七年级数学下册知识点归纳整理
七年级数学下册知识点归纳汇总
七年级数学下册知识点归纳汇总一、相交线两条直线相交,形成4个角。
1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。
性质是对顶角相等。
①邻补角:两个角有一条公共边,它们的另一条边互为反向延长线。
具有这种关系的两个角,互为邻补角。
如:∠1、∠2。
②对顶角:两个角有一个公共顶点,并且一个角的两条边,分别是另一个角的两条边的反向延长线,具有这种关系的两个角,互为对顶角。
如:∠1、∠3。
③对顶角相等。
二、垂线1.垂直:如果两条直线相交成直角,那么这两条直线互相垂直。
2.垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。
3.垂足:两条垂线的交点叫垂足。
4.垂线特点:过一点有且只有一条直线与已知直线垂直。
5.点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。
连接直线外一点与直线上各点的所有线段中,垂线段最短。
三、同位角、内错角、同旁内角两条直线被第三条直线所截形成8个角。
1.同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。
如:∠1和∠5。
2.内错角:(在两条直线内部,位于第三条直线两侧)在两条直线之间,又在直线EF的两侧,具有这种位置关系的两个角叫内错角。
如:∠3和∠5。
3.同旁内角:(在两条直线内部,位于第三条直线同侧)在两条直线之间,又在直线EF 的同侧,具有这种位置关系的两个角叫同旁内角。
如:∠3和∠6。
四、平行线及其判定平行线1.平行:两条直线不相交。
互相平行的两条直线,互为平行线。
a∥b(在同一平面内,不相交的两条直线叫做平行线。
)2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
3.平行公理推论:平行于同一直线的两条直线互相平行。
如果b//a,c//a,那么b//c平行线的判定:1. 两条平行线被第三条直线所截,如果同位角相等,那么这两条直线平行。
七年级下册数学知识点总结与归纳
第一章 二元一次方程组1.二元一次方程:含有两个未知数,并且所含未知数的项的次数都是一次的整式方程叫做二元一次。
方程一般形式是 ax+by=c(a ≠0,b ≠0)。
2.二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组。
3.二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。
4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组。
5.消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想。
6.代入消元:把方程组里的一个方程变形,用含有一个未知数的代数式表示另一个未知数;把这个代数式代替另一个方程中相应的未知数,得到一个一元一次方程,可先求出一个未知数的值;把求得的这个未知数的值代入第一步所得的式子中,可求得另一个未知数的值,这样就得到了方程的解⎩⎨⎧==b y a x 7.加减消元法:把方程组里一个(或两个)方程的两边都乘以适当的数,使两个方程里的某一个未知数的系数的绝对值相等;把所得到的两个方程的两边分别相加(或相减),消去一个未知数,得到含另一个未知数的一元一次方程(以下步骤与代入法相同)第二章 整式的乘法1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。
bc a 22-的 系数为-2,次数为4,单独的一个非零数的次数是0。
2、多项式:几个单项式的和叫做多项式。
多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。
122++-x ab a ,项有4项,二次项为 ,一次项为 ,常数项为 ,各项次数分别为 ,系数分别为 ,叫 次 项式。
3、整式:单项式和多项式统称整式。
注意:凡分母含有字母代数式都不是整式。
也不是单项式和多项式。
