。

仪器分析考试知识点总结

仪器分析考试知识点总结

仪器分析考试知识点总结一、仪器分析的基本概念1. 仪器分析的定义和概念仪器分析是利用各种物理、化学、光学、电子等原理和方法,用各种仪器和设备对化学物质进行检测和分析的过程,以发现物质的性质、结构、组成和含量等信息。

2. 仪器分析的分类仪器分析可以分为物理分析、化学分析和光谱分析等不同的类别,不同的分析方法适用于不同类型的化学物质。

3. 仪器分析的原理仪器分析的原理主要包括化学反应原理、光学原理、电子学原理、物理原理等,不同的仪器在分析过程中会运用不同的原理。

二、基本仪器原理和基本技术1. 常用电子仪器的原理和技术常见的电子仪器如电子天平、电位计、电解质浓度计、电导率计等都是基于电子原理和技术进行工作的。

学习者需要了解这些仪器的原理和操作方法。

2. 常用光学仪器的原理和技术常见的光学仪器如分光光度计、荧光光度计、紫外-可见分光光度计等都是基于光学原理和技术进行工作的。

学习者需要了解这些仪器的原理和操作方法。

3. 常用物理仪器的原理和技术常见的物理仪器如质谱仪、核磁共振仪、X射线衍射仪等都是基于物理原理和技术进行工作的。

学习者需要了解这些仪器的原理和操作方法。

三、仪器分析的基本操作1. 样品的准备样品的准备是仪器分析的第一步,学习者需要学会如何准备不同类型的样品,包括液体样品、固体样品和气体样品等。

2. 仪器的调试仪器的调试是仪器分析的关键步骤,学习者需要学会如何合理地调试仪器,以保证分析的准确性和可靠性。

3. 数据的处理仪器分析得到的数据需要进行合理的处理和分析,学习者需要学会如何处理数据和制作数据报告。

四、仪器分析的常见问题和解决方法1. 仪器的故障和维修仪器在使用过程中可能会出现各种故障,学习者需要学会如何及时发现和解决这些故障。

2. 数据的异常和处理方法在数据分析过程中,可能会出现异常数据,学习者需要学会如何判断异常数据并进行合理的处理。

五、仪器分析的应用1. 仪器分析在化学、医药、环境和食品等领域的应用仪器分析可广泛应用于各种领域,包括化学、医药、环境和食品等。

武大仪器分析知识点总结考研,期末复习

武大仪器分析知识点总结考研,期末复习

第一部分:AES,AAS,AFSAES原子发射光谱法是根据待测元素的激发态原子所辐射的特征谱线的波长和强度,对元素进行定性和定量测定的分析方法。

特点:1.灵敏度和准确度较高2.选择性好,分析速度快3.试样用量少,测定元素范围广4.局限性(1)样品的组成对分析结果的影响比较显著。

因此,进行定量分析时,常常需要配制一套与试样组成相仿的标准样品,这就限制了该分析方法的灵敏度、准确度和分析速度等的提高。

(2)发射光谱法,一般只用于元素分析,而不能用来确定元素在样品中存在的化合物状态,更不能用来测定有机化合物的基团;对一些非金属,如惰性气体、卤素等元素几乎无法分析。

(3)仪器设备比较复杂、昂贵。

术语:自吸自蚀•击穿电压:使电极间击穿而发生自持放电的最小电压。

•自持放电:电极间的气体被击穿后,即使没有外界的电离作用,仍能继续保持电离,使放电持续。

•燃烧电压:自持放电发生后,为了维持放电所必需的电压.由激发态直接跃迁至基态所辐射的谱线称为共振线。

由较低级的激发态(第一激发态)直接跃迁至基态的谱线称为第一共振线,一般也是元素的最灵敏线。

当该元素在被测物质里降低到一定含量时,出现的最后一条谱线,这是最后线,也是最灵敏线。

用来测量该元素的谱线称分析线。

仪器:光源的作用: 蒸发、解离、原子化、激发、跃迁。

光源的影响:检出限、精密度和准确度。

光源的类型:直流电弧交流电弧电火花电感耦合等离子体(ICP)光源蒸发温度激发温度/K 放电稳定性应用范围直流电弧高4000~7000 较差定性分析,矿物、纯物质、难挥发元素的定量分析交流电弧中4000~7000 较好试样中低含量组分的定量分析火花低瞬间10000 好金属与合金、难激发元素的定量分析ICP 很高6000~8000 最好溶液的定量分析ICP原理当高频发生器接通电源后,高频电流I通过感应线圈产生交变磁场(绿色)。

