平行四边形综合提高练习题
平行四边形综合练习
平行四边形综合练习1. 如图,在□ABCD中,已知AC=4cm,若△ACD的周长为13cm,则□ABCD的周长为。
2. 如图,在□ABCD中,AB=3,BC=5,∠ABC的平分线交AD于点E,则DE的长为。
第1题图第2题图3. 如图,在□ABCD中,AE⊥BC于点E,AF⊥CD于点F. 若∠EAF=55∘,则∠B= 。
4. 如图,四边形ABCD中,将四边形沿对角线AC折叠,使点B落在点B′处,若∠1=∠2=44∘,则∠B为。
第3题图第4题图5. 在□ABCD中,AE平分∠BAD交边BC于E,DF平分∠ADC交边BC于F,若AD=11,EF=5,则AB= 。
6. 在□ABCD中,对角线AC,BD相交于点O,若△AOB的面积为3,则□ABCD的面积为。
7. 在□ABCD中,AC=8,BD=6,AD=a,则a的取值范围是。
8. 如图,□ABCD的对角线相交于点O,且AD≠CD,过点O作OM⊥AC,交AD于点M,如果△CDM的周长为8,那么平行四边形ABCD的周长是。
9. 如图,在□ABCD中,对角线AC,BD交于点O, △OBC的周长为59 cm,AD的长是28 cm,BD-AC=14 cm,则对角线AC,BD的长度分别是。
第8题图第9题图10. 如图,□ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足为E,AB=3,AC=2,BD=4,则AE的长为。
11. 如图,过□ABCD的对角线BD上一点M分别作平行四边形两边的平行线EF与GH,那么图中的□AEMG的面积S1与□HCFM的面积S2的大小关系是。
第10题图第11题图12. □ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是()A. BE=DFB. AE=CF 14. 如图,□ABCD中,对角线AC与BD相交点O,E是边CD的中点,连接OE。
若∠ABC=60∘,∠BAC=80∘,则∠1的度数为.15. 如图,在△ABC中,AB=5,AC=12,点D,E,F分别是AB,BC,AC的中点,则四边形ADEF的周长为。
【数学】数学平行四边形的专项培优练习题(含答案)含答案
【点睛】
本题考查了矩形的性质,全等三角形的判定和对应边相等的性质,等腰三角形三线合一的性质,本题中求证DB=DM是解题的关键.
5.(感知)如图①,四边形ABCD、CEFG均为正方形.可知BE=DG.
(拓展)如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.
4.如图所示,矩形ABCD中,点E在CB的延长线上,使CE=AC,连接AE,点F是AE的中点,连接BF、DF,求证:BF⊥DF.
【答案】见解析.
【解析】
【分析】
延长BF,交DA的延长线于点M,连接BD,进而求证△AFM≌△EFB,得AM=BE,FB=FM,即可求得BC+BE=AD+AM,进而求得BD=BM,根据等腰三角形三线合一的性质即可求证BF⊥DF.
在Rt△APE中,(4-BE)2+x2=BE2.
解得BE=2+ ,
∴CF=BE-EM=2+ -x,
∴BE+CF= -x+4= (x-2)2+3.
当x=2时,BE+CF取最小值,
∴AP=2.
考点:几何变换综合题.
3.如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E是线段AB的中点,连接CE并延长交线段AD于点F.
∴BM=ME,BM⊥EM.
故答案为BM=ME,BM⊥EM.
(2)ME= MB.
证明如下:连接CM,如解图所示.
∵DC⊥AC,M是边AD的中点,
∴MC=MA=MD.
∵BA=BC,
∴BM垂直平分AC.
∵∠ABC=120°,BA=BC,
∴∠MBE= ∠ABC=60°,∠BAC=∠BCA=30°,∠DCE=60°.
鲁教版八年级数学第五章平行四边形单元综合培优练习题(附答案)
鲁教版八年级数学第五章平行四边形单元综合培优练习题(附答案)一.选择题(共5小题)1.如图是由10把相同的折扇组成的“蝶恋花”(图1)和梅花图案(图2)(图中的折扇无重叠),则梅花图案中的五角星的五个锐角均为()A.36°B.42°C.45°D.48°2.如图,将一张面积为14的大三角形纸片沿着虚线剪成三张小三角形纸片与一张平行四边形纸片.根据图中标示的长度,求平行四边形纸片的面积为何?()A.B.C.D.3.把六张大小形状完全相同的小平行四边形卡片(如图)放在一个底面为平行四边形的盒子底部,两种放置方法如图2、图3所示,其中3中的重叠部分是平行四边形EFGH,若EH=2GH,且图2中阴影部分的周长比图3中阴影部分的周长大3.则AB﹣AD的值为()A.0.5B.1C.1.5D.34.如图:在4×4的正方形(每个小正方形的边长均为1)网格中,以A为顶点,其他三个顶点都在格点(网格的交点)上,且面积为2的平行四边形共有()个.A.10B.12C.14D.255.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,给出下列五个条件:①∠ADB=∠CBD②DE=BF③∠EDF=∠EBF④∠DEB=∠DFB⑤AE=CF.其中不能判定四边形DEBF是平行四边形的有()A.1个B.2个C.3个D.4个二.填空题(共10小题)6.如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8,点M是AC边的中点,点N是BC边上的任意一点,若点C关于直线MN的对称点C′恰好落在△ABC的中位线上,则CN的长为.7.如图,△ABC中,∠A=60°,AC>AB>2,点D,E分别在边AB,AC上,且BD=CE =2,连接DE,点M是DE的中点,点N是BC的中点,线段MN的长为.8.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,点M为边AC的中点,点N为边BC上任意一点,若点C关于直线MN的对称点C′恰好落在△ABC的中位线上,则CN的长为.9.如图,△ABC中,AB=10,AC=7,AD平分∠BAC,AE是BC边上的中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为.10.如图,顺次连结△ABC三边的中点D,E,F得到的三角形面积为S1,顺次连结△CEF 三边的中点M,G,H得到的三角形面积为S2,顺次连结△CGH三边的中点得到的三角形面积为S3.设△ABC的面积为S,则S1+S2+S3=.11.请你分别从下列多边形的同一顶点出发画对角线:想一想:依此规律可以把十边形分成个三角形.12.一个多边形的一个外角为α,且该多边形的内角和与α的和等于840°,则这个多边形的边数为,α=度.13.如图,在平行四边形ABCD中,∠ABC=60°,BC=2AB=8,点C关于AD的对称点为E,连接BE交AD于点F,点G为CD的中点,连接EG,BG,则S△BEG=.14.如图,在四边形ABCD中,AB⊥BC,对角线AC、BD相交于点E,E为BD中点,且AD=BD,AB=2,∠BAC=30°,则DC=.15.如图所示,在梯形ABCD中,AD∥BC,AB=CD,对角线BD,AC相交于点O,有以下四个结论:①OA=OC;②△ABC≌△BCD;③△ABO与△CDO面积相等;④此梯形的对称轴只有一条.请你把正确结论的序号填写在横线上:.三.解答题(共8小题)16.李明同学要证明命题“三角形的中位线平行于三角形的第三边,并且等于第三边的一半”,他已经画出了图形,写出已知和求证,并请你帮助他写出证明过程.已知:如图,在△ABC中,D、E分别为边AB、AC的中点,求证:DE∥BC且DE=BC证明:17.叙述三角形的中位线定理,并结合图形进行证明.定理:证明:18.如图,△ABC中,M为BC的中点,AD为∠BAC的平分线,BD⊥AD于D.(1)求证:DM=(AC﹣AB);(2)若AD=6,BD=8,DM=2,求AC的长.19.如图,△ABC中,∠C=90°,CA=CB,E、F分别为CA、CB上一点,CE=CF,M、N分别为AF、BE的中点.求证:AE=MN.20.(1)从多边形的一个顶点出发,分别连接这个多边形的其余各顶点,则可以把这个多边形分成若干个三角形.若多边形是一个五边形,则可以分成个三角形;若多边形是一个六边形,则可以分割成个三角形,……;则n边形可以分割成个三角形.(2)如果从一个多边形的一个顶点出发,分别连接其余各顶点,将这个多边形分割成了2016个三角形,那么此多边形的边数为.(3)若在n边形的一条边上取一点P(不是顶点),再将点P与n边形的各顶点连接起来,则可将n边形分割成个三角形.21.如图,在六边形ABCDEF中,AF∥CD,AB∥DE,且∠A=120°,∠B=80°,求∠C 和∠D的度数.22.如图,在平行四边形ABCD中,CE⊥BC交AD于点E,连接BE.(1)如图1,点F是BE上一点,连接CF,若∠ECD=30°,BC=BF=4,DC=2,求EF的长;(2)如图2,若BC=EC,延长BE交CD延长线于点G,以CG为斜边作等腰直角△CHG,连接HE,求证:HE=HG.23.证明定理:一组对边平行且相等的四边形是平行四边形.已知:如图,在四边形ABCD中,AB∥CD,AB=CD.求证:四边形ABCD是平行四边形.证明:参考答案:一.选择题(共5小题)1.如图是由10把相同的折扇组成的“蝶恋花”(图1)和梅花图案(图2)(图中的折扇无重叠),则梅花图案中的五角星的五个锐角均为()A.36°B.42°C.45°D.48°【解答】解:如图,梅花扇的内角的度数是:360°÷3=120°,180°﹣120°=60°,正五边形的每一个内角=(5﹣2)•180°÷5=108°,∴梅花图案中的五角星的五个锐角均为:108°﹣60°=48°.故选:D.2.如图,将一张面积为14的大三角形纸片沿着虚线剪成三张小三角形纸片与一张平行四边形纸片.根据图中标示的长度,求平行四边形纸片的面积为何?()A.B.C.D.【解答】解:如图,设△ADE,△BDF,△CEG,平行四边形DEGF的面积分别为S1,S2,S3和S,过点D作DH∥EC,则由DFGE为平行四边形,易得四边形DHCE也为平行四边形,从而△DFH≌△EGC,∴S△DFH=S3,∵DE∥BC,∴△ADE∽△ABC,DE=3,BC=7,∴=,∵S△ABC=14,∴S1=×14,∴S△BDH:S=(×4):3=2:3,∴S△BDH=S,∴+S=14﹣×14,∴S=.故选:D.3.把六张大小形状完全相同的小平行四边形卡片(如图)放在一个底面为平行四边形的盒子底部,两种放置方法如图2、图3所示,其中3中的重叠部分是平行四边形EFGH,若EH=2GH,且图2中阴影部分的周长比图3中阴影部分的周长大3.则AB﹣AD的值为()A.0.5B.1C.1.5D.3【解答】解:设AB=a,BC=b,图1中的平行四边形的边长是x、y(y>x),GH=c,则EH=2c,∵图2中阴影部分的周长比图3中阴影部分的周长大3,∴(2b+2a)﹣[2(b﹣2c)+2(a﹣c)]=3,解得:c=0.5,即GH=0.5,EH=1,所以AB﹣AD=(y﹣+3x)﹣(3x﹣1+y)=0.5,故选:A.4.如图:在4×4的正方形(每个小正方形的边长均为1)网格中,以A为顶点,其他三个顶点都在格点(网格的交点)上,且面积为2的平行四边形共有()个.A.10B.12C.14D.25【解答】解:一顶点在BC上,两顶点在MG上的有四边形CEOQ、CEIM、CEGI、AGIB、AOQB、AMIF、AFOQ、ABMI、AFGI共9个,一顶点在BC上,两顶点在PH上的有四边形AHVC、AVNC、APZE、AZNE、AEVN、ACZN 共6个,还有四边形AQNO、AIYL、ATXI、AHLI、APTI、AGHI、AMPI、AZRN、AVR′N、AOKN,共10个,9+6+10=25个,故选:D.5.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,给出下列五个条件:①∠ADB=∠CBD②DE=BF③∠EDF=∠EBF④∠DEB=∠DFB⑤AE=CF.其中不能判定四边形DEBF是平行四边形的有()A.1个B.2个C.3个D.4个【解答】解:⑤可以判断四边形DEBF是平行四边形.理由:∵四边形ABCD是平行四边形,∴OD=OB,OA=OC,∵AE=CF,∴OE=OF,∴四边形DEBF是平行四边形,故选:D.二.填空题(共10小题)6.如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8,点M是AC边的中点,点N是BC边上的任意一点,若点C关于直线MN的对称点C′恰好落在△ABC的中位线上,则CN的长为或.【解答】解:取BC、AB的中点H、G,连接MH、HG、MG.如图1中,当点C′落在MH上时,设NC=NC′=x,由题意可知:MC=MC′=4,MH=5,HC′=1,HN=3﹣x,在Rt△HNC′中,∵HN2=HC′2+NC′2,∴(3﹣x)2=x2+12,解得x=.如图2中,当点C′落在GH上时,设NC=NC′=x,在Rt△GMC′中,MG=CH=3,MC=MC′=4,∴GC′=,∵∠NHC'=∠C'GM=90°,∠NC'M=90°,∴∠HNC'+∠HC'N=∠GC'M+∠HC'N=90°,∴∠HNC'=∠CGC'M,∴△HNC′∽△GC′M,∴=,∴=,∴x=.如图3中,当点C′落在直线GM上时,易证四边形MCNC′是正方形,可得CN=CM =2.∴C'M>GM,此时点C′在中位线GM的延长线上,不符合题意.综上所述,满足条件的线段CN的长为或.故答案为:或.7.如图,△ABC中,∠A=60°,AC>AB>2,点D,E分别在边AB,AC上,且BD=CE =2,连接DE,点M是DE的中点,点N是BC的中点,线段MN的长为.【解答】解:如图,作CH∥AB,连接DN,延长DN交CH于H,连接EH,作CJ⊥EH 于J.∵BD∥CH,∴∠B=∠NCH,∵BN=CN,∠DNB=∠KNC,∵△DNB≌△HNC(ASA),∴BD=CH,DN=NH,∵BD=EC=2,∴EC=CH=2,∵∠A+∠ACH=180°,∠A=60°,∴∠ECH=120°,∵CJ⊥EH,∴EJ=JH=EC•cos30°=,∴EH=2EJ=2,∵DM=ME,DN=NH,∴MN=EH=.故答案为.8.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,点M为边AC的中点,点N为边BC上任意一点,若点C关于直线MN的对称点C′恰好落在△ABC的中位线上,则CN的长为或.【解答】解:取BC、AB的中点H、G,连接MH、HG、MG.如图1中,当点C′落在MH上时,设NC=NC′=x,由题意可知:MC=MC′=2,MH=,HC′=,HN=﹣x,在Rt△HNC′中,∵HN2=HC′2+NC′2,∴(﹣x)2=x2+()2,解得x=.如图2中,当点C′落在GH上时,设NC=NC′=x,在Rt△GMC′中,MG=CH=,MC=MC′=2,∴GC′=,∵△HNC′∽△GC′M,∴=,∴=,∴x=.如图3中,当点C′落在直线GM上时,易证四边形MCNC′是正方形,可得CN=CM =2.此时点C′在中位线GM的延长线上,不符合题意舍弃.综上所述,满足条件的线段CN的长为或.故答案为为或.9.如图,△ABC中,AB=10,AC=7,AD平分∠BAC,AE是BC边上的中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为 1.5.【解答】解:∵AD平分∠BAC,∴∠GAF=∠CAF,∵CG⊥AD,∴∠AFG=∠AFC,在△AGF和△ACF中,,∴△AGF≌△ACF(ASA),∴AG=AC=7,GF=CF,则BG=AB﹣AG=10﹣7=3.又∵BE=CE,∴EF是△BCG的中位线,∴EF=BG=1.5.故答案是:1.5.10.如图,顺次连结△ABC三边的中点D,E,F得到的三角形面积为S1,顺次连结△CEF 三边的中点M,G,H得到的三角形面积为S2,顺次连结△CGH三边的中点得到的三角形面积为S3.设△ABC的面积为S,则S1+S2+S3=S.【解答】解:∵D,E,F是△ABC三边的中点,∴DF∥BC,DE∥AC,EF∥AB,∴△ADF∽△ABC,△BDE∽△BAC,△CEF∽△CBA且相似比为,∴===,∵△ABC的面积为S,∴S△ADF=S△BDE=S△CEF=S,∴S1=S﹣S△ADF﹣S△BDE﹣S△CEF=S﹣S﹣S﹣S=S.同理可得,S2=S△CEF=×S=S,S3=S△CGH=××S=S,∴S1+S2+S3=S+S+S=S.故答案为:S.11.请你分别从下列多边形的同一顶点出发画对角线:想一想:依此规律可以把十边形分成8个三角形.【解答】解:∵四边形可分割成4﹣2=2个三角形;五边形可分割成5﹣2=3个三角形;六边形可分割成6﹣2=4个三角形;七边形可分割成7﹣2=5个三角形∴10边形可分割成10﹣2=8个三角形.12.一个多边形的一个外角为α,且该多边形的内角和与α的和等于840°,则这个多边形的边数为六,α=120度.【解答】解:∵840÷180=4…120,∴这个多边形的边数为:4+2=6,α=120°,故答案为:六;120.13.如图,在平行四边形ABCD中,∠ABC=60°,BC=2AB=8,点C关于AD的对称点为E,连接BE交AD于点F,点G为CD的中点,连接EG,BG,则S△BEG=14.【解答】解:如图,取BC中点H,连接AH,连接EC交AD于N,作EM⊥CD交CD 的延长线于M.∵BC=2AB,BH=CH,∠ABC=60°,∴BA=BH=CH,∴△ABH是等边三角形,∴HA=HB=HC,∴∠BAC=90°,∴∠ACB=30°,∵EC⊥BC,∠BCD=180°﹣∠ABC=120°,∴∠ACE=60°,∠ECM=30°,∵BC=2AB=8,∴CD=4,CN=EN=2,∴EC=4,EM=2,∴S△BEG=S△BCE+S ECG﹣S△BCG=×8×4+2×2﹣S平行四边形ABCD=16+2﹣4=14.故答案为4.14.如图,在四边形ABCD中,AB⊥BC,对角线AC、BD相交于点E,E为BD中点,且AD=BD,AB=2,∠BAC=30°,则DC=.【解答】解:如图,在EA上取一点K,使得EK=CE,连接DK,BK,延长DK交AB 于H.∵DE=EB,CE=EK,∴四边形BCDK是平行四边形,∴CD=BK,DK∥BC,∵BC⊥AB,∴DH⊥AB,∵DA=DB,∴AH=HB=1,∴KA=KB=CD,在Rt△AKH中,AK=AH÷cos30°=,∴CD=,故答案为.15.如图所示,在梯形ABCD中,AD∥BC,AB=CD,对角线BD,AC相交于点O,有以下四个结论:①OA=OC;②△ABC≌△BCD;③△ABO与△CDO面积相等;④此梯形的对称轴只有一条.请你把正确结论的序号填写在横线上:②③④.【解答】解:∵在梯形ABCD中,AB=CD∴AC=DB∵BC=BC,AC=DB,AB=DC∴△ABC≌△BCD∴∠BAC=∠CDB∵∠AOB=∠DOC,AB=DC∴△ABO≌△CDO∴OA=OD≠OC∵在梯形ABCD中,AD∥BC,AB=CD∴由等腰梯形的性质得出其对称轴只有一条所以①不正确,②③④正确.三.解答题(共8小题)16.李明同学要证明命题“三角形的中位线平行于三角形的第三边,并且等于第三边的一半”,他已经画出了图形,写出已知和求证,并请你帮助他写出证明过程.已知:如图,在△ABC中,D、E分别为边AB、AC的中点,求证:DE∥BC且DE=BC证明:【解答】证明:延长DE至F,使EF=DE,连接CF,∵E是AC中点,∴AE=CE,在△ADE和△CFE中,,∴△ADE≌△CFE,∴AD=CF,∠ADE=∠F∴BD∥CF,∵AD=BD,∴BD=CF∴四边形BCFD是平行四边形(一组对边平行且相等的四边形是平行四边形)∴DF∥BC,DF=BC,∴DE∥CB,DE=BC.17.叙述三角形的中位线定理,并结合图形进行证明.定理:证明:【解答】解:定理:三角形的中位线平行于第三边并且等于第三边的一半.已知:△ABC中,点E、F分别是AB、AC的中点,求证:EF=AB,EF∥AB,证明:如图,延长EF到D,使FD=EF,连接CD,∵点F是AC的中点,∴AF=CF,在△AEF和△CDF中,,∴△AEF≌△CDF(SAS),∴AE=CD,∠D=∠AEF,∴AB∥CD,∵点E是AB的中点,∴AE=BE,∴BE=CD,∴BECD,∴四边形BCDE是平行四边形,∴DE∥BC,DE=BC,∴DE∥BC且DE=BC.18.如图,△ABC中,M为BC的中点,AD为∠BAC的平分线,BD⊥AD于D.(1)求证:DM=(AC﹣AB);(2)若AD=6,BD=8,DM=2,求AC的长.【解答】解:(1)证明:延长BD交AC于E,∵AD⊥BD,∴∠ADB=∠ADE=90°,∵AD为∠BAC的平分线,∴∠BAD=∠EAD,在△BAD和△EAD中,,∴△BAD≌△EAD(SAS),∴AB=AE,BD=DE,∵M为BC的中点,∴DM=CE=(AC﹣AB);(2)∵在Rt△ADB中,∠ADB=90°,AD=6,BD=8,∴由勾股定理得:AE=AB==10,∵DM=2,DM=CE,∴CE=4,∴AC=10+4=14.19.如图,△ABC中,∠C=90°,CA=CB,E、F分别为CA、CB上一点,CE=CF,M、N分别为AF、BE的中点.求证:AE=MN.【解答】证明:如图,取AB的中点G,连接MG、NG,∵M、N分别为AF、BE的中点,∴NG=AE,NG∥AE,MG=BF,MG∥BF,∵CE=CF,∠C=90°,∴AE=BF,∠MGN=∠C=90°,∴MG=NG,∴△MNG是等腰直角三角形,∴NG=MN,∴AE=2NG=NG=×2MN=MN,即AE=MN.20.(1)从多边形的一个顶点出发,分别连接这个多边形的其余各顶点,则可以把这个多边形分成若干个三角形.若多边形是一个五边形,则可以分成3个三角形;若多边形是一个六边形,则可以分割成4个三角形,……;则n边形可以分割成(n﹣2)个三角形.(2)如果从一个多边形的一个顶点出发,分别连接其余各顶点,将这个多边形分割成了2016个三角形,那么此多边形的边数为2018.(3)若在n边形的一条边上取一点P(不是顶点),再将点P与n边形的各顶点连接起来,则可将n边形分割成(n﹣1)个三角形.【解答】解:(1)从一个五边形的同一顶点出发,分别连接这个顶点与其余各顶点,可以把这个五边形分成5﹣2=3个三角形.若是一个六边形,可以分割成6﹣2=4个三角形,n边形可以分割成(n﹣2)个三角形.故答案为:3,4,(n﹣2);(2)如果从一个多边形的一个顶点出发,分别连接其余各顶点,将这个多边形分割成了2016个三角形,那么此多边形的边数为:2016+2=2018;故答案为:2018;(3)若点P取在多边形的一条边上(不是顶点),在将P与n边形各顶点连接起来,则可将多边形分割成(n﹣1)个三角形.故答案为:(n﹣1).21.如图,在六边形ABCDEF中,AF∥CD,AB∥DE,且∠A=120°,∠B=80°,求∠C和∠D的度数.【解答】解:连接AC.∵AF∥CD,∴∠ACD=180°﹣∠CAF,又∠ACB=180°﹣∠B﹣∠BAC,∴∠BCD=∠ACD+∠ACB=180°﹣∠CAF+180°﹣∠B﹣∠BAC=360°﹣120°﹣80°=160°.连接BD.∵AB∥DE,∴∠BDE=180°﹣∠ABD.又∵∠BDC=180°﹣∠BCD﹣∠CBD,∴∠CDE=∠BDC+∠BDE=180°﹣∠ABD+180°﹣∠BCD﹣∠CBD=360°﹣80°﹣160°=120°.22.如图,在平行四边形ABCD中,CE⊥BC交AD于点E,连接BE.(1)如图1,点F是BE上一点,连接CF,若∠ECD=30°,BC=BF=4,DC=2,求EF的长;(2)如图2,若BC=EC,延长BE交CD延长线于点G,以CG为斜边作等腰直角△CHG,连接HE,求证:HE=HG.【解答】解:(1)∵平行四边形ABCD中,CE⊥BC,∴CE⊥AD,又∵∠ECD=30°,∴Rt△CDE中,DE=CD=1,∴CE===,又∵在Rt△BCE中,BC=4,∴BE===,∴EF=BE﹣BF=﹣4;(2)如图2所示,过C作CM⊥CG,交GH的延长线于M,连接EM,∵△CGH是等腰直角三角形,∠MCG=90°,∴∠CGH=∠CMG=45°,∴CG=CM,∵∠BCE=90°,∠MCG=90°,∴∠BCG=∠ECM,又∵BC=EC,∴△BCG≌△ECM(SAS),∴∠CEM=∠CBG=45°,又∵∠BEC=45°,∴∠MEG=90°,又∵CM=CG,CH平分∠MCG,∴H是MG的中点,∴Rt△MEG中,EH=MG=HG.23.证明定理:一组对边平行且相等的四边形是平行四边形.已知:如图,在四边形ABCD中,AB∥CD,AB=CD.求证:四边形ABCD是平行四边形.证明:【解答】证明:连接AC,如图所示:∵AB∥CD,∴∠1=∠2,在△ABC和△CDA中,,∴△ABC≌△CDA(SAS),∴∠3=∠4,∴AD∥BC,∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形).。
中考数学复习《平行四边形》专项综合练习含答案
一、平行四边形真题与模拟题分类汇编(难题易错题)1.(1)、动手操作:如图①:将矩形纸片ABCD折叠,使点D与点B重合,点C落在点处,折痕为EF,若∠ABE=20°,那么的度数为 .(2)、观察发现:小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图②);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图③).小明认为△AEF是等腰三角形,你同意吗?请说明理由.(3)、实践与运用:将矩形纸片ABCD按如下步骤操作:将纸片对折得折痕EF,折痕与AD边交于点E,与BC 边交于点F;将矩形ABFE与矩形EFCD分别沿折痕MN和PQ折叠,使点A、点D都与点F 重合,展开纸片,此时恰好有MP=MN=PQ(如图④),求∠MNF的大小.【答案】(1)125°;(2)同意;(3)60°【解析】试题分析:(1)根据直角三角形的两个锐角互余求得∠AEB=70°,根据折叠重合的角相等,得∠BEF=∠DEF=55°,根据平行线的性质得到∠EFC=125°,再根据折叠的性质得到∠EFC′=∠EFC=125°;(2)根据第一次折叠,得∠BAD=∠CAD;根据第二次折叠,得EF垂直平分AD,根据等角的余角相等,得∠AEG=∠AFG,则△AEF是等腰三角形;(3)由题意得出:∠NMF=∠AMN=∠MNF,MF=NF,由对称性可知,MF=PF,进而得出△MNF≌△MPF,得出3∠MNF=180°求出即可.试题解析:(1)、∵在直角三角形ABE中,∠ABE=20°,∴∠AEB=70°,∴∠BED=110°,根据折叠重合的角相等,得∠BEF=∠DEF=55°.∵AD∥BC,∴∠EFC=125°,再根据折叠的性质得到∠EFC′=∠EFC=125°.;(2)、同意,如图,设AD与EF交于点G由折叠知,AD平分∠BAC,所以∠BAD=∠CAD.由折叠知,∠AGE=∠DGE=90°,所以∠AGE=∠AGF=90°,所以∠AEF=∠AFE.所以AE=AF,即△AEF为等腰三角形.(3)、由题意得出:∠NMF=∠AMN=∠MNF,∴MF=NF,由折叠可知,MF=PF,∴NF=PF,而由题意得出:MP=MN,又∵MF=MF,∴△MNF≌△MPF,∴∠PMF=∠NMF,而∠PMF+∠NMF+∠MNF=180°,即3∠MNF=180°,∴∠MNF=60°.考点:1.折叠的性质;2.等边三角形的性质;3.全等三角形的判定和性质;4.等腰三角形的判定2.如图,△ABC是等边三角形,AB=6cm,D为边AB中点.动点P、Q在边AB上同时从点D出发,点P沿D→A以1cm/s的速度向终点A运动.点Q沿D→B→D以2cm/s的速度运动,回到点D停止.以PQ为边在AB上方作等边三角形PQN.将△PQN绕QN的中点旋转180°得到△MNQ.设四边形PQMN与△ABC重叠部分图形的面积为S(cm2),点P运动的时间为t(s)(0<t<3).(1)当点N落在边BC上时,求t的值.(2)当点N到点A、B的距离相等时,求t的值.(3)当点Q沿D→B运动时,求S与t之间的函数表达式.(4)设四边形PQMN的边MN、MQ与边BC的交点分别是E、F,直接写出四边形PEMF 与四边形PQMN的面积比为2:3时t的值.【答案】(1)(2)2(3)S=S菱形PQMN=2S△PNQ=t2;(4)t=1或【解析】试题分析:(1)由题意知:当点N落在边BC上时,点Q与点B重合,此时DQ=3;(2)当点N到点A、B的距离相等时,点N在边AB的中线上,此时PD=DQ;(3)当0≤t≤时,四边形PQMN与△ABC重叠部分图形为四边形PQMN;当≤t≤时,四边形PQMN与△ABC重叠部分图形为五边形PQFEN.(4)MN、MQ与边BC的有交点时,此时<t<,列出四边形PEMF与四边形PQMN的面积表达式后,即可求出t的值.试题解析:(1)∵△PQN与△ABC都是等边三角形,∴当点N落在边BC上时,点Q与点B重合.∴DQ=3∴2t=3.∴t=;(2)∵当点N到点A、B的距离相等时,点N在边AB的中线上,∴PD=DQ,当0<t<时,此时,PD=t,DQ=2t∴t=2t∴t=0(不合题意,舍去),当≤t<3时,此时,PD=t,DQ=6﹣2t∴t=6﹣2t,解得t=2;综上所述,当点N到点A、B的距离相等时,t=2;(3)由题意知:此时,PD=t,DQ=2t当点M在BC边上时,∴MN=BQ∵PQ=MN=3t,BQ=3﹣2t∴3t=3﹣2t∴解得t=如图①,当0≤t≤时,S△PNQ=PQ2=t2;∴S=S菱形PQMN=2S△PNQ=t2,如图②,当≤t≤时,设MN、MQ与边BC的交点分别是E、F,∵MN=PQ=3t,NE=BQ=3﹣2t,∴ME=MN﹣NE=PQ﹣BQ=5t﹣3,∵△EMF是等边三角形,∴S△EMF=ME2=(5t﹣3)2.;(4)MN、MQ与边BC的交点分别是E、F,此时<t<,t=1或.考点:几何变换综合题3.如图,矩形ABCD 中,AB =6,BC =4,过对角线BD 中点O 的直线分别交AB ,CD 边于点E ,F .(1)求证:四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,求EF 的长.【答案】(1)证明见解析;(2)133. 【解析】 分析:(1)根据平行四边形ABCD 的性质,判定△BOE ≌△DOF (ASA ),得出四边形BEDF 的对角线互相平分,进而得出结论;(2)在Rt △ADE 中,由勾股定理得出方程,解方程求出BE ,由勾股定理求出BD ,得出OB ,再由勾股定理求出EO ,即可得出EF 的长.详解:(1)证明:∵四边形ABCD 是矩形,O 是BD 的中点,∴∠A=90°,AD=BC=4,AB ∥DC ,OB=OD ,∴∠OBE=∠ODF ,在△BOE 和△DOF 中,OBE ODF OB ODBOE DOF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BOE ≌△DOF (ASA ),∴EO=FO ,∴四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,BD ⊥EF ,设BE=x ,则 DE=x ,AE=6-x ,在Rt △ADE 中,DE 2=AD 2+AE 2,∴x 2=42+(6-x )2,解得:x=133, ∵22AD AB +13 ∴OB=1213 ∵BD ⊥EF ,∴EO=22BE OB=2133,∴EF=2EO=4133.点睛:本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.【答案】(1)证明见解析;(2)证明见解析;(3)EF2=2BE2+2DF2.【解析】试题分析:(1)根据旋转的性质可知AF=AG,∠EAF=∠GAE=45°,故可证△AEG≌△AEF;(2)将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.由(1)知△AEG≌△AEF,则EG=EF.再由△BME、△DNF、△CEF均为等腰直角三角形,得出CE=CF,BE=BM,NF=DF,然后证明∠GME=90°,MG=NF,利用勾股定理得出EG2=ME2+MG2,等量代换即可证明EF2=ME2+NF2;(3)将△ADF绕着点A顺时针旋转90°,得到△ABG,根据旋转的性质可以得到△ADF≌△ABG,则DF=BG,再证明△AEG≌△AEF,得出EG=EF,由EG=BG+BE,等量代换得到EF=BE+DF.试题解析:(1)∵△ADF绕着点A顺时针旋转90°,得到△ABG,∴AF=AG,∠FAG=90°,∵∠EAF=45°,∴∠GAE=45°,在△AGE与△AFE中,,∴△AGE≌△AFE(SAS);(2)设正方形ABCD的边长为a.将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.则△ADF≌△ABG,DF=BG.由(1)知△AEG≌△AEF,∴EG=EF.∵∠CEF=45°,∴△BME、△DNF、△CEF均为等腰直角三角形,∴CE=CF,BE=BM,NF=DF,∴a﹣BE=a﹣DF,∴BE=DF,∴BE=BM=DF=BG,∴∠BMG=45°,∴∠GME=45°+45°=90°,∴EG2=ME2+MG2,∵EG=EF,MG=BM=DF=NF,∴EF2=ME2+NF2;(3)EF2=2BE2+2DF2.如图所示,延长EF交AB延长线于M点,交AD延长线于N点,将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.由(1)知△AEH≌△AEF,则由勾股定理有(GH+BE)2+BG2=EH2,即(GH+BE)2+(BM﹣GM)2=EH2又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2考点:四边形综合题5.△ABC 为等边三角形,AF AB =.BCD BDC AEC ∠=∠=∠.(1)求证:四边形ABDF 是菱形.(2)若BD 是ABC ∠的角平分线,连接AD ,找出图中所有的等腰三角形.【答案】(1)证明见解析;(2)图中等腰三角形有△ABC ,△BDC ,△ABD ,△ADF ,△ADC ,△ADE .【解析】【分析】(1)先求证BD ∥AF ,证明四边形ABDF 是平行四边形,再利用有一组邻边相等的平行四边形是菱形即可证明;(2)先利用BD 平分∠ABC ,得到BD 垂直平分线段AC ,进而证明△DAC 是等腰三角形,根据BD ⊥AC,AF ⊥AC ,找到角度之间的关系,证明△DAE 是等腰三角形,进而得到BC =BD =BA =AF =DF ,即可解题,见详解.【详解】(1)如图1中,∵∠BCD =∠BDC ,∴BC =BD ,∵△ABC 是等边三角形,∴AB =BC ,∵AB =AF ,∴BD =AF ,∵∠BDC =∠AEC ,∴BD ∥AF ,∴四边形ABDF 是平行四边形,∵AB =AF ,∴四边形ABDF是菱形.(2)解:如图2中,∵BA=BC,BD平分∠ABC,∴BD垂直平分线段AC,∴DA=DC,∴△DAC是等腰三角形,∵AF∥BD,BD⊥AC∴AF⊥AC,∴∠EAC=90°,∵∠DAC=∠DCA,∠DAC+∠DAE=90°,∠DCA+∠AEC=90°,∴∠DAE=∠DEA,∴DA=DE,∴△DAE是等腰三角形,∵BC=BD=BA=AF=DF,∴△BCD,△ABD,△ADF都是等腰三角形,综上所述,图中等腰三角形有△ABC,△BDC,△ABD,△ADF,△ADC,△ADE.【点睛】本题考查菱形的判定,等边三角形的性质,等腰三角形的判定等知识,属于中考常考题型,熟练掌握等腰三角形的性质是解题的关键.6.定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”.性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等.理解:如图①,在△ABC中,CD是AB边上的中线,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD.应用:如图②,在矩形ABCD中,AB=4,BC=6,点E在AD上,点F在BC上,AE=BF,AF 与BE交于点O.(1)求证:△AOB和△AOE是“友好三角形”;(2)连接OD,若△AOE和△DOE是“友好三角形”,求四边形CDOF的面积.探究:在△ABC中,∠A=30°,AB=4,点D在线段AB上,连接CD,△ACD和△BCD是“友好三角形”,将△ACD沿CD所在直线翻折,得到△A′CD,若△A′CD与△ABC重合部分的面积等于△ABC面积的,请直接写出△ABC的面积.【答案】(1)见解析;(2)12;探究:2或2.【解析】试题分析:(1)利用一组对边平行且相等的四边形是平行四边形,得到四边形ABFE是平行四边形,然后根据平行四边形的性质证得OE=OB,即可证得△AOE和△AOB是友好三角形;(2)△AOE和△DOE是“友好三角形”,即可得到E是AD的中点,则可以求得△ABE、△ABF的面积,根据S四边形CDOF=S矩形ABCD-2S△ABF即可求解.探究:画出符合条件的两种情况:①求出四边形A′DCB是平行四边形,求出BC和A′D推出∠ACB=90°,根据三角形面积公式求出即可;②求出高CQ,求出△A′DC的面积.即可求出△ABC的面积.试题解析:(1)∵四边形ABCD是矩形,∴AD∥BC,∵AE=BF,∴四边形ABFE是平行四边形,∴OE=OB,∴△AOE和△AOB是友好三角形.(2)∵△AOE和△DOE是友好三角形,∴S△AOE=S△DOE,AE=ED=AD=3,∵△AOB与△AOE是友好三角形,∴S△AOB=S△AOE,∵△AOE≌△FOB,∴S△AOE=S△FOB,∴S△AOD=S△ABF,∴S四边形CDOF=S矩形ABCD-2S△ABF=4×6-2××4×3=12.探究:解:分为两种情况:①如图1,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折叠A和A′重合,∴AD=A′D=AB=×4=2,∵△A′CD与△ABC重合部分的面积等于△ABC面积的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴DO=OB,A′O=CO,∴四边形A′DCB是平行四边形,∴BC=A′D=2,过B作BM⊥AC于M,∵AB=4,∠BAC=30°,∴BM=AB=2=BC,即C和M重合,∴∠ACB=90°,由勾股定理得:AC=,∴△ABC的面积是×BC×AC=×2×2=2;②如图2,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折叠A和A′重合,∴AD=A′D=AB=×4=2,∵△A′CD与△ABC重合部分的面积等于△ABC面积的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴DO=OA′,BO=CO,∴四边形A′BDC是平行四边形,∴A′C=BD=2,过C作CQ⊥A′D于Q,∵A′C=2,∠DA′C=∠BAC=30°,∴CQ=A′C=1,∴S△ABC=2S△ADC=2S△A′DC=2××A′D×CQ=2××2×1=2;即△ABC的面积是2或2.考点:四边形综合题.7.如图,现将平行四边形ABCD沿其对角线AC折叠,使点B落在点B′处.AB′与CD交于点E.(1)求证:△AED≌△CEB′;(2)过点E作EF⊥AC交AB于点F,连接CF,判断四边形AECF的形状并给予证明.【答案】(1)见解析(2)见解析【解析】【分析】(1)由题意可得AD=BC=B'C,∠B=∠D=∠B',且∠AED=∠CEB',利用AAS证明全等,则结论可得;(2)由△AED≌△CEB′可得AE=CE,且EF⊥AC,根据等腰三角形的性质可得EF垂直平分AC,∠AEF=∠CEF.即AF=CF,∠CEF=∠AFE=∠AEF,可得AE=AF,则可证四边形AECF是菱形.【详解】证明:(1)∵四边形ABCD是平行四边形∴AD=BC,CD∥AB,∠B=∠D∵平行四边形ABCD沿其对角线AC折叠∴BC=B'C,∠B=∠B'∴∠D=∠B',AD=B'C且∠DEA=∠B'EC∴△ADE≌△B'EC(2)四边形AECF是菱形∵△ADE≌△B'EC∴AE=CE∵AE=CE,EF⊥AC∴EF垂直平分AC,∠AEF=∠CEF∴AF=CF∵CD∥AB∴∠CEF=∠EFA且∠AEF=∠CEF∴∠AEF=∠EFA∴AF=AE∴AF=AE=CE=CF∴四边形AECF是菱形【点睛】本题考查了折叠问题,全等三角形的判定和性质,平行四边形的性质,菱形的判定,熟练掌握这些性质和判定是解决问题的关键.8.(1)问题发现如图1,点E. F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF、则EF=BE+DF,试说明理由;(2)类比引申如图2,在四边形ABCD中,AB=AD,∠BAD=90°,点E. F分别在边BC、CD上,∠EAF=45°,若∠B,∠D都不是直角,则当∠B与∠D满足等量关系时,仍有EF=BE+DF;(3)联想拓展如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,猜想BD、DE、EC 满足的等量关系,并写出推理过程。
