刚 体 转 动

合集下载

第三章 刚体的转动

第三章   刚体的转动

M
o
r
F

M r F
m
力矩是矢量,M 的方向垂直于r和 F所决定的平面,其指向 用右手螺旋法则确定。
力矩的方向
2)力矩的单位、
牛· 米(N· m)
3)力矩的计算:
M 的大小、方向均与参考点的选择有关
M
m
M Fr sin
r
F

※在直角坐标系中,其表示式为 M r F ( xi yj zk ) ( Fx i Fy j Fz k )
例2 设质量为m,半径为R的细圆环和均匀圆盘分别绕通过各 自中心并与圆面垂直的轴转动,求圆环和圆盘的转动惯量.
解 (1)求质量为m,半径为R的圆环对中心轴的转动惯量.如图 (a)所示,在环上任取一质元,其质量为dm,该质元到转轴的距 离为R,则该质元对转轴的转动惯量为
dI R 2 dm
考虑到所有质元到转轴的距离均为R, 所以细圆环对中心轴的转动惯量为
dI x dm x dx
2 2
整个棒对中心轴的转 x dx ml 2 12
2
(2)转轴通过棒一端并与棒垂直时,整个棒对该轴的转动惯量为
1 2 I x dx ml 0 3
l 2
由此看出,同一均匀细棒,转轴位置不同,转动惯量不同.
刚体也是一个各质点之间无相对位置变化且质 量连续分布的质点系。
3.1 刚体定轴转动的描述
刚体的基本运动可以分为平动和转动,刚体 的各种复杂运动都可以看成是这两种运动的合成。
1.刚体的平动和定轴转动
平动
刚体的平动是指刚体在运动过 程中其中任意两点的连线始终保 持原来的方向(或者说,在运动 的各个时刻始终保持彼此平行)。 特点:其中各点在任意相同的时间内具有相同的位移和运动 轨迹,也具有相同的速度和加速度。因而刚体上任一点的运 动都可代表整个刚体的运动。 平动的刚体可看作质点。 刚体的转动比较复杂,我们只研究定轴转动。

大学物理第四章刚体转动

大学物理第四章刚体转动

进动和章动在自然界中实例
陀螺仪
地球极移
陀螺仪的工作原理即为进动现象。当 陀螺仪受到外力矩作用时,其自转轴 将绕某固定点作进动,通过测量进动 的角速度可以得知外力矩的大小和方 向。
地球极移是指地球自转轴在地球表面 上的移动现象,其产生原因与章动现 象类似。地球极移的周期约为18.6年 ,且极移的幅度会受到地球内部和外 部因素的影响。
天体运动
许多天体的运动都涉及到进动和章动 现象。例如,月球绕地球运动时,其 自转轴会发生进动,导致月球表面的 某些特征(如月海)在地球上观察时 会发生周期性的变化。同时,行星绕 太阳运动时也会发生章动现象,导致 行星的自转轴在空间中的指向发生变 化。
感谢观看
THANKS
02
刚体定轴转动动力学
转动惯量定义及计算
转动惯量定义
刚体绕定轴转动时,其惯性大小的量度称为转动惯量,用字母$J$表示。它是一个与刚体质量分布和转轴位置有 关的物理量。
转动惯量计算
对于形状规则的均质刚体,可以直接套用公式计算其转动惯量;对于形状不规则的刚体,则需要采用间接方法, 如分割法、填补法等,将其转化为规则形状进行计算。
刚体性质
刚体是一个理想模型,它在力的作用 下,只会发生平动和转动,不会发生 形变。
转动运动描述方式
01
02
03
定轴转动
平面平行运动
ห้องสมุดไป่ตู้
定点转动
物体绕一固定直线(轴)作转动。
物体上各点都绕同一固定直线作 不同半径的圆周运动,同时物体 又沿该固定直线作平动。
物体绕一固定点作转动。此时物 体上各点的运动轨迹都是绕该固 定点的圆周。
非惯性系下刚体转动描述方法
欧拉角描述法

刚体的转动

刚体的转动
2) 任一质点运动 ,, 均相同,但 v, a 不同;
32019/12/23
§4- 1 刚体的平动、转动和定轴转动 普通物理
二 匀变速转动公式 当刚体绕定轴转动的角加速度为恒量时,刚体做
匀变速转动 .
刚体匀变速转动与质点匀变速直线运动公式对比
地减速,经t=50 s后静止。
(1)求角加速度a 和飞轮从制动开始到静止所转过
的转数N;
(2)求制动开始后t=25s 时飞
0
轮的角速度 ;
(3)设飞轮的半径r=1m,求在 t=25s 时边缘上一点的速
度和加速度。
Oa an r
v
at
解 (1)设初角度为0方向如图所示,
广东技术师范学院
2019/12/23
25rad / s 78.5rad / s
广东技术师范学院
2019/12/23
§4- 1 刚体的平动、转动和定轴转动 普通物理
的方向与0相同 ;
(3)t=25s 时飞轮边缘上一点P 的速度。
由 v r v v r sin r sin 900
r 78.5m / s v 的方向垂直于 和 r 构成的平面,如
§4- 1 刚体的平动、转动和定轴转动 普通物理
量值为0=21500/60=50 rad/s,对于匀
变速转动,可以应用以角量表示的运动方程,在
t=50S 时刻 =0 ,代入方程=0+at 得
a 0 50 rad / s2
t
50
3.14 rad / s2
从开始制动到静止,飞轮的角位移 及转 数N 分别为
子的角加速度与时间成正比 . 问在这段时间内,转子转
过多少转?