开始时,管内为Ar气,不导电,需要用高压电火花触发,使气体电离后,在高频交流电场的作用下,带电粒子高速运动,碰撞,形成“雪崩"式放电,产生等离子体气流。

(完整版)仪器分析重点知识点整理

(完整版)仪器分析重点知识点整理

仪器剖析要点知识点整理一,名词解说。

汲取光谱:指物质对相应辐射能的选择性汲取而产生的光谱吸光度( A):是指光芒经过溶液或某一物质前的入射光强度与该光芒经过溶液或物质后的透射光强度比值的以10 为底的对数A=abc =lg( I0/It )透光率 (T):透射光强度与入射光强度之比T=I0/It摩尔吸光系数 (ε ):物质对某波长的光的汲取能力的量度,(如浓度 c 以摩尔浓度(mol/L) 表示则 A=ε bc)物理意义:溶液浓度为1mol/L, 液层厚度为1cm 时的吸光度百分吸光系数(E1cm1%):物质对某波长的光的汲取能力的量度,(如浓度 c 以质量百分浓度(g/100ml), 则 A=E1cm1%bc)物理意义:溶液浓度为1g/100ml, 液层厚度为1cm 时的吸光度发色团:有机化合物分子构造中含有π→π * 或 n→π * 跃迁的基团,能在紫外可见光范围内产生汲取助色团:含有非键电子的杂原子饱和基团,自己不可以汲取波长大于200nm 的辐射,但与发色团或饱和烃相连时,能使该发色团或饱和烃的汲取峰向长波挪动,并使汲取强度增添的基团红移(长移):由代替基或溶剂效应等惹起的汲取峰向长波长方向挪动的现象蓝移(短移):由代替基或溶剂效应等惹起的汲取峰向短波长方向挪动的现象浓色效应(添色效应 ):使化合物汲取强度增添的效应浅色效应(减色效应):使化合物汲取强度减弱的效应汲取带:紫外 -可见光谱为带状光谱,故将紫外-可见光谱中汲取峰称为汲取带R 带: Radikal(基团 ) ,是由n →π * 跃迁惹起的汲取带K 带: Konjugation( 共轭作用 ),是由共轭双键中π→π* 跃迁惹起的汲取带B 带: benzenoid( 苯的 ),是由苯等芬芳族化合物的骨架伸缩振动与苯环状共轭系统叠加的π→π * 跃迁惹起的汲取带,芬芳族化合物特点汲取带E 带:也是芬芳族化合物特点汲取带,分为E1、E2紫外汲取曲线(紫外汲取光谱):最大汲取波长λmax:汲取曲线上的汲取峰所对应的波长最小汲取波长λmin: 汲取曲线上的汲取谷所对应的波长尾端汲取:汲取曲线上短波端只体现强汲取而不可峰形的部分试剂空白:指在同样条件下不过不加入试样溶液,而挨次加入各样试剂和溶液所获取的空白溶液试样空白:指在与显色同样条件下取同样量试样溶液,不过不加显色剂所制备的空白溶液溶剂空白 ;指在测定入射波长下,溶液中只有被测组分对光有汲取,而显色剂或其余组分对光没有汲取或有少量汲取,但所惹起的测定偏差在同意范围内,此时可用溶剂作为空白溶液荧光:物质分子汲取光子能量而被激发,而后从激发态的最低振动能级返回到基态时所发射出的光分子荧光:?荧光效率:激发态分子发射荧光的光子数与基态分子汲取激发光的光子数之比多普勒变宽:因为原子的无规则热运动而惹起的谱线变宽,用Δν D 表示谱线轮廓:原子光谱理论上产生线性光谱,汲取线应是很尖利的,但因为各种原由造成谱线拥有必定的宽度,必定的形状,即谱线轮廓半宽度(Δν):是指峰高一半( K0/2)时所对应的频次范围峰值汲取系数:汲取线中心频次所对应的峰值汲取系数?共振汲取线:原子的最外层电子从基态跃到第一激发态所产生的汲取谱线,最敏捷的谱线内标法:选择样品中不含有的纯物质作为比较物质(内标)加入待测样品溶液中,以待测组分和内标物的响应信号对照,测定待测组分含量的方法外标法:用待测组分的纯品作标准品,在同样条件下以标准品和样品中待测组分的响应信号对比较进行定量的方法背景扰乱:主假如原子化过程中所产生的连续光谱扰乱,前方光谱扰乱中已详尽介绍,它主要包含分子汲取、光的散射及折射等,是光谱扰乱的主要原由物理扰乱:指试样在转移、蒸发和原子化过程中,因为试样任何物理特征(如密度、粘度、表面张力 )的变化而惹起的原子汲取强度降落的效应光谱扰乱:因为剖析元素的汲取线与其余汲取线或辐射不可以完整分别所惹起的扰乱原子汲取光谱:?保护剂:作用于与被测元素生成更稳固的配合物,防备被测元素与扰乱组分反响开释剂:作用于与扰乱组分形成更稳固或更难发挥的化合物,以使被测元素开释出来红外线 :波长为 0.76-500um 的电磁波红外光谱:又称分子振动转动光谱,属分子汲取光谱。

仪器分析知识点复习汇总

仪器分析知识点复习汇总

仪器分析知识点复习汇总研究必备,欢迎下载。

第一章:绪论1.灵敏度是指被测物质单位浓度或单位质量的变化引起响应信号值变化的程度。

检出限是一定置信水平下检出分析物或组分的最小量或最小浓度。

2.检出限指恰能鉴别的响应信号至少应等于检测器噪声信号的3倍。

3.根据表里给的数据,标准曲线方程为y=5.7554x+0.1267,相关系数为0.9716.第二章:光学分析法导论1.原子光谱是由原子外层或内层电子能级的变化产生的,表现形式为线光谱。

分子光谱是由分子中电子能级、振动和转动能级的变化产生的,表现为带光谱。

吸收光谱是当电磁辐射通过固体、液体或气体时,具一定频率(能量)的辐射将能量转移给处于基态的原子、分子或离子,并跃迁至高能态,从而使这些辐射被选择性地吸收。

发射光谱是处于激发态的物质将多余能量释放回到基态,若多余能量以光子形式释放,产生电磁辐射。

带光谱除电子能级跃迁外,还产生分子振动和转动能级变化,形成一个或数个密集的谱线组,即为谱带。

线光谱是物质在高温下解离为气态原子或离子,当其受外界能量激发时,将发射出各自的线状光谱,其谱线的宽度约为10-3nm,称为自然宽度。

2.UV-Vis和IR属于带状光谱,AES、AAS和AFS属于线性状光谱。

第三章:紫外-可见吸收光谱法1.朗伯-比尔定律的物理意义是样品溶液中吸收光的强度与样品浓度成正比。

透光度是指样品溶液透过光束后的光强度与入射光强度之比。

吸光度是指样品溶液吸收光束后的光强度与入射光强度之比。

两者之间的关系是吸光度等于-log(透光度)。

2.有色配合物的XXX吸收系数与入射光波长有关。

3.物质的紫外-可见吸收光谱的产生是由于原子核外层电子的跃迁。

4.最大能量跃迁需要最大能量,因此跃迁所需能量最大的是电子从基态到最高激发态的跃迁。

A.样品加入量和仪器响应的不确定性B.谱线重叠的问题C.光谱干扰的问题D.样品制备的不确定性改写:1.电感耦合等离子体光源由高频发射器、等离子炬管、雾化器等三部分组成,具有稳定性好、机体效应小、线性范围宽、检出限低、应用范围广、自吸效应小、准确度高等优点。