平行四边形、矩形、菱形、正方形提高题
平行四边形练习 一、选择题1、如图1,在平行四边形ABCD 中,EF ∥BC ,GH ∥AB ,EF 、GH 的交点P 在BD 上,则图中面 积相等的平行四边形有( )A 0对B 1对C 2对D 3对 2、如图2,边长为1的正方形ABCD 绕点A 逆时针旋转30︒到正方形AB C D ''',图中阴影部分的面积为( )A .12B .33C .313-D .314-CBD A图 (1) 图(2) 图(3)3、如图3,正方形ABCD 中,点E 在BC 的延长线上,AE 平分∠DAC,则下列结论:(1)∠E=22.50. (2) ∠AFC=112.50. (3) ∠ACE=1350(4)AC=CE(5) AD ∶CE=1∶2. 其中正确的有( ) A 5个 B 4个 C 3个 D 2个4、如图4,在四边形ABCD 中,E 是AB 上的一点,△ADE 和△BCE 都是等边三角形,点P 、Q 、 M 、N 分别为AB 、BC 、CD 、DA 的中点,则四边形MNPQ 是( ) A 等腰梯形 B 矩形 C 菱形 D 正方形A DEFB C图(5)二、填空题5、如图5,正方形ABCD 中,∠DAF=25°,AF 交对角线BD 于E,交CD 于F, 则∠BEC= 度6、在矩形ABCD 中,对角线AC ,BD 相交于点O ,若对角线AC=10cm ,•边BC=•8cm ,•则△ABO 的周 长为________.7、在矩形ABCD 中,M 是BC 的中点,且MA ⊥MD .•若矩形ABCD•的周长为48cm ,•则矩形ABCD 的 面积为_______c m 2.三、解答题C BB '__D C 'D 'DAAQ E PMN DCBA 图(4)_ E _ F_ B_ C8、已知,如图,矩形ABCD 的对角线AC ,BD 相交于点O ,E ,F 分别是OA ,OB 的中点. (1)求证:△ADE ≌△BCF ;(2)若AD=4cm ,AB=8cm ,求OF 的长.10、如图,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF =BE . ⑴求证:CE =CF ;⑵在图1中,若G 在AD 上,且∠GCE =45°,则GE =BE +GD 成立吗?为什么? ⑶运用⑴⑵解答中所积累的经验和知识,完成下题:如图2,在直角梯形ABCD 中,AD ∥BC (BC >AD ),∠B =90°,AB =BC =6,E 是AB 上一点, 且∠DCE =45°,BE =2,求DE 的长.6.如图1,在△ABC 中,AB=BC ,P 为AB 边上一点,连接CP ,以PA 、PC 为邻边作□APCD ,AC 与PD 相交于点E ,已知∠ABC=∠AEP=α(0°<α<90°). (1)求证:∠EAP=∠EPA;(2)□APCD 是否为矩形?请说明理由;(3)如图2,F 为BC 中点,连接FP ,将∠AEP 绕点E 顺时针旋转适当的角度,得到∠MEN(点M 、N 分别是∠MEN 的两边与BA 、FP 延长线的交点).猜想线段EM 与EN 之间的数量关系,并证明你的结论.图1ABDCE P 图2ABDCEPM NFB CA G D FEB CA DE图1图2。
平行四边形综合练习附答案
平行四边形综合练习学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列判断错误的是()A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形D.两条对角线垂直且平分的四边形是正方形【答案】D【解析】【分析】分别利用平行四边形、矩形、菱形和正方形的判定定理,对选项逐一分析即可做出判断.【详解】解:A、两组对边分别相等的四边形是平行四边形,符合平行四边形的判定,故本选项正确,不符合题意;B、∵四边形的内角和为360°,四边形的四个内角都相等,∴四边形的每个内角都等于90°,则这个四边形有三个角是90°,∴这个四边形是矩形,故四个内角都相等的四边形是矩形,本选项正确,不符合题意;C、四条边都相等的四边形是菱形,符合菱形的判定,故本选项正确,不符合题意;D、两条对角线垂直且平分的四边形是菱形,不一定是正方形,故本选项错误,符合题意;故选:D.【点睛】本题考查了平行四边形、矩形、菱形和正方形的判定定理,解题的关键是正确理解并掌握判定定理.2.如图,平行四边形ABCD中,对角线AC,BD交于点O,点E是BC的中点.若OE ,则AB的长为()6cm【答案】D【解析】【分析】根据平行四边形的性质,可得出点O 平分AC ,则OE 是三角形ABC 的中位线,则AB =2OE ,继而求出答案.【详解】解:∵四边形ABCD 为平行四边形,∴AO =CO ,∵点E 是CB 的中点,∴OE 为△ABC 的中位线,∴AB =2OE ,∵OE =6cm ,∴AB =12cm .故选:D .【点睛】本题考查了平行四边形的性质和三角形的中位线定理,关键是根据平行四边形的性质得出OE 为△ABC 的中位线.3.如图,点P 是矩形ABCD 的对角线上一点,过点P 作EF //BC ,分别交,AB CD 于,E F ,连接,PB PD ,若1,3AE PF ==,则图中阴影部分的面积为( )A .3B .6C .9D .12 【答案】A【解析】【分析】先根据矩形的性质证得DFP PBE SS =,然后求解即可.【详解】∴四边形AEPM 、四边形DFPM 、四边形CFPN 和四边形BEPN 都是矩形,∵ADC ABC S S =△△,AMP AEP S S =,PBE PBN S S =,PFD PDM S S =,PFC PCN S S =, ∴S 矩形DFPM =S 矩形BEPN ,∵PM =AE =1,PF =NC =3, ∴131322DFP PBE S S ==⨯⨯=△△, ∴S 阴=33+=322, 故选:A .【点睛】本题主要考查矩形的性质、三角形的面积等知识,证得DFP PBE S S =是解答本题的关键. 4.在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的条件是( ) A .AC =BD ,AB ∥CD ,AB =CDB .AD ∥BC ,∠A =∠C C .AO =BO =CO =DO ,AC ⊥BDD .AO =CO ,BO =DO ,AB =BC【答案】C【解析】【详解】试题分析:根据正方形的判定:对角线互相垂直平分且相等的四边形是正方形进行分析从而得到最后的答案.解:A ,不能,只能判定为矩形;B ,不能,只能判定为平行四边形;C ,能;D ,不能,只能判定为菱形.故选C .5.如图,ABC ∆中,DE BC ∥,EF AB ∥,要判定四边形DBFE 是菱形,还需要添加的条件是( )A .BE 平分ABC ∠B .AD BD =C .BE AC ⊥D .AB AC =【答案】A【解析】【分析】 当BE 平分∠ABC 时,四边形DBFE 是菱形,可知先证明四边形BDEF 是平行四边形,再证明BD=DE 即可解决问题.【详解】解:当BE 平分ABC ∠时,四边形DBFE 是菱形,理由:∵DE BC ∥,∴DEB EBC ∠=∠,∵EBC EBD ∠=∠,∴EBD DEB ∠=∠,∴BD DE =,∵DE BC ∥,EF AB ∥,∴四边形DBFE 是平行四边形,∵BD DE =,∴四边形DBFE 是菱形.其余选项均无法判断四边形DBFE 是菱形,故选A.【点睛】本题考查菱形的判定、平行四边形的判定和性质、角平分线的定义、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 6.若一个菱形的边长为2,则这个菱形两条对角线长的平方和为( )A .16B .8C .4D .1【答案】A根据菱形的对角线互相垂直平分,即菱形被对角线平分成四个全等的直角三角形,根据勾股定理,即可求解.【详解】解:设两对角线长分别是:a ,b . 则(12a )2+(12b )2=22,故有a 2+b 2=16.故选:A .【点睛】本题主要考查了菱形的性质和勾股定理,菱形被两个对角线平分成四个全等的直角三角形,因为菱形的这个性质,使得菱形的题目一般都会和勾股定理结合起来,同学们要注意掌握.7.如图,把一张矩形纸片ABCD 按所示方法进行两次折叠,得到等腰直角三角形BEF ,若BC =1,则AB 的长度为( )A 2B 21+C 51+D .43【答案】A【解析】 【分析】 先判断出∠ADE =45°,进而判断出AE =AD ,利用勾股定理即可得出结论.【详解】解:由折叠补全图形如图所示,∵四边形ABCD 是矩形,∴∠ADA '=∠B =∠C =∠A =90°,AD =BC =1,CD =AB ,由第一次折叠得:∠DAE =∠A =90°,∠ADE =12∠ADC =45°,∴∠AED =∠ADE =45°,∴AE =AD =1,在Rt △ADE 中,根据勾股定理得,DE 2AD 2,由第二次折叠可知,DC DE =【点睛】本题考查了图形的折叠和勾股定理,搞清楚折叠中线段的数量关系是解决此类题的关键.8.如图,矩形ABCD 的对角线相交于点O ,过点O 作OG AC ⊥,交AB 于点G ,连接CG ,若15BOG ∠=,则BCG ∠的度数是( )A .15B .15.5C .20D .37.5【答案】A【解析】【分析】 根据矩形的性质求出OCB ∠的度数,从而得到GAC ∠的度数,再根据垂直平分线的性质得到GCA GAC ∠=∠,最后求出BCG ∠的度数.【详解】解:∵OG AC ⊥,∴90COG ∠=︒,∵15BOG ∠=︒,∴901575COB COG BOG ∠=∠-∠=︒-︒=︒,∵四边形ABCD 是矩形,∴AC BD =,12OC OA AC ==,12OB OD BD ==,//AB DC ,90BCD ∠=︒, ∴OC OB =, ∴1801807552.522COB OCB OBC ︒-∠︒-︒∠=∠===︒, ∴37.5ACD BCD OCB ∠=∠-∠=︒,∵//AB CD ,∴37.5GAC ACD ∠=∠=︒,∴GO 是AC 的垂直平分线,∴AG CG =,∴37.5GCA GAC ∠=∠=︒,∴52.537.515BCG OCB GCA ∠=∠-∠=︒-︒=︒.故选:A .【点睛】本题考查矩形的性质,垂直平分线的性质,解题的关键是熟练掌握这些性质定理,并结合题目条件进行证明.二、填空题9.正方形是有一组邻边_______,并且有一个角是_______的平行四边形,因此它既是______又是________.【答案】 相等 直角 矩形 菱形【解析】【分析】根据正方形的定义和性质填空即可.【详解】 正方形是有一组邻边相等,并且有一个角是直角的平行四边形,因此它既是矩形又是菱形.故答案为:相等,直角,矩形,菱形【点睛】本题考查了正方形的定义,解题关键是明确正方形的定义:正方形是有一组邻边相等,并且有一个角是直角的平行四边形,因此它既是矩形又是菱形.10.如图,在矩形ABCD 中,5AB =,4BC =,将矩形ABCD 翻折,使得点B 落在CD 边上的点E 处,折痕AF 交BC 于点F ,则FC =______【答案】32【分析】在Rt△ADE中,AD2+DE2=AE2,可得DE=3,CE=CD-DE=2,设FC=x,则EF=BC-FC=4-x,在Rt△ECF中,EF2=EC2+FC2,可得(4-x)2=22+x2,解方程即可.【详解】解∵△ABF≌△AEF,∴AE=AB=5,在矩形ABCD中,AD=BC=4,在Rt△ADE中,AD2+DE2=AE2,∴DE=3,CE=CD-DE=2,设FC=x,则EF=BC-FC=4-x,在Rt△ECF中,EF2=EC2+FC2,即(4-x)2=22+x2,8x=12,x=32,∴FC=32.故此答案为32.【点睛】本题考查翻折变换、矩形的性质、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题.11.如图所示,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB向右平移得到△DEF,若平移距离为2,则四边形ABED的面积等于_______.【答案】8【解析】【分析】形ABED 是平行四边形,最后根据平行四边形的面积公式即可得.【详解】由平移的性质得2AD BE ==,4DF AC ==,90C DFE ∠=∠=︒∴四边形ACFD 是矩形//AD CF ∴//AD BE ∴∴四边形ABED 是平行四边形(一组对边平行且相等的四边形是平行四边形) 则四边形ABED 的面积为428DF BE ⋅=⨯=故答案为:8.【点睛】本题考查了平移的性质、平行四边形的判定、矩形的判定与性质等知识点,掌握平移的性质是解题关键.12.如图,ACE ∆是以ABCD 的对角线AC 为边的等边三角形,点C 与点E 关于x 轴对称.若E 点的坐标是(7,33)-,则D 点的坐标是_____.【答案】(5,0)【解析】【分析】设CE 和x 轴交于H ,由对称性可知63CE =63AC CE ==根据勾股定理即可求出AH 的长,进而求出AO 和DH 的长,所以OD 可求,又因为D 在x 轴上,纵坐标为0,问题得解.【详解】解:点C 与点E 关于x 轴对称,E 点的坐标是(7,33)-, C ∴的坐标为(7,33),33CH ∴=3CE =63AC ∴=,9AH ∴=,7OH =,2AO DH ∴==,5OD ∴=,D ∴点的坐标是(5,0),故答案为:(5,0).【点睛】本题考查了平行四边形的性质、等边三角形的性质、点关于x 轴对称的特点以及勾股定理的运用,解题的关键是综合应用以上知识点.13.如图,在矩形ABCD 中,6AB =,8AD =,P 是AD 上不与A 和D 重合的一个动点,过点P 分别作AC 和BD 的垂线,垂足为E ,F ,则PE PF +的值为______.【答案】245【解析】【分析】连接OP ,利用勾股定理列式求出BD ,再根据矩形的对角线相等且互相平分求出OA 、OD ,然后根据S △AOD =S △AOP +S △DOP 列方程求解即可.【详解】解:如图,连接OP ,∵AB=6,AD=8,∴2222.6810BD AB AD ++=,∵四边形ABCD 是矩形,∵S△AOD=S△AOP+S△DOP,∴12×12×6×8=12×5•PE+12×5•PF,解得PE+PF=245.故答案为:245.【点睛】本题考查了矩形的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键.14.如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为_____.【答案】(2,6)【解析】【分析】此题涉及的知识点是平面直角坐标系图像性质的综合应用.过点M作MF⊥CD于F,过C作CE⊥OA于E,在Rt△CMF中,根据勾股定理即可求得MF与EM,进而就可求得OE,CE的长,从而求得C的坐标.【详解】∵四边形OCDB是平行四边形,点B的坐标为(16,0),CD∥OA,CD=OB=16,过点M作MF⊥CD于F,则182CF CD,==过C作CE⊥OA于E,∵A(20,0),∴OA=20,OM=10,∴OE=OM−ME=OM−CF=10−8=2,连接MC,110,2MC OA==∴在Rt△CMF中,2222108 6.MF MC CF=-=-=∴点C的坐标为(2,6).故答案为(2,6).【点睛】此题重点考察学生对坐标与图形性质的实际应用,勾股定理,注意数形结合思想在解题的关键.三、解答题15.如图是某区部分街道示意图,其中AB AF⊥,E、D分别是FA和FG的中点,点C、D、E在一条直线上,点A、G、B在一条直线上,//BC FG.从B站乘车到E站只有两条路线有直接到达的公交车,路线1是B D A E⇒⇒⇒,且长度为5公里,路线2是B C F E⇒⇒⇒,求路线2的长度.【答案】5公里【解析】【分析】证明四边形BCDG是平行四边形,得到DG=CB,再证四边形BCFD是平行四边形,根据平行四边形的性质计算,得到答案.【详解】解:∵E、D分别是FA和FG的中点,∴AB∥DE,∵BC∥GF,∴四边形BCDG是平行四边形,∴DG=CB.∵FD=DG,∴CB=FD.又∵BC ∥DF ,∴四边形BCFD 是平行四边形,∴CF =BD ,∵AB ∥DE ,AB AF ⊥,FE =AE ,∴CE 垂直平分AF ,∴AE =FE ,FD =DA ,∴BC =DA ,∴路线2的长度:BC +CF +FE =AD +BD +AE =5(公里).【点睛】本题考查的是平行四边形的判定和性质、线段垂直平分线的性质,掌握平行四边形的判定定理和性质定理是解题的关键.16.已知:如图,ABCD 中,5AB =,3BC =.(1)作DAB ∠的角平分线,交CD 于点E (用直尺和圆规作图,不写作法,保留作图痕迹);(2)求CE 的长.【答案】(1)见解析;(2)CE 的长为2【解析】【分析】(1)根据尺规作图作DAB ∠的平分线即可;(2)根据平行四边形的性质和角平分线的定义,求出DE =DA =BC =3,再求出CE 即可.【详解】解:如图,(1)AE 即为∠DAB 的角平分线;(2)∵AE 为∠DAB 的角平分线,∴∠DAE =∠BAE ,在▱ABCD中,CD∥AB,∴∠BAE=∠DEA,∴∠DAE=∠DEA,∴DE=DA=BC=3,∵DC=AB=5,∴CE=CD﹣DE=2.答:CE的长为2.【点睛】当平行线遇上角平分线时,通过角的转化,可以得到等腰三角形,这是初中几何一个很重要的数学模型,要深刻领会.17.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.【答案】(1)见解析(2)见解析【解析】【分析】(1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案.(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可.【详解】解:(1)证明:∵AF∥BC,∴∠AFE=∠DBE.∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD.在△AFE和△DBE中,∵∠AFE=∠DBE,∠FEA=∠BED,AE=DE,∴△AFE≌△DBE(AAS)∴AF =BD .∴AF =DC .(2)四边形ADCF 是菱形,证明如下:∵AF ∥BC ,AF =DC ,∴四边形ADCF 是平行四边形.∵AC ⊥AB ,AD 是斜边BC 的中线,∴AD =DC .∴平行四边形ADCF 是菱形.18.如图,四边形ABCD 是边长为13cm 的菱形,其中对角线BD 长10cm .求:(1)对角线AC 的长度;(2)菱形ABCD 的面积.【答案】(1)24cm AC =;(2)2120cm【解析】【分析】(1)根据菱形的对角线互相垂直平分,可利用勾股定理求出AE 的长,从而求出AC 的长;(2)根据菱形的面积公式:两条对角线乘积的一半即可求得面积.【详解】解:(1)∵四边形ABCD 是菱形,AC 与BD 相交于点E ,∴90AED ∠=︒(菱形的对角线互相垂直),11105(cm)22DE BD ==⨯=(菱形的对角线互相平分). ∴222213512(cm)AE AD DE =--=.∴221224(cm)AC AE ==⨯=(菱形的对角线互相平分);(2)ABD BDC ABCD S S S =+菱形1122BD AE BD CE =⋅+⋅ 1()2BD AE CE =⋅+ 12BD AC =⋅ 110242=⨯⨯ 2120(cm )=.【点睛】本题主要考查了菱形的性质、菱形的面积公式、勾股定理,熟知菱形的性质是解本题的关键.19.如图,E 是▱ABCD 的边CD 的中点,延长AE 交BC 的延长线于点F .(1)求证:△ADE ≌△FCE .(2)若∠BAF =90°,BC =5,EF =3,求CD 的长.【答案】(1)证明过程见解析;(2)8【解析】【分析】(1)由平行四边形的性质得出AD ∥BC ,AB ∥CD ,证出∠DAE =∠F ,∠D =∠ECF ,由AAS 证明△ADE ≌△FCE 即可;(2)由全等三角形的性质得出AE =EF =3,由平行线的性质证出∠AED =∠BAF =90°,由勾股定理求出DE ,即可得出CD 的长.【详解】(1)∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD ,∴∠DAE =∠F ,∠D =∠ECF ,∵E 是▱ABCD 的边CD 的中点, ∴DE =CE ,在△ADE 和△FCE 中,DAE F D ECF DE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ADE ≌△FCE (AAS );(2)∵ADE≌△FCE,∴AE=EF=3,∵AB∥CD,∴∠AED=∠BAF=90°,在▱ABCD中,AD=BC=5,∴DE=2222-=-=4,AD AE53∴CD=2DE=8【点睛】考点:(1)平行四边形的性质;(2)全等三角形的判定与性质20.(1)如图,纸片▱ABCD中,AD=5,S▱ABCD=15.过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE'的位置,拼成四边形AEE'D,则四边形AEE'D的形状为() A.平行四边形B.菱形C.矩形D.正方形(2)如图,在(1)中的四边形纸片AEE/D中,在EE/上取一点F,使EF=4,剪下△AEF,将它平移至△DE/F/的位置,拼成四边形AFF/D.①求证:四边形AFF'D是菱形;②求四边形AFF'D的两条对角线的长.图1图2【答案】(1)C;(2)①证明见解析;1010【解析】【详解】试题分析:(1)如图1,纸片▱ABCD中,AD=5,S▱ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AE E′D的形状为矩形,故选C;(2)①证明:∵纸片▱ABCD中,AD=5,S▱ABCD=15,过点A作AE⊥BC,垂足为E,∴AE=3.如图2:∵△AEF ,将它平移至△DE′F′,∴AF ∥DF′,AF=DF′,∴四边形AFF′D 是平行四边形.在Rt △AEF 中,由勾股定理,得AF=2222=34++AE EF =5,∴AF=AD=5,∴四边形AFF′D 是菱形;②连接AF′,DF ,如图3:在Rt △DE′F 中E′F=FF′﹣E′F′=5﹣4=1,DE′=3,∴DF=2222=13=10''++E D E F ,在Rt △AEF′中EF′=EF+FF′=4+5=9,AE=3,∴AF′=2222=39'++AE F E =310. 考点:①图形的剪拼;②平行四边形的性质;③菱形的判定与性质;④矩形的判定;⑤平移的性质.21.如图,在正方形ABCD 中,E 、F 分别为边AD 和CD 上的点,且AE=CF ,连接AF 、CE 交于点G .求证:AG=CG .【答案】证明见解析.【解析】【分析】先用SAS 证明△ADF ≌△CDE ,得∠DAF=∠DCE ,再用AAS 证明△AGE ≌△CGF 即可.【详解】∵四边形ABCD 是正方形,∴∠ADF=∠CDE=90°,AD=CD .∵AE=CF ,∴DE=DF ,在△ADF 和△CDE 中,AD AD ADF CDE DF DE =⎧⎪∠=∠⎨⎪=⎩, ∴△ADF ≌△CDE (SAS ),∴∠DAF=∠DCE ,在△AGE 和△CGF 中,GAE GCF AGE CGF AE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AGE ≌△CGF (AAS ),∴AG=CG .22.如图,△ABC 中,AB =AC =1,∠BAC =45°,△AEF 是由△ABC 绕点A 按顺时针方向旋转得到的,连接BE ,CF 相交于点D,(1)求证:BE =CF ;(2)当四边形ACDE 为菱形时,求BD 的长.【答案】(1)证明见解析(22【解析】【分析】(1)先由旋转的性质得AE=AB ,AF=AC ,∠EAF=∠BAC ,则∠EAF+∠BAF=∠BAC+∠BAF ,即∠EAB=∠FAC ,利用AB=AC 可得AE=AF ,得出△ACF ≌△ABE ,从而得出BE=CF ;(2)由菱形的性质得到DE=AE=AC=AB=1,AC ∥DE ,根据等腰三角形的性质得∠AEB=∠ABE ,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE 为等腰直角三角形,所以22BD=BE ﹣DE 求解.【详解】(1)∵△AEF 是由△ABC 绕点A 按顺时针方向旋转得到的,∴AE=AB ,AF=AC ,∠EAF=∠BAC ,∴∠EAF+∠BAF=∠BAC+∠BAF ,即∠EAB=∠FAC ,在△ACF 和△ABE 中,AC AB CAF BAE AF AE =⎧⎪∠=∠⎨⎪=⎩∴△ACF ≌△ABE∴BE=CF.(2)∵四边形ACDE 为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC ∥DE ,∴∠AEB=∠ABE ,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE 为等腰直角三角形,∴BE=2AC=2,∴BD=BE ﹣DE=21-.考点:1.旋转的性质;2.勾股定理;3.菱形的性质. 23.如图,AD 是ABC 的中线,//AE BC ,且12AE BC =,连接DE ,CE .(1)求证:AB DE =;(2)当ABC 满足条件__________时,四边形ADCE 是矩形.【答案】(1)见解析;(2)AB =AC 或 ABC ACB ∠=∠【解析】【分析】(1)根据三角形中位线定理和平行四边形的判定和性质解答即可; (2)根据矩形的判定解答即可.【详解】(1)∵AD 是ABC 的中线,∴12BD BC =, ∵12AE BC =, ∴AE BD =,∵//AE BC ,∴四边形ABDE 是平行四边形,∴AB DE =(2)当△ABC 满足AB =AC 或ABC ACB ∠=∠时,四边形ADCE 是矩形, 11,,22BC BD AE CD BC =∴== ∴AE =CD ,∵AE ∥BC ,∴四边形ADCE 是平行四边形,∵AB =DE ,∴当AB =AC 或ABC ACB ∠=∠时,AC =DE ,∴四边形ADCE 是矩形.【点睛】此题考查了平行四边形的判定与性质、等腰三角形的性质以及矩形的判定.此题难度适中,注意掌握数形结合思想的应用.24.在边长为5的正方形ABCD 中,点E 在边CD 所在直线上,连接BE ,以BE 为边,在BE 的下方作正方形BEFG ,并连接AG .(1)如图1,当点E 与点D 重合时,AG = ;(2)如图2,当点E 在线段CD 上时,DE =2,求AG 的长;(3)若AG =5172,请直接写出此时DE 的长.【答案】(1)5(2109(3)52或152. 【解析】【分析】 (1)如图1,连接CG ,证明△CBD ≌△CBG (SAS ),可得G ,C ,D 三点共线,利用勾股定理可得AG 的长;(2)如图2,作辅助线,构建全等三角形,证明△BCE ≌△BKG ,可得AK 和KG 的长,利用勾股定理计算AG 的长;(3)分三种情况:①当点E在边CD的延长线上时,如图3,同(2)知△BCE≌△BKG (AAS),BC=BK=5,根据勾股定理可得KG的长,即可CE的长,此种情况不成立;②当点E在边CD上;③当点E在DC的延长线上时,同理可得结论.【详解】(1)如图1,连接CG,∵四边形ABCD和四边形EBGF是正方形,∴∠CDB=∠CBD=45°,∠DBG=90°,BD=BG,∴∠CBG=45°,∴∠CBG=∠CBD,∵BC=BC,∴△CBD≌△CBG(SAS),∴∠DCB=∠BCG=90°,DC=CG=5,∴G,C,D三点共线,∴AG=22+=22AD DG+=55,510故答案为:55;(2)如图2,过点G作GK⊥AB,交AB的延长线于K,∵DE=2,DC=5,∴CE=3,∵∠EBG=∠EBC+∠CBG=90°,∠CBG+∠GBK=90°,∵BE=BG,∠K=∠BCE=90°,∴△BCE≌△BKG(AAS),∴CE=KG=3,BC=BK=5,∴AK=10,由勾股定理得:AG=22103+=109;(3)分三种情况:①当点E在CD的延长线上时,如图3,由(2)知△BCE≌△BKG(AAS),∴BC=BK=5,∵AG=5172,由勾股定理得:KG=22517102⎛⎫-⎪⎪⎝⎭=52,∴CE=KG=52,此种情况不成立;②当点E在边CD上时,如图4,由(2)知△BCE≌△BKG(AAS),∵AG=5172,由勾股定理得:KG=22517102⎛⎫-⎪⎪⎝⎭=52,∴CE=KG=52,∴DE=CD-CE=52;③当点E在DC的延长线上时,如图5,同理得CE=KG=52,∴DE=5+52=152;综上,DE的长是52或152.【点睛】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、勾股定理等知识,本题综合性强,有一定难度,证明三角形全等是解决问题的关键.。
平行四边形和特殊四边形提高练习常考题和培优题(供参考)