刚体的转动

刚体的转动

质心的平动
刚体的转动
+
绕质心的转动
2/31
一、刚体转动的角量描述
角坐标 (t ) 角位移
ቤተ መጻሕፍቲ ባይዱ
z
(t )
(t t ) (t )
角速度
x
参考平面
d lim t 0 t dt
方向:
角加速度




参考轴
右手螺旋方向
d dt
J m r
j
2 j j
J r dm
M J
刚体定轴转动的角加速度与它所受的合外力矩成 正比 ,与刚体的转动惯量成反比.
刚体的转动 10/31
五、转动惯量
J m r , J r dm
2 j j 2 j
物理意义:转动惯性的量度.类似于平动的质量
转动惯性的计算方法 质量离散分布刚体的转动惯量
r O
m
刚体的转动
21/31
一根质量为m、长为l的均匀细杆,可在水平桌面上 绕通过其一端的竖直固定轴转动.已知细杆与桌面的 滑动摩擦系数为μ,求杆转动时受的摩擦力矩大小.
刚体的转动
22/31
有一质量为m半径为R的均匀圆形平板平放在水平桌面 上,平板与水平桌面的摩擦系数为μ,若平板绕通过其 中心且垂直板面的固定轴以角速度ω0开始旋转,它将 在旋转几圈后停止?
2m
⅓l
⅓l
O
0 2
2 3
l
0

m
m
刚体的转动
24/31
力的空间累积效应
力矩的空间累积效应
力的功,动能,动能定理.
力矩的功,转动动能,动能定理.

刚体的简单运动—刚体绕定轴的转动(理论力学)

刚体的简单运动—刚体绕定轴的转动(理论力学)

主轴转动两圈后停止 0
2 02 2
0 10π2 2 4π
负号表示 的转向与主轴转动方向相反,故为减速运动。
小结
1.刚体绕定轴转动 刚体运动时,有上或其扩展部分有两点保持不动,这种运动
为刚体的绕定轴转动。通过两点的直线称为转轴,不在转轴上 的各点都在垂直于转轴的平面内做圆周运动。
2.角速度
三、定轴转动的角速度和角加速度
1、角速度
lim
Δt 0
Δ Δt
d
dt
代数量 正负与转角相同
若已知转动方程 f (t)
f (t)
刚体转动的快慢和方向 单位为 rad/s
2、角加速度
设当t 时刻为 , t +△t 时刻为 +△
角加速度
lim
t 0
t
d
dt
d2
dt2
f (t)
表征角速度变化的快慢 单位:rad/s2 (代数量)
§6-2 刚体绕定轴的转动
一、刚体绕定轴转动
刚体运动时,其上或其扩展部分有两点保持不动, 这种运动为刚体的绕定轴转动。通过两点的直线称为 转轴,不在转轴上的各点都在垂直于转轴的平面内做 圆周运动。
二、转角和转动方程
____ 转角,单位弧度(rad)
=f(t)
转动方程
方向规定: 从Z轴正向看
逆时针为正
f (t) 刚体转动的快慢和方向 单位为 rad/s (代数量)
3.角加速度
f (t)
如果与同号,则转动是加速的;如果与异号,则转动是减
速的。

如果与同号,则转动是加速的; 如果与异号,则转动是减速的。
与同号,转动加速
与异号,转动减速
O

刚体的定轴转动

刚体的定轴转动

角速度是代数量,其正负表示刚体的转向。角速度为正值时表
明转角随时间而增加,刚体作逆时针转动;反之,转角随时间而减
小,刚体作顺时针转动。
角速度的单位是rad/s。工程上还常用每分钟转过的圈数表示刚
体转动的快慢,称为转速,用n表示,单位是r/min。角速度ω与转速
n之间的换算关系为
2n n
60 30
理论力学
刚体的运动\刚体的定轴转动
刚体的定轴转动
刚体运动时,若刚体内或其延伸部分有一直线始终保持不动, 刚体的这种运动称为定轴转动,简称转动。这条保持不动的直线称 为转轴。显然,刚体转动时,刚体内不在转轴上的各点都在垂直于 转轴的平面内作圆周运动,其圆心都在转轴上,圆的半径为该点到 转轴的垂直距离。
刚体的定轴转动在工程实际中随处可见,例如电动机转子的转 动,胶带轮、齿轮的转动等。
目录
刚体的运动\刚体的定轴转动
1.1 转动方程
设某刚体绕固定轴z转动,如图所示,为确定 该刚体在任一瞬时的位置,过转轴z作一固定平 面Ⅰ,再过转轴z作一与刚体固连、随刚体一起 转动的动平面Ⅱ。这样,该刚体在任一瞬时的位
置就可以用动平面Ⅱ与定平面Ⅰ的夹角确定, 角称为刚体的转角。当刚体转动时,转角是时
间t的单值连续函数,即 (t)
上式称为刚体的转动方程。若转动方程已知,则刚体在任一瞬时的 位置就确定了。因此,转动方程反映了刚体转动的规律。
转角是一个代数量,其正负号的规定如下:从转轴z的正端向 负端看去,逆时针转为正,反之为负。转角的单位是rad。
目录
刚体的运动\刚体的定轴转动
【例6.2】已知汽轮机在启动时主动轴的转动方程为t3,式中 的单位是rad,t的单位是s,求t=3s时该轴的角速度和角加速度。