仪器分析第知识点总结

仪器分析第知识点总结

仪器分析第知识点总结1. 仪器分析的原理仪器分析是利用各种科学仪器对物质进行测试分析,从而确定物质的成分和性质。

仪器分析的原理是基于物质的特定性质和相应的测试方法。

常见的仪器分析原理包括光谱分析、色谱分析、质谱分析、电化学分析等。

2. 仪器分析的分类仪器分析可以按照分析方法、使用仪器、测定目的等多种方式进行分类。

根据不同的分类方式,仪器分析可以分为以下几类:(1)按分析方法分类:包括光谱分析、色谱分析、电化学分析、质谱分析、热分析等。

(2)按使用仪器分类:包括光谱仪、色谱仪、质谱仪、电化学仪器等。

(3)按测定目的分类:包括定性分析和定量分析。

3. 仪器分析的常用技术(1)光谱分析:是利用物质吸收、发射、散射等光谱特性进行定性和定量分析的方法,包括紫外-可见吸收光谱、红外光谱等。

(2)色谱分析:是一种以物质在固定相和流动相中分配系数不同而分离出组分的方法,包括气相色谱、液相色谱等。

(3)质谱分析:是利用物质在质谱仪中被离子化并在电场作用下产生碎片进行分析的方法,包括质子、电子和质子化电子撞击等。

(4)电化学分析:是利用电化学方法进行分析的技术,包括电导率法、电动势法、极谱法等。

4. 仪器分析的应用仪器分析技术已广泛应用于化学、生物、环境、药物等领域,为各行各业的科研和生产提供了重要支持。

例如,在环境保护领域,仪器分析可用于检测大气、水体和土壤中的污染物;在药物研发领域,仪器分析可用于药物的成分分析和质量控制。

综上所述,仪器分析作为一种重要的化学分析手段,具有广泛的应用前景。

通过对仪器分析的原理、分类、常用技术和应用进行系统总结,有助于加深对仪器分析技术的理解,对于提高仪器分析的能力和水平具有积极的意义。

仪器分析知识点总结

仪器分析知识点总结

仪器分析知识点总结一、仪器分析的基本原理1.1 光谱学光谱学是仪器分析中的一种常用分析方法,主要包括紫外-可见吸收光谱、红外光谱、荧光光谱、原子吸收光谱等。

它通过物质在特定波长的光线下产生的吸收、发射、散射等现象来分析物质的成分或性质。

在实际应用中,紫外-可见吸收光谱常用于药物、食品、环境样品的分析;红外光谱常用于有机物的鉴定;荧光光谱常用于生物分子的定量分析;原子吸收光谱常用于金属离子的测定等。