平行四边形和特殊四边形提高练习常考题和培优题一.选择题(共5小题)1.如图,把大小相同的两个矩形拼成如下形状,则△FBD是()A.等边三角形B.等腰直角三角形C.一般三角形D.等腰三角形2.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=,CE=3,H 是AF的中点,那么CH的长是()A.3.5 B.C. D.23.如图,在矩形ABCD中,AB=4,BC=8,对角线AC、BD相交于点O,过点O 作OE垂直AC交AD于点E,则AE的长是()A.3 B.5 C.2.4 D.2.54.如图,在△ABC中,CF⊥AB于F,BE⊥AC于E,M为BC的中点,EF=7,BC=10,则△EFM的周长是()A.17 B.21 C.24 D.275.如图,在矩形ABCD中,AB=6,AD=8,P是AD上不与A和D重合的一个动点,过点P分别作AC和BD的垂线,垂足为E、F,则PE+PF的值为()A.10 B.4.8 C.6 D.5二.填空题(共4小题)6.如图,在矩形ABCD中,对角线AC与BD相交于点O,AE平分∠BAD交BC 于点E,若∠CAE=15°,则∠BOE的度数等于.7.如图,将平行四边形ABCD的边DC延长到E,使CE=CD,连接AE交BC于F,∠AFC=n∠D,当n=时,四边形ABEC是矩形.8.如图,在正五边形ABCDE中,连接AC、AD、CE,CE交AD于点F,连接BF,则线段AC、BF、CD之间的关系式是.9.如图,在平面直角坐标系中,O为原点,四边形OABC是矩形,A(﹣10,0),C(0,3),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标是.三.解答题(共31小题)10.如图,正方形ABCD中,AE=AB,直线DE交BC于点F,求∠BEF的度数.11.如图,梯形ABCD中,AD∥BC,AB=CD,对角线AC、BD交于点O,AC⊥BD,E、F、G、H分别为AB、BC、CD、DA的中点.(1)求证:四边形EFGH为正方形;(2)若AD=1,BC=3,求正方形EFGH的边长.12.如图,点E、F分别是正方形ABCD的边CD和AD的中点,BE和CF交于点P.求证:AP=AB.13.如图,点P为正方形ABCD对角线BD上一点,PE⊥BC于E,PF⊥DC于F.(1)求证:PA=EF;(2)若正方形ABCD的边长为a,求四边形PFCE的周长.14.如图1,在正方形ABCD中,点E为BC上一点,连接DE,把△DEC沿DE折叠得到△DEF,延长EF交AB于G,连接DG.(1)求∠EDG的度数.(2)如图2,E为BC的中点,连接BF.①求证:BF∥DE;②若正方形边长为6,求线段AG的长.15.如图①,在正方形ABCD中,F是对角线AC上的一点,点E在BC的延长线上,且BF=EF.(1)求证:BF=DF;(2)求证:∠DFE=90°;(3)如果把正方形ABCD改为菱形,其他条件不变(如图②),当∠ABC=50°时,∠DFE=度.16.已知正方形ABCD中,对角线AC、BD相交于O.①如图1,若E是AC上的点,过A 作AG⊥BE于G,AG、BD交于F,求证:OE=OF②如图2,若点E在AC的延长线上,AG⊥EB交EB的延长线于G,AG延长DB 延长线于点F,其它条件不变,OE=OF还成立吗?17.如图,点P是菱形ABCD中对角线AC上的一点,且PE=PB.(1)求证:PE=PD;(2)求证:∠PDC=∠PEB;(3)若∠BAD=80°,连接DE,试求∠PDE的度数,并说明理由.18.如图,正方形ABCD中,AB=1,点P是BC边上的任意一点(异于端点B、C),连接AP,过B、D两点作BE⊥AP于点E,DF⊥AP于点F.(1)求证:EF=DF﹣BE;(2)若△ADF的周长为,求EF的长.19.如图,正方形ABCD的对角线AC、BD的交点为O,以O为端点引两条互相垂直的射线OM、ON,分别交边AB、BC于点E、F.(1)求证:0E=OF;(2)若正方形的边长为4,求EF的最小值.20.如图,在正方形ABCD中,点E是边AD上任意一点,BE的垂直平分线FG 交对角AC于点F.求证:(1)BF=DF;(2)BF⊥FE.21.已知:如图所示,四边形ABCD中,∠ABC=∠ADC=90°,M是AC上任一点,O是BD的中点,连接MO,并延长MO到N,使NO=MO,连接BN与ND.(1)判断四边形BNDM的形状,并证明;(2)若M是AC的中点,则四边形BNDM的形状又如何?说明理由.22.如图,在△ABC中,O是边AC上的一动点,过点O作直线MN∥BC,设MN 交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)求证:OE=OF;(2)当点O运动到何处时,四边形AECF是矩形?23.(1)如图矩形ABCD的对角线AC、BD交于点O,过点D作DP∥OC,且DP=OC,连接CP,判断四边形CODP的形状并说明理由.(2)如果题目中的矩形变为菱形,结论应变为什么?说明理由.(3)如果题目中的矩形变为正方形,结论又应变为什么?说明理由.24.如图1,已知AB∥CD,AB=CD,∠A=∠D.(1)求证:四边形ABCD为矩形;(2)E是AB边的中点,F为AD边上一点,∠DFC=2∠BCE.①如图2,若F为AD中点,DF=1.6,求CF的长度:②如图2,若CE=4,CF=5,则AF+BC=,AF=.25.如图,直线a、b相交于点A,C、E分别是直线b、a上两点且BC⊥a,DE ⊥b,点M、N是EC、DB的中点.求证:MN⊥BD.26.如图所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P从点A出发沿AD方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s的速度运动.点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动.(1)经过多长时间,四边形PQCD是平行四边形?(2)经过多长时间,四边形PQBA是矩形?(3)经过多长时间,当PQ不平行于CD时,有PQ=CD.27.如图,E、F是正方形ABCD的边AD上的两个动点,满足AE=DF.连接CF 交BD于G,连接BE交AG于H.已知正方形ABCD的边长为4cm,解决下列问题:(1)求证:BE⊥AG;(2)求线段DH的长度的最小值.28.如图,点M是矩形ABCD的边AD的中点,点P是BC边上一动点,PE⊥MC,PF⊥BM,垂足为E、F.(1)当矩形ABCD的长与宽满足什么条件时,四边形PEMF为矩形?猜想并证明你的结论.(2)在(1)中,当点P运动到什么位置时,矩形PEMF变为正方形,为什么?29.某校数学兴趣小组开展了一次课外活动,过程如下:如图①,正方形ABCD 中,AB=4,将三角板放在正方形ABCD上,使三角板的直角顶点与D点重合.三角板的一边交AB于点P,另一边交BC的延长线于点Q.(1)求证:AP=CQ;(2)如图②,小明在图1的基础上作∠PDQ的平分线DE交BC于点E,连接PE,他发现PE和QE存在一定的数量关系,请猜测他的结论并予以证明;(3)在(2)的条件下,若AP=1,求PE的长.30.如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,求t的值.31.如图,在Rt△ABC中,∠ABC=90°,点D是AC的中点,作∠ADB的角平分线DE交AB于点E,(1)求证:DE∥BC;(2)若AE=3,AD=5,点P为BC上的一动点,当BP为何值时,△DEP为等腰三角形.请直接写出所有BP的值.32.已知:如图,BF、BE分别是∠ABC及其邻补角的角平分线,AE⊥BE,垂足为点E,AF⊥BF,垂足为点F.EF分别交边AB、AC于点M、N.求证:(1)四边形AFBE是矩形;(2)BC=2MN.33.如图,在边长为5的菱形ABCD中,对角线BD=8,点O是直线BD上的动点,OE⊥AB于E,OF⊥AD于F.(1)对角线AC的长是,菱形ABCD的面积是;(2)如图1,当点O在对角线BD上运动时,OE+OF的值是否发生变化?请说明理由;(3)如图2,当点O在对角线BD的延长线上时,OE+OF的值是否发生变化?若不变请说明理由,若变化,请直接写出OE、OF之间的数量关系,不用明理由.34.如图,已知Rt△ABD≌Rt△FEC,且B、D、C、E在同一直线上,连接BF、AE.(1)求证:四边形ABFE是平行四边形.(2)若∠ABD=60°,AB=2cm,DC=4cm,将△ABD沿着BE方向以1cm/s的速度运动,设△ABD运动的时间为t,在△ABD运动过程中,试解决以下问题:(1)当四边形ABEF是菱形时,求t的值;(2)是否存在四边形ABFE是矩形的情形?如果存在,求出t的值,如果不存在,请说明理由.35.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图1,连接AF、CE.求证:四边形AFCE为菱形.(2)如图1,求AF的长.(3)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,点P的速度为每秒1cm,设运动时间为t秒.①问在运动的过程中,以A、P、C、Q四点为顶点的四边形有可能是矩形吗?若有可能,请求出运动时间t和点Q的速度;若不可能,请说明理由.②若点Q的速度为每秒0.8cm,当A、P、C、Q四点为顶点的四边形是平行四边形时,求t的值.36.如图1,E,F是正方形ABCD的边上两个动点,满足AE=DF,连接CF交BD 于G,连接BE交AG于点H(1)求证:AG⊥BE;(2)如图2,连DH,若正方形的边长为4,则线段DH长度的最小值是.37.如图,在菱形ABCD中,AB=2,∠DAB=60°,点E时AD边的中点,点M时AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形.(2)填空:①当AM的值为时,四边形AMDN是矩形;②当AM的值为时,四边形AMDN是菱形.38.如图,已知正方形OABC的边长为4,顶点A、C分别在x、y轴的正半轴上,M是BC的中点,点P(0,m)是线段oc上的一动点9点P不与点O、C重合0,直线PM交AB的延长线于点D.(1)求点D的坐标;(用含m的代数式表示)(2)若△APD是以AP边为一腰的等腰三角形,求m的值.39.如图,在△ABC中,∠ABC=90°,点D为AC的中点,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)证明:四边形BDFG是菱形;(2)若AC=10,CF=6,求线段AG的长度.40.如图,在正方形ABCD中,点E在边AD上,点F在边BC的延长线上,连接EF与边CD相交于点G,连接BE与对角线AC相交于点H,AE=CF,BE=EG.(1)求证:EF∥AC;(2)求∠BEF大小;(3)若EB=4,则△BAE的面积为.初二数学平行四边形和特殊四边形提高练习常考题和培优题参考答案与试题解析一.选择题(共5小题)1.(2012春•炎陵县校级期中)如图,把大小相同的两个矩形拼成如下形状,则△FBD是()A.等边三角形B.等腰直角三角形C.一般三角形D.等腰三角形【分析】根据正方形性质得出FG=BC,∠G=∠C=90°,GB=CD,根据SAS证△FGB ≌△BCD,推出∠FBG=∠BDC,BF=BD,求出∠DBC+∠FBG=90°,求出∠FBD的度数即可.【解答】解:∵大小相同的两个矩形GFEB、ABCD,∴FG=BE=AD=BC,GB=EF=AB=CD,∠G=∠C=∠ABG=∠ABC=90°,∵在△FGB和△BCD中,∴△FGB≌△BCD,∴∠FBG=∠BDC,BF=BD,∵∠BDC+∠DBC=90°,∴∠DBC+∠FBG=90°,∴∠FBD=180°﹣90°=90°,即△FBD是等腰直角三角形,故选B.【点评】本题考查了等腰直角三角形,全等三角形的性质和判定,正方形性质的应用,关键是证出△FGB≌△BCD,主要考查学生运用性质进行推理的能力.2.(2015春•江阴市期中)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=,CE=3,H是AF的中点,那么CH的长是()A.3.5 B.C. D.2【分析】根据正方形的性质求出AB=BC=,CE=EF=3,∠E=90°,延长AD交EF于M,连接AC、CF,求出AM=4,FM=2,∠AMF=90°,根据正方形性质求出∠ACF=90°,根据直角三角形斜边上的中线性质求出CH=AF,根据勾股定理求出AF即可.【解答】解:∵正方形ABCD和正方形CEFG中,点D在CG上,BC=,CE=3,∴AB=BC=,CE=EF=3,∠E=90°,延长AD交EF于M,连接AC、CF,则AM=BC+CE=4,FM=EF﹣AB=2,∠AMF=90°,∵四边形ABCD和四边形GCEF是正方形,∴∠ACD=∠GCF=45°,∴∠ACF=90°,∵H为AF的中点,∴CH=AF,在Rt△AMF中,由勾股定理得:AF==2,∴CH=,故选:C.【点评】本题考查了勾股定理,正方形的性质,直角三角形斜边上的中线的应用,解此题的关键是能正确作出辅助线,并求出AF的长和得出CH=AF,有一定的难度.3.(2015春•泗洪县校级期中)如图,在矩形ABCD中,AB=4,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则AE的长是()A.3 B.5 C.2.4 D.2.5【分析】根据矩形的性质得出∠CDE=90°,AD=BC=8,AB=DC=4,AO=OC,根据线段垂直平分线性质得出AE=CE,在Rt△CDE中,由勾股定理得出CE2=CD2+DE2,代入求出即可.【解答】解:∵在矩形ABCD中,AB=4,BC=8,∴∠CDE=90°,AD=BC=8,AB=DC=4,AO=OC,∵OE⊥AC,∴AE=CE,在Rt△CDE中,由勾股定理得:CE2=CD2+DE2,即AE2=42+(8﹣AE)2,解得:AE=5,故选B.【点评】本题考查了矩形的性质,勾股定理,线段垂直平分线性质的应用,解此题的关键是得出关于AE的方程.4.(2015秋•无锡期中)如图,在△ABC中,CF⊥AB于F,BE⊥AC于E,M为BC的中点,EF=7,BC=10,则△EFM的周长是()A.17 B.21 C.24 D.27【分析】根据CF⊥AB于F,BE⊥AC于E,M为BC的中点,利用直角三角形斜边上的中线等于斜边的一半,求出FM和ME的长,即可求解.【解答】解:∵CF⊥AB,M为BC的中点,∴MF是Rt△BFC斜边上的中线,∴FM=BC=×10=5,同理可得,ME=BC=×10=5,又∵EF=7,∴△EFM 的周长=EF +ME +FM=7+5+5=17.故选A .【点评】此题主要考查学生对直角三角形斜边上的中线这个知识点的理解和掌握,解答此题的关键是利用直角三角形斜边上的中线等于斜边的一半,求出FM 和ME 的长.5.(2015春•乌兰察布校级期中)如图,在矩形ABCD 中,AB=6,AD=8,P 是AD 上不与A 和D 重合的一个动点,过点P 分别作AC 和BD 的垂线,垂足为E 、F ,则PE +PF 的值为( )A .10B .4.8C .6D .5【分析】连接OP ,利用勾股定理列式求出BD ,再根据矩形的对角线相等且互相平分求出OA 、OD ,然后根据S △AOD =S △AOP +S △DOP 列方程求解即可.【解答】解:如图,连接OP ,∵AB=6,AD=8,∴BD===10,∵四边形ABCD 是矩形,∴OA=OD=×10=5,∵S △AOD =S △AOP +S △DOP , ∴××6×8=×5•PE +×5•PF ,解得PE +PF=4.8.故选B .【点评】本题考查了矩形的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键.二.填空题(共4小题)6.(2016春•东平县期中)如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,AE 平分∠BAD 交BC 于点E ,若∠CAE=15°,则∠BOE 的度数等于 75° .【分析】由矩形ABCD ,得到OA=OB ,根据AE 平分∠BAD ,得到等边三角形OAB ,推出AB=OB ,求出∠OAB 、∠OBC 的度数,根据平行线的性质和等角对等边得到OB=BE ,根据三角形的内角和定理即可求出答案.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,AC=BD,OA=OC,OB=OD,∠BAD=90°,∴OA=OB,∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE=45°=∠AEB,∴AB=BE,∵∠CAE=15°,∴∠DAC=45°﹣15°=30°,∠BAC=60°,∴△BAO是等边三角形,∴AB=OB,∠ABO=60°,∴∠OBC=90°﹣60°=30°,∵AB=OB=BE,∴∠BOE=∠BEO=(180°﹣30°)=75°.故答案为75°.【点评】本题主要考查了三角形的内角和定理,矩形的性质,等边三角形的性质和判定,平行线的性质,角平分线的性质,等腰三角形的判定等知识点,解此题的关键是求出∠OBC的度数和求OB=BE.7.(2014春•武昌区期中)如图,将平行四边形ABCD的边DC延长到E,使CE=CD,连接AE交BC于F,∠AFC=n∠D,当n=2时,四边形ABEC是矩形.【分析】首先根据四边形ABCD是平行四边形,得到四边形ABEC是平行四边形,然后证得FC=FE,利用对角线互相相等的四边形是矩形判定四边形ABEC是矩形.【解答】解:当∠AFC=2∠D时,四边形ABEC是矩形.∵四边形ABCD是平行四边形,∴BC∥AD,∠BCE=∠D,由题意易得AB∥EC,AB∥EC,∴四边形ABEC是平行四边形.∵∠AFC=∠FEC+∠BCE,∴当∠AFC=2∠D时,则有∠FEC=∠FCE,∴FC=FE,∴四边形ABEC是矩形,故答案为:2.【点评】此题考查了平行四边形的性质以及矩形的判定.此题难度适中,注意掌握数形结合思想的应用,解题的关键是了解矩形的判定定理.8.(2015春•南长区期中)如图,在正五边形ABCDE中,连接AC、AD、CE,CE 交AD于点F,连接BF,则线段AC、BF、CD之间的关系式是AC2+BF2=4CD2.【分析】首先根据菱形的判定方法,判断出四边形ABCF是菱形,再根据菱形的性质,即可判断出AC⊥BF;然后根据勾股定理,可得OB2+OC2=BC2,据此推得AC2+BF2=4CD2即可.【解答】解:∵五边形ABCDE是正五边形,∴AB∥CE,AD∥BC,∴四边形ABCF是平行四边形,又∵AB=BC=CD=DE=EA,∴四边形ABCF是菱形,∴AC⊥BF,∴OB2+OC2=BC2,∵AC=2OC,BF=2OB,∴AC2+BF2=(2OC)2+(2OB)2=4OC2+4OB2=4BC2,又∵BC=CD,∴AC2+BF2=4CD2.故答案为:AC2+BF2=4CD2.【点评】(1)此题主要考查了菱形的判定和性质的应用,要熟练掌握,解答此题的关键是要明确:菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法.(2)此题还考查了勾股定理的应用:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方,要熟练掌握.9.(2015春•株洲校级期中)如图,在平面直角坐标系中,O为原点,四边形OABC是矩形,A(﹣10,0),C(0,3),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标是(﹣4,3),或(﹣1,3),或(﹣9,3).【分析】先由矩形的性质求出OD=5,分情况讨论:(1)当OP=OD=5时;根据勾股定理求出PC,即可得出结果;(2)当PD=OD=5时;①作PE⊥OA于E,根据勾股定理求出DE,得出PC,即可得出结果;②作PF⊥OA于F,根据勾股定理求出DF,得出PC,即可得出结果.【解答】解:∵A(﹣10,0),C(0,3),∴OA=10,OC=3,∵四边形OABC是矩形,∴BC=OA=10,AB=OC=3,∵D是OA的中点,∴AD=OD=5,分情况讨论:(1)当OP=OD=5时,根据勾股定理得:PC==4,∴点P的坐标为:(﹣4,3);(2)当PD=OD=5时,分两种情况讨论:①如图1所示:作PE⊥OA于E,则∠PED=90°,DE==4,∴PC=OE=5﹣4=1,∴点P的坐标为:(﹣1,3);②如图2所示:作PF⊥OA于F,则DF==4,∴PC=OF=5+4=9,∴点P的坐标为:(﹣9,3);综上所述:点P的坐标为:(﹣4,3),或(﹣1,3),或(﹣9,3);故答案为:(﹣4,3),或(﹣1,3),或(﹣9,3).【点评】本题考查了矩形的性质、坐标与图形性质、等腰三角形的性质、勾股定理;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.三.解答题(共31小题)10.(2012春•西城区校级期中)如图,正方形ABCD中,AE=AB,直线DE交BC 于点F,求∠BEF的度数.【分析】设∠BAE=x°,根据正方形性质推出AB=AE=AD,根据等腰三角形性质和三角形的内角和定理求出∠AEB和∠AED的度数,根据平角定义求出即可.【解答】解:设∠BAE=x°,∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∵AE=AB,∴AB=AE=AD,∴∠ABE=∠AEB=(180°﹣∠BAE)=90°﹣x°,∠DAE=90°﹣x°,∠AED=∠ADE=(180°﹣∠DAE)=[180°﹣(90°﹣x°)]=45°+x°,∴∠BEF=180°﹣∠AEB﹣∠AED,=180°﹣(90°﹣x°)﹣(45°+x°),=45°,答:∠BEF的度数是45°.【点评】本题考查了三角形的内角和定理,等腰三角形性质,正方形性质的应用,解此题的关键是如何把已知角的未知角结合起来,题目比较典型,但是有一定的难度.11.(2012秋•高淳县期中)如图,梯形ABCD中,AD∥BC,AB=CD,对角线AC、BD交于点O,AC⊥BD,E、F、G、H分别为AB、BC、CD、DA的中点.(1)求证:四边形EFGH为正方形;(2)若AD=1,BC=3,求正方形EFGH的边长.【分析】(1)先由三角形的中位线定理求出四边相等,然后由AC⊥BD入手,进行正方形的判断.(2)连接EG,利用梯形的中位线定理求出EG的长,然后结合(1)的结论求出EH2=2,也即得出了正方形EHGF的边长.【解答】(1)证明:在△ABC中,∵E、F分别是AB、BC的中点,∴EF=同理FG=,GH=,HE=在梯形ABCD中,∵AB=DC,∴AC=BD,∴EF=FG=GH=HE∴四边形EFGH为菱形.设AC与EH交于点M在△ABD中,∵E、H分别是AB、AD的中点,∴EH∥BD,同理GH∥AC又∵AC⊥BD,∴∠BOC=90°.∴∠EHG=∠EMC=∠BOC=90°∴四边形EFGH为正方形.(2)解:连接EG,在梯形ABCD中,∵E、G分别是AB、DC的中点,∴EG=(AD+BC)=(1+3)=2,在Rt△HEG中,EG2=EH2+HG2,4=2EH2,EH2=2,则EH=.即四边形EFGH的边长为.【点评】此题考查了等腰梯形的性质及三角形、梯形的中位线定理,解答本题的关键是根据三角形的中位线定理得出EH=HG=GF=FE,这是本题的突破口.12.(2013秋•青岛期中)如图,点E、F分别是正方形ABCD的边CD和AD的中点,BE和CF交于点P.求证:AP=AB.【分析】延长CF、BA交于点M,先证△BCE≌△CDF,再证△CDF≌△AMF得BA=MA 由直角三角形中斜边中线等于斜边的一半,可得Rt△MBP中AP=BM,即AP=AB.【解答】证明:延长CF、BA交于点M,∵点E、F分别是正方形ABCD的边CD和AD的中点,∴BC=CD,∠BCE=∠CDF,CE=DF,∴△BCE≌△CDF,∴∠CBE=∠DCF.∵∠DCF+∠BCP=90°,∴∠CBE+∠BCP=90°,∴∠BPM=∠CBE+∠BCP=90°.又∵FD=FA,∠CDF=∠MAF,∠CFD=∠MFA,∴△CDF≌△AMF,∴CD=AM.∵CD=AB,∴AB=AM.∴PA是直角△BPM斜边BM上的中线,∴AP=BM,即AP=AB.【点评】本题考查了正方形各边长相等、各内角为直角的性质,全等三角形的判定和对应边相等的性质,直角三角形斜边中线长为斜边长一半的性质,本题中求证△CDF≌△AMF是解题的关键.13.(2015春•禹州市期中)如图,点P为正方形ABCD对角线BD上一点,PE⊥BC于E,PF⊥DC于F.(1)求证:PA=EF;(2)若正方形ABCD的边长为a,求四边形PFCE的周长.【分析】(1)连接PC,证四边形PFCE是矩形,求出EF=PC,证△ABP≌△CBP,推出AP=PC即可;(2)证△CBD是等腰直角三角形,求出BF、PF,求出周长即可.【解答】解:证明:(1)连接PC,∵四边形ABCD是正方形,∴AB=CB,∠ABD=∠CBD=45°,∠C=90°,在△ABP与△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∵PE⊥BC,PF⊥CD,∴∠PFC=90°,∠PEC=90°.又∵∠C=90°,∴四边形PFCE是矩形,∴EF=PC,∴PA=EF.(2)由(1)知四边形PFCE是矩形,∴PE=CF,PF=CE,又∵∠CBD=45°,∠PEB=90°,∴BE=PE,又BC=a,∴矩形PFCE的周长为2(PE+EC)=2(BE+EC)=2BC=2a.【点评】本题主要考查正方形的性质,全等三角形的性质和判定等知识点的连接和掌握,能证出AP=PC是解此题的关键.14.(2015秋•福建校级期中)如图1,在正方形ABCD中,点E为BC上一点,连接DE,把△DEC沿DE折叠得到△DEF,延长EF交AB于G,连接DG.(1)求∠EDG的度数.(2)如图2,E为BC的中点,连接BF.①求证:BF∥DE;②若正方形边长为6,求线段AG的长.【分析】(1)由正方形的性质可得DC=DA.∠A=∠B=∠C=∠ADC=90°,由折叠的性质得出∠DFE=∠C,DC=DF,∠1=∠2,再求出∠DFG=∠A,DA=DF,然后由“HL”证明Rt△DGA≌Rt△DGF,由全等三角形对应角相等得出∠3=∠4,得出∠2+∠3=45°即可;(2)①由折叠的性质和线段中点的定义可得CE=EF=BE,∠DEF=∠DEC,再由三角形的外角性质得出∠5=∠DEC,然后利用同位角相等,两直线平行证明即可;②设AG=x,表示出GF、BG,根据点E是BC的中点求出BE、EF,从而得到GE 的长度,再利用勾股定理列出方程求解即可;【解答】(1)解:如图1所示:∵四边形ABCD是正方形,∴DC=DA.∠A=∠B=∠C=∠ADC=90°,∵△DEC沿DE折叠得到△DEF,∴∠DFE=∠C,DC=DF,∠1=∠2,∴∠DFG=∠A=90°,DA=DF,在Rt△DGA和Rt△DGF中,,∴Rt△DGA≌Rt△DGF(HL),∴∠3=∠4,∴∠EDG=∠3+∠2=∠ADF+∠FDC,=(∠ADF+∠FDC),=×90°,=45°;(2)①证明:如图2所示:∵△DEC沿DE折叠得到△DEF,E为BC的中点,∴CE=EF=BE,∠DEF=∠DEC,∴∠5=∠6,∵∠FEC=∠5+∠6,∴∠DEF+∠DEC=∠5+∠6,∴2∠5=2∠DEC,即∠5=∠DEC,∴BF∥DE;②解:设AG=x,则GF=x,BG=6﹣x,∵正方形边长为6,E为BC的中点,∴CE=EF=BE=×6=3,∴GE=EF+GF=3+x,在Rt△GBE中,根据勾股定理得:(6﹣x)2+32=(3+x)2,解得:x=2,即线段AG的长为2.【点评】本题考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理、翻折变换的性质;熟练掌握正方形的性质,并能进行推理论证与计算是解决问题的关键.15.(2016春•召陵区期中)如图①,在正方形ABCD中,F是对角线AC上的一点,点E在BC的延长线上,且BF=EF.(1)求证:BF=DF;(2)求证:∠DFE=90°;(3)如果把正方形ABCD改为菱形,其他条件不变(如图②),当∠ABC=50°时,∠DFE=50度.【分析】(1)根据正方形的四条边都相等可得BC=DC,对角线平分一组对角可得∠BCF=∠DCF,然后利用“边角边”证明即可;(2)易证∠FBE=∠FEB,又因为∠FBE=∠FDC,所以可证明∠FEB=∠FDC,进而可证明∠DFE=90°;(3)根据全等三角形对应角相等可得∠CBF=∠CDF,根据等边对等角可得∠CBF=∠E,然后求出∠DFE=∠DCE,再根据两直线平行,同位角相等可得∠DCE=∠ABC,从而得解.【解答】(1)证明:在正方形ABCD中,BC=DC,∠BCF=∠DCF=45°,∵在△BCF和△DCF中,,∴△BCF≌△DCF(SAS);∴BF=DF;(2)证明:∵BF=EF,∴∠FBE=∠FEB,又∵∠FBE=∠FDC,∴∠FEB=∠FDC,又∵∠DGF=∠EGC,∴∠DFG=∠ECG=90°,即∠DFE=90°;(3)证明:由(1)知,△BCF≌△DCF,∴∠CBF=∠CDF,∵EE=FB,∴∠CBF=∠E,∵∠DGF=∠EGC(对顶角相等),∴180°﹣∠DGF﹣∠CDF=180°﹣∠EGC﹣∠E,即∠DFE=∠DCE,∵AB∥CD,∴∠DCE=∠ABC,∴∠DFE=∠ABC=50°,故答案为:50.【点评】本题考查了正方形的性质,全等三角形的判定与性质,菱形的性质,等边对等角的性质,熟记正方形的性质确定出∠BCF=∠DCF是解题的关键.16.(2015秋•泗县期中)已知正方形ABCD中,对角线AC、BD相交于O.①如图1,若E是AC上的点,过A 作AG⊥BE于G,AG、BD交于F,求证:OE=OF②如图2,若点E在AC的延长线上,AG⊥EB交EB的延长线于G,AG延长DB 延长线于点F,其它条件不变,OE=OF还成立吗?【分析】①由正方形的性质得出OA=OB,AC⊥BD,得出∠BOE=∠AOF=90°,由角的互余关系得出∠OBE=∠OAF,由ASA证明△BOE≌△AOF,得出对应边相等即可;②由正方形的性质得出OA=OB,AC⊥BD,得出∠BOE=∠AOF=90°,由角的互余关系得出∠OBE=∠OAF,由ASA证明△BOE≌△AOF,得出对应边相等即可.【解答】①证明:∵四边形ABCD是正方形,∴OA=OB,AC⊥BD,∴∠BOE=∠AOF=90°,∴∠OEB+∠OBE=90°,∵AG⊥BE,∴∠AGE=90°,∴∠OEB+∠OAF=90°,∴∠OBE=∠OAF,在△BOE和△AOF中,,∴△BOE≌△AOF(ASA),∴OE=OF;②解:OE=OF还成立;理由如下:∵四边形ABCD是正方形,∴OA=OB,AC⊥BD,∴∠BOE=∠AOF=90°,∴∠OEB+∠OBE=90°,∵AG⊥BE,∴∠AGE=90°,∴∠OEB+∠OAF=90°,∴∠OBE=∠OAF,在△BOE和△AOF中,,∴△BOE≌△AOF(ASA),∴OE=OF.【点评】本题考查了正方形的性质、全等三角形的判定与性质;熟练掌握正方形的性质,并能进行推理论证是解决问题的关键.17.(2016春•邳州市期中)如图,点P是菱形ABCD中对角线AC上的一点,且PE=PB.(1)求证:PE=PD;(2)求证:∠PDC=∠PEB;(3)若∠BAD=80°,连接DE,试求∠PDE的度数,并说明理由.【分析】(1)由菱形的性质得出AB=BC=CD=AD,AB∥CD,∠DCP=∠BCP,由SAS 证明△CDP≌△CBP,得出PB=PD,再由PE=PB,即可得出结论;(2)由等腰三角形的性质得出∠PBC=∠PEB,由全等三角形的性质得出∠PDC=∠PBC,即可得出∠PDC=∠PEB;(3)由四边形内角和定理得出∠DPE=100°,由等腰三角形的性质和三角形内角和定理即可得出结果.【解答】(1)解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,AB∥CD,∠DCP=∠BCP,在△DCP和△BCP中,,∴△CDP≌△CBP(SAS),∴PB=PD,∵PE=PB,∴PE=PD;(2)证明:∵PE=PB,∴∠PBC=∠PEB,∵△CDP≌△CBP,∴∠PDC=∠PBC,∴∠PDC=∠PEB;(3)解:如图所示:∠PDE=40°;理由如下:在四边形DPEC中,∵∠DPE=360°﹣(∠PDC+∠PEC+∠DCB)=360°﹣(∠PEB+∠PEC+∠DCB)=360°﹣(180°+80°)=100°,∵PE=PD∴∠PDE=∠PED=40°.【点评】本题考查了菱形的性质、全等三角形的判定与性质、等腰三角形的性质;熟练掌握菱形的性质,证明三角形全等是解决问题的关键.18.(2016春•昆山市期中)如图,正方形ABCD中,AB=1,点P是BC边上的任意一点(异于端点B、C),连接AP,过B、D两点作BE⊥AP于点E,DF⊥AP于点F.(1)求证:EF=DF﹣BE;(2)若△ADF的周长为,求EF的长.【分析】(1)由正方形的性质得出AD=AB,证出∠DAF=∠ABE,由AAS证明△ADF ≌△BAE,得出AF=BE,DF=AE,即可得出结论;(2)设DF=a,AF=b,EF=DF﹣AF=a﹣b>0,由已知条件得出DF+AF=,即a+b=,由勾股定理得出a2+b2=1,再由完全平方公式得出a﹣b即可.【解答】(1)证明:∵BE⊥AP,DF⊥AP,∴∠DFA=∠AEB=90°,∠ABE+∠BAE=90°,∵四边形ABCD为正方形,∴AD=AB,∠DAB=90°=∠DAF+∠BAE,∴∠DAF=∠ABE,在△ADF和△BAE中,,∴△ADF≌△BAE(AAS),∴AF=BE,DF=AE,∴EF=AE﹣AF=DF﹣BE;(2)解:设DF=a,AF=b,EF=DF﹣AF=a﹣b>0,∵△ADF的周长为,AD=1,∴DF+AF=,即a+b=,由勾股定理得:DF2+AF2=AD2,即a2+b2=1,∴(a﹣b)2=2(a2+b2)﹣(a+b)2=2﹣=,∴a﹣b=,即EF=.【点评】本题考查了正方形的性质、全等三角形的判定与性质、勾股定理等知识;熟练掌握正方形的性质,由勾股定理得出a与b的关系式是解决问题(2)的关键.19.(2015春•繁昌县期中)如图,正方形ABCD的对角线AC、BD的交点为O,以O为端点引两条互相垂直的射线OM、ON,分别交边AB、BC于点E、F.(1)求证:0E=OF;(2)若正方形的边长为4,求EF的最小值.【分析】(1)根据正方形的性质可得∠EAO=∠FBO=45°,OA=OB,再根据同角的余角相等可得∠AOE=∠BOE,然后利用“角边角”证明△AOE和△BOF全等,根据全等三角形对应边相等即可得证;(2)根据等腰直角三角形△EOF,当OE最小时,再根据勾股定理得出EF的最小值.【解答】解:(1)∵四边形ABCD是正方形,∴OA=OB,∠AOB=90°,∠EAO=∠FBO=45°,∴∠AOE+∠BOE=90°,∵OE⊥OF,∴∠BOF+∠BOE=90°,∴∠AOE=∠BOF,在△AOE与△BOF中,,∴△AOE≌△BOF(ASA),∴OE=OF;(2)由(1)可知,△EOF是等腰直角三角形,∠EOF是直角,当OE最小时,EF的值最小,∵OA=OB,OE⊥AB,∴点E是AB的中点,∴OE=AB,∵AB=4,∴OE=2,∴EF=,即EF的最小值是2.【点评】本题考查了正方形的性质,解决此类问题的关键是正确的利用旋转不变量.正确作出辅助线是关键.20.(2016春•江宁区期中)如图,在正方形ABCD中,点E是边AD上任意一点,BE的垂直平分线FG交对角AC于点F.求证:(1)BF=DF;(2)BF⊥FE.【分析】(1)由正方形的性质得出AB=AD,∠BAF=∠DAF=45°,由SAS证明△BAF ≌△DAF,得出对应边相等即可;(2)由线段垂直平分线的性质得出BF=EF,证出EF=DF,得出∠FDE=∠FED,再由全等三角形的性质证出∠ABF=∠FED,由邻补角关系得出∠FED+∠FEA=180°,证出∠ABF+∠FEA=180°,由四边形内角和得出∠BAE+∠BFE=180°,求出∠BFE=90°即可.【解答】证明:如图所示:(1)∵四边形ABCD是正方形,∴AB=AD,∠BAF=∠DAF=45°,∠BAE=90°,在△BAF和△DAF中,,∴△BAF≌△DAF(SAS),∴BF=DF;(2)∵BE的垂直平分线FG交对角AC于点F,∴BF=EF,∵BF=DF,∴EF=DF,∴∠FDE=∠FED,∵△BAF≌△DAF,∴∠ABF=∠FDE,∴∠ABF=∠FED,∵∠FED+∠FEA=180°,∴∠ABF+∠FEA=180°,∴∠BAE+∠BFE=180°,∴∠BFE=90°,∴BF⊥FE.【点评】本题考查了正方形的性质、全等三角形的判定与性质、等腰三角形的判定与性质、四边形内角和定理等知识;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.21.(2015春•台州校级期中)已知:如图所示,四边形ABCD中,∠ABC=∠ADC=90°,M是AC上任一点,O是BD的中点,连接MO,并延长MO到N,使NO=MO,连接BN与ND.(1)判断四边形BNDM的形状,并证明;(2)若M是AC的中点,则四边形BNDM的形状又如何?说明理由.【分析】(1)由对角线互相平分的四边形是平行四边形即可得出结论;(2)由直角三角形斜边上1的中线性质得出BM=AC,DM=AC,得出BM=DM,即可得出结论.【解答】(1)解:四边形BNDM是平行四边形,理由如下:。
数学思维训练营认识平行四边形的综合算式练习题
数学思维训练营认识平行四边形的综合算式练习题数学思维训练营是为了提升学生的数学思维能力而设立的培训机构。
在这里,我们将探索平行四边形的特性,并通过一系列综合算式练习题来巩固我们对平行四边形的认识和运用。
1. 已知平行四边形ABCD,AB = 8cm,AD = 5cm,BC = 6cm,求平行四边形的周长和面积。
解析:根据平行四边形的性质,可知AD || BC,AB || DC,AD = BC。
由此,我们可以得到平行四边形的周长和面积。
周长 = AB + BC + CD + DA = 8cm + 6cm + 8cm + 5cm = 27cm面积 = 底 ×高 = BC × AD = 6cm × 5cm = 30cm²因此,这个平行四边形的周长为27cm,面积为30cm²。
2. 若两个平行四边形的面积分别为12cm²和18cm²,其中一个平行四边形的底长是另一个平行四边形底长的2倍,高是另一个平行四边形高的3倍,求这两个平行四边形的周长之和。
解析:假设较小的平行四边形底长为x,高为y,则较大的平行四边形底长为2x,高为3y。
根据平行四边形的面积公式,我们可以得到以下两个方程:1) x * y = 122) 2x * 3y = 18解方程组,可得 x = 2,y = 6。
因此,较小的平行四边形的底长为2cm,高为6cm;较大的平行四边形的底长为4cm,高为18cm。
两个平行四边形的周长分别为:较小平行四边形的周长 = 2 * (2cm + 6cm) = 16cm较大平行四边形的周长 = 2 * (4cm + 18cm) = 44cm所以,这两个平行四边形的周长之和为 16cm + 44cm = 60cm。
综上所述,这两个平行四边形的周长之和为60cm。
3. 平行四边形ABCD中,AB = 10cm,BC = 6cm,∠BAD = 60°,求平行四边形的面积。
最新中考数学总复习:多边形与平行四边形-- 巩固练习(提高)(含答案解析)