第四章 刚体的转动

第四章  刚体的转动
1 1 2 2 E k= E ki mi ri = 2 2
m r
2 i i
2
用转动惯量表示
1 2 E k= J 2
四、刚体绕定轴转动的动能定理 设在合外力矩M的作用下,刚体绕定轴转过的角 位移为dθ,合外力矩对刚体所作的元功为 d dW =M dθ,由转动定律 M J J dt 得 d d
M=r F r Fi r Fi M i
M F1 r1 sin 1 F2 r2 sin 2 F3 r3 sin 3
单位: N.m 注意:力矩的单位和功的单位不是一回事,力矩的 单位不能写成焦耳。 与转动垂直但通过转轴的力对转动不产生力矩; 与转轴平行的力对转轴不产生力矩; 刚体内各质点间内力对转轴不产生力矩。 对于刚体的定轴转动,不同的力作用于刚体上的 不同位置(或不同作用方向)可以产生相同的效 果。
§4-2 力矩
转动定律
转动惯量
一、力矩 从转轴与截面的交点到力的作用线的垂直距离叫做力对 转轴的力臂。力的大小和力臂的乘积,就叫做力对转 轴的力矩。用M表示。 用矢量表示 M rF 或:
M=Fr sin
若力F不在垂直与转轴的平面内,则可把该力分解为两个 力,一个与转轴平行的分力,一个在垂直与转轴平面 内的分力,只有后者才对刚体的转动状态有影响。 合力矩对于每个分力的力矩之和。
第四章 刚体的转动
§4-1 刚体的定轴转动 一、刚体
定义:在外力作用下形状和大小保持不变的物体称为刚体。 说明: 刚体和质点一样是一个理想化的力学模型; 刚体内任何两点之间的距离在运动过程中保持不变; 刚体可以看成一个包含由大量质点、而各个质点间距 离保持不变的质点系。

刚体的转动

刚体的转动
J miri
i
例 如图
I m1r12 m2r22 m3r32
m2
可视为 质点
r1
m1
r2 r3
m3
转轴
•质量连续分布的物体
J rdm dm d 或 ds 或 dV

线积分

面积分

体积分
(记住:棒、圆盘和圆柱体的I)
例题 5-2
例题 5-3
例题 5-4
(4)以上三式联立,可得物体下落的加速度和速度:
a m g mM 2
V 2ah 4mgh 2m M
这时滑轮转动的角速度为 V 1 4mgh
R R 2m M
例题:质量M=1.1kg,半径=0.6m的匀质圆盘,可绕通过其
中心且垂直于盘面的水平光滑固定轴转动。圆盘边缘绕有
看成质点 水平飞行
刚体作平动,其上所有点的速度、加速度相等,运动 轨迹都相同,整个刚体可当作质点来处理,满足牛顿 定律。
转动 刚体运动时,如果刚体中所有质点都绕着一直线 作圆周运动,则这刚体的运动称为转动,这条直 线称为转轴。转轴固定的转动叫定轴转动。
转轴
地球仪转动
一般情况下,刚体十分复杂,同时存在平动和 转动;可以证明,刚体的一般运动可以当作由一平 动和一绕瞬时轴的转动组合而成。

F
ds

F
cos
ds

Ft rd

Md
The total work done during a finite angular displacement
is then

W 0 M d
(5-18)
In the special case of M is a constant

大学物理—刚体的动轴转动

大学物理—刚体的动轴转动

25
麦克斯韦分布
2 1 2 d mgR J mR 3 2 dt
设圆盘经过时间t停止转动,则有
t 0 2 1 g dt R d 0 0 3 2
F1
转动 平面
F
F2
r F1 只能引起轴的
变形, 对转动无贡献。 注 (1)在定轴动问题 中,如不加说明,所指的 力矩是指力在转动平面内 的分力对转轴的力矩。
r
(2) M Z rF2 sin F2d
d r sin 是转轴到力作
用线的距离,称为力臂。
F123麦克来自韦分布例 2: 一半径为 R ,质量为 m 匀质圆盘,平放 在粗糙的水平桌面上。设盘与桌面间摩擦系数为 ,令圆盘最初以角速度 0 绕通过中心且垂直盘 面的轴旋转,问它经过多少时间才停止转动?

d r dr
R
e
解 : 因摩擦力不是集中作用于一点,而是分布 在整个圆盘与桌子的接触面上,力矩的计算要用积 分法。在图中,把圆盘分成许多环形质元,每个质 元的质量dm=rddre,所受到的阻力矩是rdmg 。
a m2 G2
a
21
式中是滑轮的角加速度,a是物体的加速度。滑轮 边缘上的切向加速度和物体的加速度相等,即
麦克斯韦分布
a r
从以上各式即可解得
m 2 m1 g M r / r m 2 m1 g M / r a
J m 2 m1 2 r 1 m 2 m1 m 2
1. 刚体的角动量
图为以角速度绕定轴oz 转动的一根均匀细棒。
L
z

ri
O
Li
把细棒分成许多质点,其中第 i 个质点的质量为 mi 当细棒以转动时,该 质点绕轴的半径为 ri

刚体定轴转动知识点总结

刚体定轴转动知识点总结

刚体定轴转动知识点总结1. 刚体的转动定轴刚体的转动定轴是指固定不动的直线,沿其进行转动的刚体的每一个质点所受的力矩的代数和等于零。

在实际中,通常通过支点来实现转动定轴,比如钟摆、摇摆、旋转的转轴等。

2. 刚体的角位移、角速度和角加速度在刚体定轴转动中,刚体围绕定轴线进行旋转,其角位移、角速度和角加速度是非常重要的物理量。

角位移表示刚体在围绕定轴线旋转的过程中所经过的角度变化量,通常用θ表示;角速度表示刚体围绕定轴线旋转的速度,通常用ω表示;角加速度表示刚体围绕定轴线旋转的加速度,通常用α表示。