1.2 色谱法色谱法是利用物质在固定相和移动相之间的分配行为,通过在固定相上的运动速度差异分离物质的一种分析方法。

包括气相色谱、液相色谱、超高效液相色谱等。

这些方法在化学、食品、生物等领域广泛应用,如气相色谱常用于有机物的分析;液相色谱常用于生物样品的分离等。

1.3 电化学分析电化学分析是利用电化学原理进行分析的一种方法,主要包括电位法、伏安法、极谱法等。

它通过观察物质在电场中的行为来分析物质的成分或性质。

在实际应用中,电化学分析常用于金属腐蚀、电解制备等领域。

1.4 质谱法质谱法是利用物质在电场中的运动轨迹差异来对物质进行分析的一种方法,主要包括质谱仪、质子共振仪等。

在实际应用中,质谱法常用于有机物的结构鉴定、药物代谢产物的分析等。

1.5 分光光度法分光光度法是利用物质对光的吸收、散射、发射等现象来分析物质的成分或性质的一种方法。

它广泛应用于药物浓度测定、气体成分分析、紫外-可见吸收光谱仪、荧光光谱仪、原子吸收光谱仪等。

1.6 元素分析元素分析是对物质中元素成分进行定量或半定量分析的一种方法。

它主要包括原子吸收光谱、荧光光谱、质谱等。

在实际应用中,元素分析常用于环境、食品、医药等领域的元素含量分析。

1.7 样品前处理技术样品前处理技术是仪器分析中的一种重要过程,它通过溶解、萃取、浓缩、净化等手段对样品进行处理,使之适合于仪器分析。

在实际应用中,样品前处理技术广泛应用于环境样品、生物样品、食品样品等的准备。

仪器分析教程知识点总结

仪器分析教程知识点总结

仪器分析教程知识点总结一、光谱分析1. 原子吸收光谱法原子吸收光谱法是一种常用的分析技术,主要用于测定金属元素的含量。

其原理是通过测量金属元素的特征吸收线强度来定量分析样品中金属元素的含量。

在进行原子吸收光谱法实验时,需要掌握标准曲线法、内标法等定量分析方法,以及样品的预处理和稀释方法。

2. 紫外-可见吸收光谱法紫外-可见吸收光谱法是用于测定有机化合物和无机化合物的含量和结构的方法。

通过测量样品在紫外-可见光区域的吸收强度,可以获得样品的吸收光谱图,从而分析样品的成分和结构。

在进行紫外-可见吸收光谱法实验时,需要掌握分光光度计的操作方法、样品的制备和处理方法,以及吸收峰的解释和定量分析方法。

3. 红外光谱法红外光谱法是用于测定有机化合物和无机化合物的结构和功能基团的方法。

通过测量样品在红外光区域的吸收强度,可以获得样品的红外光谱图,从而分析样品的结构和功能基团。

在进行红外光谱法实验时,需要掌握红外光谱仪的操作方法、样品的制备和处理方法,以及吸收峰的解释和定量分析方法。

二、色谱分析1. 气相色谱法气相色谱法是用于分离和检测样品中有机化合物的方法。

通过样品分子在固定相和流动相之间的分配行为,可以实现样品分离和检测。

在进行气相色谱法实验时,需要掌握气相色谱仪的操作方法、固定相和流动相的选择和配制方法,以及色谱柱的使用和维护方法。

2. 液相色谱法液相色谱法是用于分离和检测样品中有机化合物和无机化合物的方法。

通过样品分子在固定相和流动相之间的分配行为,可以实现样品分离和检测。

在进行液相色谱法实验时,需要掌握液相色谱仪的操作方法、固定相和流动相的选择和配制方法,以及色谱柱的使用和维护方法。

三、质谱分析质谱分析是用于确定样品中有机分子和核素的相对分子质量和结构的方法。

通过测量样品离子的质荷比,可以获得样品的质谱图,从而确认样品的分子质量和结构。

在进行质谱分析实验时,需要掌握质谱仪的操作方法、样品的离子化和碎裂方法,以及质谱图的解释和质谱定性分析方法。

仪器分析重点知识点整理

仪器分析重点知识点整理

仪器分析重点知识点整理仪器分析是一门研究利用仪器设备进行物质化学成分和性质分析的学科。

在这门学科中,有一些重要的知识点需要掌握。

以下是仪器分析的重点知识点整理:1.仪器分析的基本原理和分类:-仪器分析的基本原理包括荧光原理、吸收光谱原理、质谱原理等。

-仪器分析可以分为光谱仪器、电离仪器、色谱仪器、电化学仪器等几个主要分类。

2.光谱仪器:-光谱仪器主要包括紫外可见分光光度计、红外光谱仪、核磁共振仪等。

-紫外可见分光光度计主要用于分析物质的吸收光谱特性,可以用于测量溶液的浓度。

-红外光谱仪用于分析物质的分子结构,可以鉴定有机物中的官能团。

-核磁共振仪用于分析物质的分子结构和分子运动,可以鉴定有机物中的官能团以及分析样品的纯度。

3.电离仪器:-电离仪器主要包括质谱仪、扫描电镜、电子显微镜等。

-质谱仪主要用于分析物质的分子结构和分子量,可以鉴定有机物的结构以及分析样品的纯度。

-扫描电镜和电子显微镜用于观察物质的形貌和微观结构,可以分析材料的成分和表面形态。

4.色谱仪器:-色谱仪器主要包括气相色谱仪、液相色谱仪等。

-气相色谱仪用于分析气体和挥发性液体中的成分,可以鉴定有机物中的化合物。

-液相色谱仪用于分析溶液和非挥发性样品中的成分,可以鉴定有机物中的化合物。

5.电化学仪器:-电化学仪器主要包括电位计、电导仪、极谱仪等。

-电位计用于测量电解质溶液中的电位,可以鉴定物质的氧化还原性质。

-电导仪用于测量电解质溶液的电导率,可以鉴定物质的导电性。

-极谱仪用于测量极微少量物质的浓度,可以鉴定有机物中的金属元素。

6.仪器分析中的质量控制:-仪器分析中需要进行质量控制,以保证分析结果的准确性和可靠性。

-质量控制包括标准品的制备与使用、内标法、质量控制图等方法。

-标准品的制备和使用是仪器分析的重要环节,可以通过标准曲线进行定量分析。

7.仪器分析的应用:-仪器分析广泛应用于科学研究、环境监测、药物检验、食品安全等领域。

-通过仪器分析可以分析物质的成分和性质,为科学研究和生产提供可靠的数据和依据。

仪器分析2知识点总结

仪器分析2知识点总结

仪器分析2知识点总结一、光谱分析1. 紫外-可见吸收光谱紫外-可见吸收光谱是一种常用的分析技术,主要用于测定物质的吸收光谱和浓度。

其原理是物质吸收外部光源的能量,发生电子跃迁,使得物质的吸光度发生变化。

通过测定物质在不同波长下的吸光度,可以得到物质的吸收光谱图,并且可以根据比尔定律得到物质的浓度。

2. 荧光光谱荧光光谱是物质在受到激发后发光的现象,通过测定物质的荧光光谱可以得到物质的发射光谱图。

荧光光谱分析技术广泛应用于生物荧光检测、荧光标记物的检测等领域。

3. 红外光谱红外光谱是一种用于测定物质中的化学键和官能团的分析技术。

其原理是物质吸收红外光能,使得分子振动、转动或伸缩,从而产生红外光谱。

红外光谱可以用于鉴别有机物和分析无机物,也可以用于药品的质量控制和环境监测。

4. 核磁共振光谱核磁共振光谱是一种用于测定物质中的核自旋和两相原子核对物质的分析技术。

核磁共振光谱主要分为质子核磁共振光谱和碳-13核磁共振光谱,可以用于测定物质的结构和性质。

二、色谱分析1. 气相色谱气相色谱是一种用于分离和测定气体和汽化物质的分析技术。

气相色谱分为气液色谱和气固色谱两种类型,广泛应用于食品、药品、环境和石油化工等领域。

2. 液相色谱液相色谱是一种用于分离和测定液态和溶解物质的分析技术。

其原理是将样品通过流动相和固定相相互作用,使得样品中的成分被分离出来,再通过检测器进行检测。

液相色谱广泛用于有机化合物、生物大分子和生化物质的分离和测定。

3. 薄层色谱薄层色谱是一种用于快速分离和测定混合物中成分的分析技术。

其原理是将样品加载到薄层板上,在固定相的作用下进行色谱分离,然后通过显色剂或紫外灯进行检测。