中考总复习:多边形与平行四边形-巩固练习(提高)【巩固练习】一、选择题1.如图,四边形ABED和四边形AFCD都是平行四边形,AF和DE相交成直角,AG=3cm,DG=4cm,□ABED 的面积是,则四边形ABCD的周长为()A.49cm B.43cm C.41cm D.46cm2.如图,在△ABC中,已知AB=AC=5,BC=4,点E、F是中线AD上的两点,则图中阴影部分的面积是:( ) A. ; B.2; C.3; D.4.3. 已知点A(2,0)、点B(,0)、点C(0,1),以A、B、C三点为顶点画平行四边形,则第四个顶点不可能在( )A.第一象限B.第二象限 C.第三象限 D.第四象限4.(2011·安徽)如图,在四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=22,CD=2,点P在四边形ABCD的边上,若P到BD的距离为32,则点P的个数为( )A.1 B.2 C.3 D.45.如图,分别以Rt△ABC的斜边AB、直角边AC为边向外作等边△ABD和△ACE,F为AB的中点,DE,AB 相交于点G,若∠BAC=30°,下列结论:①EF⊥AC;②四边形ADFE为平行四边形;③AD=4AG;④△DBF≌△EFA.其中正确结论的是().A.①②③④B.①③④C.②③④ D.①②④6.(2014•杭州模拟)如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,∠ADC=30°,①四边形ACED是平行四边形;②△BCE是等腰三角形;③四边形ACEB的周长是10+2;④四边形ACEB的面积是16.则以上结论正确的是()A.①②③B.①②④C.①③④D.②④二、填空题7. 如图,口ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的点F,若△FDE的周长为8,△FCB的周长为22,则FC的长为________.8.(2015春•淅川县期末)若工人师傅用正三角形、正十边形与正n边形这三种正多边形能够铺成平整的地面,则n的值为.9. 如图,平行四边形ABCD中,∠ABC=60°,AB=4,AD=8,点E、F分别是边BC、AD边的中点,点M是AE与BF的交点,点N是CF与DE的交点,则四边形ENFM的周长是__________.10.(2011•梅州)凸n边形的对角线的条数记作a n(n≥4),例如:a4=2,那么:①a5=_____;②a6-a5=____ ;③a n+1-a n=____.(n≥4,用n含的代数式表示)11.①如图(1),四边形ABCD中,AB∥E1F1∥CD,AD∥BC,则图中共有________个平行四边形;②如图(2),四边形ABCD中,AB∥E1F1∥E2F2∥CD,AD∥BC,则图中共有________个平行四边形;③如图(3),四边形ABCD中,AB∥E1F1∥E2F2∥E3F3∥CD,AD∥BC,则图中共有________个平行四边形;一般地,若四边形ABCD中,E1,E2,E3,…,都是AD上的点,F1,F2,F3,…,都是BC上的点,且AB∥E1F1∥E2F2∥E3F3∥…∥∥CD,AD∥BC,则图中共有________平行四边形.12.如图所示,①中多边形(边数为12)是由正三角形“扩展”而来的,②中多边形是由正方形“扩展”而来的,…,依此类推,则由正n边形“扩展”而来的多边形的边数为___________.三、解答题13.问题再现:现实生活中,镶嵌图案在地面、墙面乃至于服装面料设计中随处可见.在八年级课题学习“平面图形的镶嵌”中,对于单种多边形的镶嵌,主要研究了三角形、四边形、正六边形的镶嵌问题、今天我们把正多边形的镶嵌作为研究问题的切入点,提出其中几个问题,共同来探究.我们知道,可以单独用正三角形、正方形或正六边形镶嵌平面.如图中,用正方形镶嵌平面,可以发现在一个顶点O周围围绕着4个正方形的内角.试想:如果用正六边形来镶嵌平面,在一个顶点周围应该围绕着3个正六边形的内角.问题提出:如果我们要同时用两种不同的正多边形镶嵌平面,可能设计出几种不同的组合方案?问题解决:猜想1:是否可以同时用正方形、正八边形两种正多边形组合进行平面镶嵌?分析:我们可以将此问题转化为数学问题来解决、从平面图形的镶嵌中可以发现,解决问题的关键在于分析能同时用于完整镶嵌平面的两种正多边形的内角特点.具体地说,就是在镶嵌平面时,一个顶点周围围绕的各个正多边形的内角恰好拼成一个周角.验证1:在镶嵌平面时,设围绕某一点有x个正方形和y个正八边形的内角可以拼成一个周角.根据题意,可得方程:90x+(82)1808-⨯•y=360,整理得:2x+3y=8,我们可以找到惟一一组适合方程的正整数解为12 xy=⎧⎨=⎩.结论1:镶嵌平面时,在一个顶点周围围绕着1个正方形和2个正八边形的内角可以拼成一个周角,所以同时用正方形和正八边形两种正多边形组合可以进行平面镶嵌.猜想2:是否可以同时用正三角形和正六边形两种正多边形组合进行平面镶嵌?若能,请按照上述方法进行验证,并写出所有可能的方案;若不能,请说明理由.验证2:_______;结论2:_______.上面,我们探究了同时用两种不同的正多边形组合镶嵌平面的部分情况,仅仅得到了一部分组合方案,相信同学们用同样的方法,一定会找到其它可能的组合方案.问题拓广:请你仿照上面的研究方式,探索出一个同时用三种不同的正多边形组合进行平面镶嵌的方案,并写出验证过程.猜想3:_______;验证3:_______;结论3:_______.14. 如图,在四边形ABCD中,∠A=90°,∠ABC与∠ADC互补.(1)求∠C的度数;(2)若BC>CD且AB=AD,请在图上画出一条线段,把四边形ABCD分成两部分,使得这两部分能够重新拼成一个正方形,并说明理由;(3)若CD=6,BC=8,S四边形ABCD=49,求AB的值.15. (2015春•苏州校级期末)如图,正方形ABCD中,点P是直线BC上一点,连接PA,将线段PA绕点P逆时针旋转90°得到线段PE,在直线BA上取点F,使BF=BP,且点F与点E在BC同侧,连接EF、CF.(1)如图①,当点P在CB延长线上时,求证:四边形PCFE是平行四边形.(2)如图②,当点P在线段BC上时,四边形PCFE是否还是平行四边形,说明理由.16.(2012•广州)如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊥AB于E,设∠ABC=α(60°≤α<90°).(1)当α=60°时,求CE的长;(2)当60°<α<90°时,①是否存在正整数k ,使得∠EFD=k ∠AEF ?若存在,求出k 的值;若不存在,请说明理由. ②连接CF ,当CE 2-CF 2取最大值时,求tan ∠DCF 的值.【答案与解析】 一.选择题 1.【答案】D. 2.【答案】A.3.【答案】C . 4.【答案】B.【解析】如图所示,作AE ⊥BD 于E ,CF ⊥BD 于F ,由题意得AE =12BD =22AB =2>32,∴在边AB 和AD上各存在一个点P 到BD 的距离为32.∵AB =AD ,∠BAD =90°,∴∠ADB =45°.又∠ADC =90°,∴∠CDF =45°.∴CF =22CD =22×2=1<32,∴在边BC 和CD 上不存在符合题意的点P .综上所述.5.【答案】A.【解析】先证 ΔADF≌ΔABC,可得DF=AC=AE.∵DF ∥AE 且DF=AE ∴四边形ADFE 为平行四边形,即①②③④是正确的. 6.【答案】D .【解析】①∵∠ACB=90°,DE ⊥BC , ∴∠ACD=∠CDE=90°, ∴AC ∥DE , ∵CE ∥AD ,∴四边形ACED是平行四边形,故①正确;②∵D是BC的中点,DE⊥BC,∴EC=EB,∴△BCE是等腰三角形,故②正确;③∵AC=2,∠ADC=30°,∴AD=4,CD=2,∵四边形ACED是平行四边形,∴CE=AD=4,∵CE=EB,∴EB=4,DB=2,∴CB=4,∴AB==2,∴四边形ACEB的周长是10+2故③正确;④四边形ACEB的面积:×2×4+×4×2=8,故④错误,故选:A.二.填空题7.【答案】7.【解析】由题意知x+y+z=8,a+(y+a)+(z+x)=22,所以a=7.8.【答案】十五.【解析】正三边形和正十边形内角分别为60°、144°,正n边形的内角应为360°﹣60°﹣144°=156°,所以正n边形为正十五边形.故答案为:十五.9.【答案】4+4.10.【答案】5;4;n-1.【解析】①五边形有5条对角线;②六边形有9条对角线,9-5=4;③n边形有(3)2n n-条对角线,n+1边形有(1)(2)2n n+-条对角线,a n+1-a n=(1)(2)2n n+--(3)2n n-=n-1.11.【答案】①3 ;②6 ;③10,.12.【答案】n(n+1).【解析】∵①正三边形“扩展”而来的多边形的边数是12=3×4,②正四边形“扩展”而来的多边形的边数是20=4×5,③正五边形“扩展”而来的多边形的边数为30=5×6,④正六边形“扩展”而来的多边形的边数为42=6×7,∴正n边形“扩展”而来的多边形的边数为n(n+1).三.综合题13.【解析】用正六边形来镶嵌平面,在一个顶点周围应该围绕着3个正六边形的内角.验证2:在镶嵌平面时,设围绕某一点有a个正三角形和b个正六边形的内角可以拼成一个周角,根据题意,可得方程:60a+120b=360.整理得:a+2b=6,可以找到两组适合方程的正整数解为22ab=⎧⎨=⎩和41ab=⎧⎨=⎩结论2:镶嵌平面时,在一个顶点周围围绕着2个正三角形和2个正六边形的内角或者围绕着4个正三角形和1个正六边形的内角可以拼成一个周角,所以同时用正三角形和正六边形两种正多边形组合可以进行平面镶嵌.猜想3:是否可以同时用正三角形、正方形和正六边形三种正多边形组合进行平面镶嵌?验证3:在镶嵌平面时,设围绕某一点有m个正三角形、n个正方形和c个正六边形的内角可以拼成一个周角.根据题意,可得方程:60m+90n+120c=360,整理得:2m+3n+4c=12,可以找到惟一一组适合方程的正整数解为121 mnc=⎧⎪=⎨⎪=⎩结论3:镶嵌平面时,在一个顶点周围围绕着1个正三角形、2个正方形和1个正六边形的内角可以拼成一个周角,所以同时用正三角形、正方形和正六边形三种正多边形组合可以进行平面镶嵌.(说明:本题答案不惟一,符合要求即可.)14.【解析】(1)∵∠ABC与∠ADC互补,∴∠ABC+∠ADC=180°.∵∠A=90°,∴∠C=360°-90°-180°=90°;(2)过点A作AE⊥BC,垂足为E.则线段AE把四边形ABCD分成△ABE和四边形AECD两部分,把△ABE以A点为旋转中心,逆时针旋转90°,则被分成的两部分重新拼成一个正方形.过点A作AF∥BC交CD的延长线于F,∵∠ABC+∠ADC=180°,又∠ADF+∠ADC=180°, ∴∠ABC=∠ADF .∵AD=AB ,∠AEC=∠AFD=90°,∴△ABE ≌△ADF . ∴AE=AF .∴四边形AECF 是正方形; (3)解法1:连接BD ,∵∠C=90°,CD=6,BC=8,Rt △BCD 中,BD=2286+=10 又∵S 四边形ABCD =49,∴S △ABD =49-24=25. 过点A 作AM ⊥BD 垂足为M , ∴S △ABD =12×BD ×AM=25.∴AM=5. 又∵∠BAD=90°,∴△ABM ∽△DAM .∴AM BM =MDAM.设BM=x ,则MD=10-x , ∴5x=105x -.解得x=5.∴AB=52.解法2:连接BD ,∠A=90°.设AB=x ,AD=y ,则x 2+y 2=102,① ∵12xy=25,∴xy=50.② 由①,②得:(x-y )2=0. ∴x=y .2x 2=100.∴x=52.15.【解析】(1)证明:∵四边形ABCD 是正方形, ∴AB=BC ,∠ABC=∠PBA=90° 在△PBA 和△FBC 中,,∴△PBA ≌△FBC (SAS ),∴PA=FC ,∠PAB=∠FCB .∵PA=PE,∴PE=FC.∵∠PAB+∠APB=90°,∴∠FCB+∠APB=90°.∵∠EPA=90°,∴∠APB+∠EPA+∠FCP=180°,即∠EPC+∠PCF=180°,∴EP∥FC,∴四边形EPCF是平行四边形;(2)解:结论:四边形EPCF是平行四边形,理由是:∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠CBF=90°在△PBA和△FBC中,,∴△PBA≌△FBC(SAS),∴PA=FC,∠PAB=∠FCB.∵PA=PE,∴PE=FC.∵∠FCB+∠BFC=90°,∠EPB+∠APB=90°,∴∠BPE=∠FCB,∴EP∥FC,∴四边形EPCF是平行四边形.16. 【解析】(1)∵α=60°,BC=10,∴sinα=CEBC,即sin60°=10CE=32,解得CE=53;(2)①存在k=3,使得∠EFD=k∠AEF.理由如下:连接CF并延长交BA的延长线于点G,∵F为AD的中点,∴AF=FD,在平行四边形ABCD中,AB∥CD,∴∠G=∠DCF ,在△AFG 和△CFD 中,G DCF AFG DFC AF FD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AFG ≌△DFC (AAS ), ∴CF=GF ,AG=CD , ∵CE ⊥AB ,∴EF=GF (直角三角形斜边上的中线等于斜边的一半), ∴∠AEF=∠G ,∵AB=5,BC=10,点F 是AD 的中点, ∴AG=5,AF=12AD=12BC=5, ∴AG=AF ,∴∠AFG=∠G ,在△EFG 中,∠EFC=∠AEF+∠G=2∠AEF , 又∵∠CFD=∠AFG (对顶角相等), ∴∠CFD=∠AEF ,∴∠EFD=∠EFC+∠CFD=2∠AEF+∠AEF=3∠AEF , 因此,存在正整数k=3,使得∠EFD=3∠AEF ; ②设BE=x ,∵AG=CD=AB=5, ∴EG=AE+AG=5-x+5=10-x ,在Rt △BCE 中,CE 2=BC 2-BE 2=100-x 2,在Rt △CEG 中,CG 2=EG 2+CE 2=(10-x )2+100-x 2=200-20x , ∵CF=GF (①中已证),∴CF 2=(12CG )2=14CG 2=14(200-20x )=50-5x ,∴CE 2-CF 2=100-x 2-50+5x=-x 2+5x+50=-(x-52)2+50+254,∴当x=52,即点E 是AB 的中点时,CE 2-CF 2取最大值,此时,EG=10-x=10-52=152,CE=2100x -=251004-=5152, 所以,tan ∠DCF=tan ∠G=CEEG =5152152=153.。
鲁教版2020八年级数学上册第五章平行四边形的判断与性质能力提升练习题4(附答案)
鲁教版2020八年级数学上册第五章平行四边形的判断与性质能力提升练习题4(附答案)一.选择题(共10小题)1.平行四边形的一边长是12,那么这个平行四边形的两条对角线的长可以是()A.10和34B.18和20C.14和10D.10和122.如图,在平行四边形ABCD中,AB=6,AD=8,∠B=60°,∠BAD与∠CDA的角平分线AE、BF相交于点G,且交BC于点E、F,则图中阴影部分的面积是()A.B.C.D.3.如图,▱ABCD中,AE⊥CD于点E,若∠EAD=35°,则∠B的度数为()A.35°B.55C.65°D.125°4.如图,把一等腰梯形ABCD沿EF折叠后,点D、C分别落在D′、C′处,若∠AED'=20°,则∠EFB的度数等于()A.50°B.60°C.70°D.80°5.如图,在等腰梯形ABCD中,AD∥BC,对角线AC⊥BD于点O,AE⊥BC,DF⊥BC,垂足分别为E,F,设AD=a,BC=b,则四边形AEFD的周长是()A.3a+b B.2(a+b)C.2b+a D.4a+b6.如图,四边形ABCD中,已知AD∥BC,AC与BD相交于点O,则添加下列一个条件后,不能判定该四边形为平行四边形的是()A.AD=BC B.OA=OC C.OD=OB D.AB=DC7.如图,在四边形ABCD中,AB∥CD,添加下列条件,能判定四边形ABCD是平行四边形的是()A.∠D=∠C B.BC=AD C.∠A=∠B D.AB=CD8.如图,已知△ABC是边长为3的等边三角形,点D是边BC上的一点,且BD=1,以AD为边作等边△ADE,过点E作EF∥BC,交AC于点F,连接BF,则下列结论中①△ABD≌△BCF;②四边形BDEF是平行四边形;③S四边形BDEF=;④S△AEF=.其中正确的有()A.1个B.2个C.3个D.4个9.如图,E是▱ABCD边AD延长线上一点,连接BE,CE,BD,BE交CD于点F.添加以下条件,不能判定四边形BCED为平行四边形的是()A.∠ABD=∠DCE B.DF=CF C.∠AEB=∠BCD D.∠AEC=∠CBD10.有如下命题:(1)有两个角相等的梯形是等腰梯形;(2)有两条边相等的梯形是等腰梯形;(3)两条对角线相等的梯形是等腰梯形;(4)等腰梯形上,下底边中点的连线把等腰梯形分成面积相等的两部分.其中正确的命题有()A.1个B.2个C.3个D.4个二.填空题(共10小题)11.如图,在▱ABCD中,以点A为圆心AB长为半径作弧交AD于点F,分别以点B、F为圆心,同样长度m为半径作弧,交于点G,连结AG并延长交BC于点E,若BF=6,AB =4,则AE的长为.12.如图,在▱ABCD中,CE⊥AB,E为垂足,若∠A=120°,AD=2,则CE=.13.如图,已知平行四边形ABCD的面积为84cm2,且,则S△ACE=cm2.14.如图,在等腰梯形ABCD中,AB∥CD,AD=BC=8cm,∠A=60°,BD平分∠ABC,则这个梯形的周长是.15.如图,在等腰梯形ABCD中,AB∥CD,DC=3cm,∠A=60°,BD平分∠ABC,则这个梯形的周长是cm.16.如图,在四边形ABCD中,AD∥BC,且AD=12cm.点P从点A出发,以3cm/s的速度在射线AD上运动;同时,点Q从点C出发,以1cm/s的速度在射线CB上运动.运动时间为t,当t=秒(s)时,点P、Q、C、D构成平行四边形.17.如图,在四边形ABCD中,AD∥BC,AD=5,BC=18,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒3个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动,当运动时间t秒时,以点P,Q,E,D为顶点的四边形是平行四边形,则t的值为.18.已知:如图,在▱ABCD中,∠BAD,∠ADC的平分线AE,DF分别与线段BC相交于点E,F,AE与DF相交于点G.若AD=10,AB=6,AE=4,则DF的长为.19.如图,在▱ABCD中,AC与BD交于点M,点F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,点E是BC的中点,若点P以1cm/s秒的速度从点A出发,沿AD向点F 运动;点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动,点P运动到F点时停止运动,点Q也同时停止运动,当点P运动秒时,以P、Q、E、F为顶点的四边形是平行四边形.20.阅读下列证明过程:已知,如图:四边形ABCD中,AB=DC,AC=BD,AD≠BC,求证:四边形ABCD是等腰梯形.读后完成下列各小题.(1)证明过程是否有错误如有,错在第几步上,答:.(2)作DE∥AB的目的是:.(3)判断四边形ABED为平行四边形的依据是:.(4)判断四边形ABCD是等腰梯形的依据是.(5)若题设中没有AD≠BC,那么四边形ABCD一定是等腰梯形吗?为什么?答.三.解答题(共8小题)21.如图,▱ABCD的对角线AC,BD交于点O,直线EF过点O,分别交AD,BC于点E,F.求证:AE=CF.22.如图,在平行四边形ABCD中,点E是边BC的中点,AE的延长线与DC的延长线相交于点F.求证:AE=FE.23.如图,已知四边形ABCD是等腰梯形,AB=DC,AD∥BC,AD=4,点P为梯形内部一点,若PB=PC,且P A⊥PD.(1)求证:P A=PD;(2)求P A的长.24.已知:等腰梯形ABCD,AD∥BC,对角线AC⊥BD,相交于点O,AD=3cm,BC=7cm,求梯形的面积S.25.如图,四边形ABCD中,AC,BD相交于点O,O是AC的中点,AD∥BC.求证:四边形ABCD是平行四边形.26.如图在四边形ABCD中,AD∥BC,AE⊥BD,CF⊥BD,E、F为垂足,且AE=CF.求证:四边形ABCD是平行四边形.27.如图,在四边形ABCD中,BD垂直平分AC,垂足为F,分别过点B作直线BE∥AD,过点A作直线EA⊥AC于点A,两直线交于点E.(1)求证:四边形AEBD是平行四边形;(2)如果∠ABE=∠ABD=60°,AD=2,求AC的长.28.如图,在平行四边形ABCD中,F是AD的中点,延长BC到点E,使CE=BC,连接DE,CF.(1)求证:四边形CEDF是平行四边形(2)若CD=4,AD=6,∠B=60°,求DE的长参考答案与试题解析一.选择题(共10小题)1.平行四边形的一边长是12,那么这个平行四边形的两条对角线的长可以是()A.10和34B.18和20C.14和10D.10和12【解答】解:如图,作CE∥BD,交AB的延长线于点E,∵AB=CD,DC∥AB∴四边形BECD是平行四边形,∴CE=BD,BE=CD=AB,∴在△ACE中,AE=2AB=24<AC+CE,∴四个选项中只有A,B符合条件,但是10,34,24不符合三边关系,故选:B.2.如图,在平行四边形ABCD中,AB=6,AD=8,∠B=60°,∠BAD与∠CDA的角平分线AE、BF相交于点G,且交BC于点E、F,则图中阴影部分的面积是()A.B.C.D.【解答】解:过G作GH⊥AD于点H,反向延长,交BC于点I.则HI=AB•sin B=6×=3,S平行四边形ABCD=8×3=24.∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,又∵∠DAE=∠BAE,∴∠BAE=∠AEB,∴BE=AB=6,同理,CF=CD=AB=6,∴EF=BE+CF﹣BC=6+6﹣8=4,∵AD∥BC,∴△ADG∽△EFG,∴=2,∴HG=2,GI=,则S△ADG=AD•HG=×8×2=8,S△EFG=EF•GI=×4×=2,∴S阴影=S平行四边形ABCD﹣S△ADG﹣S△EFG=24﹣8﹣2=14.故选:A.3.如图,▱ABCD中,AE⊥CD于点E,若∠EAD=35°,则∠B的度数为()A.35°B.55C.65°D.125°【解答】解:∵∠EAD=35°,AE⊥CD,∴∠D=55°,∵▱ABCD,∴∠B=55°,故选:B.4.如图,把一等腰梯形ABCD沿EF折叠后,点D、C分别落在D′、C′处,若∠AED'=20°,则∠EFB的度数等于()A.50°B.60°C.70°D.80°【解答】解:由已知得∠DEF=∠D'EF.又因为∠AED=180度,∠AED'=20°,所以∠DEF=80度.又因为AD∥BC,所以∠EFB=∠DEF=80°.故选:D.5.如图,在等腰梯形ABCD中,AD∥BC,对角线AC⊥BD于点O,AE⊥BC,DF⊥BC,垂足分别为E,F,设AD=a,BC=b,则四边形AEFD的周长是()A.3a+b B.2(a+b)C.2b+a D.4a+b【解答】解:根据题意,先作如图所示的辅助线,由四边形ABCD是等腰梯形,可得AC=BD,且AD=EF=a,BE=FC==;作DG∥AC,交BC的延长线于G.∵AD∥BC,AC∥DG∴四边形ACGD是平行四边形∴AD=CG=a,DG=AC=BD∵BD⊥AC,AC∥DG∴BD⊥DG在△BDG中,BD⊥DG,BD=DG∴△BDG是等腰直角三角形∴∠G=45°在△DFG中,∠G=45°,∠DFG=90°∴△DFG是等腰直角三角形∴DF=FG=FC+CG=+a由题意易得四边形AEFD是矩形,故其周长为2(AD+DF)=2(a++a)=3a+b.故选:A.6.如图,四边形ABCD中,已知AD∥BC,AC与BD相交于点O,则添加下列一个条件后,不能判定该四边形为平行四边形的是()A.AD=BC B.OA=OC C.OD=OB D.AB=DC【解答】解:A.∵AD∥BC,AD=BC,∴四边形ABCD是平行四边形;选项A正确;B.∵AD∥BC,∴∠OAD=∠OCB,在△AOD和△COB中,,∴△AOD≌△COB(ASA),∴OD=OB,又∵OA=OC,∴四边形ABCD是平行四边形;选项B正确;C..∵AD∥BC,∴∠OAD=∠OCB,在△AOD和△COB中,,∴△AOD≌△COB(AAS),∴OA=OC,又∵OD=OB,∴四边形ABCD是平行四边形;选项C正确;D.∵AD∥BC,AB=CD,∴四边形ABCD可能为等腰梯形,不一定是平行四边形,选项D不正确;故选:D.7.如图,在四边形ABCD中,AB∥CD,添加下列条件,能判定四边形ABCD是平行四边形的是()A.∠D=∠C B.BC=AD C.∠A=∠B D.AB=CD【解答】解:A、AB∥CD,∠D=∠C时;不能判定四边形ABCD是平行四边形;B、AB∥CD,BC=AD时,不能判定四边形ABCD是平行四边形;C、AB∥CD,∠A=∠B时,不能判定四边形ABCD是平行四边形;D、AB∥CD,AB=CD时,能判定四边形ABCD是平行四边形;故选:D.8.如图,已知△ABC是边长为3的等边三角形,点D是边BC上的一点,且BD=1,以AD为边作等边△ADE,过点E作EF∥BC,交AC于点F,连接BF,则下列结论中①△ABD≌△BCF;②四边形BDEF是平行四边形;③S四边形BDEF=;④S△AEF=.其中正确的有()A.1个B.2个C.3个D.4个【解答】解:连接EC,作CH⊥EF于H.∵△ABC,△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=∠ABC=∠ACB=60°,∴∠BAD=∠CAE,∴△BAD≌△CAE,∴BD=EC=1,∠ACE=∠ABD=60°,∵EF∥BC,∴∠EFC=∠ACB=60°,∴△EFC是等边三角形,CH=,∴EF=EC=BD,∵EF∥BD,∴四边形BDEF是平行四边形,故②正确,∵BD=CF=1,BA=BC,∠ABD=∠BCF,∴△ABD≌△BCF,故①正确,∵S平行四边形BDEF=BD•CH=,故③正确,S△AEF=S△AEC=•S△ABD=故④错误,故选:C.9.如图,E是▱ABCD边AD延长线上一点,连接BE,CE,BD,BE交CD于点F.添加以下条件,不能判定四边形BCED为平行四边形的是()A.∠ABD=∠DCE B.DF=CF C.∠AEB=∠BCD D.∠AEC=∠CBD 【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴DE∥BC,∠ABD=∠CDB,∵∠ABD=∠DCE,∴∠DCE=∠CDB,∴BD∥CE,∴BCED为平行四边形,故A正确;∵DE∥BC,∴∠DEF=∠CBF,在△DEF与△CBF中,,∴△DEF≌△CBF(AAS),∴EF=BF,∵DF=CF,∴四边形BCED为平行四边形,故B正确;∵AE∥BC,∴∠AEB=∠CBF,∵∠AEB=∠BCD,∴∠CBF=∠BCD,∴CF=BF,同理,EF=DF,∴不能判定四边形BCED为平行四边形;故C错误;∵AE∥BC,∴∠DEC+∠BCE=∠EDB+∠DBC=180°,∵∠AEC=∠CBD,∴∠BDE=∠BCE,∴四边形BCED为平行四边形,故D正确,故选:C.10.有如下命题:(1)有两个角相等的梯形是等腰梯形;(2)有两条边相等的梯形是等腰梯形;(3)两条对角线相等的梯形是等腰梯形;(4)等腰梯形上,下底边中点的连线把等腰梯形分成面积相等的两部分.其中正确的命题有()A.1个B.2个C.3个D.4个【解答】解:根据等腰梯形的性质和判定可判断:1,错误,直角梯形中有两个角相等为90度,但不是等腰梯形.2,错误,一腰与一底相等时,不是等腰梯形.3,正确.4,正确,等腰梯形是轴对称图形故选:B.二.填空题(共10小题)11.如图,在▱ABCD中,以点A为圆心AB长为半径作弧交AD于点F,分别以点B、F为圆心,同样长度m为半径作弧,交于点G,连结AG并延长交BC于点E,若BF=6,AB =4,则AE的长为2.【解答】解:如图,连接FE,设AE交BF于点O.由作图可知:AB=AF,AE平分∠BAD,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠F AE=∠AEB=∠BAE,∴AB=BE,∴AF=BE,∵AF∥BE,∴四边形ABEF是平行四边形,∵AB=AF,∴四边形ABEF是菱形,∴AE⊥BF,∴AO=OE=AE,BO=OF=3,在Rt△AOB中,AO===,∴AE=2OA=2.故答案是:2.12.如图,在▱ABCD中,CE⊥AB,E为垂足,若∠A=120°,AD=2,则CE=.【解答】解:∵在▱ABCD中,∠A=120°,AD=2,∴AD=BC=2,∠B=60°,∵CE⊥AB,∴CE=,故答案为:13.如图,已知平行四边形ABCD的面积为84cm2,且,则S△ACE=21cm2.【解答】解:∵平行四边形ABCD,∴AB∥CD,∵,平行四边形ABCD的面积为84cm2,∴S△ACE=cm2.故答案为:2114.如图,在等腰梯形ABCD中,AB∥CD,AD=BC=8cm,∠A=60°,BD平分∠ABC,则这个梯形的周长是40cm.【解答】解:∵AB∥CD,AD=BC=8cm,∴∠ABC=∠A=60°,∵BD平分∠ABC,∴∠ABD=∠CBD=30°,∵AB∥CD,∴∠BDC=∠CBD=30°,∴∠BDC=∠CBD,∴CD=BC=8cm,∵∠A=60°,∠ABD=30°,∴∠ADB=90°,∴AB=2AD=16cm,∴这个梯形的周长=CD+AD+BC+AB=8+8+8+16=40(cm).故答案为40cm.15.如图,在等腰梯形ABCD中,AB∥CD,DC=3cm,∠A=60°,BD平分∠ABC,则这个梯形的周长是15cm.【解答】解:已知BD平分∠ABC,∠A=60°⇒∠CBD=∠CDB=30°,∠BDA=90°,∠DBA=30°故CD=BC=AD=3cm,AB=2AD=6cm.所以梯形的周长为CD+AD+BC+AB=15cm.16.如图,在四边形ABCD中,AD∥BC,且AD=12cm.点P从点A出发,以3cm/s的速度在射线AD上运动;同时,点Q从点C出发,以1cm/s的速度在射线CB上运动.运动时间为t,当t=3或6秒(s)时,点P、Q、C、D构成平行四边形.【解答】解:由运动知,AP=3t,CQ=t,∴DP=AD﹣AP=12﹣3t,∵四边形PDCQ是平行四边形,∴PD=CQ,∴12﹣3t=t,∴t=3秒;当P运动到AD线段以外时,AP=3t,CQ=t,∴DP=3t﹣12,∵四边形PDCQ是平行四边形,∴PD=CQ,∴3t﹣12=t,∴t=6秒,故答案为:3或617.如图,在四边形ABCD中,AD∥BC,AD=5,BC=18,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒3个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动,当运动时间t秒时,以点P,Q,E,D为顶点的四边形是平行四边形,则t的值为2秒或3.5秒.【解答】解:∵E是BC的中点,∴BE=CE=BC=9,∵AD∥BC,∴PD=QE时,以点P,Q,E,D为顶点的四边形是平行四边形,①当Q运动到E和C之间时,设运动时间为t,则得:9﹣3t=5﹣t,解得:t=2,②当Q运动到E和B之间时,设运动时间为t,则得:3t﹣9=5﹣t,解得:t=3.5;∴当运动时间t为2秒或3.5秒时,以点P,Q,E,D为顶点的四边形是平行四边形,故答案为:2秒或3.5秒.18.已知:如图,在▱ABCD中,∠BAD,∠ADC的平分线AE,DF分别与线段BC相交于点E,F,AE与DF相交于点G.若AD=10,AB=6,AE=4,则DF的长为8.【解答】解:在平行四边形ABCD中,AD∥BC,BC=AD=10,∴∠DAE=∠AEB,∠ADF=∠DFC.由(1)得∠BAE=∠AEB,∠CDF=∠DFC.∵AB=DC=6,∴BE=AB=6,FC=CD=6.∴EC=BC﹣BE=4.∴EF=FC﹣EC=2.∵AD∥BC,∴∠DAG=∠FEG,∠ADG=∠EFG.∴△AGD∽△EGF,∴===,∵AE=4,∴AG=×4=,EG=,在平行四边形ABCD中,AB∥DC,∴∠BAD+∠ADC=180°.∵AE,DF分别是∠BAD,∠ADC的平分线,∴∠DAE=∠BAE=∠BAD,∠ADF=∠CDF=∠ADC.∴∠DAE+∠ADF=∠BAD+∠ADC=90°.∴∠AGD=90°.∴DG==,EG==,∴DF=DG+FG=8,故答案为8.19.如图,在▱ABCD中,AC与BD交于点M,点F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,点E是BC的中点,若点P以1cm/s秒的速度从点A出发,沿AD向点F 运动;点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动,点P运动到F点时停止运动,点Q也同时停止运动,当点P运动3或5秒时,以P、Q、E、F为顶点的四边形是平行四边形.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵∠FBM=∠CBM,∴∠FBD=∠FDB,∴FB=FD=12cm,∵AF=6cm,∴AD=18cm,∵点E是BC的中点,∴CE=BC=AD=9cm,要使点P、Q、E、F为顶点的四边形是平行四边形,则PF=EQ即可,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意得:6﹣t=9﹣2t或6﹣t=2t﹣9,解得:t=3或t=5.故答案为:3或5.20.阅读下列证明过程:已知,如图:四边形ABCD中,AB=DC,AC=BD,AD≠BC,求证:四边形ABCD是等腰梯形.读后完成下列各小题.(1)证明过程是否有错误如有,错在第几步上,答:没有错误.(2)作DE∥AB的目的是:为了证明AD∥BC.(3)判断四边形ABED为平行四边形的依据是:一组对边平行且相等的四边形是平行四边形.(4)判断四边形ABCD是等腰梯形的依据是梯形及等腰梯形的定义.(5)若题设中没有AD≠BC,那么四边形ABCD一定是等腰梯形吗?为什么?答不一定,因为当AD=BC时,四边形ABCD是矩形.【解答】解:(1)没有错误(2)为了证明AD∥BC(3)一组对边平行且相等的四边形是平行四边形(4)梯形及等腰梯形的定义(5)不一定,因为当AD=BC时,四边形ABCD是矩形.三.解答题(共8小题)21.如图,▱ABCD的对角线AC,BD交于点O,直线EF过点O,分别交AD,BC于点E,F.求证:AE=CF.【解答】证明:∵▱ABCD的对角线AC,BD交于点O,∴AO=CO,AD∥BC,∴∠EAC=∠FCO,在△AOE和△COF中,∴△AOE≌△COF(ASA),∴AE=CF.22.如图,在平行四边形ABCD中,点E是边BC的中点,AE的延长线与DC的延长线相交于点F.求证:AE=FE.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥DC,∴∠BAE=∠F,∠B=∠ECF,又∵E是BC的中点,∴BE=CE,在△ABE和△FCE中,∴△ABE≌△FCE(AAS),∴AE=FE.23.如图,已知四边形ABCD是等腰梯形,AB=DC,AD∥BC,AD=4,点P为梯形内部一点,若PB=PC,且P A⊥PD.(1)求证:P A=PD;(2)求P A的长.【解答】证明:(1)∵四边形ABCD是等腰梯形,AB=DC,∴∠ABC=∠DCB,又PB=PC,∴∠PBC=∠PCB,∴∠ABP=∠DCP,∴在△ABP和△DCP中,,∴△ABP≌△DCP.∴P A=PD.(2)在Rt△P AD中,P A2+PD2=AD2即:2P A2=42P A=2.24.已知:等腰梯形ABCD,AD∥BC,对角线AC⊥BD,相交于点O,AD=3cm,BC=7cm,求梯形的面积S.【解答】解:做OE⊥AD并反向延长OE交BC于点F,∵四边形ABCD是等腰梯形,∴点O在梯形ABCD的对称轴上,∴OA=OD,OB=OC,设对称轴与AD、BC分别交于E、F,则OE=AD=,OF=BC=,∴EF=OE+OF=5,∴S梯形=(AD+BC)•EF=×(3+7)×5=25.25.如图,四边形ABCD中,AC,BD相交于点O,O是AC的中点,AD∥BC.求证:四边形ABCD是平行四边形.【解答】证明:∵O是AC的中点,∴OA=OC,∵AD∥BC,∴∠ADO=∠CBO,在△AOD和△COB中,,∴△AOD≌△COB(AAS),∴OD=OB,∴四边形ABCD是平行四边形.26.如图在四边形ABCD中,AD∥BC,AE⊥BD,CF⊥BD,E、F为垂足,且AE=CF.求证:四边形ABCD是平行四边形.【解答】证明∵AD∥BC,∴∠ADE=∠CBF,又∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,在△ADE和△CBF中,∵,∴△ADE≌△CBF(AAS),∴AD=BC,∴AD∥BC,∴四边形ABCD是平行四边形.27.如图,在四边形ABCD中,BD垂直平分AC,垂足为F,分别过点B作直线BE∥AD,过点A作直线EA⊥AC于点A,两直线交于点E.(1)求证:四边形AEBD是平行四边形;(2)如果∠ABE=∠ABD=60°,AD=2,求AC的长.【解答】(1)证明:∵BD垂直平分AC,EA⊥AC,∴AE∥BD,∵BE∥AD,∴四边形AEBD是平行四边形;(2)∵AD∥BE,∴∠DAB=∠ABE=60°,∵∠ABD=60°,∴△ABD是等边三角形,∵BD垂直平分AC,∴∠AFD=90°,AC=2AF,∵AD=2,∴AF=,∴AC=2.28.如图,在平行四边形ABCD中,F是AD的中点,延长BC到点E,使CE=BC,连接DE,CF.(1)求证:四边形CEDF是平行四边形(2)若CD=4,AD=6,∠B=60°,求DE的长【解答】证明:(1)在▱ABCD中,AD∥BC,且AD=BC.∵F是AD的中点,∴DF=.又∵CE=BC,∴DF=CE,且DF∥CE,∴四边形CEDF是平行四边形;(2)解:如图,过点D作DH⊥BE于点H.在▱ABCD中,∵∠B=60°,∴∠DCE=60°.∵CD=AB=4,∴CH=CD=2,DH=2.在▱CEDF中,CE=DF=AD=3,则EH=1.∴在Rt△DHE中,根据勾股定理知DE==.。
2020-2021太原 备战中考数学(平行四边形提高练习题)压轴题训练