3. 牛顿第二定律在刚体定轴转动中的应用牛顿第二定律也适用于刚体定轴转动的情况。

在刚体定轴转动中,外力会给刚体带来转动运动,根据牛顿第二定律,刚体的角加速度与作用在其上的外力矩成正比。

因此,可以根据力矩的大小和方向来分析刚体的转动运动。

4. 转动惯量和转动动能在刚体定轴转动中,转动惯量是一个非常重要的物理量。

转动惯量描述了刚体围绕定轴线旋转的难易程度,其大小与刚体的质量分布和轴线的位置有关。

转动动能是刚体围绕定轴线旋转的能量,其大小取决于刚体的转动惯量和角速度。

5. 转动定律和角动量守恒定律在刚体定轴转动中,转动定律和角动量守恒定律是非常重要的定律。

转动定律描述了刚体受力矩产生的角加速度与所受力矩的关系,角动量守恒定律描述了刚体转动过程中角动量的守恒规律。

6. 平衡条件和稳定性分析在刚体定轴转动中,平衡条件和稳定性分析是非常重要的内容。

通过平衡条件,可以分析刚体围绕定轴线旋转的平衡状态。

稳定性分析则是分析刚体在平衡状态下的稳定性,通常通过刚体的势能函数和平衡位置的稳定性来进行分析。

7. 应用领域刚体定轴转动的理论和方法在工程技术、航空航天、机械制造、物理学等领域都有重要的应用价值。

比如在机械制造中,可以通过分析刚体的定轴转动来设计机械装置;在航空航天中,可以通过分析刚体的定轴转动来设计飞行器的运动控制系统。

刚体的转动惯量

刚体的转动惯量

r
dr

F
A M d
1
2
转动平面
2、转动动能 整个刚体的转动动能,等于刚体上所有 质元动能之和。
1 2 Ek mii 2 1 2 2 ( mi ri ) 2
1 2 ( mi ri ) 2 2
1 2 Ek I 2
3、动能定理 合外力矩M 作的元功:
刚体上各点均绕同一固定直线旋转的运动, 称为刚体的定轴转动。
定轴转动:各质元均作圆周运动,其圆心都在 一条固定不动的直线(转轴)上。
P
X
参考 方向
P
Q

X X
转动平面
转轴
各质元的线速度、加速度一般不同,
但角量(角位移、角速度、角加速度)都相同 描述刚体整体的运动用角量最方便。
二、刚体的转动定律
Z
M r f
M rf sin fd
方向:沿转轴Z方向 。 (2)外力不在转动平面内
M O r f d P
转动平面
Z
f1 O r P
把外力分解成两个分力:f1和f 2 与转轴平行的力 f1 对物体 转动不起作用。 M r f2
1、转动惯量 质点的转动惯量: I mr 2
质点系的转动惯量:I
r

2
i
mi
刚体的转动惯量: I r 2 dm
式中:r 为dm 至转轴的距离。 刚体转动惯量的大小与三个因素有关: • 刚体的总质量 • 质量相对于定轴的分布 • 转轴的位置
例1、P67例4-2。计算质量为m,长为L的匀质细 杆绕垂直中心轴Z的转动惯量。 解:建立坐标系,如图。
m dm dx dx L L m 2 2 2 I x dm L x dx L 2

转动刚体的动量公式

转动刚体的动量公式

转动刚体的动量公式在物理学中,转动刚体的动量公式可是个挺有意思的家伙。

咱们先来说说啥是刚体。

想象一下,一个坚固得像钢铁侠战衣一样,不会变形的物体,这就是刚体啦。

那转动的刚体呢,就好比一个飞速旋转的车轮,或者是正在表演花样滑冰的运动员。

转动刚体的动量公式,简单来说就是描述这样一个旋转物体的动量情况。

这个公式是:L = Iω 。

这里的 L 表示转动刚体的角动量,I 是转动惯量,ω 是角速度。

转动惯量这个概念有点像物体的“惰性”,物体越大、质量分布越远离旋转轴,转动惯量就越大,转动起来就越费劲。

比如说,一个大圆盘和一个小圆盘,同样的角速度转起来,大圆盘可难停下来啦,这就是因为它的转动惯量大。

角速度呢,就是描述物体转动快慢的物理量。

就像我们骑自行车,脚蹬得越快,车轮的角速度就越大。

我记得有一次在课堂上,为了让同学们更好地理解转动刚体的动量公式,我拿来了一个哑铃和一个健身用的大圆盘。

我先让同学们感受一下转动哑铃的轻松,然后再让他们试着转动大圆盘。

结果,好多同学都累得气喘吁吁,直呼“转不动”。

这时候,我就趁机给他们讲解,为什么大圆盘难转,就是因为它的转动惯量大呀。

再说说实际生活中的例子,像游乐场里的摩天轮,它那么大一个家伙,要让它转起来可不容易,这就是因为它的转动惯量大。

而且,一旦转起来了,要停下来也得花不少时间和力气。

还有我们常见的陀螺,当它高速旋转的时候,具有一定的角动量,所以能够保持稳定。

在工程领域,转动刚体的动量公式也有大用处。

比如设计汽车的发动机、飞机的螺旋桨,都得考虑转动惯量和角速度的关系,才能让它们高效运转。

总之,转动刚体的动量公式虽然看起来有点复杂,但只要我们结合实际生活中的例子去理解,就会发现它其实就在我们身边,默默地发挥着作用。

希望大家通过学习,都能更好地掌握这个神奇的公式,去探索更多物理学的奥秘!。

刚体的定轴转动和转动定律

刚体的定轴转动和转动定律

受力: F Ft Fn
力矩:M r (Ft Fn )
r Ft rFt k
M F r ma r
z
M
Ft F
O r m
Fn
mr2
at r
即: M mr 2
3 – 2 力矩 转动定律 转动惯量
2、刚体转动定律
质元 m j 受力为:
右手螺旋定则
第三章 刚体的转动