4、同底数幂的乘法法则:m n m n a a a +=g (n m ,都是正整数)同底数幂相乘,底数不变,指数相加。
七年级数学下册知识点归纳
七年级数学下册知识点归纳一、图形的认识1. 点、线、面的定义和特征2. 线段、直线、射线的区别和特征3. 角的定义和特征4. 图形的种类和特点:三角形、四边形、多边形等5. 同种图形的分类和比较二、平面图形的性质研究1. 三角形的内角和外角关系2. 三角形的分类及其性质3. 三角形内切圆和外接圆的应用4. 平行四边形的性质及其判定5. 长方形、正方形、菱形和矩形的性质及其判定三、图形的相似与全等1. 图形相似的概念和判定条件2. 相似三角形的性质及其判定3. 图形全等的概念和应用4. 证明图形全等的方法和步骤四、直角三角形的研究1. 直角三角形的定义和性质2. 勾股定理的应用3. 余弦定理和正弦定理的应用五、多边形的面积和周长1. 一般多边形的周长计算2. 三角形的面积计算和性质3. 四边形的面积计算和性质4. 多边形的面积计算和性质六、圆的研究1. 圆的定义和性质2. 圆的元素:圆心、半径、直径、弧长等的概念和关系3. 圆内角和弧度的关系及其应用4. 弧长、扇形面积和圆的面积计算七、线性方程的解法1. 一元一次方程的解方法2. 解一元一次方程的应用3. 解一元一次方程组的方法和步骤4. 一次函数及其应用八、比例与相似1. 比和比例的概念及其应用2. 相似三角形的比例关系3. 解直角三角形的比例问题4. 解平行四边形的比例问题九、数据的收集和处理1. 数据收集的方法和意义2. 数据的整理和描述3. 数据图形的绘制和解读4. 统计与概率的基本知识十、考试技巧与思维方法1. 解题方法和思维技巧的培养2. 数学解题策略与问题解决能力的提升3. 拓展数学的应用能力和创新思维。
七年级下学期数学知识点归纳大全
七年级下学期数学知识点归纳大全一、整数及其运算1. 整数概念2. 自然数、零、负整数的概念3. 整数的比较及判断4. 整数的加减法、乘法、除法及其性质5. 整数的混合运算二、分数及其运算1. 分数的概念及其表示方法2. 分数的转化(真分数、假分数、带分数)3. 分数的约分和通分4. 分数的加减法及其性质5. 分数的乘法、除法及其性质6. 分数的混合运算三、小数及其运算1. 小数的概念及其表示方法2. 小数与分数的转化3. 小数的大小比较及判断4. 小数的加减法及其性质5. 小数的乘法、除法及其性质6. 小数的混合运算四、代数式及其展开1. 代数式的概念及其基本形式2. 同类项与异类项3. 代数式的加减法4. 乘法公式及其应用5. 因式分解6. 展开式及其应用五、方程及其解法1. 方程的概念及其解法2. 一元一次方程的解法3. 含有分数、小数的一元一次方程的解法4. 一元一次方程的应用5. 一元二次方程的解法及应用六、图形及其性质1. 线段、角度、平行线的概念及应用2. 三角形、四边形、平行四边形的概念及性质3. 正方形、长方形、三角形、梯形的周长和面积的计算4. 圆及其相关概念5. 圆的面积及弧长的计算七、统计及概率1. 统计调查及其应用2. 图表的制作和应用3. 平均数、中位数、众数及其计算4. 独立事件及其概率计算5. 互不独立事件及其概率计算八、函数及其应用1. 函数的概念及表示方法2. 函数的图象3. 一次函数和二次函数的图象及其性质4. 函数在实际问题中的应用综上所述,以上就是七年级下学期数学知识点的归纳大全,希望同学们能够认真学习掌握,提高自己的数学水平。
初一数学下册基本知识点总结(优秀5篇)
初一数学下册基本知识点总结(优秀5篇)新人教版初一下册数学知识点总结归纳篇一平行线与相交线一、互余、互补、对顶角1、相加等于90°的两个角称这两个角互余。
性质:同角(或等角)的余角相等。
2、相加等于180°的两个角称这两个角互补。
性质:同角(或等角)的补角相等。
3、两条直线相交,有公共顶点但没有公共边的两个角叫做对顶角;或者一个角的反相延长线与这个角是对顶角。
对顶角的性质:对顶角相等。
4、两条直线相交,有公共顶点且有一条公共边的两个角互为邻补角。
(相邻且互补)二、三线八角:两直线被第三条直线所截①在两直线的相同位置上,在第三条直线的同侧(旁)的两个角叫做同位角。
②在两直线之间(内部),在第三条直线的两侧(旁)的两个角叫做内错角。