2020-2021太原备战中考数学(平行四边形提高练习题)压轴题训练一、平行四边形1.如果两个三角形的两条边对应相等,夹角互补,那么这两个三角形叫做互补三角形,如图2,分别以△ABC的边AB、AC为边向外作正方形ABDE和ACGF,则图中的两个三角形就是互补三角形.(1)用尺规将图1中的△ABC分割成两个互补三角形;(2)证明图2中的△ABC分割成两个互补三角形;(3)如图3,在图2的基础上再以BC为边向外作正方形BCHI.①已知三个正方形面积分别是17、13、10,在如图4的网格中(网格中每个小正方形的边长为1)画出边长为、、的三角形,并计算图3中六边形DEFGHI的面积.②若△ABC的面积为2,求以EF、DI、HG的长为边的三角形面积.【答案】(1)作图见解析(2)证明见解析(3)①62;②6【解析】试题分析:(1)作BC边上的中线AD即可.(2)根据互补三角形的定义证明即可.(3)①画出图形后,利用割补法求面积即可.②平移△CHG到AMF,连接EM,IM,则AM=CH=BI,只要证明S△EFM=3S△ABC即可.试题解析:(1)如图1中,作BC边上的中线AD,△ABD和△ADC是互补三角形.(2)如图2中,延长FA到点H,使得AH=AF,连接EH.∵四边形ABDE,四边形ACGF是正方形,∴AB=AE,AF=AC,∠BAE=∠CAF=90°,∴∠EAF+∠BAC=180°,∴△AEF和△ABC是两个互补三角形.∵∠EAH+∠HAB=∠BAC+∠HAB=90°,∴∠EAH=∠BAC,∵AF=AC,∴AH=AB,在△AEH和△ABC中,∴△AEH≌△ABC,∴S△AEF=S△AEH=S△ABC.(3)①边长为、、的三角形如图4所示.∵S△ABC=3×4﹣2﹣1.5﹣3=5.5,∴S六边形=17+13+10+4×5.5=62.②如图3中,平移△CHG到AMF,连接EM,IM,则AM=CH=BI,设∠ABC=x,∵AM∥CH,CH⊥BC,∴AM⊥BC,∴∠EAM=90°+90°﹣x=180°﹣x,∵∠DBI=360°﹣90°﹣90°﹣x=180°﹣x,∴∠EAM=∠DBI,∵AE=BD,∴△AEM≌△DBI,∵在△DBI和△ABC中,DB=AB,BI=BC,∠DBI+∠ABC=180°,∴△DBI和△ABC是互补三角形,∴S△AEM=S△AEF=S△AFM=2,∴S△EFM=3S△ABC=6.考点:1、作图﹣应用与设计,2、三角形面积2.已知:如图,在平行四边形ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.(1)求证:△DOE≌△BOF.(2)当∠DOE等于多少度时,四边形BFDE为菱形?请说明理由.【答案】(1)证明见解析;(2)当∠DOE=90°时,四边形BFED为菱形,理由见解析.【解析】试题分析:(1)利用平行四边形的性质以及全等三角形的判定方法得出△DOE≌△BOF (ASA);(2)首先利用一组对边平行且相等的四边形是平行四边形得出四边形EBFD是平行四边形,进而利用垂直平分线的性质得出BE=ED,即可得出答案.试题解析:(1)∵在▱ABCD中,O为对角线BD的中点,∴BO=DO,∠EDB=∠FBO,在△EOD和△FOB中,∴△DOE≌△BOF(ASA);(2)当∠DOE=90°时,四边形BFDE为菱形,理由:∵△DOE≌△BOF,∴OE=OF,又∵OB=OD,∴四边形EBFD是平行四边形,∵∠EOD=90°,∴EF⊥BD,∴四边形BFDE为菱形.考点:平行四边形的性质;全等三角形的判定与性质;菱形的判定.3.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)请问EG与CG存在怎样的数量关系,并证明你的结论;(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?(请直接写出结果,不必写出理由)【答案】(1)证明见解析(2)证明见解析(3)结论仍然成立【解析】【分析】(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG.(3)结论依然成立.【详解】(1)CG=EG.理由如下:∵四边形ABCD是正方形,∴∠DCF=90°.在Rt△FCD中,∵G为DF的中点,∴CG=12FD,同理.在Rt△DEF中,EG=12FD,∴CG=EG.(2)(1)中结论仍然成立,即EG=CG.证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG(SAS),∴AG=CG;在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG (ASA),∴MG=NG.∵∠EAM=∠AEN=∠AMN=90°,∴四边形AENM是矩形,在矩形AENM中,AM=EN.在△AMG与△ENG中,∵AM=EN,∠AMG=∠ENG,MG=NG,∴△AMG≌△ENG(SAS),∴AG=EG,∴EG=CG.证法二:延长CG至M,使MG=CG,连接MF,ME,EC.在△DCG与△FMG中,∵FG=DG,∠MGF=∠CGD,MG=CG,∴△DCG≌△FMG,∴MF=CD,∠FMG=∠DCG,∴MF∥CD∥AB,∴EF⊥MF.在Rt△MFE与Rt△CBE中,∵MF=CB,∠MFE=∠EBC=90°,EF=BE,∴△MFE≌△CBE∴∠MEF=∠CEB,∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°,∴△MEC为直角三角形.∵MG=CG,∴EG=12MC,∴EG=CG.(3)(1)中的结论仍然成立.理由如下:过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N.由于G为FD中点,易证△CDG≌△MFG,得到CD=FM,又因为BE=EF,易证∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC∵∠FEC+∠BEC=90°,∴∠FEC+∠FEM=90°,即∠MEC=90°,∴△MEC是等腰直角三角形.∵G为CM中点,∴EG=CG,EG⊥CG【点睛】本题是四边形的综合题.(1)关键是利用直角三角形斜边上的中线等于斜边的一半解答;(2)关键是利用了直角三角形斜边上的中线等于斜边的一半的性质、全等三角形的判定和性质解答.4.如图,在平行四边形ABCD中,AD⊥DB,垂足为点D,将平行四边形ABCD折叠,使点B落在点D的位置,点C落在点G的位置,折痕为EF,EF交对角线BD于点P.(1)连结CG,请判断四边形DBCG的形状,并说明理由;(2)若AE=BD,求∠EDF的度数.【答案】(1)四边形BCGD是矩形,理由详见解析;(2)∠EDF=120°.【解析】【分析】(1)根据平行四边形的性质和折叠性质以及矩形的判定解答即可;(2)根据折叠的性质以及直角三角形的性质和等边三角形的判定与性质解答即可.【详解】解:(1)四边形BCGD是矩形,理由如下,∵四边形ABCD是平行四边形,∴BC∥AD,即BC∥DG,由折叠可知,BC=DG,∴四边形BCGD是平行四边形,∵AD⊥BD,∴∠CBD=90°,∴四边形BCGD是矩形;(2)由折叠可知:EF垂直平分BD,∴BD⊥EF,DP=BP,∵AD⊥BD,∴EF∥AD∥BC,∴AE PD1==BE BP∴AE=BE,∴DE是Rt△ADB斜边上的中线,∴DE=AE=BE,∵AE=BD,∴DE=BD=BE,∴△DBE是等边三角形,∴∠EDB=∠DBE=60°,∵AB∥DC,∴∠DBC=∠DBE=60°,∴∠EDF=120°.【点睛】本题考查了平行四边形的性质,折叠性质,等边三角形的性质和判定,主要考查学生运用定理进行推理和计算的能力,题目综合性比较强,有一定的难度5.如图1,在△ABC中,AB=AC,AD⊥BC于D,分别延长AC至E,BC至F,且CE=EF,延长FE交AD的延长线于G.(1)求证:AE=EG;(2)如图2,分别连接BG,BE,若BG=BF,求证:BE=EG;(3)如图3,取GF的中点M,若AB=5,求EM的长.【答案】(1)证明见解析(2)证明见解析(3)5 2【解析】【分析】(1)根据平行线的性质和等腰三角形的三线合一的性质得:∠CAD=∠G,可得AE=EG;(2)作辅助线,证明△BEF≌△GEC(SAS),可得结论;(3)如图3,作辅助线,构建平行线,证明四边形DMEN是平行四边形,得EM=DN=12AC,计算可得结论.【详解】证明:(1)如图1,过E作EH⊥CF于H,∵AD⊥BC,∴EH∥AD,∴∠CEH=∠CAD,∠HEF=∠G,∵CE=EF,∴∠CEH=∠HEF,∴∠CAD=∠G,∴AE=EG;(2)如图2,连接GC,∵AC =BC ,AD ⊥BC ,∴BD =CD ,∴AG 是BC 的垂直平分线,∴GC =GB ,∴∠GBF =∠BCG ,∵BG =BF ,∴GC =BE ,∵CE =EF ,∴∠CEF =180°﹣2∠F ,∵BG =BF ,∴∠GBF =180°﹣2∠F ,∴∠GBF =∠CEF ,∴∠CEF =∠BCG ,∵∠BCE =∠CEF+∠F ,∠BCE =∠BCG+∠GCE ,∴∠GCE =∠F ,在△BEF 和△GCE 中,CE GCE F CG BF EF =⎧⎪∠=∠⎨⎪=⎩Q , ∴△BEF ≌△GEC (SAS ),∴BE =EG ;(3)如图3,连接DM ,取AC 的中点N ,连接DN ,由(1)得AE=EG,∴∠GAE=∠AGE,在Rt△ACD中,N为AC的中点,∴DN=12AC=AN,∠DAN=∠ADN,∴∠ADN=∠AGE,∴DN∥GF,在Rt△GDF中,M是FG的中点,∴DM=12FG=GM,∠GDM=∠AGE,∴∠GDM=∠DAN,∴DM∥AE,∴四边形DMEN是平行四边形,∴EM=DN=12AC,∵AC=AB=5,∴EM=52.【点睛】本题是三角形的综合题,主要考查了全等三角形的判定与性质,直角三角形斜边中线的性质,等腰三角形的性质和判定,平行四边形的性质和判定等知识,解题的关键是作辅助线,并熟练掌握全等三角形的判定方法,特别是第三问,辅助线的作法是关键.6.现有一张矩形纸片ABCD(如图),其中AB=4cm,BC=6cm,点E是BC的中点.将纸片沿直线AE折叠,点B落在四边形AECD内,记为点B′,过E作EF垂直B′C,交B′C于F.(1)求AE、EF的位置关系;(2)求线段B′C的长,并求△B′EC的面积.【答案】(1)见解析;(2)S△B′EC=108 25.【解析】【分析】(1)由折线法及点E是BC的中点,可证得△B'EC是等腰三角形,再有条件证明∠AEF=90°即可得到AE ⊥EF ;(2)连接BB′,通过折叠,可知∠EBB ′=∠EB′B ,由E 是BC 的中点,可得EB′=EC ,∠ECB′=∠EB′C ,从而可证△BB′C 为直角三角形,在Rt △AOB 和Rt △BOE 中,可将OB ,BB′的长求出,在Rt △BB′C 中,根据勾股定理可将B′C 的值求出.【详解】(1)由折线法及点E 是BC 的中点,∴EB =EB ′=EC ,∠AEB =∠AEB ′,∴△B 'EC 是等腰三角形,又∵EF ⊥B ′C∴EF 为∠B 'EC 的角平分线,即∠B ′EF =∠FEC ,∴∠AEF =180°﹣(∠AEB +∠CEF )=90°,即∠AEF =90°,即AE ⊥EF ;(2)连接BB '交AE 于点O ,由折线法及点E 是BC 的中点,∴EB =EB ′=EC ,∴∠EBB ′=∠EB ′B ,∠ECB ′=∠EB ′C ;又∵△BB 'C 三内角之和为180°,∴∠BB 'C =90°;∵点B ′是点B 关于直线AE 的对称点,∴AE 垂直平分BB ′;在Rt △AOB 和Rt △BOE 中,BO 2=AB 2﹣AO 2=BE 2﹣(AE ﹣AO )2将AB =4cm ,BE =3cm ,AE =5cm ,∴AO =165 cm ,∴BO 125cm , ∴BB ′=2BO =245cm ,∴在Rt △BB 'C 中,B ′C 518cm , 由题意可知四边形OEFB ′是矩形,∴EF =OB ′=125, ∴S △B ′EC =*111812108225525B C EF '⨯=⨯⨯=.【点睛】考查图形的折叠变化及三角形的内角和定理勾股定理的和矩形的性质综合运用.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.7.如图,在正方形ABCD中,对角线AC与BD交于点O,在Rt△PFE中,∠EPF=90°,点E、F分别在边AD、AB上.(1)如图1,若点P与点O重合:①求证:AF=DE;②若正方形的边长为23,当∠DOE=15°时,求线段EF的长;(2)如图2,若Rt△PFE的顶点P在线段OB上移动(不与点O、B重合),当BD=3BP 时,证明:PE=2PF.【答案】(1)①证明见解析,②2;(2)证明见解析.【解析】【分析】(1)①根据正方形的性质和旋转的性质即可证得:△AOF≌△DOE根据全等三角形的性质证明;②作OG⊥AB于G,根据余弦的概念求出OF的长,根据勾股定理求值即可;(2)首先过点P作HP⊥BD交AB于点H,根据相似三角形的判定和性质求出PE与PF的数量关系.【详解】(1)①证明:∵四边形ABCD是正方形,∴OA=OD,∠OAF=∠ODE=45°,∠AOD=90°,∴∠AOE+∠DOE=90°,∵∠EPF=90°,∴∠AOF+∠AOE=90°,∴∠DOE=∠AOF,在△AOF 和△DOE 中,OAF ODE OA ODAOF DOE ===∠∠⎧⎪⎨⎪∠∠⎩, ∴△AOF ≌△DOE ,∴AF=DE ;②解:过点O 作OG ⊥AB 于G ,∵正方形的边长为23, ∴OG=12BC=3, ∵∠DOE=15°,△AOF ≌△DOE ,∴∠AOF=15°,∴∠FOG=45°-15°=30°,∴OF=OG cos DOG∠=2, ∴EF=22=22OF OE +;(2)证明:如图2,过点P 作HP ⊥BD 交AB 于点H ,则△HPB 为等腰直角三角形,∠HPD=90°,∴HP=BP ,∵BD=3BP ,∴PD=2BP ,∴PD=2HP ,又∵∠HPF+∠HPE=90°,∠DPE+∠HPE=90°,∴∠HPF=∠DPE ,又∵∠BHP=∠EDP=45°,∴△PHF ∽△PDE , ∴12PF PH PE PD ==, ∴PE=2PF .【点睛】 此题属于四边形的综合题.考查了正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质以及勾股定理.注意准确作出辅助线是解此题的关键.8.如图,点O 是正方形ABCD 两条对角线的交点,分别延长CO 到点G ,OC 到点E ,使OG=2OD 、OE=2OC ,然后以OG 、OE 为邻边作正方形OEFG .(1)如图1,若正方形OEFG 的对角线交点为M ,求证:四边形CDME 是平行四边形. (2)正方形ABCD 固定,将正方形OEFG 绕点O 逆时针旋转,得到正方形OE′F′G′,如图2,连接AG′,DE′,求证:AG′=DE′,AG′⊥DE′;(3)在(2)的条件下,正方形OE′F′G′的边OG′与正方形ABCD 的边相交于点N ,如图3,设旋转角为α(0°<α<180°),若△AON 是等腰三角形,请直接写出α的值.【答案】(1)证明见解析;(2)证明见解析;(3)α的值是22.5°或45°或112.5°或135°或157.5°.【解析】【分析】(1)由四边形OEFG 是正方形,得到ME=12GE ,根据三角形的中位线的性质得到CD ∥GE ,CD=12GE ,求得CD=GE ,即可得到结论; (2)如图2,延长E′D 交AG′于H ,由四边形ABCD 是正方形,得到AO=OD ,∠AOD=∠COD=90°,由四边形OEFG 是正方形,得到OG′=OE′,∠E′OG′=90°,由旋转的性质得到∠G′OD=∠E′OC ,求得∠AOG′=∠COE′,根据全等三角形的性质得到AG′=DE′,∠AG′O=∠DE′O ,即可得到结论;(3)分类讨论,根据三角形的外角的性质和等腰三角形的性质即可得到结论.【详解】(1)证明:∵四边形OEFG 是正方形,∴ME=12GE , ∵OG=2OD 、OE=2OC ,∴CD ∥GE ,CD=12GE , ∴CD=GE , ∴四边形CDME 是平行四边形;(2)证明:如图2,延长E′D 交AG′于H ,∵四边形ABCD 是正方形,∴AO=OD ,∠AOD=∠COD=90°,∵四边形OEFG 是正方形,∴OG′=OE′,∠E′OG′=90°,∵将正方形OEFG 绕点O 逆时针旋转,得到正方形OE′F′G′,∴∠G′OD=∠E′OC ,∴∠AOG′=∠COE′,在△AG′O 与△ODE′中,OA OD AOG DOE OG OE ⎧⎪∠'∠'⎨⎪''⎩===,∴△AG′O ≌△ODE′∴AG′=DE′,∠AG′O=∠DE′O ,∵∠1=∠2,∴∠G′HD=∠G′OE′=90°,∴AG′⊥DE′;(3)①正方形OE′F′G′的边OG′与正方形ABCD 的边AD 相交于点N ,如图3,Ⅰ、当AN=AO 时,∵∠OAN=45°,∴∠ANO=∠AON=67.5°,∵∠ADO=45°,∴α=∠ANO-∠ADO=22.5°;Ⅱ、当AN=ON 时,∴∠NAO=∠AON=45°,∴∠ANO=90°,∴α=90°-45°=45°;②正方形OE′F′G′的边OG′与正方形ABCD 的边AB 相交于点N ,如图4,Ⅰ、当AN=AO 时,∵∠OAN=45°,∴∠ANO=∠AON=67.5°,∵∠ADO=45°,∴α=∠ANO+90°=112.5°;Ⅱ、当AN=ON 时,∴∠NAO=∠AON=45°,∴∠ANO=90°,∴α=90°+45°=135°,Ⅲ、当AN=AO 时,旋转角a=∠ANO+90°=67.5+90=157.5°,综上所述:若△AON 是等腰三角形时,α的值是22.5°或45°或112.5°或135°或157.5°.【点睛】本题主要考查了正方形的性质、全等三角形的判定与性质、锐角三角函数、旋转变换的性质的综合运用,有一定的综合性,分类讨论当△AON 是等腰三角形时,求α的度数是本题的难点.9.在平面直角坐标系中,O 为原点,点A (﹣6,0)、点C (0,6),若正方形OABC 绕点O 顺时针旋转,得正方形OA′B′C′,记旋转角为α:(1)如图①,当α=45°时,求BC 与A′B′的交点D 的坐标;(2)如图②,当α=60°时,求点B′的坐标;(3)若P 为线段BC′的中点,求AP 长的取值范围(直接写出结果即可).【答案】(1)(62,6)-;(2)(333,333)+;(3)323323AP 剟.【解析】【分析】(1)当α=45°时,延长OA′经过点B,在Rt△BA′D中,∠OBC=45°,A′B=626-,可求得BD的长,进而求得CD的长,即可得出点D的坐标;(2)过点C′作x轴垂线MN,交x轴于点M,过点B′作MN的垂线,垂足为N,证明△OMC′≌△C′NB′,可得C′N=OM=33,B′N=C′M=3,即可得出点B′的坐标;(3)连接OB,AC相交于点K,则K是OB的中点,因为P为线段BC′的中点,所以PK=1OC′=3,即点P在以K为圆心,3为半径的圆上运动,即可得出AP长的取值范围.2【详解】解:(1)∵A(﹣6,0)、C(0,6),O(0,0),∴四边形OABC是边长为6的正方形,当α=45°时,如图①,延长OA′经过点B,∵OB=62,OA′=OA=6,∠OBC=45°,∴A′B=626-,∴BD=(626-)×21262=-,∴CD=6﹣(1262-,-)=626∴BC与A′B′的交点D的坐标为(662-,6);(2)如图②,过点C′作x轴垂线MN,交x轴于点M,过点B′作MN的垂线,垂足为N,∵∠OC′B′=90°,∴∠OC′M=90°﹣∠B′C′N=∠C′B′N,∵OC′=B′C′,∠OMC′=∠C′NB′=90°,∴△OMC′≌△C′NB′(AAS),当α=60°时,∵∠A′OC′=90°,OC′=6,∴∠C′OM=30°,∴C′N=OM=33,B′N=C′M=3,∴点B′的坐标为333,333+;(3)如图③,连接OB ,AC 相交于点K ,则K 是OB 的中点,∵P 为线段BC′的中点,∴PK =12OC′=3, ∴P 在以K 为圆心,3为半径的圆上运动,∵AK =32,∴AP 最大值为323+,AP 的最小值为323-,∴AP 长的取值范围为323323AP -+剟.【点睛】本题考查正方形性质,全等三角形判定与性质,三角形中位线定理.(3)问解题的关键是利用中位线定理得出点P 的轨迹.10.点P 是矩形ABCD 对角线AC 所在直线上的一个动点(点P 不与点A ,C 重合),分别过点A ,C 向直线BP 作垂线,垂足分别为点E ,F ,点O 为AC 的中点.(1)如图1,当点P 与点O 重合时,请你判断OE 与OF 的数量关系;(2)当点P 运动到如图2所示位置时,请你在图2中补全图形并通过证明判断(1)中的结论是否仍然成立;(3)若点P 在射线OA 上运动,恰好使得∠OEF =30°时,猜想此时线段CF ,AE ,OE 之间有怎样的数量关系,直接写出结论不必证明.【答案】(1)OE =OF .理由见解析;(2)补全图形如图所示见解析,OE =OF 仍然成立;(3)CF =OE+AE 或CF =OE ﹣AE .【解析】【分析】(1)根据矩形的性质以及垂线,即可判定()AOE COF AAS ∆≅∆,得出OE =OF ; (2)先延长EO 交CF 于点G ,通过判定()AOE COG ASA ∆≅∆,得出OG =OE ,再根据Rt EFG ∆中,12OF EG =,即可得到OE =OF ; (3)根据点P 在射线OA 上运动,需要分两种情况进行讨论:当点P 在线段OA 上时,当点P 在线段OA 延长线上时,分别根据全等三角形的性质以及线段的和差关系进行推导计算即可.【详解】(1)OE =OF .理由如下:如图1.∵四边形ABCD 是矩形,∴ OA =OC .∵AE BP ⊥,CF BP ⊥,∴90AEO CFO ∠=∠=︒.∵在AOE ∆和COF ∆中,AEO CFO AOE COF OA OC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AOE COF AAS ∆≅∆,∴ OE =OF ;(2)补全图形如图2,OE =OF 仍然成立.证明如下:延长EO 交CF 于点G .∵AE BP ⊥,CF BP ⊥,∴ AE //CF ,∴EAO GCO ∠=∠.又∵点O 为AC 的中点,∴ AO =CO .在AOE ∆和COG ∆中,EAO GCO AO CO AOE COG ∠=∠⎧⎪=⎨⎪∠=⎩,∴()AOE COG ASA ∆≅∆,∴ OG =OE ,∴Rt EFG ∆中,12OF EG =,∴ OE =OF ; (3)CF =OE +AE 或CF =OE -AE . 证明如下:①如图2,当点P 在线段OA 上时.∵30OEF ∠=︒,90EFG ∠=︒,∴60OGF ∠=︒,由(2)可得:OF =OG ,∴OGF ∆是等边三角形,∴ FG =OF =OE ,由(2)可得:AOE COG ∆≅∆,∴ CG =AE .又∵ CF =GF +CG ,∴ CF =OE +AE ;②如图3,当点P 在线段OA 延长线上时.∵30OEF ∠=︒,90EFG ∠=︒,∴60OGF ∠=︒,同理可得:OGF ∆是等边三角形,∆≅∆,∴CG=AE.∴FG=OF=OE,同理可得:AOE COG又∵CF=GF-CG,∴CF=OE-AE.【点睛】本题属于四边形综合题,主要考查了矩形的性质、全等三角形的性质和判定以及等边三角形的性质和判定,解决问题的关键是构建全等三角形和证明三角形全等,利用矩形的对角线互相平分得全等的边相等的条件,根据线段的和差关系使问题得以解决.11.(问题发现)(1)如图(1)四边形ABCD中,若AB=AD,CB=CD,则线段BD,AC的位置关系为;(拓展探究)(2)如图(2)在Rt△ABC中,点F为斜边BC的中点,分别以AB,AC为底边,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,连接FD,FE,分别交AB,AC于点M,N.试猜想四边形FMAN的形状,并说明理由;(解决问题)(3)如图(3)在正方形ABCD中,AB=2,以点A为旋转中心将正方形ABCD旋转60°,得到正方形AB'C'D',请直接写出BD'平方的值.【答案】(1)AC垂直平分BD;(2)四边形FMAN是矩形,理由见解析;(3)16+8或16﹣8【解析】【分析】(1)依据点A在线段BD的垂直平分线上,点C在线段BD的垂直平分线上,即可得出AC 垂直平分BD;(2)根据Rt△ABC中,点F为斜边BC的中点,可得AF=CF=BF,再根据等腰三角形ABD 和等腰三角形ACE,即可得到AD=DB,AE=CE,进而得出∠AMF=∠MAN=∠ANF=90°,即可判定四边形AMFN是矩形;(3)分两种情况:①以点A为旋转中心将正方形ABCD逆时针旋转60°,②以点A为旋转中心将正方形ABCD顺时针旋转60°,分别依据旋转的性质以及勾股定理,即可得到结论.【详解】(1)∵AB=AD,CB=CD,∴点A在线段BD的垂直平分线上,点C在线段BD的垂直平分线上,∴AC垂直平分BD,故答案为:AC垂直平分BD;(2)四边形FMAN是矩形.理由:如图2,连接AF,∵Rt△ABC中,点F为斜边BC的中点,∴AF=CF=BF,又∵等腰三角形ABD和等腰三角形ACE,∴AD=DB,AE=CE,∴由(1)可得,DF⊥AB,EF⊥AC,又∵∠BAC=90°,∴∠AMF=∠MAN=∠ANF=90°,∴四边形AMFN是矩形;(3)BD′的平方为16+8或16﹣8.分两种情况:①以点A为旋转中心将正方形ABCD逆时针旋转60°,如图所示:过D'作D'E⊥AB,交BA的延长线于E,由旋转可得,∠DAD'=60°,∴∠EAD'=30°,∵AB=2=AD',∴D'E=AD'=,AE=,∴BE=2+,∴Rt△BD'E中,BD'2=D'E2+BE2=()2+(2+)2=16+8②以点A为旋转中心将正方形ABCD顺时针旋转60°,如图所示:过B作BF⊥AD'于F,旋转可得,∠DAD'=60°,∴∠BAD'=30°,∵AB=2=AD',∴BF=AB=,AF=,∴D'F=2﹣,∴Rt△BD'F中,BD'2=BF2+D'F2=()2+(2-)2=16﹣8综上所述,BD′平方的长度为16+8或16﹣8.【点睛】本题属于四边形综合题,主要考查了正方形的性质,矩形的判定,旋转的性质,线段垂直平分线的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构造直角三角形,依据勾股定理进行计算求解.解题时注意:有三个角是直角的四边形是矩形.12.如图1,若分别以△ABC的AC、BC两边为边向外侧作的四边形ACDE和BCFG为正方形,则称这两个正方形为外展双叶正方形.(1)发现:如图2,当∠C=90°时,求证:△ABC与△DCF的面积相等.(2)引申:如果∠C 90°时,(1)中结论还成立吗?若成立,请结合图1给出证明;若不成立,请说明理由;(3)运用:如图3,分别以△ABC的三边为边向外侧作的四边形ACDE、BCFG和ABMN为正方形,则称这三个正方形为外展三叶正方形.已知△ABC中,AC=3,BC=4.当∠C=_____°时,图中阴影部分的面积和有最大值是________.【答案】(1)证明见解析;(2)成立,证明见解析;(3)18.【解析】试题分析:(1)因为AC=DC ,∠ACB=∠DCF=90°,BC=FC ,所以△ABC ≌△DFC ,从而△ABC 与△DFC 的面积相等;(2)延长BC 到点P ,过点A 作AP ⊥BP 于点P ;过点D 作DQ ⊥FC 于点Q .得到四边形ACDE ,BCFG 均为正方形,AC=CD ,BC=CF ,∠ACP=∠DCQ .所以△APC ≌△DQC . 于是AP=DQ .又因为S △ABC =12BC•AP ,S △DFC =12FC•DQ ,所以S △ABC =S △DFC ; (3)根据(2)得图中阴影部分的面积和是△ABC 的面积三倍,若图中阴影部分的面积和有最大值,则三角形ABC 的面积最大,当△ABC 是直角三角形,即∠C 是90度时,阴影部分的面积和最大.所以S 阴影部分面积和=3S △ABC =3×12×3×4=18. (1)证明:在△ABC 与△DFC 中, ∵{AC DCACB DCF BC FC∠∠===,∴△ABC ≌△DFC .∴△ABC 与△DFC 的面积相等;(2)解:成立.理由如下:如图,延长BC 到点P ,过点A 作AP ⊥BP 于点P ;过点D 作DQ ⊥FC 于点Q . ∴∠APC=∠DQC=90°.∵四边形ACDE ,BCFG 均为正方形,∴AC=CD ,BC=CF ,∠ACP+∠PCD=90°,∠DCQ+∠PCD=90°,∴∠ACP=∠DCQ .∴{APC DQCACP DCQ AC CD∠∠∠∠===,△APC ≌△DQC (AAS ),∴AP=DQ .又∵S△ABC=12BC•AP,S△DFC=12FC•DQ,∴S△ABC=S△DFC;(3)解:根据(2)得图中阴影部分的面积和是△ABC的面积三倍,若图中阴影部分的面积和有最大值,则三角形ABC的面积最大,∴当△ABC是直角三角形,即∠C是90度时,阴影部分的面积和最大.∴S阴影部分面积和=3S△ABC=3×12×3×4=18.考点:四边形综合题13.如图1所示,(1)在正三角形ABC中,M是BC边(不含端点B、C)上任意一点,P 是BC延长线上一点,N是∠ACP的平分线上一点,若∠AMN=60°,求证:AM=MN.(2)若将(1)中“正三角形ABC”改为“正方形ABCD”,N是∠DCP的平分线上一点,若∠AMN=90°,则AM=MN是否成立?若成立,请证明;若不成立,说明理由.(3)若将(2)中的“正方形ABCD”改为“正n边形A1A2…A n“,其它条件不变,请你猜想:当∠A n﹣2MN=_____°时,结论A n﹣2M=MN仍然成立.(不要求证明)【答案】0 (2)180 nn【解析】分析:(1)要证明AM=MN,可证AM与MN所在的三角形全等,为此,可在AB上取一点E,使AE=CM,连接ME,利用ASA即可证明△AEM≌△MCN,然后根据全等三角形的对应边成比例得出AM=MN.(2)同(1),要证明AM=MN,可证AM与MN所在的三角形全等,为此,可在AB上取一点E,使AE=CM,连接ME,利用ASA即可证明△AEM≌△MCN,然后根据全等三角形的对应边成比例得出AM=MN.详(1)证明:在边AB上截取AE=MC,连接ME.在正△ABC中,∠B=∠BCA=60°,AB=BC.∴∠NMC=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠MAE,BE=AB-AE=BC-MC=BM,∴∠BEM=60°,∴∠AEM=120°.∵N是∠ACP的平分线上一点,∴∠ACN=60°,∴∠MCN=120°.在△AEM与△MCN中,∠MAE=∠NMC,AE=MC,∠AEM=∠MCN,∴△AEM≌△MCN(ASA),∴AM=MN.(2)解:结论成立;理由:在边AB上截取AE=MC,连接ME.∵正方形ABCD中,∠B=∠BCD=90°,AB=BC.∴∠NMC=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠MAB=∠MAE,BE=AB-AE=BC-MC=BM,∴∠BEM=45°,∴∠AEM=135°.∵N是∠DCP的平分线上一点,∴∠NCP=45°,∴∠MCN=135°.在△AEM与△MCN中,∠MAE=∠NMC,AE=MC,∠AEM=∠MCN,∴△AEM≌△MCN(ASA),∴AM=MN.(3)由(1)(2)可知当∠A n-2MN等于n边形的内角时,结论A n-2M=MN仍然成立;即∠A n-2MN=()02180nn-时,结论A n-2M=MN仍然成立;故答案为[()02180nn-].点睛:本题综合考查了正方形、等边三角形的性质及全等三角形的判定,同时考查了学生的归纳能力及分析、解决问题的能力.难度较大.14.如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,求证:△PDH的周长是定值;(3)当BE+CF的长取最小值时,求AP的长.【答案】(1)证明见解析.(2)证明见解析.(3)2.【解析】试题分析:(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案;(2)首先证明△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出PD+DH+PH=AP+PD+DH+HC=AD+CD=8;(3)过F作FM⊥AB,垂足为M,则FM=BC=AB,证明△EFM≌△BPA,设AP=x,利用折叠的性质和勾股定理的知识用x表示出BE和CF,结合二次函数的性质求出最值.试题解析:(1)解:如图1,∵PE=BE,∴∠EBP=∠EPB.又∵∠EPH=∠EBC=90°,∴∠EPH-∠EPB=∠EBC-∠EBP.即∠PBC=∠BPH.又∵AD∥BC,∴∠APB=∠PBC.∴∠APB=∠BPH.(2)证明:如图2,过B作BQ⊥PH,垂足为Q.由(1)知∠APB=∠BPH,又∵∠A=∠BQP=90°,BP=BP,在△ABP和△QBP中,,∴△ABP≌△QBP(AAS),∴AP=QP,AB=BQ,又∵AB=BC,∴BC=BQ.又∠C=∠BQH=90°,BH=BH,在△BCH和△BQH中,,∴△BCH≌△BQH(SAS),∴CH=QH.∴△PHD的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.∴△PDH的周长是定值.(3)解:如图3,过F作FM⊥AB,垂足为M,则FM=BC=AB.又∵EF为折痕,∴EF⊥BP.∴∠EFM+∠MEF=∠ABP+∠BEF=90°,∴∠EFM=∠ABP.又∵∠A=∠EMF=90°,在△EFM和△BPA中,,∴△EFM≌△BPA(AAS).∴EM=AP.设AP=x在Rt△APE中,(4-BE)2+x2=BE2.解得BE=2+,∴CF=BE-EM=2+-x,∴BE+CF=-x+4=(x-2)2+3.当x=2时,BE+CF取最小值,∴AP=2.考点:几何变换综合题.15.(本题满分10分)如图1,已知矩形纸片ABCD中,AB=6cm,若将该纸片沿着过点B的直线折叠(折痕为BM),点A恰好落在CD边的中点P处.(1)求矩形ABCD的边AD的长.(2)若P为CD边上的一个动点,折叠纸片,使得A与P重合,折痕为MN,其中M在边AD上,N在边BC上,如图2所示.设DP=x cm,DM=y cm,试求y与x的函数关系式,并指出自变量x的取值范围.(3)①当折痕MN的端点N在AB上时,求当△PCN为等腰三角形时x的值;②当折痕MN的端点M在CD上时,设折叠后重叠部分的面积为S,试求S与x之间的函数关系式【答案】(1)AD=3;(2)y=-其中,0<x<3;(3)x=;(4)S=.【解析】试题分析:(1)根据折叠图形的性质和勾股定理求出AD的长度;(2)根据折叠图形的性质以及Rt△MPD的勾股定理求出函数关系式;(3)过点N作NQ⊥CD,根据Rt△NPQ 的勾股定理进行求解;(4)根据Rt△ADM的勾股定理求出MP与x的函数关系式,然后得出函数关系式.试题解析:(1)根据折叠可得BP=AB=6cm CP=3cm 根据Rt△PBC的勾股定理可得:AD=3.(2)由折叠可知AM=MP,在Rt△MPD中,∴∴y=-其中,0<x<3.(3)当点N在AB上,x≥3,∴PC≤3,而PN≥3,NC≥3.∴△PCN为等腰三角形,只可能NC=NP.过N点作NQ⊥CD,垂足为Q,在Rt△NPQ中,∴解得x=.(4)当点M在CD上时,N在AB上,可得四边形ANPM为菱形.设MP=y,在Rt△ADM中,,即∴ y=.∴ S=考点:函数的性质、勾股定理.。
人教备战中考数学平行四边形综合练习题及详细答案