3– 1 刚体的定轴转动
4、角加速度(矢量)
第三章 刚体的转动
大小: d
dt
方向: 若 2 > 1 则 与角速度同向, 若 2 < 1 则 与角速度反向。
3– 1 刚体的定轴转动
第三章 刚体的转动
二、匀变速转动公式
匀变速转动:转动的角加速度为恒量的运动。
J R 2π r3dr π R4 所以 J 1 mR2
0
2
2
3 – 2 力矩 转动定律 转动惯量
第三章 刚体的转动
例3 :质量为m、高为h、半径为r的均匀圆柱体,求其对 圆柱中心的转动轴的转动惯量?
解:dm dV 2 r h dr
其中:

m V
3 – 2 力矩 转动定律 转动惯量
第三章 刚体的转动
三 转动惯量 J mjrj2 , J r 2dm
1、物理意义:
j
描述刚体转动过程中转动惯性大小的物理量.( 转动
惯量的大小取决于刚体的质量、形状及转轴的位置 .)
2、转动惯量的计算方法:
1)质量离散分布刚体的转动惯量:
J mjrj2 m1r12 m2r22
对质量面分布的刚体: dm dS

刚体转动实验实验报告

刚体转动实验实验报告

刚体转动实验实验报告一、实验目的1、学习使用刚体转动实验仪测量刚体的转动惯量。

2、验证刚体转动定律和转动惯量的平行轴定理。

3、掌握数据处理和误差分析的方法。

二、实验原理1、刚体的转动惯量刚体绕固定轴转动时的转动惯量 I 等于刚体中各质点的质量 mi 与它们各自到转轴距离 ri 的平方的乘积之和,即:I =Σ mi ri²2、刚体转动定律刚体绕定轴转动时,刚体所受的合外力矩 M 等于刚体的转动惯量 I 与角加速度β的乘积,即:M =Iβ3、转动惯量的平行轴定理若刚体对通过质心 C 的轴的转动惯量为 Ic,对与该轴平行且相距为d 的另一轴的转动惯量为 Ip,则有:Ip = Ic + md²三、实验仪器刚体转动实验仪、秒表、砝码、游标卡尺、米尺等。

四、实验步骤1、调节刚体转动实验仪将实验仪调至水平状态,通过调节底座的螺丝,使实验仪上的气泡位于水准仪的中心。

调整塔轮和定滑轮之间的细线,使其处于紧绷状态,且与转轴垂直。

2、测量塔轮半径 R 和绕线轴半径 r使用游标卡尺分别测量塔轮的外半径 R1、内半径 R2,取平均值得到塔轮半径 R。

同样用游标卡尺测量绕线轴的半径 r。

3、测量刚体的质量 M 和形状尺寸用天平称出刚体的质量 M。

用米尺测量刚体的几何尺寸,如圆盘的直径、圆柱的长度和直径等。

4、测量空载时刚体的转动惯量在刚体上不添加砝码,轻轻转动刚体,使其在摩擦力矩的作用下做匀减速转动。

用秒表记录刚体转过一定角度θ所需的时间 t1。

5、测量加载砝码时刚体的转动惯量在绕线轴上逐渐添加砝码,使刚体在重力矩的作用下做匀加速转动。

用秒表记录刚体转过相同角度θ所需的时间 t2。

6、验证转动惯量的平行轴定理将两个相同的圆柱体对称地放置在刚体上,使其质心与转轴的距离分别为 d1 和 d2。

测量刚体在这种情况下转过相同角度θ所需的时间 t3。

五、实验数据记录与处理1、实验数据记录|实验次数|塔轮半径 R (cm) |绕线轴半径 r (cm) |刚体质量 M (kg) |空载时间 t1 (s) |加载时间 t2 (s) |平行轴时间 t3 (s) |||||||||| 1 |______ |______ |______ |______ |______ |______ || 2 |______ |______ |______ |______ |______ |______ || 3 |______ |______ |______ |______ |______ |______ |2、数据处理(1)计算塔轮半径 R 和绕线轴半径 r 的平均值:R =(R1 + R2) / 2r =(r1 + r2) / 2(2)计算空载时刚体的角加速度β1:β1 =θ / t1²(3)计算加载砝码时刚体的角加速度β2:β2 =θ / t2²(4)计算空载时刚体的转动惯量 I1:I1 =(M (R r)²) /(β1 g)(5)计算加载砝码时刚体的转动惯量 I2:I2 =(M (R r)²+ mgr) /(β2 g)(6)计算平行轴定理验证时刚体的转动惯量 I3:I3 =(M (R r)²+ 2m(d1²+ d2²))/(β3 g)3、误差分析(1)测量仪器的误差:游标卡尺和秒表的精度有限,可能导致测量结果存在一定的误差。

第03章 刚体定轴转动01-转动定律

第03章 刚体定轴转动01-转动定律

作用于刚体内每一质元上的内力矩的矢量和为零,即
fr 0
i i i
14
F r
i i
i
为作用于刚体内每一质元上的外力矩的矢量和。
M Fi ri
i
定义:刚体的转动惯量J (moment of interia) 则有:
2 m r ii i
M J
即:
M J
刚体定轴转动的转动定律:刚体定轴转动的角加速度与它所 受的合外力矩成正比 ,与刚体的转动惯量成反比。 —— 刚体定轴转动的基本动力学规律。
dm 2 π r dr
P
3 2
圆环对轴的转动惯量
dJ r dm 2π r dr R 3 J 2π r dr π R 4 0 2 1 2 而 m π R 所以 J mR 2
圆盘对P 轴的转动惯量
R
R
O O
r dr
1 J P mR 2 mR 2 2
19
15
三、转动惯量
J mi ri
i
2
物理意义:刚体转动惯性的量度。 对于质量离散分布刚体的转动惯量
J mi ri 2 m1r12 m2r22
i
质量连续分布刚体的转动惯量
J lim
mi 0
2 2 m r r i i dm i
P1 y
P2
23
(3)如图所示,不计绳子的质量,滑轮的质量与半径分别为M
和R,滑轮与绳间只滚不滑,不计滑轮与轴间的摩擦力。 且 m1 m2 。 求重物释放后,物体的加速度和绳的张力。 A
m1 FN m1 FT1
O
C
取坐标如图
M