③在两直线之间(内部),在第三条直线的同侧(旁)的两个角叫做同旁内角。
三、平行线的判定①同位角相等②内错角相等两直线平行③同旁内角互补四、平行线的性质①两直线平行,同位角相等。
②两直线平行,内错角相等。
③两直线平行,同旁内角互补。
五、尺规作图(用圆规和直尺作图)①作一条线段等于已知线段。
②作一个角等于已知角。
生活中的轴对称一、轴对称图形与轴对称①一个图形沿其中一条直线对折,直线两旁的部分能完成重合的图形叫做轴对称图形。
这条直线叫做对称轴。
②两个图形沿其中一条直线折叠,这两个图形能完全重合,就说这两个图形关于这条直线成轴对称。
这条直线叫做对称轴。
③常见的轴对称图形:线段(两条对称轴),角,长方形,正方形,等腰三角形,等边三角形,等腰梯形,圆,扇形二、角平分线的性质:角平分线上的点到角两边的距离相等。
∵∠1=∠2PB⊥OBPA⊥OA∴PB=PA三、线段垂直平分线:①概念:垂直且平分线段的直线叫做这条线段的垂直平分线。
②性质:线段垂直平分线上的点到线段两个端点的距离相等。
∵OA=OBCD⊥AB∴PA=PB四、等腰三角形性质:(有两条边相等的三角形叫做等腰三角形)①等腰三角形是轴对称图形;(一条对称轴)②等腰三角形底边上中线,底边上的高,顶角的平分线重合;(三线合一)③等腰三角形的两个底角相等。
七年级下册数学知识点归纳
七年级下册第五章相交线与平行线一、知识结构图相交线相交线垂线同位角、内错角、同旁内角平行线平行线及其判定平行线的判定平行线的性质平移命题、定理二、知识定义邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
平行线:在同一平面内,不相交的两条直线叫做平行线。
同位角、内错角、同旁内角:同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠5像这样的一对角叫做同旁内角。
命题:判断一件事情的语句叫命题。
平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
三、定理与性质对顶角的性质:对顶角相等。
垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
平行线的性质:性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
平行线的判定:判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
第六章平面直角坐标系一、知识结构图有序数对平面直角坐标系平面直角坐标系用坐标表示地理位置坐标方法的简单应用用坐标表示平移二、知识定义有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。
七年级下册数学知识点归纳
一、整式的加减1. 同底数幂的乘法:底数不变,指数相加。
2. 同底数幂的除法:底数不变,指数相减。
3. 幂的乘方:底数不变,指数相乘。
4. 积的乘方:等于各因式分别乘方后的积。
5. 单项式与单项式的和:系数相加,字母部分不变。
6. 单项式与单项式的差:系数相减,字母部分不变。
7. 单项式与单项式的积:系数相乘,字母部分合并。
8. 单项式与多项式的积:用单项式去乘多项式的每一项,再把所得的积相加。
9. 多项式与多项式的和:同类项的系数相加,字母部分不变。
10. 多项式与多项式的差:同类项的系数相减,字母部分不变。
11. 多项式与多项式的积:用一个多项式去乘另一个多项式的每一项,再把所得的积相加。
二、方程与不等式1. 一元一次方程:含有一个未知数,且未知数的最高次数为1的方程。
2. 一元一次不等式:含有一个未知数,且未知数的最高次数为1的不等式。
3. 一元一次方程的解法:移项、合并同类项、化系数为1。
4. 一元一次不等式的解法:移项、合并同类项、化系数为1。
5. 二元一次方程组:含有两个未知数,且未知数的最高次数为1的方程组。
6. 二元一次不等式组:含有两个未知数,且未知数的最高次数为1的不等式组。
7. 二元一次方程组的解法:消元法、代入法。
8. 二元一次不等式组的解法:消元法、代入法。