一、平行四边形真题与模拟题分类汇编(难题易错题)1.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到到B′的位置,AB′与CD交于点E.(1)求证:△AED≌△CEB′(2)若AB = 8,DE = 3,点P为线段AC上任意一点,PG⊥AE于G,PH⊥BC于H.求PG + PH的值.【答案】(1)证明见解析;(2).【解析】【分析】(1)由折叠的性质知,,,,则由得到;(2)由,可得,又由,即可求得的长,然后在中,利用勾股定理即可求得的长,再过点作于,由角平分线的性质,可得,易证得四边形是矩形,继而可求得答案.【详解】(1)四边形为矩形,,,又,;(2),,,,在中,,过点作于,,,,,,,、、共线,,四边形是矩形,,.【点睛】此题考查了折叠的性质、矩形的性质、角平分线的性质、等腰三角形的判定与性质以及勾股定理等知识.此题难度较大,注意掌握折叠前后图形的对应关系,注意掌握辅助线的作法,注意数形结合思想的应用.2.如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,点E为CD的中点,射线BE交AD 的延长线于点F,连接CF.(1)求证:四边形BCFD是菱形;(2)若AD=1,BC=2,求BF的长.【答案】(1)证明见解析(2)3【解析】(1)∵AF∥BC,∴∠DCB=∠CDF,∠FBC=∠BFD,∵点E为CD的中点,∴DE=EC,在△BCE与△FDE中,FBC BFDDCB CDFDE EC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCE≌△FDE,∴DF=BC,又∵DF∥BC,∴四边形BCDF为平行四边形,∵BD=BC,∴四边形BCFD是菱形;(2)∵四边形BCFD是菱形,∴BD=DF=BC=2,在Rt△BAD中,AB223BD AD-,∵AF=AD+DF=1+2=3,在Rt△BAF中,BF22AB AF+3.3.阅读下列材料:我们定义:若一个四边形的一条对角线把四边形分成两个等腰三角形,则这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如正方形就是和谐四边形.结合阅读材料,完成下列问题:(1)下列哪个四边形一定是和谐四边形 .A .平行四边形B .矩形C .菱形D .等腰梯形(2)命题:“和谐四边形一定是轴对称图形”是 命题(填“真”或“假”). (3)如图,等腰Rt △ABD 中,∠BAD =90°.若点C 为平面上一点,AC 为凸四边形ABCD 的和谐线,且AB =BC ,请求出∠ABC 的度数.【答案】(1) C ;(2)∠ABC 的度数为60°或90°或150°.【解析】试题分析:(1)根据菱形的性质和和谐四边形定义,直接得出结论.(2)根据和谐四边形定义,分AD=CD ,AD=AC ,AC=DC 讨论即可.(1)根据和谐四边形定义,平行四边形,矩形,等腰梯形的对角线不能把四边形分成两个等腰三角形,菱形的一条对角线能把四边形分成两个等腰三角形够.故选C.(2)∵等腰Rt △ABD 中,∠BAD=90°,∴AB=AD.∵AC 为凸四边形ABCD 的和谐线,且AB=BC ,∴分三种情况讨论:若AD=CD ,如图1,则凸四边形ABCD 是正方形,∠ABC=90°;若AD=AC ,如图 2,则AB=AC=BC ,△ABC 是等边三角形,∠ABC=60°;若AC=DC ,如图 3,则可求∠ABC=150°.考点:1.新定义;2.菱形的性质;3.正方形的判定和性质;4.等边三角形的判定和性质;5.分类思想的应用.4.已知90AOB ∠=︒,点C 是AOB ∠的角平分线OP 上的任意一点,现有一个直角MCN ∠绕点C 旋转,两直角边CM ,CN 分别与直线OA ,OB 相交于点D ,点E .(1)如图1,若CD OA ⊥,猜想线段OD ,OE ,OC 之间的数量关系,并说明理由. (2)如图2,若点D 在射线OA 上,且CD 与OA 不垂直,则(1)中的数量关系是否仍成立?如成立,请说明理由;如不成立,请写出线段OD ,OE ,OC 之间的数量关系,并加以证明.(3)如图3,若点D 在射线OA 的反向延长线上,且2OD =,8OE =,请直接写出线段CE 的长度.【答案】(1)详见解析;(2)详见解析;(334【解析】【分析】(1)先证四边形ODCE 为矩形,再证矩形ODCE 为正方形,由正方形性质可得;(2)过点C 作CG OA ⊥于点G ,CH OB ⊥于点H ,证四边形OGCH 为正方形,再证()CGD CHE ASA ∆≅∆,可得;(3)根据()CGD CHE ASA ∆≅∆,可得2OE OD OH OG OC -=+=.【详解】解:(1)∵90AOB ∠=︒,90MCN ∠=︒,CD OA ⊥,∴四边形ODCE 为矩形.∵OP 是AOB ∠的角平分线,∴45DOC EOC ∠=∠=︒,∴OD CD =,∴矩形ODCE 为正方形, ∴2OC OD =,2OC OE =.∴2OD OE OC +=.(2)如图,过点C 作CG OA ⊥于点G ,CH OB ⊥于点H ,∵OP 平分AOB ∠,90AOB ∠=︒,∴四边形OGCH 为正方形,由(1)得:2OG OH OC +=,在CGD ∆和CHE ∆中, 90CGD CHE CG CHDCG ECH ︒⎧∠=∠=⎪=⎨⎪∠=∠⎩, ∴()CGD CHE ASA ∆≅∆,∴GD HE =,∴2OD OE OC +=.(3)2OG OH OC +=, ()CGD CHE ASA ∆≅∆,∴GD HE =. ∵OD GD OG =-,OE OH EH =+,∴2OE OD OH OG OC -=+=, ∴32OC =,∴34CE =,CE 的长度为34.【点睛】考核知识点:矩形,正方形的判定和性质.熟练运用特殊四边形的性质和判定是关键.5.正方形ABCD ,点E 在边BC 上,点F 在对角线AC 上,连AE .(1)如图1,连EF ,若EF ⊥AC ,4AF =3AC ,AB =4,求△AEF 的周长;(2)如图2,若AF =AB ,过点F 作FG ⊥AC 交CD 于G ,点H 在线段FG 上(不与端点重合),连AH .若∠EAH =45°,求证:EC =2.+;(2)证明见解析【答案】(1)2542【解析】【分析】(1)由正方形性质得出AB=BC=CD=AD=4,∠B=∠D=90°,∠ACB=∠ACD=∠BAC=∠ACD=45°,得出AC=2AB=42,求出AF=32,CF=AC﹣AF=2,求出△CEF 是等腰直角三角形,得出EF=CF=2,CE=2CF=2,在Rt△AEF中,由勾股定理求出AE,即可得出△AEF的周长;(2)延长GF交BC于M,连接AG,则△CGM和△CFG是等腰直角三角形,得出CM=CG,CG=2CF,证出BM=DG,证明Rt△AFG≌Rt△ADG得出FG=DG,BM=FG,再证明△ABE≌△AFH,得出BE=FH,即可得出结论.【详解】(1)∵四边形ABCD是正方形,∴AB=BC=CD=AD=4,∠B=∠D=90°,∠ACB=∠ACD=∠BAC=∠ACD=45°,∴AC=2AB=42,∵4AF=3AC=122,∴AF=32,∴CF=AC﹣AF=2,∵EF⊥AC,∴△CEF是等腰直角三角形,∴EF=CF=2,CE=2CF=2,在Rt△AEF中,由勾股定理得:AE=2225+=,AF EF++=+;∴△AEF的周长=AE+EF+AF=252322542(2)证明:延长GF交BC于M,连接AG,如图2所示:则△CGM和△CFG是等腰直角三角形,∴CM=CG,CG2,∴BM =DG ,∵AF =AB ,∴AF =AD ,在Rt △AFG 和Rt △ADG 中,AG AG AF AD =⎧⎨=⎩, ∴Rt △AFG ≌Rt △ADG (HL ),∴FG =DG ,∴BM =FG ,∵∠BAC =∠EAH =45°,∴∠BAE =∠FAH ,∵FG ⊥AC ,∴∠AFH =90°,在△ABE 和△AFH 中,90B AFH AB AFBAE FAH ︒⎧∠=∠=⎪=⎨⎪∠=∠⎩, ∴△ABE ≌△AFH (ASA ),∴BE =FH ,∵BM =BE +EM ,FG =FH +HG ,∴EM =HG ,∵EC =EM +CM ,CM =CGCF ,∴EC =HG.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理等知识;熟练掌握等腰直角三角形的判定与性质,证明三角形全等是解题的关键.6.(感知)如图①,四边形ABCD 、CEFG 均为正方形.可知BE=DG .(拓展)如图②,四边形ABCD 、CEFG 均为菱形,且∠A=∠F .求证:BE=DG .(应用)如图③,四边形ABCD 、CEFG 均为菱形,点E 在边AD 上,点G 在AD 延长线上.若AE=2ED ,∠A=∠F ,△EBC 的面积为8,菱形CEFG 的面积是_______.(只填结果)【答案】见解析【解析】试题分析:探究:由四边形ABCD 、四边形CEFG 均为菱形,利用SAS 易证得△BCE ≌△DCG ,则可得BE=DG ;应用:由AD ∥BC ,BE=DG ,可得S △ABE +S △CDE =S △BEC =S △CDG =8,又由AE=3ED ,可求得△CDE 的面积,继而求得答案.试题解析:探究:∵四边形ABCD 、四边形CEFG 均为菱形,∴BC=CD ,CE=CG ,∠BCD=∠A ,∠ECG=∠F .∵∠A=∠F ,∴∠BCD=∠ECG .∴∠BCD-∠ECD=∠ECG-∠ECD ,即∠BCE=∠DCG .在△BCE 和△DCG 中,BC CD BCE DCG CE CG ⎧⎪∠∠⎨⎪⎩=== ∴△BCE ≌△DCG (SAS ),∴BE=DG .应用:∵四边形ABCD 为菱形,∴AD ∥BC ,∵BE=DG ,∴S △ABE +S △CDE =S △BEC =S △CDG =8,∵AE=3ED ,∴S △CDE =1824⨯= , ∴S △ECG =S △CDE +S △CDG =10∴S 菱形CEFG =2S △ECG =20.7.如图1,在正方形ABCD 中,点E ,F 分别是边BC ,AB 上的点,且CE=BF .连接DE ,过点E 作EG ⊥DE ,使EG=DE ,连接FG ,FC .(1)请判断:FG 与CE 的关系是___;(2)如图2,若点E ,F 分别是边CB ,BA 延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;(3)如图3,若点E ,F 分别是边BC ,AB 延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.【答案】(1)FG=CE ,FG ∥CE ;(2)成立;(3)成立.【解析】试题分析:(1)只要证明四边形CDGF 是平行四边形即可得出FG =CE ,FG ∥CE ;(2)构造辅助线后证明△HGE ≌△CED ,利用对应边相等求证四边形GHBF 是矩形后,利用等量代换即可求出FG =C ,FG ∥CE ;(3)证明△CBF ≌△DCE 后,即可证明四边形CEGF 是平行四边形.试题解析:解:(1)FG =CE ,FG ∥CE ;(2)过点G 作GH ⊥CB 的延长线于点H .∵EG ⊥DE ,∴∠GEH +∠DEC =90°.∵∠GEH +∠HGE =90°,∴∠DEC =∠HE .在△HGE 与△CED 中,∵∠GHE =∠DCE ,∠HGE =∠DEC ,EG =DE ,∴△HGE ≌△CED (AAS ),∴GH =CE ,HE =CD .∵CE =BF ,∴GH =BF .∵GH ∥BF ,∴四边形GHBF 是矩形,∴GF =BH ,FG ∥CH ,∴FG ∥CE .∵四边形ABCD 是正方形,∴CD =BC ,∴HE =BC ,∴HE +EB =BC +EB ,∴BH =EC ,∴FG =EC ;(3)∵四边形ABCD 是正方形,∴BC =CD ,∠FBC =∠ECD =90°.在△CBF 与△DCE 中,∵BF =CE ,∠FBC =∠ECD ,BC =DC ,∴△CBF ≌△DCE (SAS ),∴∠BCF =∠CDE ,CF =DE .∵EG =DE ,∴CF =EG .∵DE ⊥EG ,∴∠DEC +∠CEG =90°.∵∠CDE +∠DEC =90°,∴∠CDE =∠CEG ,∴∠BCF =∠CEG ,∴CF ∥EG ,∴四边形CEGF 平行四边形,∴FG ∥CE ,FG =CE .8.在ABC 中,ABC 90∠=,BD 为AC 边上的中线,过点C 作CE BD ⊥于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG BD =,连接BG ,DF .()1求证:BD DF =;()2求证:四边形BDFG 为菱形;()3若AG 5=,CF 7=,求四边形BDFG 的周长.【答案】(1)证明见解析(2)证明见解析(3)8【解析】【分析】()1利用平行线的性质得到90CFA ∠=,再利用直角三角形斜边上的中线等于斜边的一半即可得证,()2利用平行四边形的判定定理判定四边形BDFG 为平行四边形,再利用()1得结论即可得证,()3设GF x =,则5AF x =-,利用菱形的性质和勾股定理得到CF 、AF 和AC 之间的关系,解出x 即可.【详解】()1证明:AG //BD ,CF BD ⊥,CF AG ∴⊥,又D 为AC 的中点,1DF AC 2∴=, 又1BD AC 2=, BD DF ∴=, ()2证明:BD//GF ,BD FG =, ∴四边形BDFG 为平行四边形, 又BD DF =,∴四边形BDFG 为菱形,()3解:设GF x =,则AF 5x =-,AC 2x =,在Rt AFC 中,222(2x)7)(5x)=+-, 解得:1x 2=,216x (3=-舍去),∴=,GF2∴菱形BDFG的周长为8.【点睛】本题考查了菱形的判定与性质直角三角形斜边上的中线,勾股定理等知识,正确掌握这些定义性质及判定并结合图形作答是解决本题的关键.9.(1)问题发现如图1,点E. F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF、则EF=BE+DF,试说明理由;(2)类比引申如图2,在四边形ABCD中,AB=AD,∠BAD=90°,点E. F分别在边BC、CD上,∠EAF=45°,若∠B,∠D都不是直角,则当∠B与∠D满足等量关系时,仍有EF=BE+DF;(3)联想拓展如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,猜想BD、DE、EC 满足的等量关系,并写出推理过程。
平行四边形综合练习附答案
平行四边形综合练习学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列给出的条件中,不能判断四边形ABCD 是平行四边形的是( ) A .AB ∥CD ,AD =BCB .∠A =∠C ,∠B =∠D C .AB ∥CD ,AD ∥BCD .AB =CD ,AD =BC 【答案】A【解析】【分析】直接根据平行四边形的判定定理判断即可.【详解】平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.∴C 能判断; 平行四边形判定定理1,两组对角分别相等的四边形是平行四边形;∴B 能判断; 平行四边形判定定理2,两组对边分别相等的四边形是平行四边形;∴D 能判定; 平行四边形判定定理3,对角线互相平分的四边形是平行四边形;平行四边形判定定理4,一组对边平行相等的四边形是平行四边形;故选A .【点睛】此题是平行四边形的判定,解本题的关键是掌握和灵活运用平行四边形的5个判断方法.2.在平行四边形ABCD 中,∠A ∶∠B ∶∠C ∶∠D 的值可以是( )A .4∶3∶3∶4B .7∶5∶5∶7C .4∶3∶2∶1D .7∶5∶7∶5 【答案】D【解析】【详解】解:因为平行四边形的对角相等,∠A 与∠C 是对角,∠B 与∠D 是对角, 所以∠A ∶∠B ∶∠C ∶∠D 的值可以是7∶5∶7∶5,故选:D3.下列条件不能判定四边形ABCD 是平行四边形的是( )A .,AD BC AB CD ==B .,AC BD ∠=∠∠=∠C .//,AB CD BC AD = D .//,AD BC B D ∠=∠【答案】C【解析】【分析】根据平行四边形的判定逐一判断即可.【详解】解:A .由AD =BC ,AB =CD 可根据两组对边分别相等的四边形是平行四边形知四边形ABCD 是平行四边形,此选项不符合题意;B .由∠A =∠C ,∠B =∠D 可根据两组对角分别相等的四边形是平行四边形知四边形ABCD 是平行四边形,此选项不符合题意;C .由AB ∥CD ,BC =AD 不能判定四边形ABCD 是平行四边形,此选项符合题意; D .由AD ∥BC 知∠A +∠B =180°,结合∠B =∠D 知∠A +∠D =180°,所以AB ∥CD ,此时可根据两组对边分别平行的四边形是平行四边形知四边形ABCD 是平行四边形,此选项不符合题意;故选:C .【点睛】本题主要考查平行四边形的判定,解题的关键是掌握两组对边分别平行的四边形是平行四边形、两组对边分别相等的四边形是平行四边形、一组对边平行且相等的四边形是平行四边形.4.如图,菱形ABCD 的对角线AC BD ,相交于点O ,DH AB ⊥于点H ,连接OH ,若AH DH =,则DHO ∠的度数是( ).A .25°B .22.5°C .30°D .15°【答案】B【解析】【分析】 求出∠HDO ,再证明∠DHO =∠HDO 即可解决问题;【详解】∵AH DH DH AB =⊥,,∴45DAH ADH ∠=∠=︒.∵四边形ABCD 是菱形,∴12252DAO DAB ∠=∠=.°, ∵AC BD ⊥,∴90675AOD ADO ∠=︒∠=︒,., ∴225HDO ADO ADH ∠=∠-∠=︒..∵90DHB DO OB ∠=︒=,,∴OH OD =,∴225DHO HDO ∠=∠=︒..故选B.【点睛】此题考查菱形的性质,解题关键在于掌握菱形具有平行四边形的一切性质; 菱形的四条边都相等; 菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.判断OH 为直角三角形斜边上的中线.5.下列命题中,其逆命题是真命题的是( )A .对顶角相等B .两直线平行,同位角相等C .全等三角形的对应角相等D .正方形的四个角相等【答案】B【解析】【分析】先写成各选项的逆命题,再根据对顶角的定义、平行线的判定、三角形全等的判定、正方形的判定逐项判断即可得.【详解】A 、逆命题:如果两个角相等,那么这两个角是对顶角相等的两个角不一定是对顶角,则此逆命题是假命题B 、逆命题:同位角相等,两直线平行由平行线的判定可知,此逆命题是真命题C 、逆命题:如果两个三角形的对应角相等,则这两个三角形是全等三角形 由三角形全等的判定定理可知,此逆命题是假命题D 、逆命题:如果一个四边形的四个角都相等,则这个四边形是正方形如果一个四边形的四个角都相等,则这个四边形是矩形,不一定是正方形,则此逆命题是假命题故选:B .【点睛】本题考查了命题的逆命题、对顶角的定义、平行线的判定、三角形全等的判定、正方形的判定,正确写出各命题的逆命题是解题关键.6.如图,把菱形ABCD向右平移至DCEF的位置,作EG⊥AB,垂足为G,EG与CD 相交于点K,GD的延长线交EF于点H,连接DE,则下列结论:①BG=AB+HF;②DG=DE;∠BAD;④∠B=∠DEF,其中正确结论的个数是()③∠DHE=12A.1个B.2个C.3个D.4个【答案】C【解析】【分析】首先证明△ADG≌△FDH,再利用菱形的性质、直角三角形斜边中线的性质即可一一判断.【详解】解:∵菱形ABCD向右平移至DCEF的位置,∴AB∥CD∥EF,AD=CD=DF,∴∠GAD=∠F,∵∠ADG=∠FDH,∴△ADG≌△FDH,∴DG=DH,AG=FH,∴BG =AB+AG=AB+HF,故①正确,∵EG⊥AB,∴∠BGE=∠GEF=90°,又∵DG=DH,∴DE=DG=DH,故②正确,∴∠DHE=∠DEH,∠CEF,∠CEF=∠CDF=∠BAD,∵∠DEH=12∴∠DHE=1∠BAD,故③正确,2∵∠B =∠DCE ,∠CED =∠CDE =∠DEF =∠DHE ,∴∠DCE =∠EDH ,∴∠B =∠EDH ,若 ∠B =∠DEF ,则∠EDH=∠DEF =∠DHE ,那么∆ DHE 是等边三角形,但题目中没有明确∆ DHE 是等边三角形,故④错误.故选:C .【点睛】本题考查菱形的性质、平移变换、全等三角形的判定和性质、直角三角形斜边中线的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型. 7.如图所示,在长方形ABCD 中,AB =22,在线段BC 上取一点E ,连接AE 、ED ,将ABE 沿AE 翻折,点B 落在点B '处,线段E B '交AD 于点F .将ECD 沿DE 翻折,点C 的对应C '恰好落在线段EB '上,且点C '为EB '的中点,则线段EF 的长为( )A .3B .23C .4D .32【答案】A【解析】【分析】 由折叠的性质可得AB =A B '=CD =C 'D =2,∠B =∠B '=90°=∠C =∠D C 'E ,BE =B 'E ,CE =C 'E ,由中点性质可得B 'E =2C 'E ,可得BC =AD =3EC ,由勾股定理可求CE 的长,由“AAS ”可证AB F '≌DC F '△,可得C F B F ''==1,即可求解.【详解】解:∵四边形ABCD 是矩形,∴AB =CD =2,AD =BC ,∠B =∠C =90°由折叠的性质可得:AB =AB '=CD =C D '=2∠B =∠B '=90°=∠C =∠DC E ',BE =B E ',CE =C E ',∠BEA =∠B EA '=12BEB '∠,∠CED =∠C ED '=12CEC '∠ ∴∠AED =12BEB '∠+12CEC '∠ =1()2BEB CEC ''∠+∠ =11802⨯︒=90︒ ∴AED 是直角三角形∴AD 2=AE 2+DE 2,∵点C '恰好为EB '的中点,∴B E '=2C E ',∴BE =2CE ,∴BC =AD =3EC ,∵AE 2=AB 2+BE 2,DE 2=DC 2+CE 2,∴(3CE )2= AB 2+BE 2+DC 2+CE 2即9CE 2=8+4CE 2+8+CE 2,∴CE =2,∴B E '=BE =4,BC =AD =6,C E '=2,∴B C ''=2,∵∠B '=∠DC 'F =90°,∠AF B '=∠DFC ',A B '=C 'D , ∴A B 'F ≌D C 'F (AAS ),∴C 'F =B 'F =1,∴EF =C 'E +C 'F =3,故选:A .【点睛】此题考查了翻折变换、矩形的性质、全等三角形的性质、勾股定理等,解题的关键是求出CE 的长.8.如图,正方形ABCD 中,AB =12,点E 在边BC 上,BE =EC ,将△DCE 沿DE 对折至△DFE ,延长EF 交边AB 于点G ,连接DG 、BF ,给出以下结论:①△DAG ≌△DFG ;②BG =2AG ;③BF //DE ;④S △BEF =725.其中所有正确结论的个数是( )A .1B .2C .3D .4【答案】D【解析】【分析】 根据正方形的性质和折叠的性质可得AD =DF ,∠A =∠GFD =90°,于是根据“HL ”判定Rt △ADG ≌Rt △FDG ;②再由GF +GB =GA +GB =12,EB =EF ,△BGE 为直角三角形,可通过勾股定理列方程求出AG =4,BG =8,即可判断;③由△BEF 是等腰三角形,证明∠EBF =∠DEC ,;④结合①可得AG =GF ,根据等高的两个三角形的面积的比等于底与底的比即可求出三角形BEF 的面积.【详解】解:①由折叠可知,DF =DC =DA ,∠DFE =∠C =90°,∴∠DFG =∠A =90°,在Rt △ADG 和Rt △FDG 中,AD DF DG DG ⎧⎨⎩== ∴Rt △ADG ≌Rt △FDG (HL ),故①正确;②∵正方形边长是12,∴BE =EC =EF =6,设AG =FG =x ,则EG =x +6,BG =12−x ,由勾股定理得:EG 2=BE 2+BG 2,即:(x +6)2=62+(12−x )2,解得:x =4,∴AG =GF =4,BG =8,BG =2AG ,故②正确;③∵EF=EC=EB,∴∠EFB=∠EBF,∵∠DEC=∠DEF,∠CEF=∠EFB+∠EBF,∴∠DEC=∠EBF,∴BF//DE,故③正确;④∵S△GBE=12BE•BG=12×6×8=24,∵GF=AG=4,EF=B E=6,∴42=63 BFGBEFS GFS EF==,∴S△BEF=35S△GBE=35×24=725,故④正确.综上可知正确的结论的是4个.故选:D.【点睛】本题考查了图形的翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算,有一定的难度.二、填空题9.正方形的四个角________四条边_________,对角线________且互相_______,每条对角线_________一组对角.【答案】都是直角都相等相等垂直平分平分【解析】【分析】根据正方形的性质(正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等且互相垂直平分,并且每条对角线平分一组对角)求解即可求得答案.【详解】解:正方形的四个角都是直角,四条边都相等,对角线相等且互相垂直平分,且每一条对角线平分一组对角.故答案为:都是直角;都相等;相等,垂直平分;平分.【点睛】此题考查了正方形的性质.此题比较简单,注意熟记正方形的性质是解此题的关键.10.已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为__________.【答案】(3,4)或(2,4)或(8,4)【解析】【详解】解:∵A(10,0),C(0,4),∴OA=BC=10,OC=AB=4,如图所示,PD=OD=5,点P在点D的左侧.过点P作PE⊥x轴于点E,则PE=4.在Rt△PDE中,由勾股定理得:DE=2222-=-=,543PD PE∴OE=OD-DE=5-3=2,∴此时点P坐标为(2,4);如图所示,OP=OD=5.过点P作PE⊥x轴于点E,则PE=4.在Rt△POE中,由勾股定理得:OE2222--=,543OP PE∴此时点P坐标为(3,4);如图所示,PD=OD=5,点P在点D的右侧.过点P作PE⊥x轴于点E,则PE=4.在Rt△PDE中,由勾股定理得:DE=2222543PD PE-=-=,∴OE=OD+DE=5+3=8,∴此时点P坐标为(8,4).综上所述,点P的坐标为:(2,4)或(3,4)或(8,4).【点睛】本题主要考查了矩形的性质,坐标与图形性质,等腰三角形的性质,勾股定理,熟练掌握相关知识点,并利用分类讨论思想解答是解题的关键.11.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=2,则DF的长为_________.【答案】3 2【解析】【详解】解:如图,延长CF交AB于点G,∵在△AFG和△AFC中,∠GAF=∠CAF,AF=AF,∠AFG=∠AFC,∴△AFG ≌△AFC (ASA ).∴AC=AG ,GF=CF .又∵点D 是BC 中点,∴DF 是△CBG 的中位线.∴DF=12BG=12(AB ﹣AG )=12(AB ﹣AC )=32. 故答案为:32. 12.等腰梯形ABCD 一个内角为120︒,下底长为5,梯形面积为43,则梯形ABCD 的周长为_________【答案】12【解析】【分析】作AE BC ⊥于E ,作DF BC ⊥于F ,设BE x =,表示出等腰梯形的腰、高、上底,用面积列出关于x 的方程,解出即可求出梯形的周长.【详解】解:如图:等腰梯形ABCD ,//AD BC ,=AB CD ,120BAD ∠=︒,5BC =,梯形面积为43,作AE BC ⊥于E ,作DF BC ⊥于F ,设BE x =,∴90AEF ∠=︒,90DFE ∠=︒,18090EAD AEF ∠=︒-∠=︒,∴四边形AEFD 是矩形∴AD EF =,∵等腰梯形ABCD ,//AD BC ,∴B C ∠=∠,又∵90AEB DFC ∠=∠=︒,=AB CD ,∴AEB △≌DFC △(AAS ),∴=BE FC x =,∴52AD EF x ==-,∵//AD BC ,120BAD ∠=︒,∴18060B BAD ∠=︒-∠=︒,30BAE ∠=︒,∴2AB x =,223AE AB BE x -=,∵梯形面积为43, ∴1()2AD BC AE +=43,即143(525)3=2x x -+,解得:121,4=x x =, 又∵520AD x =->,∴1x =,∴梯形ABCD 的周长为52522102AD BC AB CD x x x x +++=-+++=+=12.故答案为:12.【点睛】本题考查了矩形的判定与性质定理,三角形全等的判定定理,含30度的直角三角形的性质,勾股定理,等腰梯形的性质,梯形的面积,解题的关键是用字母表示相关线段. 13.如图,Rt △ABC 中,∠ACB=90°,AB=6,D 是AB 的中点,则CD=_____.【答案】3【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半解答.【详解】∵∠ACB=90°,D 为AB 的中点,∴CD=12AB=12×6=3.故答案为3.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.14.在平行四边形ABCD 中, BC 边上的高为4 ,AB =5 ,25AC =,则平行四边形ABCD 的周长等于______________ .【答案】12或20【解析】【分析】根据题意分别画出图形,BC 边上的高在平行四边形的内部和外部,进而利用勾股定理求出即可.【详解】解:情况一:当BC边上的高在平行四边形的内部时,如图1所示:在平行四边形ABCD中,BC边上的高为4,AB=5,AC=25,在Rt△ACE中,由勾股定理可知:2222CE AC AE,(25)42在Rt△ABE中,由勾股定理可知:2222=-=-=,BE AB AE543∴BC=BE+CE=3+2=5,此时平行四边形ABCD的周长等于2×(AB+BC)=2×(5+5)=20;情况二:当BC边上的高在平行四边形的外部时,如图2所示:在平行四边形ABCD中,BC边上的高为AE=4,AB=5,AC=25在Rt△ACE中,由勾股定理可知:2222(25)42CE AC AE,在Rt△ABE中,由勾股定理可知:2222-=-,543BE AB AE∴BC=BE-CE=3-2=1,∴平行四边形ABCD的周长为2×(AB+BC)=2×(5+1)=12,综上所述,平行四边形ABCD的周长等于12或20.故答案为:12或20.【点睛】此题主要考查了平行四边形的性质以及勾股定理等知识,分高在平行四边形内部还是外部讨论是解题关键.三、解答题15.(1)如图1,在四边形ABCD中,F、E分别是BC、AD的中点,连结EF并延长,分别与BA、CD的延长线交于点M、N,则∠BME=∠CNE,求证:AB=CD;(提示取BD的中点H,连结FH,HE作辅助线)(2)如图2,在△ABC中,且O是BC边的中点,D是AC边上一点,E是AD的中点,直线OE交BA的延长线于点G,若AB=DC=5,∠OEC=60°,求OE的长度.【答案】(1)证明见解析;(2)OE=5 2 .【解析】【分析】(1)连结BD,取DB的中点H,连结EH、FH,证明出EH∥AB,EH=12AB,FH∥CD,FH=12CD,证出HE=HF,进而证出AB=CD;(2)连结BD,取DB的中点H,连结EH、OH,证明出HO=HE,可证明证出△OEH是等边三角形,进而求出OE=5 2 .【详解】(1)证明:如图一,连结BD,取DB的中点H,连结EH、FH. ∵E、F分别是AD、BC的中点,∴EH∥AB,EH=12AB,FH∥CD,FH=12CD,∵∠BME=∠CNE,∴∠HEF=∠HFE,∴HE=HF,∴AB=CD;(2)如图二,连结BD,取DB的中点H,连结EH、OH,∵AB=CD,HE为△ABD的中位线,HO为△BCD的中位线,∴HO=HE=12AB=12CD,,∴∠HOE=∠HEO,∵OH∥AC,∠OEC=60°,∴∠OEH=∠HOE=∠OEC=60°,∴△OEH是等边三角形,∵AB=DC=5,∴OE=5 2 .故答案为(1)证明见解析;(2)OE=5 2 .【点睛】本题考查三角形中位线定理,等边三角形的判定与性质.16.如图,四边形ABCD中,AB=CD,AD=BC,对角线AC,BD相交于点O,且OA =OD.求证:四边形ABCD是矩形.【答案】见解析【解析】【分析】先由两组对边分别相等证明四边形ABCD是平行四边形,再根据对角线相等的平行四边形是矩形证明即可.【详解】证:∵四边形ABCD中,AB=CD,AD=BC,∴四边形ABCD是平行四边形,∴AC=2AO,BD=2OD,∵OA=OD,∴AC=BD,∴四边形ABCD是矩形.【点睛】本题主要考查了矩形的判定,灵活的根据已知条件选择合适的判定方法是证明的关键. 17.如图,ABC的两条高分别为BE、CF,M为BC的中点.求证:ME MF.【答案】证明见解析.【解析】【分析】 根据直角三角形斜边上的中线等于斜边的一半可得12ME BC =,12MF BC =,从而得证. 【详解】证明:∵BE 是ABC 的高,M 为BC 的中点,∴12ME BC =, ∵CF 是ABC 的高,M 为BC 的中点,∴12MF BC =, ∴ME MF =.【点睛】本题考查直角三角形斜边上的中线等于斜边的一半.18.如图,在正方形ABCD 中,点F 为CD 上一点,BF 与AC 交于点E .(1)ACB ∠的大小=______°;(2)求证:ABE △≌ADE ;(3)若20CBF ∠=︒,则AED ∠的大小=______°.【答案】(1)45(2)证明见解析(3)65【解析】【分析】(1)由正方形的性质求解即可;(2)由正方形ABCD 可知,AB AD =,EAB EAD ∠=∠,进而可证EAB ≌EAD (SAS ); (3)由EAB ≌EAD 可知AED AEB ∠=∠,由三角形外角的性质可知AEB EBC BCE ∠=∠+∠,计算求解即可.(1)解:∵四边形ABCD 是正方形,∴90BCD ∠=︒,11904522ACB BCD ∠=∠=⨯︒=︒ 故答案为45.(2)证明:∵四边形ABCD 是正方形∴AB AD =,EAB EAD ∠=∠在EAB 和EAD 中∵EA EA EAB EAD AB AD =⎧⎪∠=∠⎨⎪=⎩∴EAB ≌EAD (SAS ).(3)解:∵EAB ≌EAD∴AED AEB ∠=∠∵204565AEB EBC BCE ∠=∠+∠=︒+︒=︒∴65AED ∠=︒故答案为65.【点睛】本题考查了正方形的性质,三角形全等,三角形外角的性质.解题的关键在于对知识的灵活运用.19.如图,在正方形ABCD 中,点E 、F 分别在边BC 和CD 上,且BE CF =,连接AE 、BF ,其相交于点G ,将BCF △沿BF 翻折得到BC F '△,延长FC '交BA 延长线于点H .(1)求证:AE BF =;(2)若3AB =,2EC BE =,求BH 的长.【答案】(1)见解析;(2)5.【解析】【分析】(1)根据正方形的性质得到BA BC =,90ABC BCD ∠=∠=︒,利用SAS 定理证明ABE BCF △△≌,根据全等三角形的性质证明结论;(2)根据折叠的性质得到C BF CBF ∠'=∠,90BC F BCF ∠'=∠=︒,证明HB HF =,根据勾股定理列式计算即可.【详解】(1)证明:四边形ABCD 是正方形,BA BC ∴=,90ABC BCD ∠=∠=︒,在ABE △和BCF △中,AB BC ABE BCF BE CF =⎧⎪∠=∠⎨⎪=⎩,()ABE BCF SAS ∴△≌△,AE BF ∴=;(2)解:3BC AB ==,2EC BE =,2EC ∴=,1BE =,1C F CF ∴'==,由折叠的性质可知,C BF CBF ∠'=∠,90BC F BCF ∠'=∠=︒,90C FB C BF ∠'+∠'=︒,90HBF FBC ∠+∠=︒,C FB HBF ∴∠'=∠,HB HF ∴=,312HC HF C F HB C F AH AH ∴'=-'=-'=+-=+,在Rt HBC '△中,222HB C B C H ='+',即222AH AH+=++,(3)3(2)解得:2AH=,BH AH AB∴=+=.5【点睛】本题考查的是正方形的性质、全等三角形的判定和性质、折叠的性质、勾股定理的应用,掌握全等三角形的判定定理和性质定理、正方形的性质定理是解题的关键.20.如图,四边形ABCD中,AC,BD相交于点O,O是AC的中点,AD∥BC,AC =8,BD=6.(1)求证:四边形ABCD是平行四边形;(2)若AC⊥BD,求▱ABCD的面积.【答案】(1)证明见解析;(2)24.【解析】【分析】(1)先证明△AOD≌△COB,可证明对角线互相平分,从而证明平行四边形;(2)由题意得四边形是菱形,菱形的面积等于对角线积的一半.【详解】(1)证明:∵O是AC的中点,∴OA=OC.∵AD∥BC,∴∠DAO=∠BCO.又∵∠AOD=∠COB,∴△AOD≌△COB,∴OD=OB,∴四边形ABCD是平行四边形.(2)∵四边形ABCD是平行四边形,AC⊥BD,∴四边形ABCD是菱形,AC·BD=24.∴▱ABCD的面积=12【点睛】此题主要考查平行四边形的判定和菱形的判断和性质.熟练掌握各种特殊四边形的性质定理和判定定理是解题的关键.21.已知:AC是菱形ABCD的对角线,延长CB至点E,使得BE=BC,连接AE.(1)如图1,求证:AE⊥AC;(2)如图2,过点D作DF⊥AB,垂足为点F,若AE=6,CE=10,求DF的长.【答案】(1)见解析;(2)24 5【解析】【分析】(1)连接BD,交AC于点O,由菱形的性质可得AO=CO,∠BOC=90°,由三角形的中位线定理可得OB=12AE,BD∥AE,即可得结论;(2)由勾股定理可求AC的长,再根据BE=BC,AE=2BO,BO=3=DO,BC=5=AB,由菱形的面积公式可求DF的长.【详解】(1)证明:连接BD,交AC于点O,∵四边形ABCD是菱形∴AO=CO,∠BOC=90°∵AO=CO,BE=BC∴OB=12AE,BD∥AE,且∠BOC=90°∴∠EAC=∠BOC=90°∴AE⊥AC(2)连接BD,∵∠EAC=90°,AE=6,CE=10,∴AC22CE AE=8∵AE=6,CE=10,BE=BC,AE=2BO∴BO =3=DO ,BC =5=AB∵S 菱形ABCD =DF×AB =12AC×BD ,∴5DF =12×6×8 ∴DF =245【点睛】本题考查了菱形的性质,勾股定理,三角形中位线定理,熟练运用菱形的性质是本题的关键.22.如图,AD 是ABC 的中线,//AE BC ,且12AE BC =,连接DE ,CE . (1)求证:AB DE =;(2)当ABC 满足条件__________时,四边形ADCE 是矩形.【答案】(1)见解析;(2)AB =AC 或 ABC ACB ∠=∠【解析】【分析】(1)根据三角形中位线定理和平行四边形的判定和性质解答即可;(2)根据矩形的判定解答即可.