刚体转动公式

刚体转动公式

刚体转动公式刚体转动公式是指描述刚体在定轴转动时的物理量之间的关系的公式。

刚体是指在任何外力作用下都不发生形变的理想化物体,可以看作由无限多个彼此间距离保持不变的质点组成的质点系。

刚体的运动可以分解为平动和转动两种基本形式,其中转动是指刚体上所有质点都绕同一直线做圆周运动,这条直线称为转轴。

刚体转动公式涉及到以下几个基本物理量:角度θ:表示刚体在转动过程中某一参考线与某一固定方向之间的夹角,单位为弧度(rad)。

角速度ω:表示刚体在单位时间内转过的角度,单位为弧度每秒(rad/s)。

它是一个矢量,方向沿转轴并遵循右手螺旋法则。

角加速度α:表示刚体角速度在单位时间内的变化量,单位为弧度每秒平方(rad/s2)。

它也是一个矢量,方向同样沿转轴并遵循右手螺旋法则。

力矩M:表示外力对刚体产生转动效果的大小和方向,单位为牛顿米(N⋅m)。

它等于力F与力臂r的叉乘,即M=r×F⊥,其中F⊥是力在刚体所在平面内的分量。

它也是一个矢量,方向同样沿转轴并遵循右手螺旋法则。

角动量L:表示刚体转动状态的大小和方向,单位为牛顿米秒(N⋅m⋅s)。

它等于刚体上任意一质点的角动量之和,即L=∑ni=1m i v i r i=∑n i=1m iωi r2i,其中m i,v i,r i,ωi分别表示第i个质点的质量、速度、到转轴距离和角速度。

它也是一个矢量,方向同样沿转轴并遵循右手螺旋法则。

转动惯量J:表示刚体对转动状态改变的惯性大小,单位为千克米平方(kg⋅m2)。

它等于刚体上任意一质点的质量与其到转轴距离平方之积之和,即J=∑ni=1m i r2i。

它是一个标量,只与刚体的形状、大小、质量分布以及转轴位置有关,而与刚体的运动状态无关。

刚体转动定律根据以上物理量之间的定义和关系,我们可以得到以下几个描述刚体定轴转动规律的公式:角速度和角加速度的关系:ω=ω0+αt,其中ω0是初始角速度,t是时间。

角度和角速度的关系:θ=θ0+ω0t+12αt2,其中θ0是初始角度。

刚体定轴转动定律

刚体定轴转动定律
于 180°的夹角 θ 转向 F 时,拇指所指的方向就是力矩的方向。
可见,力矩的方向与转轴的方向平行,只有两个可能的方向,因此,可用 M 的正负表示力矩的方向。 一般可按力矩的作用来判断其正负:由转轴 Oz 正向俯视,若力矩的作用使刚体逆时针转动,则力矩为 正,否则为负。
刚体定轴转动定律 1.1 力矩
可加性
• 对同一转轴而言,刚体各部分转动惯量之 和等于整个刚体的转动惯量。
平行轴定理
• 设有两个彼此平行的转轴,一个通过刚体 的质心,另一个不通过质心。两平行轴之 间的距离为d,刚体的质量为m。
如果此刚体对通过质心转轴的转动惯量为 Jc ,则对另一 转轴的转动惯量 J 为 J Jc md 2
刚体定轴转动定律
刚体定轴转动定律Βιβλιοθήκη , ,,,
例题讲解 2
如图所示,一轻绳跨过一轴承光滑的定滑轮。绳两边分别悬有质量为 m1 和 m2 的两个物体 A,B。已知 m1
小于 m2 ,滑轮可看作质量均匀分布的等厚圆盘,其质量为 m,半径为 r,设绳与滑轮间无相对滑动。求:① 物
体的加速度;② 滑轮的角加速度;③ 绳的张力。
i 1
n
用 M 表示,即 M (Δmiri2 ) β
i 1
n
n
式中的 (Δmiri2 ) 称为转动惯量,用 J 表示,即 J (Δmiri2 )
i 1
i 1
于是,式可写为 M Jβ
刚体定轴转动定律 1.2 转动定律
转动定律:刚体定轴转动时,刚体的角加速度与刚体所受的合外力矩成正比,与刚体的转动惯量 成反比。
r 2 dm
Ω
式中 r ——质元 dm 到转轴的距离(m)。 在国际单位制中,转动惯量的单位为 kg m2 。