薄层色谱用于快速鉴定中草药、药物和食品等领域广泛。

4. 高效液相色谱高效液相色谱是一种用于分离和测定液态和溶解物质的高效液相色谱技术。

其原理是将样品加载到固定相上,并通过流动相进行推进,使样品中的成分被分离。

高效液相色谱广泛用于生化、制药和环境等领域。

仪器分析必考知识点总结

仪器分析必考知识点总结

仪器分析必考知识点总结一、仪器分析的基本原理1. 分析化学的基本概念分析化学是研究样品中微量和痕量成分的定性和定量分析方法的一门科学,它是化学的一个重要分支。

在分析化学中,需要使用各种仪器和方法对样品进行分析,以确定其中各种成分的含量和性质。

2. 仪器分析的基本原理仪器分析是指利用各种仪器设备进行样品分析的过程。

它主要包括对样品进行前处理、采集数据、数据处理和结果判定等步骤。

仪器分析的基本原理是根据样品的性质选择适当的仪器和方法,进行定性和定量分析。

3. 仪器分析的应用范围仪器分析主要应用于化学、生物、环境等领域,用于对材料成分、结构、性质等进行分析。

它在科学研究、工程技术和产品质量控制等方面具有广泛的应用。

二、仪器分析的常用方法和技术1. 光谱分析技术光谱分析技术是一种利用物质与电磁辐射的相互作用来分析物质的技术。

主要包括紫外可见吸收光谱、红外光谱、拉曼光谱、荧光光谱等。

2. 色谱分析技术色谱分析技术是一种利用物质在固定相和流动相中的相互作用来分离和分析物质的技术。

主要包括气相色谱、液相色谱、超高效液相色谱等。

3. 质谱分析技术质谱分析技术是一种利用物质的质荷比对物质进行分析的技术。

主要包括质谱仪、飞行时间质谱仪、离子阱质谱仪等。

4. 电化学分析技术电化学分析技术是一种利用物质与电化学电极的相互作用来分析物质的技术。

主要包括电化学电位法、极谱法、循环伏安法等。

5. 热分析技术热分析技术是一种利用物质的热学性质来分析物质的技术。

主要包括热重分析、差示扫描量热分析、热膨胀分析等。

6. 激光分析技术激光分析技术是一种利用激光与物质相互作用来分析物质的技术。

主要包括激光诱导击穿光谱、激光诱导荧光光谱等。

三、仪器分析的操作流程和注意事项1. 样品的准备样品的准备是仪器分析的第一步,它包括样品采集、处理和预处理等。

在进行样品准备时,需要注意避免样品的污染和损坏,保证样品的代表性和可比性。

2. 仪器的选择根据样品的性质和分析的要求,选择适当的仪器和分析方法进行分析。

大学仪器分析知识点总结

大学仪器分析知识点总结

大学仪器分析知识点总结在大学仪器分析课程中,学生将学习各种仪器和设备的原理、操作和应用,并且理解分析化学的基本原理和技术。

仪器分析是一门综合性的学科,涉及到化学、物理、电子技术、光学等多个学科。

本文将针对大学仪器分析课程中的知识点进行总结,包括仪器的分类、原理和应用,以及仪器分析中的常见技术和方法。

一、仪器分类及原理1. 光谱仪器光谱仪器是利用物质对光的吸收、发射或散射的性质来进行分析的仪器。

根据波长范围的不同,光谱仪器可以分为紫外-可见光谱仪、红外光谱仪、拉曼光谱仪、核磁共振光谱仪等。

紫外-可见光谱仪是利用物质对紫外、可见光的吸收来进行分析的仪器,适合于研究有机化合物的结构和测定溶液中各种化学物质的浓度。

红外光谱仪是利用物质对红外光的吸收来进行分析的仪器,适合于有机化合物的结构鉴定和无机物质的成分分析。

2. 质谱仪器质谱仪器是利用物质离子质量和相对丰度的比率来进行分析的仪器。

质谱仪器可以分为质子磁共振质谱仪、飞行时间质谱仪、四极杆质谱仪等。

质子磁共振质谱仪是利用物质在磁场中的核自旋共振现象来进行分析的仪器,适合于有机物质的结构鉴定和无机物质的成分分析。

飞行时间质谱仪是利用物质在电场中的离子飞行时间来进行分析的仪器,适合于分子的分子量测定和化合物的结构鉴定。

四极杆质谱仪是利用物质在四极杆中的离子稳定能力和穿透能力来进行分析的仪器,适合于化合物的结构鉴定和成分分析。

3. 色谱仪器色谱仪器是利用物质在固定相和流动相中的分配系数来进行分析的仪器。

色谱仪器可以分为气相色谱仪、液相色谱仪、超临界流体色谱仪等。

气相色谱仪是利用气体载气的气相分析技术,适合于石化产品、环境监测、化学品生产的在线检测等。

液相色谱仪是利用液体流动相的液相分析技术,适合于重金属、农药、植物激素等有机物的定量分析。

超临界流体色谱仪是利用超临界流体的分离原理进行色谱分析,适合于药物、酶、蛋白质、生物样品等的高效分析。

4. 电化学仪器电化学仪器是利用物质在电场中的氧化还原反应进行分析的仪器。

仪器分析章节知识点总结

仪器分析章节知识点总结

仪器分析章节知识点总结一、仪器分析的基本原理仪器分析是利用物理化学性质以及仪器设备进行样品的检测和分析。

它的基本原理包括样品的前处理、仪器的分析原理和数据处理等。

1. 样品的前处理样品的前处理是仪器分析的第一步,它包括样品的采集、预处理、前处理和标定等。

样品的采集包括样品的收集、保存、取样和保存等。

样品的预处理主要是对样品进行处理,使其适合于仪器分析。

前处理主要是对样品进行分离、富集和纯化等。

样品的标定主要是对仪器进行标定,使其保持准确的分析结果。

2. 仪器的分析原理仪器的分析原理是仪器分析的核心内容,它主要包括原子吸收光谱、荧光光谱、质谱、色谱、电化学分析等各种仪器的分析原理。

这些原理主要是根据样品的化学性质、光学性质、电化学性质等来进行分析,从而获得样品的基本信息。

3. 数据处理数据处理是仪器分析的最后一步,它主要包括数据采集、数据处理和数据解释等。

数据采集主要是对样品的分析数据进行采集,数据处理主要是对数据进行处理,数据解释主要是对数据的结论进行解释。

二、常用仪器设备的原理和应用仪器分析包括各种仪器设备的应用,主要包括原子吸收光谱仪、质谱仪、色谱仪、荧光光谱仪、拉曼光谱仪、红外光谱仪等。

1. 原子吸收光谱仪原子吸收光谱仪是一种用于检测金属元素含量的仪器设备,它主要是通过吸收光谱的方式来检测样品中的金属元素含量。

原子吸收光谱仪主要包括火焰原子吸收光谱仪、电感耦合等离子体发射光谱仪、原子荧光光谱仪等。

2. 质谱仪质谱仪是一种用于检测样品中有机物质含量的仪器设备,它主要是通过样品的质谱图谱来进行分析。

质谱仪主要包括质子共振质谱仪、气相质谱仪、液相质谱仪等。

3. 色谱仪色谱仪是一种用于检测样品中化合物含量的仪器设备,它主要是通过样品的色谱图谱来进行分析。

色谱仪主要包括气相色谱仪、液相色谱仪等。

4. 荧光光谱仪荧光光谱仪是一种用于检测样品中发光物质含量的仪器设备,它主要是通过样品的荧光光谱图谱来进行分析。

仪器分析课程知识点总结

仪器分析课程知识点总结

仪器分析课程知识点总结一、仪器分析的基本原理1. 仪器分析的概念和分类仪器分析是指利用各种仪器设备对化学物质进行分析的方法。

其主要分类包括光谱分析、色谱分析、电化学分析、质谱分析、热分析等。

2. 仪器分析的基本原理仪器分析的基本原理包括光谱原理、色谱原理、电化学原理、质谱原理、热分析原理等。

其中,光谱原理是利用物质与光的相互作用来进行分析,色谱原理是利用色谱柱对化合物进行分离和检测,电化学原理是利用电化学方法进行分析,质谱原理是利用质谱仪对化合物进行分析,热分析原理是利用热量变化对样品进行分析。

3. 仪器分析的基本步骤仪器分析的基本步骤包括样品的前处理、仪器的选择和使用、数据的处理和结果的解释。

其中,样品的前处理包括样品的制备、提取和预处理,仪器的选择和使用包括仪器的操作和参数的设置,数据的处理包括数据的采集和处理,结果的解释包括对分析结果的解释和判断。