9. 分式方程:含有分母的方程。
10. 分式方程的解法:去分母、化系数为1、检验。
11. 分式不等式:含有分母的不等式。
12. 分式不等式的解法:去分母、化系数为1、检验。
三、几何图形1. 点、线、面的概念。
2. 直线的性质:无端点、无限延伸、不可度量长度。
3. 射线的性质:有一个端点、无限延伸、不可度量长度。
4. 线段的性质:有两个端点、有限长度、可度量长度。
5. 角的概念:两条射线从同一点出发所形成的图形。
6. 角的分类:锐角、直角、钝角、平角、周角。
7. 角的性质:度数大小关系、补角和余角、角的和差。
8. 三角形的概念:由三条边和三个内角组成的封闭图形。
人教版七年级下册数学知识点总结归纳
人教版七年级下册数学知识点总结归纳七年级下册数学知识点1概率1.一般地,在大量重复试验中,如果事件A发生的频率n/m会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率。
2.随机事件:在一定的条件下可能发生也可能不发生的事件,叫做随机事件。
3.互斥事件:不可能同时发生的两个事件叫做互斥事件。
4.对立事件:即必有一个发生的互斥事件叫做对立事件。
5.必然事件:那些无需通过实验就能够预先确定它们在每一次实验中都一定会发生的事件称为必然事件。
6.不可能事件:那些在每一次实验中都一定不会发生的事件称为不可能事件。
2相交线与平行线1.相交线在同一平面内,两条直线的位置关系有相交和平行两种。
如果两条直线只有一个公共点时,称这两条直线相交。
2.垂线当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直,其中一条直线叫做另一直线的垂线,交点叫垂足。
3.同位角两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角。
4.内错角两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角。
5.同旁内角两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角,叫做同旁内角。
6.平行线几何中,在同一平面内,永不相交(也永不重合)的两条直线叫做平行线。
平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。
7.平移平移,是指在同一平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。
3平面直角坐标系1.定义:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。
2.平面上的任意一点都可以用一个有序数对来表示,记为(a,b),a是横坐标,b是纵坐标。
七年级数学下册知识点归类
七年级数学下册知识点归类:在七年级数学下册,我们需要学习很多数学知识点,这些知识点在日常学习中起到了至关重要的作用。
为了更好地理解和记忆这些知识点,我们可以把它们进行归类整理。
下面,将给大家七年级数学下册知识点进行详细归类,帮助大家更好地学习。
一、正比例函数和反比例函数正比例函数和反比例函数是我们在七年级数学下册中需要学习的第一部分知识点。
正比例函数是指两个变量的比值保持不变的函数,即y=kx(k≠0)。
反比例函数是指其中一个变量的值与另一个变量的值成反比例关系的函数,即y=k/x(k≠0)。
二、三角函数三角函数是指以角为自变量的一类周期函数,其中最常见的三角函数有正弦函数、余弦函数和正切函数。
在七年级数学下册中,我们需要学习三角函数的基本概念、性质和应用。
三、图形的平移、旋转和对称图形的平移、旋转和对称是我们在七年级数学下册中需要学习的第三部分知识点。
平移是指在平面上将图形沿着一定方向移动的变化,旋转是指将图形沿着一个点旋转一定角度的变化,对称是指在平面上将图形沿着某一条线对称的变换。
四、多边形的内角和外角多边形是指有多条边的简单封闭图形,是我们在七年级数学下册中需要学习的第四部分知识点。
每一个多边形都有自己的内角和外角,学习多边形的内角和外角不仅能够加深对几何概念的理解,还能够培养我们对数学的兴趣。
五、数列和函数数列和函数是我们在七年级数学下册中需要学习的第五部分知识点。