几种常见刚体转动惯量公式推导

几种常见刚体转动惯量公式推导

几种常见刚体转动惯量公式推导刚体是一个物体在没有外力作用下不发生形变的状态。

它的转动惯量是描述物体在转动过程中受到惯性力的难易程度的物理量。

在很多物理问题中,都需要根据具体的几何形状和质量分布计算刚体的转动惯量。

以下是几种常见的刚体转动惯量公式推导。

1.点质量的转动惯量一个质量为m的点,固定在轴上转动。

它的转动惯量可以用公式I=mr²来计算。

其中,r是点到轴的距离。

推导:在转动过程中,点质量只有一个轴向的距离变化,因此它的转动惯量可以表示为I=m(Δr)²。

又根据转动定律,I=FΔt,其中F 是惯性力,Δt是时间。

对于点质量,惯性力和轴向距离的乘积恒为mr,因此I=mr²。

2.杆的转动惯量一个质量为m、长度为L的均匀杆,绕过它的重心垂直于杆的轴旋转。

它的转动惯量可以用公式I=1/12mL²来计算。

推导:对于均匀杆,在其自身的中心点处,质心和转轴重合。

因此我们可以将杆的质量分成若干个小块,对每个小块计算旋转惯量再相加。

设小块的质量为dm,位置为x,则小块的旋转惯量为dI=xdm,总的旋转惯量为I=∫xdm。

对于均匀杆,在L/2左右有一个质心,所以我们可以将积分限定在-L/2到L/2之间。

因为每段长度为dx的小块质量都相等,所以可以将积分转化为∫xdx。

得到I=1/12mL²。

3.球的转动惯量一个半径为r、质量为m的球绕通过球心的轴旋转。

它的转动惯量可以用公式I=2/5mr²来计算。

推导:在球内部的所有点,它们与轴的距离是相等的。

我们可以将球的质量分成若干个小块,对每个小块计算旋转惯量再相加。

设小块的质量为dm,距离轴的距离为r,则小块的旋转惯量为dI=r²dm,总的旋转惯量为I=∫r²dm。

在球体内,每个小块的质量都相同,所以可以将积分转换为∫r²dV,其中V是球的体积。

将球的质量和体积表示成m和(4/3)πr³,得到I=2/5mr²。

10种常见刚体转动惯量公式

10种常见刚体转动惯量公式

10种常见刚体转动惯量公式研究刚体的运动状态,刚体的转动惯量是非常重要的物理量之一、它描述了刚体绕其中一轴线旋转时所具有的惯性特性。

转动惯量的大小和刚体质量的分布以及轴线的位置有关。

下面将介绍十种常见的刚体转动惯量公式,并对每一种情况进行详细的说明。

1.关于轴线的质量均匀分布若沿轴线方向均匀分布有质量m的刚体,则其转动惯量公式为:I=m*r^2其中I表示转动惯量,m表示刚体的质量,r表示刚体质量均匀分布点到轴线的距离。

2.点状物体绕轴线转动对于一个点状物体质量为m,绕与通过该点的轴线转动,则其转动惯量公式为:I=m*r^2其中r表示点状物体到轴线的距离。

3.均匀细杆绕一端轴线转动若沿杆的一端作为轴线,质量为m,长度为L的均匀细杆绕该轴线转动,则其转动惯量公式为:I=(1/3)*m*L^24.空心球绕直径轴线转动对于一个质量为m,外半径为R,内半径为r的空心球绕直径轴线转动,则其转动惯量公式为:I=(2/3)*m*R^25.均质球体绕直径轴线转动对于一个均匀密度的球体,质量为m,直径为d,绕直径轴线转动,则其转动惯量公式为:I=(2/5)*m*(d/2)^26.长方体绕通过质心的轴线转动对于一个质量为m,长为L,宽为W,高为H的长方体绕通过质心的轴线转动,则其转动惯量公式为:I=(1/12)*m*(L^2+W^2)7.绕一个边的正方体绕通过质心的轴线转动对于一个边长为a,质量为m的正方体绕通过质心和垂直于一条边的轴线转动,则其转动惯量公式为:I=(1/6)*m*a^28.绕对角线的长方体转动对于一个质量为m,长为L,宽为W,高为H的长方体绕对角线转动,则其转动惯量公式为:I=(1/12)*m*(L^2+W^2+H^2)9.圆环绕垂直于轴线的直径转动对于半径为R,质量为m的环绕垂直于轴线的直径旋转,则其转动惯量公式为:I=m*R^210.圆盘绕轴线转动对于半径为R,质量为m的圆盘绕瞬心轴线转动,则其转动惯量公式为:I=(1/2)*m*R^2以上是十种常见的刚体转动惯量公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

刚体转动
转动惯量是刚体转动时惯性大小的量度,是表明刚体特性的一个物理量。

刚体转动惯量除了与物体质量有关外,还与转轴的位置和质量分布(即形状、大小和密度分布)有关。

如果刚体形状简单,且质量分布均匀,可以直接计算出它绕定轴的转动惯量。

对于形状复杂,质量分布不均匀的刚体,计算将极为复杂,通常采用实验方法来测定,例如机械部件,电动机转子和枪炮的弹丸等。

转动惯量的测量,一般都是使刚体以一定形式运动,通过表征这种运动特征的物理量和转动惯量的关系,进行转换测量。

本实验使物体作扭摆摆动,由摆动周期计算出物体的转动惯量。

【实验目的】
1.用扭摆测定几种不同形状物体的转动惯量和弹簧的扭转常数,并与理论进行比较。

2.验证转动惯量平行轴定理。

【实验原理】
扭摆的构造如图1所示,在垂直轴1上装有一根薄片状的螺旋弹簧2,用以产生恢复力矩。

在轴的上方可以装上各种待测物体。

垂直轴与支座间装有轴承,以降低摩擦力矩。

3为水平仪,用来调整系统平衡。

将物体在水平面内转过一角度θ后,在弹簧的恢复力矩作用下,物体就开始绕垂直轴作往返扭转运动。

根据胡克定律,弹簧受扭转而产生的恢复力矩M 与所转过的角度θ成正比,即
θK M -= (1)
式中K 为弹簧的扭转常数。

根据转动定律
βI M =
(2) 其中,I 为物体绕转轴的转动惯量,β为角加速度。

令I K =2
ω
,忽略轴承的摩擦阻力矩,
图1 扭摆
则由(1)、(2)式得
θωθβ2
2
2
-=-
==
I
K dt
d
(3) 方程(3)表明扭摆运动具有角简谐振动的特性,角加速度与角位移成正比,且方向相反。