二、光谱分析1. 紫外-可见光谱分析紫外-可见光谱分析是利用化合物对紫外和可见光的吸收特性进行分析的方法。

其原理是根据分子的电子跃迁能级差异来对化合物进行定性和定量分析。

2. 荧光光谱分析荧光光谱分析是利用化合物发射荧光信号的特性进行分析的方法。

其原理是激发分子到高能级态后发射特定波长的光信号,利用这一特性对化合物进行分析。

3. 红外光谱分析红外光谱分析是利用化合物对红外光的吸收特性进行分析的方法。

其原理是根据分子的振动和转动引起的电偶极矩变化来对化合物进行定性和定量分析。

4. 核磁共振光谱分析核磁共振光谱分析是利用化合物对核磁共振信号的特性进行分析的方法。

其原理是根据核磁共振现象来对化合物进行定性和定量分析。

5. 质谱分析质谱分析是利用化合物对质谱仪的质荷比进行分析的方法。

其原理是根据化合物在质谱仪中的质荷比特性来对化合物进行定性和定量分析。

6. X射线光谱分析X射线光谱分析是利用化合物对X射线的衍射特性进行分析的方法。

其原理是根据化合物对X射线的衍射角度和强度来对化合物进行定性和定量分析。

(完整word版)武汉大学版仪器分析知识点总结(适用考中科院的同学)

(完整word版)武汉大学版仪器分析知识点总结(适用考中科院的同学)
第一部分:AES,AAS,AFS
AES 原子发射光谱法是根据待测元素的激发态原子所辐射的特征谱线的波长和强度,对元素
进行定性和定量测定的分析方法。
特点:
1.灵敏度和准确度较高
2.选择性好,分析速度快
3.试样用量少,测定元素范围广
4.局限性
(1)样品的组成对分析结果的影响比较显著。因此,进行定量分析时,常常需要配制一套
例如砷、锑、铋、锗、锡、铅、硒和碲等元素。 固体试样
(1). 试样直接插入进样 (2). 电弧和火花熔融法 (3). 电热蒸发进样 (4). 激光熔融法 分光仪棱镜和光栅 检测器:目视法,摄谱法,光电法 干扰:
光谱干扰: 在发射光谱中最重要的光谱干扰是背景干扰。带状光谱、连续光谱以及光学系统的
杂散光等,都会造成光谱的背景。 非光谱干扰:
交流电弧 中
火花

4000~7000 较差 4000~7000 较好 瞬间 10000 好
定性分析,矿物、纯物质、 难挥发元素的定量分析
试样中低含量组分的定量分 析
金属与合金、难激发元素的 定量分析
ICP

很高
6000~8000 最好
溶液的定量分析
ICP 原理 当高频发生器接通电源后,高频电流 I 通过感应线圈产生交变磁场(绿色)。 开始时,管内为 Ar 气,不导电,需要用高压电火花触发,使气体电离后,在高频交
➢ 阶跃线荧光 ➢ 正常阶跃荧光为被光照激发的原子,以非辐射形式去激发返回到较低能级,再以辐
射形式返回基态而发射的荧光。 ➢ 很显然,荧光波长大于激发线波长。非辐射形式为在原子化器中原子与其他粒子碰
撞的去激发过程。 ➢ 热助阶跃线荧光为被光照激发的原子,跃迁至中间能级,又发生热激发至高能级,

仪器分析重要知识点总结

仪器分析重要知识点总结

仪器分析重要知识点总结一、基本原理1. 仪器分析的基本原理是什么?仪器分析的基本原理是通过分析仪器对样品进行一系列物理化学性质的测定,然后通过数据处理和分析得出样品的成分或性质。