数列是指一串有限或无限个数所排列的有序集合,函数是指两个集合之间的一种对应关系,其中一个集合称为定义域,另一个集合称为值域。
六、概率和统计概率和统计是我们在七年级数学下册中需要学习的最后一部分知识点。
概率是指事件发生的可能性大小,统计是对某一现象进行描述和分析的过程。
学习概率和统计不仅能够帮助我们更好地理解社会和自然现象中的数学规律,还能够在日常生活中帮助我们做出更加明智的决策。
以上就是七年级数学下册知识点的归类总结。
通过对这些知识点的归纳整理,我们能够更好地掌握数学的基础知识,培养我们的数学思维,更好地适应数学学习的紧张节奏。
七年级下册数学知识点总结
七年级下册数学知识点总结七年级下册的数学知识点分为多个模块,包括有分式与小数、比例与相似、平面几何、数据的收集、整式的加减乘除等,下面将对这些知识点进行详细的总结。
一、分式与小数1.1 分数的概念与用法分数由分子和分母组成,表示分子除以分母的值。
在进行分数的乘、除、加、减等运算时,将分数化为相同分母的通分数后再进行运算。
小数是数的一种表现形式,也可表示分数,比如$0.5$ 表示 $\frac{1}{2}$。
1.2 分数的混合运算混合运算指的是含有加减乘除多个运算符的运算。
在进行分数的混合运算时,先进行括号内的运算,再进行乘除法运算,最后进行加减法运算。
1.3 分数的约分和通分分数的约分是指将分数的分子和分母同时除以一个相同的数,使得分子和分母互质,达到简化分数的目的。
通分是指将不同分母的两个或多个分数化为相同分母的分数,便于进行加减法运算。
1.4 小数的四则运算小数的四则运算和整数的四则运算类似,同样包括加、减、乘、除运算。
在进行小数的除法运算时,可以将被除数和除数乘以同一个倍数,使得除数化为整数,然后再进行运算。
二、比例与相似2.1 比例的概念和性质比例是指两个数的比相等的关系,通常用 $a:b$ 表示,其中$a$ 和 $b$ 都是有理数。
比例的性质包括反比例、比例的倒数、交叉乘积相等等。
2.2 相似的概念和判定相似是指两个形状相似的图形,它们的对应角度相等,对应边成比例,对应点的距离也成比例。
当两个图形相似时,它们的面积之比等于它们对应边的平方之比。
2.3 相似三角形的应用相似三角形广泛应用于衡量远离物体的高度、河流的宽度等问题。
通过计算物体到地面的距离和观察点到物体的角度,可以通过相似三角形计算出物体的高度。
三、平面几何3.1 角的概念和分类角是指由两条射线或线段以一个公共的端点所组成的图形,在平面几何中应用广泛。
根据角的大小和形状,可以将角分为钝角、直角、锐角等多种类别。
3.2 直线和平面的性质直线和平面是平面几何中最基本的图形,它们有许多独特的性质。
初一数学下册知识点归纳
初一数学下册知识点归纳初一数学下册知识点归纳(一)一、小数1.小数的定义:把整数部分和小数部分用小数点隔开,就是小数。
2.小数点的作用:小数点的位置决定了小数的大小和数值。
3.小数的大小比较:将小数的小数部分扩大或缩小,使小数的小数部分相同,就可以直接比较大小。
4.小数的加减:把小数的整数部分和小数部分分别相加或相减,然后按照小数的格式写出答案。
5.小数的乘除:按照小学学过的乘法和除法的方法计算。
6.小数的应用:小数可以用来表示尺寸、比率等有关事物的大小和数值,如温度、速度、重量、身高、体重等。
二、平方根1.平方根的定义:如果一个非负数a,它的平方等于b,那么我们把a叫做b的平方根。
2.平方根的性质:如果a和b都是非负数,则:1)非负数a的平方根是唯一的;2)正数b有两个平方根,一个是正数,一个是负数,它们绝对值相等,符号相反。
3.平方根的运算:可以利用开平方的方法来求平方根。
对于不能整除的数,可以使用逼近法,一点点逼近出结果。
三、比例与比例运算1.比例的定义:比例是指两个数值的大小之间的关系,通常用冒号“:”或“÷”表示,如a:b或a÷b。
2.比例的意义:比例可用来比较同一类型的不同数值之间的大小关系。
3.比例运算的方法:有三种方法:倍数法、分离比例法和三项与四项中的比例法。
四、百分数1.百分数的定义:百分数是指以100为基数的百分数,通常用百分号“%”表示,如a%。
2.百分数和分数的关系:百分数可以转化成分数,如5%可以写成5/100。