此方程解为
()φωθ+=t A cos
(4) 式中,A 为谐振动的角振幅,φ为初相位角,ω为角频率。

谐振动的周期为
K
I T πω
π
22==
(5)
由(5)式可知,只要测得物体扭摆的摆动周期T ,并在I 和K 中任何一个量为已知时,即可计算出另一个量。

本实验先测定一个几何形状规则的物体的摆动周期,它的转动惯量可以根据它的质量和几何尺寸用理论公式直接计算得到,因此可根据(5)式算出本仪器弹簧的K 值。

接着测定其他物体的转动惯量,即将待测物体安放在本仪器顶部的各种夹具上,测定其摆动周期,由公式(5)算出物体绕转动轴的转动惯量。

理论分析证明,若质量为m 的物体绕通过质心轴的转动惯量为0I ,当转轴平移距离x
时,则此物体对新轴线的转动惯量变为2
0mx I +,这称为转动惯量的平行轴定理。

本实验
将对此定理加以验证。

【实验仪器】
1.扭摆及几种待测转动惯量的物体
空心金属圆柱体、实心塑料圆柱体、木球、验证转动惯量平行轴定理用的细金属杆(杆上有两块可自由移动的金属滑块)。

2.TH -2型转动惯量测量仪 由主机和光电传感器两部分组成。

图2 TH -2型转动惯量测量仪面板示意图
主机采用新型的单片机作控制系统,用于测量物体转动和摆动的周期,以及旋转体的转速,能自动记录、存储多组实验数据并能够准确地计算多组实验数据的平均值。

光电传感器主要由红外接收管组成,将光信号转换为脉冲电信号,送入主机工作。

因人眼无法直接观察仪器工作是否正常,可用遮光物体往返遮挡光电探头发射光束通路,检查计时器是否开始计数。

为防止过强光线对光电探头的影响,光电探头不能置放在强光下,实验时采用窗帘遮光,确保计时准确。

3.仪器使用方法
TH -2型转动惯量测量仪面板如图2所示。

(1)调节光电传感器在固定支架上的高度,使被测物体上的挡光杆能自由地通过光电门,再将光电传感器的信号传输线插入主机输入端(位于测试仪背面)。

(2)开启主机电源,“摆动”指示灯亮,参量指示为“P 1”、数据显示为“- - - -”。

(3)本机设定扭摆的周期数为10,如要更改,可按“置数”键,显示“n=10”,按“上调”键周期数依次加1,按“下调”键周期数依次减1,周期数可在1–20范围内任意设定,再按“置数”键确认。

更改后的周期数不具有记忆功能,一旦切断电源或按“复位”键,便恢复原来的默认周期数。

(4)按“执行”键数据显示为“000.0”,表示仪器已处在等待状态,此时,当被测的往复摆动物体上的挡光杆第一次通过光电门时,仪器即开始连续计时,直到仪器所设定的周期数时便自动停止计时,由“数据显示”给出累计的时间,同时仪器自动计算周期i C 予以储存,以供查询和作多次测量求平均值。

至此,P 1(第一次测量)测量完毕。

(5)按“执行”键,“P 1”变为“P 2”,数据显示又回到“000.0”,仪器处在第二次测量状态。

本机设定重复测量的最多次数为5次,即(P 1,P 2,…,P 5)。

通过“查询”键可知各次
测量的周期值i C (i=1,2,…,5)以及它们的平均值A C 。

【实验内容】
1.测出塑料圆柱体的直径、金属圆筒的内、外直径、金属细杆长度及各物体的质量。

计算各物体的转动惯量理论值。

2.调整扭摆基座底角螺丝,使水准仪中的气泡居中。

3.测定扭摆的扭转常数K
(1)装上金属载物盘,并调整光电探头的位置,使载物盘上的挡光杆处于其缺口中央且能遮住发射、接收红外光线的小孔。

测定其摆动周期0T 。

(2)将塑料圆柱体垂直放在载物盘上,测定摆动周期1T 。

(3)由0T 、1T 及塑料圆柱转动惯量的理论值1I '计算扭摆的扭转常数K 。

2
12
210
4I K T T
π
'=-
4.分别测定金属圆筒、木球及金属细杆的转动惯量 (1)用金属圆筒代替塑料圆柱体,测定其摆动周期2T 。

(2)取下载物金属盘,装上木球,测定其摆动周期3T (在计算木球的转动惯量时,应扣除支架的转动惯量)。

(3)取下木球,按图3装上金属细杆(金属细杆中
心必须与转轴重合),测定其摆动周期4T (在计算转动惯量时,应扣除夹具的转动惯量)。

(4)根据上述测定的摆动周期,分别计算出各待测物的转动惯量的实验值,并与理论值比较,计算二者的百分误差。

5.验证转动惯量平行轴定理:将滑块对称地放置在细杆两边的凹槽内,此时滑块质心
图3 金属细杆的固定
离转轴的距离分别为5.00、10.00、15.00、20.00、25.00厘米,分别测定细杆的摆动周期,计算滑块在不同位置时的转动惯量(计算时应扣除支架的转动惯量),并与理论值比较,计算百分误差。

【注意事项】
1. 由于弹簧的扭转常数K值不是固定常数,它与摆动角度略有关系,实验中摆角在90º左右为宜。

2. 光电探头宜放置在挡光杆的平衡位置处,挡光杆不能和它相接触,以免增大摩擦力矩。

3.为提高测量精度,应先让扭摆自由摆动,然后按“执行”键进行计时。

4. 在安装待测物体时,其支架必须全部套入扭摆主轴,并将止动螺丝旋紧,否则扭摆不能正常工作。

附:(1)数据参考表格
表1转动惯量的测定
表2 验证转动惯量平行轴定理
(2) 球支座转动惯量实验值 2
4
10
179.0kgm -⨯=I 支座
细杆夹具转动惯量实验值 2
4
10232.0kgm -⨯=I 夹具
滑块质量 g m 240=
滑块绕通过滑块质心转轴的转动惯量实验值2
451041.0kgm -⨯=I。

相关文档
最新文档