根据所测定的物理化学性质不同,仪器分析可以分为光谱分析、色谱分析、电化学分析、质谱分析、热分析等。

2. 仪器分析的特点是什么?仪器分析具有高灵敏度、高精度、高选择性、高分辨率等特点。

而且,仪器分析方法还可以实现自动化、高通量和在线分析,大大提高了分析的效率和准确性。

3. 仪器分析的应用领域有哪些?仪器分析的应用领域非常广泛,主要包括环境监测、食品安全检测、药物质量分析、生物医学研究、地质勘探、材料分析等。

4. 仪器分析的分类有哪些?仪器分析根据测定的物理化学性质不同,可以分为光谱分析、色谱分析、电化学分析、质谱分析、热分析等。

二、常见的分析仪器1. 分光光度计分光光度计是一种常用的光谱分析仪器,它可以测定物质在不同波长光照射下的吸光度或透射率,进而测定样品中所含的物质的浓度。

分光光度计的应用非常广泛,包括药物分析、环境监测、食品安全检测等领域。

2. 气相色谱仪气相色谱仪是一种色谱分析仪器,它通过气相色谱柱对气体混合物进行分离和检测,并且可以对分离后的物质进行定性和定量分析。

气相色谱仪在食品安全检测、环境监测、医药行业等领域得到广泛应用。

3. 液相色谱仪液相色谱仪是一种色谱分析仪器,它通过液相色谱柱对溶液混合物进行分离和检测,并且可以对分离后的物质进行定性和定量分析。

液相色谱仪在食品安全检测、环境监测、药物分析等方面有着重要的应用价值。

4. 质谱仪质谱仪是一种质谱分析仪器,它通过将分子在电离后的质荷比进行分析,可以对样品中的化合物进行定性和定量分析。

质谱仪在生物医学研究、环境监测、化学合成等方面有着广泛的应用。

5. 电化学分析仪电化学分析仪是一种电化学分析仪器,它通过测定电流、电压等电化学参数来分析样品的化学性质。

电化学分析仪在化学合成、药物质量分析、环境监测等方面得到广泛应用。

仪器分析学知识点总结

仪器分析学知识点总结

仪器分析学知识点总结仪器分析学是研究和应用分析仪器的原理、方法、技术和设备的学科。

在化学、生物、药学、环境科学、材料科学等领域中,仪器分析学起着不可替代的作用,其研究和应用对于提高实验分析的准确性、灵敏度和快速性具有重要意义。

仪器分析学的主要内容包括:仪器分析学的基本原理、仪器分析学的基本方法、现代仪器分析学技术、仪器分析学的应用等方面的内容。

下面就仪器分析学的相关知识点做一些总结:一、仪器分析学基本原理1. 仪器分析学的基本原理仪器分析学的基本原理是指仪器分析学所依据的一些基本理论或规律。

这些基本原理是仪器分析学的基础和起点,它包括了电化学原理、理论光谱学、质谱学基本原理、核磁共振原理等等。

这些原理是仪器分析学研究和应用的基础。

2. 电化学原理电化学原理是仪器分析学的重要基础之一,它主要包括电解质溶液的电导性、电解质在电场中的迁移速度、电解过程的动力学过程和电化学动力学过程等内容。

电化学原理在仪器分析学中有广泛的应用。

3. 理论光谱学理论光谱学是仪器分析学中的重要内容之一,它主要包括了光谱学的基础知识、光的吸收、发射和散射等。

理论光谱学是仪器分析学研究和应用的基础。

4. 质谱学基本原理质谱学基本原理包括了质谱仪的结构、工作原理、质谱仪的分辨能力和精确度等内容。

质谱学是一种非常重要的仪器分析学方法,广泛应用于各种领域。

5. 核磁共振原理核磁共振原理是指核磁共振现象的基本原理,它包括了核磁共振谱仪的结构、核磁共振现象的基本原理、核磁共振实验的原理等内容。

核磁共振原理是现代高分辨率核磁共振方法的基础。

二、仪器分析学基本方法1. 仪器分析学的基本方法仪器分析学的基本方法是指仪器分析学中常用的一些分析方法。

这些方法包括电化学法、分光光度法、火焰原子吸收光谱法、色谱法、质谱法、核磁共振法等。

这些方法在仪器分析学中有着广泛的应用。

2. 电化学法电化学法是指利用电化学原理对物质进行分析的一种方法。

常用的电化学方法包括电解法、极谱法、电化学发光法等。

仪器分析知识点总结各章

仪器分析知识点总结各章

仪器分析知识点总结各章第一章仪器分析的基本概念和原理1.1 仪器分析的定义仪器分析是利用仪器设备对样品进行检测、分析和测量,以获取样品中特定组分的含量、性质和结构等信息的一种分析方法。

1.2 仪器分析的分类仪器分析按照分析方法的不同可以分为物理分析、化学分析和生物分析三大类,其中每类又分为多个不同的分支。

1.3 仪器分析的基本原理仪器分析的基本原理是根据目标分析物的性质和特点,选用合适的分析仪器进行检测和分析。

常用的仪器分析原理包括光谱分析原理、色谱分析原理、质谱分析原理等。

第二章光谱分析2.1 光谱分析的基本概念光谱分析是利用样品对电磁波的吸收、散射、发射或者透射特性进行分析的方法,分析样品中的成分、结构和性质。

2.2 原子吸收光谱分析原子吸收光谱分析(AAS)是利用原子对特定波长的光的吸收特性来测定样品中金属元素的含量的分析方法。

原子吸收光谱分析的原理是利用吸收特性和比例计算出样品中目标元素的含量。

2.3 紫外可见光谱分析紫外可见光谱分析(UV-Vis)是利用样品对紫外和可见光的吸收特性进行分析的方法,常用于测定有机物和某些无机物的含量和结构。

2.4 荧光光谱分析荧光光谱分析是利用样品对激发光的发射特性进行分析的方法,荧光光谱常用于生物分析、环境分析和材料科学等领域。

第三章色谱分析3.1 色谱分析的基本概念色谱分析是利用色谱仪器对样品中的组分进行分离、检测和定量测定的方法,主要包括气相色谱分析、液相色谱分析和超临界流体色谱分析等。

3.2 气相色谱分析气相色谱分析(GC)是将样品分离为各个成分,再通过气相色谱柱进行分离和检测的方法,主要用于分析有机物、气体和挥发性物质。

3.3 液相色谱分析液相色谱分析(HPLC)是将样品分离为各个成分,再通过液相色谱柱进行分离和检测的方法,主要用于分析生物化学物、药物和小分子有机化合物等。

3.4 色谱联用技术色谱联用技术是将不同色谱方法和检测手段结合起来,以达到更高的分离能力和检测灵敏度,常见的色谱联用技术包括气相色谱-质谱联用(GC-MS)和液相色谱-质谱联用(LC-MS)等。

《仪器分析》知识点整理

《仪器分析》知识点整理

《仪器分析》知识点整理一、仪器分类1.按测量原理分类:光学仪器、电子仪器、热力学仪器等;2.按测量对象分类:物理性质测量仪器、化学性质测量仪器、生物性质测量仪器等;3.按测量方法分类:分光法仪器、电化学法仪器、色谱法仪器等。

二、分析方法1.光谱法:包括紫外可见光谱、红外光谱、原子吸收光谱等,用于物质的结构分析和定量测定;2.色谱法:包括气相色谱、液相色谱等,用于物质分离和定性定量分析;3.电化学法:包括电位滴定法、电解析法等,用于物质的电化学性质测定;4.波谱法:包括质谱、核磁共振等,用于物质的分子结构和成分的测定;5.色度法:用于物质颜色的测定。

三、仪器操作与调试1.仪器的安装:包括设备摆放、电源接线和设备连接等操作;2.仪器的调零:如光谱仪进行零点调整,使其读数归零,保证测量的准确性;3.分析曲线的绘制:通过构建标准曲线来进行定量分析,提高测量精度;4.仪器的正确使用:如熟练掌握仪器的各个功能键和参数设定方法,避免误操作;5.仪器的维护与保养:包括定期清洁、维修和更换零部件,延长仪器寿命。

四、仪器的应用领域1.化学分析:如水质分析、土壤分析、食品质量检测、药物分析等;2.聚合物材料:如塑料、合成树脂等材料的成分分析和性能表征;3.环境监测:包括大气污染、水质污染、土壤污染等环境问题的分析与监测;4.制药工业:用于药物质量控制和药物成分分析等;5.生命科学:如生物材料分析、基因测序、蛋白质组学研究等。

五、仪器的发展趋势1.近红外光谱技术的应用与发展;2.微纳技术和生物芯片技术的应用;3.便携式仪器设备的发展;4.互联网和大数据技术在仪器分析中的应用;5.仪器的自动化和智能化发展。