3.百分数的应用:百分数可用于表示质量分数、比率、增长率、利润率等数学问题。
五、统计1.概率的定义:概率是指某个事件发生的可能性大小,通常用0到1之间的小数表示。
2.班级统计:统计班级人数、男女比例、年龄、身高、体重和成绩等。
3.数据的分析:通过数据的整理、分类、分组、绘制图表和解读图表等方法,对数据进行分析和比较。
4.抽样调查:通过随机抽样和问卷调查等方法,对大量的数据进行收集和分析。
(完整版)人教版七年级下册数学知识点总结大全
(完整版)人教版七年级下册数学知识点总结大全直角三角形- 定义:有一个角为直角(90度)的三角形。
- 勾股定理:直角三角形斜边的平方等于两腿的平方和。
- 特殊直角三角形:45-45-90度三角形和30-60-90度三角形。
圆- 定义:平面上到一个固定点的距离等于定长的点的集合。
- 元素:圆心、半径、直径、弦、弧、扇形、切线等。
- 四大关系:- 半径和弦垂直- 弦长的一半与半径的乘积等于斜边的一半与半径的乘积- 外接角等于弧对应的圆心角- 弧度与角度之间的换算关系比例与相似- 定义:表示两个或多个有对应关系的数之间的比值关系。
- 比例定理:若a/b = c/d,则a、b、c、d成比例。
- 三线一比例:三角形内部的三条连线和三角形外部的三条平行线与三角形的腰成比例。
- 相似三角形:对应角相等,对应边成比例的三角形。
科学计数法- 定义:一种简便表示极大或极小数的方法。
- 标准形式:数字部分在1到9之间,指数为整数。
- 运算法则:运算时先计算系数的乘除,再计算指数的加减。
二次根式- 定义:含有根号并且被根号包围的代数式。
- 平方根:一个数的平方等于该数。
- 二次根式的运算:相加减后化简、乘除法则。
分式- 定义:由整数与整数或整数代数式的比例组成的式子。
- 分式的性质:分母不能等于0,分子分母互质,分子分母都是整数等。
- 分式的运算:加减乘除、化简、倒数。
线性方程- 定义:等式中含有未知数的方程。
- 解方程:找到使等式成立的未知数的值。
- 一次方程:未知数的次数为1。
- 解一元一次方程:转化为等价方程,通过逆向运算得到未知数的值。
平行线与直线的交角- 定义:两条平行线与直线的交角为对应角或同位角。
- 绳分线定理:直线与两平行线相交时,对应角相等,内错角之和等于180度。
随机事件与概率- 定义:随机试验的可能结果称为随机事件。
- 基本事件与必然事件:基本事件是随机试验的单个结果,必然事件是一定发生的事件。
- 概率的计算:概率等于有利事件数除以可能事件总数。
初一下册数学知识点总结归纳精选6篇
初一下册数学知识点总结归纳精选6篇初一下册数学知识点总结归纳精选6篇知识产业、知识经济和知识社会是当今发达国家社会转型的重要标志。
知识在现代国家治理和公共管理中扮演着重要的角色。
下面就让小编给大家带来初一下册数学知识点总结归纳,希望大家喜欢!初一下册数学知识点总结归纳1初一数学下册期末考试知识点总结一(苏教版)第七章平面图形的认识(二) 1第八章幂的运算 2第九章整式的乘法与因式分解 3第十章二元一次方程组 4第十一章一元一次不等式 4第十二章证明 9第七章平面图形的认识(二)一、知识点:1、“三线八角”① 如何由线找角:一看线,二看型。
同位角是“F”型;内错角是“Z”型;同旁内角是“U”型。
② 如何由角找线:组成角的三条线中的公共直线就是截线。
2、平行公理:如果两条直线都和第三条直线平行,那么这两条直线也平行。
简述:平行于同一条直线的两条直线平行。
补充定理:如果两条直线都和第三条直线垂直,那么这两条直线也平行。
简述:垂直于同一条直线的两条直线平行。
3、平行线的判定和性质:判定定理性质定理条件结论条件结论同位角相等两直线平行两直线平行同位角相等内错角相等两直线平行两直线平行内错角相等同旁内角互补两直线平行两直线平行同旁内角互补4、图形平移的性质:图形经过平移,连接各组对应点所得的线段互相平行(或在同一直线上)并且相等。
5、三角形三边之间的关系:三角形的任意两边之和大于第三边;三角形的任意两边之差小于第三边。
若三角形的三边分别为a、b、c,则6、三角形中的主要线段:三角形的高、角平分线、中线。
注意:①三角形的高、角平分线、中线都是线段。
②高、角平分线、中线的应用。