【详解】(1)∵AD 是ABC 的中线,∴12BD BC =, ∵12AE BC =, ∴AE BD =,∵//AE BC ,∴四边形ABDE 是平行四边形,(2)当△ABC 满足AB =AC 或ABC ACB ∠=∠时,四边形ADCE 是矩形, 11,,22BC BD AE CD BC =∴== ∴AE =CD ,∵AE ∥BC ,∴四边形ADCE 是平行四边形,∵AB =DE ,∴当AB =AC 或ABC ACB ∠=∠时,AC =DE ,∴四边形ADCE 是矩形.【点睛】此题考查了平行四边形的判定与性质、等腰三角形的性质以及矩形的判定.此题难度适中,注意掌握数形结合思想的应用.23.如图①,正方形ABCD 中,点O 是对角线AC 的中点,点P 是线段AO 上(不与点A ,O 重合)的一个动点,过点P 作PE PB ⊥且PE 交边CD 于点E .(1)求证:PE PB =.(2)如图②,若正方形ABCD 的边长为2,过点E 作EF AC ⊥于点F ,在点P 运动的过程中,PF 的长度是否发生变化?若不变,试求出这个不变的值;若变化,请说明理由. (3)用等式表示线段PB ,PA ,CE 之间的数量关系.【答案】(1)见解析;(2)在P 点运动的过程中,PF 的长度不发生变化,理由见解析;(3)2PC PA EC =,理由见解析【解析】【分析】(1)作辅助线,构建全等三角形,根据ASA 证明△BMP ≌△PNE 可得结论; (2)如图②,连接OB ,通过证明△OBP ≌△FPE ,得PF =OB ,则PF 2 (3)根据△AMP 和△PCN 是等腰直角三角形,得PA 2,PC 2,整理可【详解】(1)证明:如图①,过点P 作MN AD ,交AB 于点M ,交CD 于点N .∵PB PE ⊥,∴90BPE ∠=︒,∴90MPB EPN ∠+∠=︒.∵四边形ABCD 是正方形,∴90BAD D ∠=∠=︒.∵AD MN ∥,∴90BMP BAD PNE D ∠=∠=∠=∠=,∵90MPB MBP ∠+∠=︒,∴EPN MBP ∠=∠.在Rt PNC △中,45PCN ∠=︒,∴PNC △是等腰直角三角形,∴PN CN =,∴BM CN PN ==,∴()ASA BMP PNE △≌△,∴PB PE =.(2)解:在P 点运动的过程中,PF 的长度不发生变化.理由:如图②,连接OB .∵点O 是正方形ABCD 对角线AC 的中点,∴OB AC ⊥,∴90AOB ∠=︒,∴90AOB EFP ∠=∠=︒,∴90OBP BPO ∠+∠=︒.∴90BPE ∠=︒,∴90BPO OPE ∠+∠=︒,∴OBP OPE ∠=∠.由(1)得PB PE =,∴OBP FPE △≌△,∴PF OB =.∵2AB =,ABO 是等腰直角三角形,∴OB ==∴PF(3)解:PC PA =.理由:如图1,∵45BAC ∠=︒, ∴AMP 是等腰直角三角形,∴PA .由(1)知PM NE =,∴PA .∵PCN △是等腰直角三角形,∴)PC NE EC PA +==.【点睛】本题是一个动态几何题,考查用正方形性质、等腰直角三角形的性质、三角形全等的条件和性质进行有条理的思考和表达能力.利用条件构造三角形全等是解题的关键.本题涉及知识点较多,综合性很强,难度适中.24.在菱形ABCD 中,60ABC ∠=︒,点P 是射线BD 上一动点,以AP 为边向右侧作等边APE .(1)如图1,当点E 在菱形ABCD 内部或边上时,连接,CE BP 与CE 的数量关系是______,CE 与AD 的位置关系是________;(2)当点E 在菱形ABCD 外部时(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由.(请结合图2的情况予以证明或说理.)(3)如图3,当点P 在线段BD 的延长线上时,连接BE ,若2,31AB BE ==,求四边形ADPE 的面积.【答案】(1)BP CE =;CE AD ⊥;(2)成立,见解析;(31513【解析】【分析】 (1)①连接AC ,证明△ABP ≌△ACE ,根据全等三角形的对应边相等即可证得BP =CE ;②根据菱形对角线平分对角可得30ABD ︒∠=,再根据△ABP ≌△ACE ,可得30ACF ABD ︒∠=∠=,继而可推导得出90CFD ︒∠=,即可证得CE ⊥AD ;(2)(1)中的结论:BP =CE ,CE ⊥AD 仍然成立,利用(1)的方法进行证明即可; (3)连接AC 交BD 于点O ,连接CE ,作EH ⊥AP 于H ,由已知先求得23BD =利用勾股定理求出CE 的长,AP 长,由△APE 是等边三角形,求得PH ,EH 的长,再根据ADP APE ADPE S SS =+四边形,进行计算即可得.【详解】(1)①BP=CE ,理由如下:连接AC ,∵菱形ABCD ,∠ABC =60°,∴△ABC 是等边三角形,∴AB=AC ,∠BAC =60°,∵△APE 是等边三角形,∴AP=AE ,∠P AE =60° ,∴∠BAP =∠CAE ,∴△ABP ≌△ACE ,∴BP=CE ;②CE ⊥AD ,∵菱形对角线平分对角,∴30ABD ︒∠=,∵△ABP ≌△ACE ,∴30ACF ABD ︒∠=∠=,∵6ACD 0ADC ︒∠=∠=,∴30DCF ︒∠=,∴90DCF ADC ︒∠+∠=,∴90CFD ︒∠=,∴CF ⊥AD ,即CE ⊥AD ;(2)(1)中的结论仍然成立,理由如下:连接AC ,∵菱形,60ABCD ABC ∠=︒,ABC ∴和ACD △都是等边三角形,120120,,AB AC BAD BAP DAP ∴=∠=︒∠=︒+∠, APE 是等边三角形,60AP AE PAE ∴=∠=︒,6060120CAE DAP DAP ∴∠=︒+︒+∠=︒+∠,BAP CAE ∴∠=∠,ABP ACE ∴≌,BP CE ∴=,30,30,60,ACE ABD DCE ADC ∴∠=∠=︒∴∠=︒∠=︒90,,90DCE ADC CHD CE AD ∴∠+∠=︒∴∠=︒∴⊥∴(1)中的结论,BP CE CE AD =⊥仍然成立;(3)连接AC 交BD 于点O ,连接CE ,作EH AP ⊥于H ,∵四边形ABCD 是菱形,AC BD ∴⊥,BD 平分ABC ∠,30ABO ∴∠=︒ ,1,3AO BO DO ∴===3BD ∴=由(2)知CE AD ⊥,//AD BC ,CE BC ∴⊥, ∵31,2BE BC AB ==,31433CE ∴=-由(2)知33BP CE ==3DP ∴=3OP ∴=11213AP ∴=+= APE 是等边三角形,ADP APE ADPE S S S +=四边形,2131513(13)2ADPE S DP AO ∴=⨯⨯+=四边形 ∴四边形ADPE 1513 【点睛】本题考查四边形综合题、菱形的性质、等边三角形的判定和性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是正确添加常用辅助线,寻找全等三角形解决问题,属于中考压轴题.。
平行四边形练习题及答案
平行四边形练习题及答案一、选择题:1. 平行四边形的特点是()A. 两组对边相等B. 两组对边互相垂直C. 对角线相等D. 没有特定的特点2. 若平行四边形的一组对边长为3cm和6cm,另一组对边长为4cm 和8cm,该平行四边形的周长为()A. 21cmB. 28cmC. 35cmD. 42cm3. 若平行四边形的一组对边长为12cm和8cm,且高为4cm,求该平行四边形的面积。
A. 24cm²B. 32cm²C. 48cm²D. 64cm²二、填空题:1. 平行四边形ABCD中,∠BAD的补角为______。
2. 如果一条直线与一组平行线相交,那么它与另一组平行线的关系是______。
3. 若平行四边形的一组对边长为10cm和6cm,且高为5cm,那么其面积为______。
三、解答题:1. 证明:平行四边形的对角线互相等长。
四、综合题:1. 已知平行四边形ABCD的周长为48cm,其中AB的长为12cm,CD的长为8cm。
求其面积。
2. 已知平行四边形ABCD中,对角线AC的长为5cm,对角线BD 的长为12cm。
求该平行四边形的周长和面积。
答案:一、选择题:1. A2. B3. B二、填空题:1. ∠CAD2. 平行3. 30cm²三、解答题:1. 证明:设平行四边形ABCD的一组对边为AB和CD,对角线AC和BD相交于点O。
∵ AB ∥ CD (已知)∴∠ABC = ∠CDA (同位角)同理可得∠BAC = ∠CDB∵∠ABC = ∠CDA,∠BAC = ∠CDB∴△ABC ≌△CDA (ASA准则)∴ AB = CD (对应边相等)同理可证 AC = BD∴平行四边形ABCD的对角线互相等长。
四、综合题:1. 设平行四边形ABCD的高为h。
∵ AB + BC + CD + DA = 48cm (周长)∴ 12 + BC + 8 + DA = 48∴ BC + DA = 48 - 20∴ BC + DA = 28∵ AB ∥ CD,AD ┴ CD∴高h = AD = BC∴ 2h + 4 + 2h = 28∴ 4h = 24∴ h = 6∴面积 = 底 ×高 = (BC + DA) × h = 28 × 6 = 168cm²所以,平行四边形ABCD的面积为168cm²。
平行四边形练习题40道
平行四边形40题一.选择题”1.下列给出的条件中,不能判定四边形ABCD是平行四边形的是()A.AB∥CD,∠A=∠C B.AB=CD,∠B=∠DC.AD=BC,AD∥BC D.AB=CD,AD=BC2、下列条件中,能判定四边形ABCD为平行四边形的个数是()①AB∥CD,AD=BC;②AB=CD,AD=BC;③∠A=∠B,∠C=∠D;④AB=AD,CB=CDA.1个B.2个C.3个D.4个3、下列给出的条件中,不能判定四边形ABCD是平行四边形的是()A.AB∥CD,∠A=∠C B.AB=CD,∠B=∠DC.AD=BC,AD∥BC D.AB=CD,AD=BC4.下面给出了四边形ABCD中∠A,∠B,∠C,∠D的度数之比,其中能判定四边形ABCD是平行四边形的是()A.1:2:3:4B.2:2:3:3C.2;3:2:3D.2:3:3:25.如图,在四边形ABCD中,对角线AC,BD相交于点O,AB∥CD,添加下列条件不能使四边形ABCD 成为平行四边形的是()A.AB=CD B.OB=ODC.∠BCD+∠ADC=180°D.AD=BC6.如图,E,F是四边形ABCD的对角线BD上的两点,AE∥CF,AB∥CD,BE=DF,则下列结论①AE=CF,②AD=BC,③AD∥BC,④∠BCF=∠DAE其中正确的个数为()A.1个B.2个C.3个D.4个7.如图,两条平行线l1,l2被另外一组平行线l3,l4,l5所截,交点分别为A,B,C,D,E,F.则下列结论错误的是()A.AB=DE B.AD=CF C.AB=BC D.AC=DF8.小峰不慎将一块平行四边形玻璃打碎成如图所示的四块,为了能在商店配到一块与原来相同的玻璃,他带了两块碎玻璃,其编号应该是()A.①,②B.①,④C.③,④D.②,③9.如图,分别以Rt△ABC的直角边AC,斜边AB为边向外作等边三角形△ACD和△ABE,F为AB的中点,连接DF,EF,∠ACB=90°,∠ABC=30°.则以下4个结论:①AC⊥DF;②四边形BCDF为平行四边形;③DA+DF=BE;④其中,正确的是()A.只有①②B.只有①②③C.只有③④D.①②③④10.如图,E、F分别是平行四边形ABCD的边AD、BC上的点,且BE∥DF,AC分别交BE、DF于点G、H.下列结论:①四边形BFDE是平行四边形;②△AGE≌△CHF;③BG=DH;④S△AGE:S△CDH=GE:DH,其中正确的个数是()A.1B.2个C.3个D.4个11.▱ABCD中,E、F分别在边AB和CD上,下列条件中,不能得出四边形AECF一定为平行四边形的是()A.AE=CF B.AF=EC C.∠DAF=∠BCE D.∠AFD=∠CEB12.如图,E是▱ABCD边AD延长线上一点,连接BE,CE,BD,BE交CD于点F.添加以下条件,不能判定四边形BCED为平行四边形的是()A.∠ABD=∠DCE B.DF=CF C.∠AEB=∠BCD D.∠AEC=∠CBD13.如图,两条宽度分别为1和2的方形纸条交叉放置,重叠部分为四边形ABCD,若AB+BC=6,则四边形ABCD的面枳是()A.4B.2C.8D.614.如图,在平行四边形ABCD中,AC与BD交于点M,点F在AD上,AF=6cm,BF=12cm,∠FBM =∠CBM,点E是BC的中点,若点P以1cm/秒的速度从点A出发,沿AD向点F运动:点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动,点P运动到F点时停止运动,点Q也同时停止运动,当点P运动()秒时,以点P、Q、E、F为顶点的四边形是平行四边形.A.2B.3C.3或5D.4或515.如图,在△ABC中,点D,E,F分别是AB,BC,AC的中点,连接DE,EF,DF,则下列说法不正确的是()A.S△DEF=S△ABCB.△DEF≌△F AD≌△EDB≌△CFEC.四边形ADEF,四边形DBEF,四边形DECF都是平行四边形D.四边形ADEF的周长=四边形DBEF的周长=四边形DECF的周长二.填空题(共10小题)16.如图,在▱ABCD中,对角线AC、BD相交于点E,AC⊥BC.若AC=4,AB=5,则BD的长为.17.如图,两条宽度分别为2和4的纸条交叉放置,重叠部分为四边形ABCD,若AB•BC=100,则四边形ABCD的面积是.18.如图所示,在▱ABCD中E,F分别在BC,AD上,若想使四边形AFCE为平行四边形,须添加一个条件,这个条件可以是,①AF=CF;②AE=CF;③∠BAE=∠FCD;④∠BEA=∠FCE.19.如图,在▱ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,则图中面积相等的平行四边形共有对.20.如图,在等边三角形ABC中,BC=6cm,射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,点F从点B出发沿射线BC以2cm/s的速度运动.如果点E、F同时出发,设运动时间为t(s)当t=s时,以A、C、E、F为顶点四边形是平行四边形.21.如图,四边形ABCD中,AD∥BC,AD=3,BC=8,E是BC的中点,点P以每秒1个单位长度的速度从A点出发,沿AD向点D运动;点Q同时以每秒2个单位长度的速度从点C出发,沿CB向点B 运动,点P停止运动时,点Q也随之停止运动.当运动时间t=秒时,以点P,Q,E,D为顶点的四边形是平行四边形.22.已知点A(1,0),B(4,0),C(0,2),在平面内找一点M使得以M、A、B、C为顶点的四边形为平行四边形,则点M的坐标为.23.已知点A(2,2),B(﹣2,0),C(3,﹣1),且以A,B,C,D为顶点的四边形是平行四边形,则点D的坐标为:.24.在平面直角坐标系xOy中,已知点A(1,1),B(﹣1,1),如果以A,B,C,O为顶点的四边形是平行四边形,那么满足条件的所有点C的坐标为.25.如图,分别以Rt△ABC的斜边AB、直角边AC为边向外作等边△ABD和△ACE,F为AB的中点,DE,AB相交于点G,若∠BAC=30°,下列结论:①EF⊥AC;②四边形ADFE为平行四边形;③AD =4AG;④△DBF≌△EF A.其中正确结论的序号是.三.解答题(共15小题)26.在▱ABCD中,E,F分别是AB,DC上的点,且AE=CF,连接DE,BF,AF.(1)求证:四边形DEBF是平行四边形;(2)若AF平分∠DAB,AE=3,DE=4,BE=5,求AF的长.27、如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD.若AC=2,CE=4;(1)求证:四边形ACED是平行四边形.(2)求BC的长.28.如图,四边形ABCD中,AB∥CD,AC与BD相交于点O,AO=CO.(1)求证:四边形ABCD是平行四边形;(2)若AC⊥BD,AB=10,求BC的长.29、如图,在▱ABCD中,AF平分∠BAD交BC于点F,CE平分∠BCD交AD于点E.(1)若AD=12,AB=8,求CF的长;(2)连接BE和AF相交于点G,DF和CE相交于点H,求证:EF和GH互相平分.30.如图,以BC为底边的等腰△ABC,点D,E,G分别在BC,AB,AC上,且EG∥BC,DE∥AC,延长GE至点F,使得BE=BF.(1)求证:四边形BDEF为平行四边形;(2)当∠C=30°,时,求D,F两点间的距离.31.如图,在平行四边形ABCD中,∠BAD和∠DCB的平分线AE,CF分别交BC,AD于点E,F,点M,N分别是AE,CF的中点,连接FM,EN(1)求证:BE=DF;(2)求证:四边形FMEN是平行四边形.32.如图,四边形ABCD的对角线AC、BD相交于点O,AO=CO,EF过点O且与AD、BC分别相交于点E、F,OE=OF(1)求证:四边形ABCD是平行四边形;(2)连接AF,若EF⊥AC,△ABF周长是15,求四边形ABCD的周长.33.如图,在▱ABCD中,O为AC的中点,EF过点O,分别交AD,CB的延长线于点E,F.(1)求证:四边形AFCE是平行四边形.(2)若AC平分∠BAE,AB=6,AE=8,求BF的长.34.如图,在平行四边形ABCD中,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是平行四边形;(2)若BD=BC=5,CD=6,求平行四边形AEBD的面积.35.如图,E、F是▱ABCD的对角线AC上的两点,且BE⊥AC,DF⊥AC,连接BE、ED、DF、FB.(1)求证:四边形BEDF为平行四边形;(2)若BE=4,EF=2,求BD的长.36、如图,在平行四边形ABCD中,点E、F别在BC,AD上,且BE=DF.(1)如图①,求证:四边形AECF是平行四边形;(2)如图②,若∠BAC=90°,且AB=3.AC=4,求平行四边形ABCD的周长.37.如图,在四边形ABCD中,AB∥CD,∠ABC=∠ADC,DE垂直于对角线AC,垂足是E,连接BE.(1)求证:四边形ABCD是平行四边形;(2)若△ABE是等边三角形,四边形BCDE的面积等于2,求CE的长.38.如图,在△ABC中,∠BAC=70°,∠ABC和∠ACB的角平分线交于D点,E、F、G、H分别是线段AB、AC、BD、CD的中点.(1)求∠BDC的度数;(2)证明:四边形EGHF为平行四边形.39.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是ts(0<t≤15).过点D作DF⊥BC 于点F,连接DE,EF.(1)求证:四边形AEFD是平行四边形;(2)当t为何值时,△DEF为直角三角形?请说明理由.40、【阅读材料】在平面直角坐标系中,以任意两点P(x1,y1)、Q(x2,y2)为端点的线段中点坐标为(,)【运用】(1)已知O为▱ABCD的对角线AC与BD交点,点B的坐标为(4,3),则点D的坐标为(﹣1,1),则O的坐标为(,2);(2)在直角坐标系中,有A(﹣1,2),B(3,1),C(1,4)三点,另有一点D与点A,B,C构成平行四边形的顶点,求点D的坐标.(提示:运用阅读材料完成)。
(完整版)平行四边形提高题练习
平行四边形练习一、选择题1,一块均匀的不等边三角形的铁板,它的重心在( )A.三角形的三条角平分线的交点B.三角形的三条高线的交点C.三角形的三条中线的交点D.三角形的三条边的垂直平分线的交点2,如图1,如果□ABCD 的对角线AC 、BD 相交于点O ,那么图中的全等三角形共有( )A.1对B.2对C.3对D.4对3,平行四边形的一边长是10cm ,那么这个平行四边形的两条对角线的长可以是( )A.4cm 和6cmB.6cm 和8cmC.8cm 和10cmD.10cm 和12cm4,在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的条件是( )A.AC =BD ,AB =CD ,AB ∥CDB.AD //BC ,∠A =∠CC.AO =BO =CO =DO ,AC ⊥BDD.AO =CO ,BO =DO ,AB =BC5,如图2,过矩形ABCD 的四个顶点作对角线AC 、BD 的平行线,分别相交于E 、F 、G 、H 四点,则四边形EFGH 为( )A.平行四边形 B 、矩形 C 、菱形 D. 正方形6,如图3,大正方形中有2个小正方形,如果它们的面积分别是S 1、S 2,那么S 1、S 2的大小关系是( )A.S 1 > S 2B.S 1 = S 2C.S 1<S 2D.S 1、S 2 的大小关系不确定7,矩形一个角的平分线分矩形一边为1cm 和3cm 两部分,则这个矩形的面积为( )A.3cm 2B. 4cm 2C. 12cm 2D. 4cm 2或12cm 28,如图4,菱形花坛 ABCD 的边长为 6m ,∠B =60°,其中由两个正六边形组成的图形部分种花,则种花部分的图形的周长(粗线部分)为( )A.123mB.20mC.22mD.24m9,如图5,将一个边长分别为4、8的长方形纸片ABCD 折叠,使C 点与A 点重合,则折痕EF 的长是( )A .3B .23C .5D .2510,如图6,是由两个正方形组成的长方形花坛ABCD ,小明从顶点A 沿着花坛间小路直到走到长边中点O ,再从中点O 走到正方形OCDF 的中心O 1,再从中心O 1走到正方形O 1GFH 的中心O 2,又从中心O 2走到正方形O 2IHJ 的中心O 3,再从中心O 3走2走到正方形O 3KJP 的中心O 4,一共走了31 2 m ,则长方形花坛ABCD 的周长是( )图6 图4 F EDC B A 图5 图3 AD C B HE FG 图2O A B D C 图1A.36 mB.48 mC.96 mD.60 m二、填空题(每题3分,共30分)11,如图7, 若将四根木条钉成的矩形木框变形为平行四边形ABCD 的形状,并使其面积为矩形面积的一半,则这个平行四边形的一个最小内角的值等于___.12,如图8,过矩形ABCD 的对角线BD 上一点K 分别作矩形两边的平行线MN 与PQ ,那么图中矩形AMKP 的面积S 1与矩形QCNK 的面积S 2的大小关系是S 1 S 2(填“>”或“<”或“=”).13,如图9,四边形ABCD 是正方形,P 在CD 上,△ADP 旋转后能够与△ABP ′重合,若AB =3,DP =1,则PP ′=___.14,已知菱形有一个锐角为60°,一条对角线长为6cm ,则其面积为___cm 2.15,如图10,在梯形ABCD 中,已知AB ∥CD ,点E 为BC 的中点, 设△DEA 的面积为S 1,梯形ABCD 的面积为S 2,则S 1与S 2的关系为___.16,如图11,四边形ABCD 的两条对角线AC 、BD 互相垂直,A 1B 1C 1D 1四边形ABCD 的中点四边形.如果AC =8,BD =10,那么四边形A 1B 1C 1D 1的面积为___.17,如图12,□ABCD 中,点E 在边AD 上,以BE 为折痕,将△ABE 向上翻折,点A 正好落在CD 上的点F ,若△FDE 的周长为8,△FCB 的周长为22,则FC 的长为___.18,将一张长方形的纸对折,如图13所示,可得到一条折痕(图中虚线),继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到 条折痕,如果对折n 次,可以得到 条折痕.三、解答题(共40分)19,如图1,4,等腰梯形ABCD 中,AD ∥BC ,∠DBC =45°,翻折梯形ABCD ,使点B 重合于D ,折痕分别交边AB 、BC 于点F 、E ,若AD =2,BC =8.求BE 的长.…… 第一次对折 第二次对折 第三次对折图13图11A 1B 1C 1D 1 D A B C D A B C EF 图12 D C BA 图7 图9 图8K NM Q C BF E D C B A 图14图10 E D C B A20,在一次数学实践探究活动中,小强用两条直线把平行四边形ABCD 分割成四个部分,使含有一组对顶角的两个图形全等;(1)根据小强的分割方法,你认为把平行四边形分割成满足以上全等关系的直线有___组;(2)请在图15的三个平行四边形中画出满足小强分割方法的直线;(3)由上述实验操作过程,你发现所画的饿两条直线有什么规律?21,如图16,已知四边形ABCD 是平行四边形,∠BCD 的平分线CF 交边AB 于F ,∠ADC 的平分线DG 交边AB 于G .(1)线段AF 与GB 相等吗?(2)请你在已知条件的基础上再添加一个条件,使得△EFG 为等腰直角三角形,并说明理由.1.七巧板是我们祖先的一项创造,被誉为“东方魔板”,如图是一副七巧板,若已知S △BIC =1,请你根据七巧板制作过程的认识,解决下列问题: A B C D A B C D D CB A 图15 A BCDEF 图17图16 O F D B E C A· 图18(1)求一只蚂蚁从点A 沿A →B →C →H →E 所走的路线的总长。
(完整版)平行四边形专项练习题
平行四边形专项练习题一.选择题(共12小题)1.在下列条件中,能够判定一个四边形是平行四边形的是()A.一组对边平行,另一组对边相等B.一组对边相等,一组对角相等C.一组对边平行,一条对角线平分另一条对角线D.一组对边相等,一条对角线平分另一条对角线2.设四边形的内角和等于a,五边形的外角和等于b,则a与b的关系是()A.a>b B.a=b C.a<b D.b=a+180°3.如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A.4S1B.4S2C.4S2+S3D.3S1+4S34.在▱ABCD中,AB=3,BC=4,当▱ABCD的面积最大时,下列结论正确的有()①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.A.①②③B.①②④C.②③④D.①③④5.如图,在▱ABCD中,AB=6,BC=8,∠C的平分线交AD于E,交BA的延长线于F,则AE+AF的值等于()A.2 B.3 C.4 D.66.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC长为()A.8 B.10 C.12 D.147.如图,在▱ABCD中,AB=12,AD=8,∠ABC的平分线交CD于点F,交AD的延长线于点E,CG⊥BE,垂足为G,若EF=2,则线段CG的长为()A.B.4C.2D.8.如图,在▱ABCD中,AB>AD,按以下步骤作图:以点A为圆心,小于AD的长为半径画弧,分别交AB、AD于点E、F;再分别以点E、F为圆心,大于EF的长为半径画弧,两弧交于点G;作射线AG交CD于点H,则下列结论中不能由条件推理得出的是()A.AG平分∠DAB B.AD=DH C.DH=BC D.CH=DH 9.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B 为()A.66°B.104°C.114°D.124°10.如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO 的周长是()A.10 B.14 C.20 D.2211.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD从中任选两个条件,能使四边形ABCD为平行四边形的选法有()A.3种 B.4种C.5种D.6种12.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④ D.④⑤二.填空题(共6小题)13.如图,把平行四边形ABCD折叠,使点C与点A重合,这时点D落在D1,折痕为EF,若∠BAE=55°,则∠D1AD=.14.如图,在▱ABCD中,P是CD边上一点,且AP和BP分别平分∠DAB和∠CBA,若AD=5,AP=8,则△APB的周长是.15.如图所示,四边形ABCD的对角线相交于点O,若AB∥CD,请添加一个条件(写一个即可),使四边形ABCD是平行四边形.16.如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n个图形中共有三角形的个数为.17.如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD=BD,连接DM、DN、MN.若AB=6,则DN=.18.如图,在△ABC中,点D、E、F分别是边AB、BC、CA上的中点,且AB=6cm,AC=8cm,则四边形ADEF的周长等于cm.三.解答题(共8小题)19.如图,E是▱ABCD的边CD的中点,延长AE交BC的延长线于点F.(1)求证:△ADE≌△FCE.(2)若∠BAF=90°,BC=5,EF=3,求CD的长.20.如图,在▱ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB=CF;(2)连接DE,若AD=2AB,求证:DE⊥AF.21.已知:如图,在四边形ABCD中,AB∥CD,E是BC的中点,直线AE交DC的延长线于点F.试判断四边形ABFC的形状,并证明你的结论.22.如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC 上(1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;(2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.23.如图,点O是△ABC内一点,连结OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连结,得到四边形DEFG.(1)求证:四边形DEFG是平行四边形;(2)若M为EF的中点,OM=3,∠OBC和∠OCB互余,求DG的长度.24.如图,▱ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于M、N.(1)求证:四边形CMAN是平行四边形.(2)已知DE=4,FN=3,求BN的长.25.如图,在▱ABCD中,点E,F在对角线AC上,且AE=CF.求证:(1)DE=BF;(2)四边形DEBF是平行四边形.26.如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:DE=CF;(2)求EF的长.参考答案与解析一.选择题1.【分析】根据平行四边形的判定方法以及全等三角形的判定方法一一判断即可.解:A、错误.这个四边形有可能是等腰梯形.B、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.C、正确.可以利用三角形全等证明平行的一组对边相等.故是平行四边形.D、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.故选C.2.【分析】根据多边形的内角和定理与多边形外角的关系即可得出结论.解:∵四边形的内角和等于a,∴a=(4﹣2)•180°=360°.∵五边形的外角和等于b,∴b=360°,∴a=b.故选B.3.【分析】设等腰直角三角形的直角边为a,正方形边长为c,求出S2(用a、c表示),得出S1,S2,S3之间的关系,由此即可解决问题.解:设等腰直角三角形的直角边为a,正方形边长为c,则S2=(a+c)(a﹣c)=a2﹣c2,∴S2=S1﹣S3,∴S3=2S1﹣2S2,∴平行四边形面积=2S1+2S2+S3=2S1+2S2+2S1﹣2S2=4S1.故选A.4.【分析】当▱ABCD的面积最大时,四边形ABCD为矩形,得出∠A=∠B=∠C=∠D=90°,AC=BD,根据勾股定理求出AC,即可得出结论.解:根据题意得:当▱ABCD的面积最大时,四边形ABCD为矩形,∴∠A=∠B=∠C=∠D=90°,AC=BD,∴AC==5,①正确,②正确,④正确;③不正确;故选:B.5.【分析】由平行四边形的性质和角平分线得出∠F=∠FCB,证出BF=BC=8,同理:DE=CD=6,求出AF=BF﹣AB=2,AE=AD﹣DE=2,即可得出结果.解:∵四边形ABCD是平行四边形,∴AB∥CD,AD=BC=8,CD=AB=6,∴∠F=∠DCF,∵CF平分∠BCD,∴∠FCB=∠DCF,∴∠F=∠FCB,∴BF=BC=8,同理:DE=CD=6,∴AF=BF﹣AB=2,AE=AD﹣DE=2,∴AE+AF=4;故选:C.6.【分析】由平行四边形的性质和角平分线得出∠ABF=∠AFB,得出AF=AB=6,同理可证DE=DC=6,再由EF的长,即可求出BC的长.解:∵四边形ABCD是平行四边形,∴AD∥BC,DC=AB=6,AD=BC,∴∠AFB=∠FBC,∵BF平分∠ABC,∴∠ABF=∠FBC,则∠ABF=∠AFB,∴AF=AB=6,同理可证:DE=DC=6,∵EF=AF+DE﹣AD=2,即6+6﹣AD=2,解得:AD=10;故选:B.7.【分析】先由平行四边形的性质和角平分线的定义,判断出∠CBE=∠CFB=∠ABE=∠E,从而得到CF=BC=8,AE=AB=12,再用平行线分线段成比例定理求出BE,然后用等腰三角形的三线合一求出BG,最后用勾股定理即可.解:∵∠ABC的平分线交CD于点F,∴∠ABE=∠CBE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CBE=∠CFB=∠ABE=∠E,∴CF=BC=AD=8,AE=AB=12,∵AD=8,∴DE=4,∵DC∥AB,∴,∴,∴EB=6,∵CF=CB,CG⊥BF,∴BG=BF=2,在Rt△BCG中,BC=8,BG=2,根据勾股定理得,CG===2,故选:C.8.【分析】根据作图过程可得得AG平分∠DAB,再根据角平分线的性质和平行四边形的性质可证明∠DAH=∠DHA,进而得到AD=DH,解:根据作图的方法可得AG平分∠DAB,∵AG平分∠DAB,∴∠DAH=∠BAH,∵CD∥AB,∴∠DHA=∠BAH,∴∠DAH=∠DHA,∴AD=DH,∴BC=DH,故选D.9.【分析】由平行四边形的性质和折叠的性质得出∠ACD=∠BAC=∠B′AC,由三角形的外角性质求出∠BAC=∠ACD=∠B′AC=∠1=22°,再由三角形内角和定理求出∠B 即可.解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=∠1=22°,∴∠B=180°﹣∠2﹣∠BAC=180°﹣44°﹣22°=114°;故选:C.10.【分析】直接利用平行四边形的性质得出AO=CO,BO=DO,DC=AB=6,再利用已知求出AO+BO的长,进而得出答案.解:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,DC=AB=6,∵AC+BD=16,∴AO+BO=8,∴△ABO的周长是:14.故选:B.11.【分析】根据题目所给条件,利用平行四边形的判定方法分别进行分析即可.解:①②组合可根据一组对边平行且相等的四边形是平行四边形判定出四边形ABCD 为平行四边形;③④组合可根据对角线互相平分的四边形是平行四边形判定出四边形ABCD为平行四边形;①③可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;①④可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;∴有4种可能使四边形ABCD为平行四边形.故选:B.12.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AB,从而判断出①不变;再根据三角形的周长的定义判断出②是变化的;确定出点P到MN 的距离不变,然后根据等底等高的三角形的面积相等确定出③不变;根据平行线间的距离相等判断出④不变;根据角的定义判断出⑤变化.解:∵点A,B为定点,点M,N分别为PA,PB的中点,∴MN是△PAB的中位线,∴MN=AB,即线段MN的长度不变,故①错误;PA、PB的长度随点P的移动而变化,所以,△PAB的周长会随点P的移动而变化,故②正确;∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,∴△PMN的面积不变,故③错误;直线MN,AB之间的距离不随点P的移动而变化,故④错误;∠APB的大小点P的移动而变化,故⑤正确.综上所述,会随点P的移动而变化的是②⑤.故选:B.二.填空题13.【分析】由平行四边形的性质和折叠的性质得出∠D1AE=∠BAD,得出∠D1AD=∠BAE=55°即可.解:∵四边形ABCD是平行四边形,∴∠BAD=∠C,由折叠的性质得:∠D1AE=∠C,∴∠D1AE=∠BAD,∴∠D1AD=∠BAE=55°;故答案为:55°.14.【分析】根据平行四边形性质得出AD∥CB,AB∥CD,推出∠DAB+∠CBA=180°,求出∠PAB+∠PBA=90°,在△APB中求出∠APB=90°,由勾股定理求出BP,证出AD=DP=5,BC=PC=5,得出DC=10=AB,即可求出答案.