通过对以上知识点的整理,可以更好地理解《仪器分析》的基本概念、分类和应用领域,了解仪器的操作和调试方法,了解仪器分析领域的未来发展趋势。

同时,了解《仪器分析》的知识也有助于提高我们在实验室工作中的科学素养和操作技能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物或形成碳化物后难以原子化元素的分析灵敏度低。
①. 自然宽度ΔυN 它与原子发生能级间路迂时激发态原子的有限寿命有关。 一般情况下约相当于 10-4 Å
②. 多普勤(Doppler)宽度ΔυD 这是由原子在空间作无规热运动所引致的。故又称热变宽。
碰撞变宽:原子核蒸气压力愈大,谱线愈宽。 同种粒子碰撞——赫尔兹马克(Holtzmank)变宽, 异种粒子碰撞——称罗论兹(Lorentz)变宽。 场致变宽:在外界电场或磁场的作用下,引起原子核外层电子能级分裂而使谱线变宽现象称 为场致变宽。由于磁场作用引起谱线变宽,称为 Zeeman (塞曼)变宽。
例如砷、锑、铋、锗、锡、铅、硒和碲等元素。 固体试样
(1). 试样直接插入进样 (2). 电弧和火花熔融法 (3). 电热蒸发进样 (4). 激光熔融法 分光仪棱镜和光栅 检测器:目视法,摄谱法,光电法 干扰:
光谱干扰: 在发射光谱中最重要的光谱干扰是背景干扰。带状光谱、连续光谱以及光学系统的
杂散光等,都会造成光谱的背景。 非光谱干扰:
与试样组成相仿的标准样品,这就限制了该分析方法的灵敏度、准确度和分析速度等的提
高。
(2)发射光谱法,一般只用于元素分析,而不能用来确定元素在样品中存在的化合物状态,
更不能用来测定有机化合物的基团;对一些非金属,如惰性气体、卤素等元素几乎无法分
析。
(3)仪器设备比较复杂、昂贵。
术语:
自吸Biblioteka 自蚀• 击穿电压:使电极间击穿而发生自持放 电的最小电压。
交流电弧 中
火花

4000~7000 较差 4000~7000 较好 瞬间 10000 好
定性分析,矿物、纯物质、 难挥发元素的定量分析
试样中低含量组分的定量分 析
金属与合金、难激发元素的 定量分析
ICP
很高
6000~8000 最好
溶液的定量分析
ICP 原理 当高频发生器接通电源后,高频电流 I 通过感应线圈产生交变磁场(绿色)。 开始时,管内为 Ar 气,不导电,需要用高压电火花触发,使气体电离后,在高频交
到一定含量时,出现的最后一条谱线,这是最后线,也是最灵敏线。用来测量该元素的谱线
称分析线。
仪器:
光源的作用: 蒸发、解离、原子化、激发、 跃迁。
光源的影响:检出限、精密度和准确度。
光源的类型:
直流电弧
交流电弧
电火花
电感耦合等离子体(ICP)
光源
蒸发温度 激发温度/K 放电稳定性 应用范围
直流电弧 高
第一部分:AES,AAS,AFS
AES 原子发射光谱法是根据待测元素的激发态原子所辐射的特征谱线的波长和强度,对元素
进行定性和定量测定的分析方法。
特点:
1.灵敏度和准确度较高
2.选择性好,分析速度快
3.试样用量少,测定元素范围广
4.局限性
(1)样品的组成对分析结果的影响比较显著。因此,进行定量分析时,常常需要配制一套

自持放电:电极间的气体被击穿后,即使没有外界的电离作用,仍能继续保持电
离,使放电持续。

燃烧电压:自持放电发生后,为了维持放电所必需的电压。
由激发态直接跃迁至基态所辐射的谱线称为共振线。由较低级的激发态(第一激发态)直接
跃迁至基态的谱线称为第一共振线,一般也是元素的最灵敏线。当该元素在被测物质里降低
非光谱干扰主要来源于试样组成对谱线强度的影响,这种影响与试样在光源中的蒸 发和激发过程有关,亦被称为基体效应。 光源中未离解的分子所产生的带状光谱是传统光源背景的主要来源。
光源温度越低,未离解的分子就越多,背景就越强。 校准背景的基本原则是,谱线的表观强度 I1+b 减去背景强度 Ib。常用的校准背景的 方法有校准法和等效浓度法。 基体效应, 在实际工作中,常常向试样和标准样品中加入一些添加剂以减小基体效应,提高分析的准 确度,这种添加剂有时也被用来提高分析的灵敏度。 添加剂主要有光谱缓冲剂和光谱载体。 • 光谱缓冲剂:为了减少试样成分对弧焰温度的影响,使弧焰温度稳定,试样中加入 一种或几种辅助物质,用来抵偿试样组成变化的影响。
流电场的作用下,带电粒子高速运动,碰撞,形成“雪崩”式放电,产生等离子体气流。在 垂直于磁场方向将产生感应电流(涡电流,粉色),其电阻很小,电流很大(数百安),产生 高温。又将气体加热、电离,在管口形成稳定的等离子体焰炬。 ICP-AES 法特点 1.具有好的检出限。溶液光谱分析一般列素检出限都有很低。 2.ICP 稳定性好,精密度高,相对标准偏差约 1%。 3.基体效应小。 4.光谱背景小。 5.准确度高,相对误差为 1%,干扰少。 6.自吸效应小 进样: 溶液试样 气动雾化器 超声雾化器 超声雾化器:不连续的信号 气体试样可直接引入激发源进行分析。有些元素可以转变成其相应的挥发性化合物而采用气 体发生进样(如氢化物发生法)。
自吸变宽:光源空心阴极灯发射的共振线被灯内同种基态原子所吸收产生自吸现象。 ➢ 锐线光源:所发射谱线与原子化器中待测元素所吸收谱线中心频率(v0)一致,而发射 谱线半宽度(∆vE)远小于吸收谱线的半宽度(∆vA)。
仪器: ➢ 空心阴极灯(Hollow Cathode Lamp,HCL) ➢ 由待测元素的金属或合金制成空心阴极圈和钨或其他高熔点金属制成;阳极由金属 钨或金属钛制成。
在高压电场下, 阴极向正极高速飞溅放电, 与载气原子碰撞, 使之电离放出二次电子, 而使 场内正离子和电子增加以维持电流。载气离子在电场中大大加速, 获得足够的能量, 轰击阴 极表面时, 可将被测元素原子从晶格中轰击出来, 即谓溅射, 溅射出的原子大量聚集在空心 阴极内, 与其它粒子碰撞而被激发, 发射出相应元素的特征谱线-----共振谱线。
分析方法: 定性:铁光谱比较法,标准试样光谱比较法 半定量:常采用摄谱法中比较黑度法 定量:内标法 校准曲线法 标准加入法
AAS:原子吸收光谱法(AAS)是基于气态的基态原子外层电子对紫外光和可见光范围的相 对应原子共振辐射线的吸收强度来定量被测元素含量为基础的分析方法。 特点:
➢ 选择性好:谱线比原子发射少,谱线重叠概率小 。 ➢ 灵敏度高:适用于微量和痕量的金属与类金属元素定量分析。 ➢ 精密度(RSD%)高:一般都能控制在 5%左右。 ➢ 操作方便和快速: 无需显色反应。 ➢ 应用范围广。 ➢ 局限性:不适用于多元素混合物的定性分析;对于高熔点、形成氧化物、形成复合
相关文档
最新文档