解:∵四边形ABCD是平行四边形,∴AD∥CB,AB∥CD,∴∠DAB+∠CBA=180°,又∵AP和BP分别平分∠DAB和∠CBA,∴∠PAB+∠PBA=(∠DAB+∠CBA)=90°,在△APB中,∠APB=180°﹣(∠PAB+∠PBA)=90°;∵AP平分∠DAB,∴∠DAP=∠PAB,∵AB∥CD,∴∠PAB=∠DPA∴∠DAP=∠DPA∴△ADP是等腰三角形,∴AD=DP=5,同理:PC=CB=5,即AB=DC=DP+PC=10,在Rt△APB中,AB=10,AP=8,∴BP==6,∴△APB的周长=6+8+10=24;故答案为:24.15.【分析】根据平行四边形的定义或判定定理即可解答.解:可以添加:AD∥BC(答案不唯一).故答案是:AD∥BC.16.【分析】结合题意,总结可知,每个图中三角形个数比图形的编号的4倍少3个三角形,即可得出结果.解:第①是1个三角形,1=4×1﹣3;第②是5个三角形,5=4×2﹣3;第③是9个三角形,9=4×3﹣3;∴第n个图形中共有三角形的个数是4n﹣3;故答案为:4n﹣3.17.【分析】连接CM,根据三角形中位线定理得到NM=CB,MN∥BC,证明四边形DCMN是平行四边形,得到DN=CM,根据直角三角形的性质得到CM=AB=3,等量代换即可.解:连接CM,∵M、N分别是AB、AC的中点,∴NM=CB,MN∥BC,又CD=BD,∴MN=CD,又MN∥BC,∴四边形DCMN是平行四边形,∴DN=CM,∵∠ACB=90°,M是AB的中点,∴CM=AB=3,∴DN=3,故答案为:3.18.【分析】首先证明四边形ADEF是平行四边形,根据三角形中位线定理求出DE、EF即可解决问题.解:∵BD=AD,BE=EC,∴DE=AC=4cm,DE∥AC,∵CF=FA,CE=BE,∴EF=AB=3cm,EF∥AB,∴四边形ADEF是平行四边形,∴四边形ADEF的周长=2(DE+EF)=14cm.故答案为14.三.解答题19.【分析】(1)由平行四边形的性质得出AD∥BC,AB∥CD,证出∠DAE=∠F,∠D=∠ECF,由AAS证明△ADE≌△FCE即可;(2)由全等三角形的性质得出AE=EF=3,由平行线的性质证出∠AED=∠BAF=90°,由勾股定理求出DE,即可得出CD的长.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAE=∠F,∠D=∠ECF,∵E是▱ABCD的边CD的中点,∴DE=CE,在△ADE和△FCE中,,∴△ADE≌△FCE(AAS);(2)解:∵ADE≌△FCE,∴AE=EF=3,∵AB∥CD,∴∠AED=∠BAF=90°,在▱ABCD中,AD=BC=5,∴DE===4,∴CD=2DE=8.20.【分析】(1)由在▱ABCD中,E是BC的中点,利用ASA,即可判定△ABE≌△FCE,继而证得结论;(2)由AD=2AB,AB=FC=CD,可得AD=DF,又由△ABE≌△FCE,可得AE=EF,然后利用三线合一,证得结论.证明:(1)∵四边形ABCD是平行四边形,∴AB∥DF,∴∠ABE=∠FCE,∵E为BC中点,∴BE=CE,在△ABE与△FCE中,,∴△ABE≌△FCE(ASA),∴AB=FC;(2)∵AD=2AB,AB=FC=CD,∴AD=DF,∵△ABE≌△FCE,∴AE=EF,∴DE⊥AF.21.【分析】利用平行线的性质得出∠BAE=∠CFE,由AAS得出△ABE≌△FCE,得出对应边相等AE=EF,再利用平行四边形的判定得出即可.解:四边形ABFC是平行四边形;理由如下:∵AB∥CD,∴∠BAE=∠CFE,∵E是BC的中点,∴BE=CE,在△ABE和△FCE中,,∴△ABE≌△FCE(AAS);∴AE=EF,又∵BE=CE∴四边形ABFC是平行四边形.22.【分析】(1)选取①②,利用ASA判定△BEO≌△DFO即可;(2)根据△BEO≌△DFO可得EO=FO,BO=DO,再根据等式的性质可得AO=CO,根据两条对角线互相平分的四边形是平行四边形可得结论.证明:(1)选取①②,∵在△BEO和△DFO中,∴△BEO≌△DFO(ASA);(2)由(1)得:△BEO≌△DFO,∴EO=FO,BO=DO,∵AE=CF,∴AO=CO,∴四边形ABCD是平行四边形.23.【分析】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥BC且EF=BC,DG∥BC且DG=BC,从而得到DE=EF,DG∥EF,再利用一组对边平行且相等的四边形是平行四边形证明即可;(2)先判断出∠BOC=90°,再利用直角三角形斜边的中线等于斜边的一半,求出EF 即可.解:(1)∵D、G分别是AB、AC的中点,∴DG∥BC,DG=BC,∵E、F分别是OB、OC的中点,∴EF∥BC,EF=BC,∴DG=EF,DG∥EF,∴四边形DEFG是平行四边形;(2)∵∠OBC和∠OCB互余,∴∠OBC+∠OCB=90°,∴∠BOC=90°,∵M为EF的中点,OM=3,∴EF=2OM=6.由(1)有四边形DEFG是平行四边形,∴DG=EF=6.24.【分析】(1)只要证明CM∥AN,AM∥CN即可.(2)先证明△DEM≌△BFN得BN=DM,再在RT△DEM中,利用勾股定理即可解决问题.(1)证明:∵四边形ABCD是平行四边形,∴CD∥AB,∵AM⊥BD,CN⊥BD,∴AM∥CN,∴CM∥AN,AM∥CN,∴四边形AMCN是平行四边形.(2)∵四边形AMCN是平行四边形,∴CM=AN,∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∴DM=BN,∠MDE=∠NBF,在△MDE和△NBF中,,∴△MDE≌△NBF,∴ME=NF=3,在Rt△DME中,∵∠DEM=90°,DE=4,ME=3,∴DM===5,∴BN=DM=5.25.【分析】(1)根据全等三角形的判定方法,判断出△ADE≌△CBF,即可推得DE=BF.(2)首先判断出DE∥BF;然后根据一组对边平行且相等的四边形是平行四边形,推得四边形DEBF是平行四边形即可.证明:(1)∵四边形ABCD是平行四边形,∴AD∥CB,AD=CB,∴∠DAE=∠BCF,在△ADE和△CBF中,∴△ADE≌△CBF,∴DE=BF.(2)由(1),可得△ADE≌△CBF,∴∠ADE=∠CBF,∵∠DEF=∠DAE+∠ADE,∠BFE=∠BCF+∠CBF,∴∠DEF=∠BFE,∴DE∥BF,又∵DE=BF,∴四边形DEBF是平行四边形.26.【分析】(1)直接利用三角形中位线定理得出DE BC,进而得出DE=FC;(2)利用平行四边形的判定与性质得出DC=EF,进而利用等边三角形的性质以及勾股定理得出EF的长.(1)证明:∵D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴DE BC,∵延长BC至点F,使CF=BC,∴DE=FC;(2)解:∵DE FC,∴四边形DEFC是平行四边形,∴DC=EF,∵D为AB的中点,等边△ABC的边长是2,∴AD=BD=1,CD⊥AB,BC=2,∴DC=EF=.。
2021人教版数学八年级下 平行四边形解答题提升练习含答案
人教版数学八年级下册:平行四边形解答题专题练习(提升篇)1.如图,在▱ABCD中,点E是边CD的中点,连接BE并延长,交AD延长线于点F,连接BD、CF.(1)求证:△CEB≌△DEF;(2)若AB=BF,试判断四边形BCFD的形状,并证明.2.已知,如图,在Rt△ABC中,E是两锐角平分线的交点,ED⊥BC,EF⊥AC,垂足分别为D,F,求证:四边形CDEF是正方形.3.如图,在▱ABCD中,过点A作AE⊥BC于点E,AF⊥DC于点F,AE=AF.(1)求证:四边形ABCD是菱形;(2)若∠EAF=60°,CF=2,求AF的长.4.已知P是正方形ABCD边BC上一点,连接AP,作PE⊥AP,且∠DCE=45°.若PE和CE交于E点,连接AE交CD于F.(1)求证:EP=AP;(2)若正方形的边长为4,CF=3,求CE的长.5.点O是三角形ABC所在平面内一动点,连接OB、OC,并将AB、OB、OC、AC中点D、E、F、G,依次连接起来,设DEFG能构成四边形.(1)如图,当点O在△ABC内时,求证:四边形DEFG是平行四边形;(2)若四边形DEFG是正方形,则线段AO与BC应满足条件.(不需写出过程)6.在边长为5的正方形ABCD中,点E在边CD所在直线上,连接BE,以BE为边,在BE的下方作正方形BEFG,并连接AG.(1)如图1,当点E与点D重合时,AG=;(2)如图2,当点E在线段CD上时,DE=2,求AG的长;(3)若AG=,请直接写出此时DE的长.7.已知矩形纸片OBCD的边OB在x轴上,OD在y轴上,点C在第一象限,且OB=8,OD=6.现将纸片折叠,折痕为EF(点E、F是折痕与矩形的边的交点),点P为点D的对应点,再将纸片还原.(Ⅰ)若点P落在矩形OBCD的边OB上,①如图①,当点E与点O重合时,求点F的坐标;②如图②,当点E在OB上,点F在DC上时,EF与DP交于点G,若OP=7,求点F的坐标;(Ⅱ)若点P落在矩形OBCD的内部,且点E,F分别在边OD,边DC上,当OP取最小值时,求点P的坐标(直接写出结果即可).8.如图,△ABC中,点O是边AC上一个动点(不与A、C重合),过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F(1)若CE=8,CF=6,求OC的长;(2)当点O在边AC上运动到何处且△ABC满足什么条件时,四边形AECF是正方形?并说明理由.9.如图,▱ABCD中,CG⊥AB于点G,∠ABF=45°,F在CD上,BF交CG于点E,连接AE,AE⊥AD.(1)若BG=1,BC=,求EF的长度;(2)求证:AB﹣BE=CF.10.如图,△ABC中,AD是高,E、F分别是AB、AC的中点.(1)若AB=10,AC=8,求四边形AEDF的周长;(2)求证:EF垂直平分AD.11.如图1,△ABC是以∠ACB为直角的直角三角形,分别以AB,BC为边向外作正方形ABFG,BCED,连接AD,CF,AD与CF交于点M,AB与CF交于点N.(1)求证:△ABD≌△FBC;(2)如图2,在图1基础上连接AF和FD,若AD=6,求四边形ACDF的面积.12.已知:如图∠ABC=∠ADC=90°,M,N分别是AC、BD的中点.求证:MN⊥BD.13.已知:如下图,△ABC和△BCD中,∠BAC=∠BDC=90°,E为BC的中点,连接DE、AE.若DC∥AE,在DC上取一点F,使得DF=DE,连接EF交AD于O.(1)求证:EF⊥DA.(2)若BC=4,AD=2,求EF的长.14.在四边形ABCD中,∠ABC=∠ADC=90°,连接AC、BD,E、F分别是AC、BD 的中点,连接EF,试证明EF⊥BD.15.如图,Rt△ABC中,∠CAB=90°,∠ACB=30°,D是AB上一点(不与A、B 重合),DE⊥BC于E,若P是CD的中点,请判断△PAE的形状,并说明理由.参考答案1.(1)证明:∵四边形ABCD是平行四边形∴AF∥BC,∴∠AFB=∠CBF,∠FDC=∠DCB,∵点E是CD的中点,∴BE=EF,∴△CEB≌△DEF.(2)解:结论:四边形BCFD是矩形,理由:∵△CEB≌△DEF,∴CE=DE,∵BE=EF,∴四边形BCFD是平行四边形,∵四边形ABCD是平行四边形,∴AB=CD,∵AB=BF,∴BF=CD,∴▱BCFD为矩形.2.证明:过E作EM⊥AB,∵AE平分∠CAB,∴EF=EM,∵EB平分∠CBA,∴EM=ED,∴EF=ED,∵ED⊥BC,EF⊥AC,△ABC是直角三角形,∴∠CFE=∠CDE=∠C=90°,∴四边形EFDC是矩形,∵EF=ED,∴四边形CDEF是正方形.3.(1)证法一:连接AC,如图.∵AE⊥BC,AF⊥DC,AE=AF,∴∠ACF=∠ACE,∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAC=∠ACB.∴∠DAC=∠DCA,∴DA=DC,∴四边形ABCD是菱形.证法二:如图,∵四边形ABCD是平行四边形,∴∠B=∠D.∵AE⊥BC,AF⊥DC,∴∠AEB=∠AFD=90°,又∵AE=AF,∴△AEB≌△AFD.∴AB=AD,∴四边形ABCD是菱形.(2)连接AC,如图.∵AE⊥BC,AF⊥DC,∠EAF=60°,∴∠ECF=120°,∵四边形ABCD是菱形,∴∠ACF=60°,在Rt△CFA中,AF=CF•tan∠ACF=2.4.(1)证明:连接AC,过P点作PG⊥BC交AC于G点,∵四边形ABCD是正方形,∴∠ACB=45°,∠BCD=90°,∵PG⊥BC,∴∠GPC=90°,∴∠PGC=45°,∴PG=PC,∵∠DCE=45°,∴∠AGP=∠ECP=90°+45°=135°,∵AP⊥PE,∴∠APE=∠GPC=90°,∴∠APG=∠EPC=90°﹣∠GPE,在△PAG和△PEC中∴△PAG≌△PEC(ASA),∴PE=PA;(2)解:延长CB到Q,使BQ=DF,过E作EH⊥BC,EH交BC延长线于H,连接AQ,PF,∵四边形ABCD是正方形,∴∠D=∠DAB=∠ABC=90°,AD=AB,∴∠ABQ=∠D=90°,在△ABQ和△ADF中∴△ABQ≌△ADF(SAS),∴AQ=AF,∠DAF=∠QAB,∵∠APE=90°,AP=PE,∴∠PAE=∠AEP=45°,∴∠AQP=∠QAB+∠BAP=∠DAF+∠BAP=∠DAB﹣∠PAE=90°﹣45°=45°=∠PAE,在△QAP和△FAP中∴△QAP≌△FAP(SAS),∴QP=PE,∵EH⊥BC,∠ABP=90°,∠APE=90°,∴∠ABP=∠H=90°,∠APB=∠PEH=90°﹣∠EPH,在△PEH和△APB中∴△PEH≌△APB(AAS),∴BP=EH,∵∠H=90°,∠DCE=45°,∴∠ECH=45°=∠CEH,∴CH=EH=BP,设EH=CH=BP=x,∴PC=4﹣x,PF=BQ+BP=DF+BP=4﹣3+x=1+x,在Rt△PCF中,由勾股定理得:(1+x)2=(4﹣x)2+32,解之得:x=,即CH=EH=,∴在Rt△CHE中,由勾股定理得:CE=CH=.5.(1)证明:∵AB、OB、OC、AC的中点分别为D、E、F、G,∴DG∥BC,DG=BC,EF∥BC,EF=BC,∴DG∥EF,DG=EF,∴四边形DEFG是平行四边形;(2)解:∵D、E分别是AB、OB的中点,∴DE∥OA,DE=OA,∵四边形DEFG是正方形,∴DE⊥EF,DE=EF,∴AO与BC垂直且相等.故答案为:垂直且相等.6.解:(1)如图1,连接CG,∵四边形ABCD和四边形EBGF是正方形,∴∠CDB=∠CBD=45°,∠DBG=90°,BD=BG,∴∠CBG=45°,∴∠CBG=∠CBD,∵BC=BC,∴△CBD≌△CBG(SAS),∴∠DCB=∠BCG=90°,DC=CG=5,∴G,C,D三点共线,∴AG===5;故答案为:5;(2)如图2,过点G作GK⊥AB,交AB的延长线于K,∵DE=2,DC=5,∴CE=3,∵∠EBG=∠EBC+∠CBG=90°,∠CBG+∠GBK=90°,∴∠EBC=∠GBK,∵BE=BG,∠K=∠BCE=90°,∴△BCE≌△BKG(AAS),∴CE=KG=3,BC=BK=5,∴AK=10,由勾股定理得:AG==;(3)分三种情况:①当点E在CD的延长线上时,如图3,同理知△BCE≌△BKG(AAS),∴BC=BK=5,∵AG=,由勾股定理得:KG==,∴CE=KG=,此种情况不成立;②当点E在边CD上时,如图4,同理得:DE=;③当点E在DC的延长线上时,如图5,同理得CE=GK=,∴DE=5+=,综上,DE的长是或.7.解:(Ⅰ)①∵折痕为EF,点P为点D的对应点,∴△DOF≌△POF.∴∠DOF=∠POF=45°.∵四边形OBCD是矩形,∴∠ODF=90°.∴∠DFO=∠DOF=45°.∴DF=DO=6.∴点F的坐标为(6,6);②∵折痕为EF,点P为点D的对应点,∴DG=PG,EF⊥PD.∵四边形OBCD是矩形,∴DC∥OB,∴∠FDG=∠EPG.∵∠DGF=∠PGE,∴△DGF≌△PGE(ASA).∴DF=PE.∵DF∥PE,∴四边形DEPF是平行四边形.∵EF⊥PD,∴▱DEPF是菱形,设菱形的边长为x,则DE=EP=x.∵OP=7,∴OE=7﹣x,在Rt△ODE中,由勾股定理得OD2+OE2=DE2.∴62+(7﹣x)2=x2,解得.∴,∴点F的坐标为(,6);(Ⅱ)P(,).8.解:(1)∵OF是∠BCA的外角平分线,∴∠OCF=∠FCD,又∵MN∥BC,∴∠OFC=∠FCD,∴∠OFC=∠OCF,∴OF=OC,∴OE=OF;∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F ∴∠ECF=90°,∵CE=8,CF=6,∴EF==10,∵CE是∠ACB的角平分线,∴∠ACE=∠BCE,又∵MN∥BC,∴∠NEC=∠ECB,∴∠NEC=∠ACE,∴OE=OC,∴CO是△ECF上的中线,∴CO=EF=5;(2)点O是AC的中点且∠ACB=90°,理由:∵O为AC中点,∴OA=OC,∵由(1)知OE=OF,∴四边形AECF为平行四边形;∵∠1=∠2,∠4=∠5,∠1+∠2+∠4+∠5=180°,∴∠2+∠5=90°,即∠ECF=90°,∴▱AECF为矩形,又∵AC⊥EF.∴▱AECF是正方形.∴当点O为AC中点且△ABC是以∠ACB为直角三角形时,四边形AECF是正方形.9.解:(1)∵CG⊥AB,BG=1,,∴.∵∠ABF=45°,∴△BGE是等腰直角三角形,∴EG=BG=1,∴EC=CG﹣EG=3﹣1=2,∵在平行四边形ABCD中,AB∥CD,∠ABF=45°,CG⊥AB,∴∠CFE=∠ABF=45°,∠FCE=∠BGE=90°,∴△ECF是等腰直角三角形,∴EF==2;(2)证明:过E作EH⊥BE交AB于H,∵∠ABF=45°,∠BEH=90°,∴△BEH是等腰直角三角形,∴,BE=HE,∴∠BHE=45°,∴∠AHE=180°﹣∠BHE=180°﹣45°=135°,由(1)知,△BGE和△ECF都是等腰直角三角形,∴∠BEG=45°,CE=CF,∴∠BEC=180°﹣∠BEG=180°﹣45°=135°,∴∠AHE=∠CEB,∵AE⊥AD,∴∠DAE=90°,∴∠BAD=∠DAE+∠EAB=90°+∠EAB,由(1)知,∠FCE=90°,∴∠BCD=∠FCE+∠BCG=90°+∠BCG,∵在平行四边形ABCD中,∠BAD=∠BCD,∴90°+∠EAB=90°+∠BCG,∴∠EAB=∠BCG,即∠EAH=∠BCE,在△△EAH和△BCE中,∴△EAH≌△BCE(AAS),∴AH=CE=CF,∴AB﹣BE=AB﹣BH=AH=CF,即AB﹣BE=CF.10.(1)解:∵AD是高,E、F分别是AB、AC的中点,∴DE=AE=AB=×10=5,DF=AF=AC=×8=4,∴四边形AEDF的周长=AE+DE+DF+AF=5+5+4+4=18;(2)证明:∵DE=AE,DF=AF,∴EF垂直平分AD.11.(1)证明:∵四边形ABFG和四边形BCED是正方形,∴BC=BD,AB=BF,∠CBD=∠ABF=90°,∴∠CBD+∠ABC=∠ABF+∠ABC,∴∠ABD=∠CBF,在△ABD和△FBC中,∴△ABD≌△FBC(SAS);(2)解:∵△ABD≌△FBC,∴∠BAD=∠BFC,AD=FC=6,∴∠AMF=180°﹣(∠BAD+∠ANM)=180°﹣(∠BFC+∠BNM)=180°﹣(180°﹣∠ABF)=180°﹣(180°﹣90°)=90°,即AD⊥CF,∴四边形ACDF的面积S=S△ACD+S△ADF=+===18.12.证明:如图,连接BM、DM,∵∠ABC=∠ADC=90°,M是AC的中点,∴BM=DM=AC,∵点N是BD的中点,∴MN⊥BD.13.解:(1)∵△ABC和△BCD中,∠BAC=∠BDC=90°,E为BC的中点,∴DE=AE=BC,∴∠EDA=∠EAD,∵DC∥AE,∴∠ADC=∠EAD,∴∠ADC=∠EDA,∵DF=DE,∴EF⊥DA;(2)∵BC=4,∴DE=BC=2,∵DE=AE,,∴DO=AD=,在Rt△DEO中,EO==1,∵DF=DE,∴EF=2EO=2.14.证明:如图,连接BE、DE,∵∠ABC=∠ADC=90°,E是AC的中点,∴BE=DE=AC,∵F是BD的中点,∴EF⊥BD.15.解:△PAE的形状为等边三角形;理由如下:∵在Rt△CAD中,∠CAD=90°,P是斜边CD的中点,∴PA=PC=CD,∴∠ACD=∠PAC,∴∠APD=∠ACD+∠PAC=2∠ACD,同理:在Rt△CED中,PE=PC=CD,∠DPE=2∠DCB,∴PA=PE,即△PAE是等腰三角形,∴∠APE=2∠ACB=2×30°=60°,∴△PAE是等边三角形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行四边形综合提高一利用平行四边形的性质进行角度、线段的计算1、如图,在□ABCD中,AE⊥BC于E,AF⊥CD于F,若∠EAF=60o,则∠B=_______;若BC=4cm,AB=3cm,则AF=___________,□ABCD的面积为_________.2 已知ABCD的周长为32cm,对角线AC、BD交于点O,△AOB的周长比△BOC的周长多4cm,求这个四边形的各边长。
二、利用平行四边形的性质证线段相等3、如图,在□ABCD中,O是对角线AC、BD的交点,BE⊥AC,DF⊥AC,垂足分别为E、F.那么OE与OF是否相等?为什么?三直接利用平行四边形的判定和性质4、如图在ABCD中,E、F分别是AD、BC的中点,AF与EB交于点G,CE与DF交于点H,试说明四边形EGFH的形状。
5、如图,BD是ABCD的对角线,AE⊥BD于E,CF⊥BD于点F,求证:四边形AECF为平行四边形。
四构造平行四边形解题6、如图2-33所示.Rt△ABC中,∠BAC=90°,AD⊥BC于D,BG平分∠ABC,EF∥BC且交AC于F.求证:AE=CF.7、已知,如图,AD为△ABC的中线,E为AC上一点,连结BE交AD于点F,且AE=FE,求证:BF=AC[能力提高]1、如图2-39所示.在平行四边形ABCD中,△ABE和△BCF都是等边三角形.求证:△DEF是等边三角形.2、如图2-32所示.在ABCD中,AE⊥BC,CF⊥AD,DN=BM.求证:EF与MN互相平分.3、如图2-34所示.ABCD中,DE⊥AB于E,BM=MC=DC.求证:∠EMC=3∠BEM.4 如图2-35所示.矩形ABCD中,CE⊥BD于E,AF平分∠BAD交EC延长线于F.求证:CA=CF.[创新思维]1、以△ABC的三条边为边在BC的同侧作等边△ABP、等边△ACQ、等边△BCR,求证:四边形PAQR为平行四边形。
2.如图2-40所示.ABCD中,AF平分∠BAD交BC于F,DE⊥AF交CB于E.求证:BE=CF.3、已知:如图4-12,ABCD中,AE⊥BD,CF⊥BD,M,N分别是AD,BC的中点.求证:四边形MENF是平行四边形.4.已知:如图4-23,P是等边△ABC内一点,PD∥AB,PE∥BC,PF∥AC.求证:PD+PE+PF为定值.5.在等腰△ABC中,AB=AC,点D是直线BC上一点,DE∥AC交直线AB于E,DF∥AB交直线AC于点F,解答下列各问:(1)如图1,当点D在线段BC上时,有DE+DF=AB,请你说明理由;(6分)(2)如图2,当点D在线段BC的延长线上时,请你参考(1)画出正确的图形,并写出线段DE、DF、AB之间的关系并加以证明.(图1) (图2)6.如图2-38所示.DE⊥AC,BF⊥AC,DE=BF,∠ADB=∠DBC.求证:四边形ABCD是平行四边形.7、已知:如图,在□ ABCD中,AE⊥AD交BD于E.若CD=,求证:∠ADB=∠BDC8、已知:如图4-21,在ABCD中,△ABE和△BCF都是等边三角形.求证:△DEF是等边三角形.1.(2011?资阳)如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F.(1)求证:BE=DF;(2)若 M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由).2.(2011?昭通)如图所示,?AECF的对角线相交于点O,DB经过点O,分别与AE,CF交于B,D.求证:四边形ABCD是平行四边形.3.(2011?徐州)如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.4.(2011?铜仁地区)已知:如图,在△ABC中,∠BAC=90°,DE、DF是△ABC的中位线,连接EF、AD.求证:EF=AD.5.(2011?泸州)如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.6.(2010?恩施州)如图,已知,?ABCD中,AE=CF,M、N分别是DE、BF的中点.求证:四边形MFNE是平行四边形.7.(2009?永州)如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.求证:四边形AECF是平行四边形.8.(2009?来宾)在?ABCD中,分别以AD、BC为边向内作等边△ADE和等边△BCF,连接BE、DF.求证:四边形BEDF是平行四边形.9.(2006?黄冈)如图所示,DB∥AC,且DB=AC,E是AC的中点,求证:BC=DE.10.(2006?巴中)已知:如图,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B 以2cm/s的速度运动,到B点即停止,直线PQ截梯形为两个四边形.问当P,Q同时出发,几秒后其中一个四边形为平行四边形?11.(2002?三明)如图:已知D、E、F分别是△ABC各边的中点,求证:AE与DF 互相平分.12.已知:如图,在?ABCD中,对角线AC交BD于点O,四边形AODE是平行四边形.求证:四边形ABOE、四边形DCOE都是平行四边形.13.如图,已知四边形ABCD中,点E,F,G,H分别是AB、CD、AC、BD的中点,并且点E、F、G、H有在同一条直线上.求证:EF和GH互相平分.14.如图:?ABCD中,MN∥AC,试说明MQ=NP.15.已知:如图所示,平行四边形ABCD的对角线AC,BD相交于点O,EF经过点O并且分别和AB,CD相交于点E,F,点G,H分别为OA,OC的中点.求证:四边形EHFG是平行四边形.16.如图,已知在?ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.(1)求证:四边形GEHF是平行四边形;(2)若点G、H分别在线段BA和DC上,其余条件不变,则(1)中的结论是否成立?(不用说明理由)17.如图,在△ABC中,D是AC的中点,E是线段BC延长线一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE、CF.(1)求证:AF=CE;(2)如果AC=EF,且∠ACB=135°,试判断四边形AFCE是什么样的四边形,并证明你的结论.18.如图平行四边形ABCD中,∠ABC=60°,点E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BF,垂足为点F,DF=2(1)求证:D是EC中点;(2)求FC的长.19.(2010?厦门)如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB 上,∠EFB=60°,DC=EF.(1)求证:四边形EFCD是平行四边形;(2)若BF=EF,求证:AE=AD.20.(2010?滨州)如图,四边形ABCD,E、F、G、H分别是AB、BC、CD、DA 的中点.(1)请判断四边形EFGH的形状?并说明为什么;(2)若使四边形EFGH为正方形,那么四边形ABCD的对角线应具有怎样的性质?21.(2008?佛山)如图,△ACD、△ABE、△BCF均为直线BC同侧的等边三角形.(1)当AB≠AC时,证明:四边形ADFE为平行四边形;(2)当AB=AC时,顺次连接A、D、F、E四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件.22.如图,以△ABC的三边为边,在BC的同侧分别作三个等边三角形即△ABD、△BCE、△ACF,那么,四边形AFED是否为平行四边形?如果是,请证明之,如果不是,请说明理由.23.(2007?黑龙江)在△ABC中,AB=AC,点P为△ABC所在平面内一点,过点P分别作PE∥AC交AB于点E,PF∥AB交BC于点D,交AC于点F.若点P在BC 边上(如图1),此时PD=0,可得结论:PD+PE+PF=AB.请直接应用上述信息解决下列问题:当点P分别在△ABC内(如图2),△ABC外(如图3)时,上述结论是否成立?若成立,请给予证明;若不成立,PD,PE,PF与AB之间又有怎样的数量关系,请写出你的猜想,不需要证明.24.(2006?大连)如图1,P为Rt△ABC所在平面内任意一点(不在直线AC 上),∠ACB=90°,M为AB边中点.操作:以PA、PC为邻边作平行四边形PADC,连续PM并延长到点E,使ME=PM,连接DE.探究:(1)请猜想与线段DE有关的三个结论;(2)请你利用图2,图3选择不同位置的点P按上述方法操作;(3)经历(2)之后,如果你认为你写的结论是正确的,请加以证明;如果你认为你写的结论是错误的,请用图2或图3加以说明;(注意:错误的结论,只要你用反例给予说明也得分)(4)若将“Rt△ABC”改为“任意△ABC”,其他条件不变,利用图4操作,并写出与线段DE有关的结论(直接写答案).25.(2005?贵阳)在一次数学实践探究活动中,小强用两条直线把平行四边形ABCD分割成四个部分,使含有一组对顶角的两个图形全等;(1)根据小强的分割方法,你认为把平行四边形分割成满足以上全等关系的直线有_________ 组;(2)请在图中的三个平行四边形中画出满足小强分割方法的直线;(3)由上述实验操作过程,你发现所画的两条直线有什么规律?26.如图,在直角梯形ABCD中,AB∥CD,∠BCD=Rt∠,AB=AD=10cm,BC=8cm.点P从点A出发,以每秒3cm的速度沿折线ABCD方向运动,点Q从点D 出发,以每秒2cm的速度沿线段DC方向向点C运动.已知动点P、Q同时发,当点Q运动到点C时,P、Q运动停止,设运动时间为t.(1)求CD的长;(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;(3)在点P、点Q的运动过程中,是否存在某一时刻,使得△BPQ的面积为20cm2?若存在,请求出所有满足条件的t的值;若不存在,请说明理由.27.已知平行四边形的三个顶点的坐标分别为O(0,0)、A(2,0)、B (1,1),则第四个顶点C的坐标是多少?28.已知平行四边形ABCD的周长为36cm,过D作AB,BC边上的高DE、DF,且cm,,求平行四边形ABCD的面积.29.如图,在平面直角坐标系中,已知O为原点,四边形ABCD为平行四边形,A、B、C的坐标分别是A(﹣3,),B(﹣2,3),C(2,3),点D在第一象限.(1)求D点的坐标;(2)将平行四边形ABCD先向右平移个单位长度,再向下平移个单位长度所得的四边形A1B1C1D1四个顶点的坐标是多少?(3)求平行四边形ABCD与四边形A1B1C1D1重叠部分的面积?30.如图所示.?ABCD中,AF平分∠BAD交BC于F,DE⊥AF交CB于E.求证:BE=CF.平行四边形及特殊平行四边形1.下列说法不正确的是()A.一组邻边相等的矩形是正方形 B.对角线相等的菱形是正方形C.对角线互相垂直的矩形是正方形 D.有一个角是直角的平行四边形是正方形2.(2010 湖南湘潭)下列说法中,你认为正确的是()A.四边形具有稳定性 B.等边三角形是中心对称图形C.任意多边形的外角和是360o D.矩形的对角线一定互相垂直3.(2010 天津)下列命题中正确的是()A.对角线相等的四边形是菱形 B.对角线互相垂直的四边形是菱形C.对角线相等的平行四边形是菱形 D.对角线互相垂直的平行四边形是菱形4.(2010湖北襄樊)菱形的周长为8cm,高为1cm,则菱形两邻角度数比为()A.3:1 B.4:1 C.5:1 D.6:15.(2010宁夏回族自治区)点A、B、C是平面内不在同一条直线上的三点,点D是平面内任意一点,若A、B、C、D四点恰能构成一个平行四边形,则在平面内符合这样条件的点D有()A.1个 B.2个 C.3个 D.4个6.(2010 江津)四边形的对角线互相平分,要使它成为矩形,那么需要添加的条件是()A.B.C.D.7. (2010 四川成都)已知四边形,有以下四个条件:①;②;③;④.从这四个条件中任选两个,能使四边形成为平行四边形的选法种数共有()A.6种 B.5种 C.4种 D.3种8.(2010湖南衡阳)如图6,在□ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=,则ΔCEF的周长为()A.8 B.9 C.10 D.119.(2010江苏苏州)如图,在菱形ABCD中,DE⊥AB,,BE=2,则tan∠DBE的值是()A.B.2 C.D.10.(2010 山东荷泽)如图,菱形ABCD中,∠B=60°,AB=2㎝,E、F分别是BC、CD的中点,连结AE、EF、AF,则△AEF的周长为()A.㎝ B.㎝ C.㎝ D.3㎝11.(2010青海西宁)矩形ABCD中,E、F、M为AB、BC、CD边上的点,且AB=6,BC=7,AE=3,DM=2,EF⊥FM,则EM的长为()A.5 B.C.6 D.12.(2010山东聊城)如图,点P是矩形ABCD的边AD的一个动点,矩形的两条边AB、BC的长分别为3和4,那么点P到矩形的两条对角线AC和BD的距离之和是()A.B.C.D.不确定13.若菱形两条对角线的长分别为6和8,则这个菱形的周长为()A.20 B.16 C.12D. 1014.(2010 重庆)已知:如图,在正方形外取一点,连接,,.过点作的垂线交于点.若,.下列结论:①△≌△;②点到直线的距离为;③;④;⑤.其中正确结论的序号是()A.①③④ B.①②⑤ C.③④⑤ D.①③⑤15.(2010 福建晋江)如图,将一张正方形纸片剪成四个小正方形,得到4个小正方形,称为第一次操作;然后,将其中的一个正方形再剪成四个小正方形,共得到7个小正方形,称为第二次操作;再将其中的一个正方形再剪成四个小正方形,共得到10个小正方形,称为第三次操作;...,根据以上操作,若要得到2011个小正方形,则需要操作的次数是()A.669 B.670 C.671 D. 67216.(2010广西南宁)正方形、正方形和正方形的位置如图所示,点在线段上,正方形的边长为4,则的面积为()A.10 B.12 C.14D.1617.(2010重庆綦江县)如图,在中,分别以AB、AD为边向外作等边△ABE、△ADF,延长CB交AE于点G,点G在点A、E之间,连结CG、CF,则以下四个结论一定正确的是()①△CDF≌△EBC②∠CDF=∠EAF③△ECF是等边三角形④CG⊥AEA.只有①② B.只有①②③ C.只有③④ D.①②③④18.(2010福建宁德)如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形.则展开后三角形的周长是().A.2+B.2+2C.12 D.1819.(2010江西)如图,已知矩形纸片ABCD,点E 是AB的中点,点G是BC 上的一点,∠BEG>60°,现沿直线EG将纸片折叠,使点B落在纸片上的点H处,连接AH,则与∠BEG相等的角的个数为( )A.4 B.3 C.2 D.120.(2010广西柳州)如图(上页),四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的处,点A对应点为,且=3,则AM的长是()A.1.5 B.2 C.2.25 D.2.521.(2010广西河池)如图(上页)是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用,表示直角三角形的两直角边(),下列四个说法:①,②,③,④.其中说法正确的是()A.①② B. ①②③ C. ①②④ D. ①②③④22.(2010湖南常德)如图,四边形ABCD中,AB//CD,要使四边形ABCD为平行四边形,则可添加的条件为 .(填一个即可).23(2010荆州)如图,在平行四边形ABCD中,∠A=130°,在AD上取DE=DC,则∠ECB的度数是 .24.(2010 广东珠海)如图,P是菱形ABCD对角线BD上一点,PE⊥AB于点E,PE=4cm,则点P到BC的距离是_____cm.25.(2010福建宁德)如图,在□ABCD中,AE=EB,AF=2,则FC等于_____.26.(2010青海西宁)如图,在□ABCD中,对角线AC、BD相交于点O,如果AC=14,BD=8,AB=,那么的取值范围是 .27.(2010浙江嘉兴)如图,已知菱形ABCD的一个内角,对角线AC、BD相交于点O,点E在AB上,且,则= 度.28.(2010辽宁本溪)过□ABCD对角线交点O作直线m,分别交直线AB于点E,交直线CD于点F,若AB=4,AE=6,则DF的长是 .29.(2010 天津)如图,已知正方形的边长为3,为边上一点,.以点为中心,把△顺时针旋转,得△,连接,则的长等于.30.(2010广西梧州)如图,边长为6的正方形ABCD绕点B按顺时针方向旋转30°后得到正方形EBGF,EF交CD于点H,则FH的长为______(结果保留根号)。