7、三角形的内角和:三角形的3个内角的和等于180°;直角三角形的两个锐角互余;三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于与它不相邻的任意一个内角。
8、多边形的内角和:n边形的内角和等于(n-2)180°;任意多边形的外角和等于360°。
七年级数学下册知识点
七年级数学下册知识点一、数的基本概念1、定义整数:整数是阿拉伯数字0,1,2,3,4,5,6,7,8,9组成的数字,如123、-10、0。
2、正数和负数:正数是由阿拉伯数字0-9组成的数字,其值是大于(或等于)0的数,如5、27、128等;负数是由带有“-”符号的正数组成,其值是小于0的数,如:-13、-20、-101等。
3、有理数:有理数是分数、小数及其整数倍构成的数。
所有正数和负数都是有理数,小数也是有理数。
二、算术运算1、加法运算:给出一组数,用“+”号连接,将数从左往右从低位数到高位数依次相加,将他们的和称为加法运算,如365+54=419。
2、减法运算:给出一组数,用“-”号连接,将被减数从左右从低位数到高位数依次减去减数,所得的差称为减法运算,如675-255=420。
3、乘法运算:给出一组数,用“乘号”“×”连接,将两个乘数的各个位的数相乘,加起来的积称为乘法运算,如765×43=32995。
4、除法运算:给出一组数,用“除号”“÷”连接,将被除数依次除以除数,所得的结果称为除法运算,如945÷5=189。
三、因式分解1、定义:因式分解是将一个多项式拆分为一系列单项式的乘积,每一系列单项式称为一个因子,例如:3x2+9x -4=(3x+4)×(x-1)。
2、目的:通过因式分解,可以将一个复杂的表达式简化,使其表达的更加清晰明了,也可以使算式更容易求解。
3、步骤:(1)列出多项式并将因式分子写成原因式。
(2)左右分别拆分因式成为两个不包括系数,最高次幂小于等于一的多项式;(3)将拆出来的因式乘起来,检验积与原式是否相等。
四、分式1、定义:分式是无限小数与一个正整数(或零)的比值标准表示法,由一个带有分子(分母为1的无限小数)和分母构成,如5/4表示5与4的比率,是一个分数。
2、形式:分式的形式可以是真分式、假分式、互分式以及真分数,当分子和分母皆为整数时为真分数。
七年级数学下册全部知识点归纳
3、尺规作图中直尺的功能是:
(1)在两点间连接一条线段;
(2)将线段向两方延长。
4、尺规作图中圆规的功能是:
(1)以任意一点为圆心,任意长为半径作一个圆;
(2)以任意一点为圆心,任意长为半径画一段弧;
5、熟练掌握以下作图语言:
(1)作射线××;
2、余角、补角只有数量上的关系,与其位置无关。
3、同位角、内错角、同旁内角只有位置上的关系,与其数量无关。
4、对顶角既有数量关系,又有位置关系。
五、平行线的判定方法
1、同位角相等,两直线平行。
2、内错角相等,两直线平行。
3、同旁内角互补,两直线平行。
4、在同一平面内,如果两条直线都平行于第三条直线,那么这两条直线平行。
(2)在射线上截取××=××;
(3)在射线××上依次截取××=××=××;
(4)以点×为圆心,××为半径画弧,交××于点×;
(5)分别以点×、点×为圆心,以××、××为半径作弧,两弧相交于点×;
(6)过点×和点×画直线××(或画射线××);
(7)在∠×××的外部(或内部)画∠×××=∠×××;
6、在作较复杂图形时,涉及基本作图的地方,不必重复作图的详细过程,只用一句话概括叙述就可以了。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1”。
12、单项式的次数仅与字母有关,与单项式的系数无关。
二、多项式
1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
七、积的乘方
初一数学下册基本知识点总结(通用8篇)
初一数学下册基本知识点总结(通用8篇)新人教版初一下册数学知识点总结归纳篇一一元一次方程一、几个概念1、一元一次方程:2、方程的解:使方程的未知数的值叫方程的解。
5、移项:叫做移项。
(切记:移项必须)。
二、解一元一次方程的一般步骤:①去分母,方程两边同乘各分母的(注意:去分母不漏乘,对分子添括号)②,③,④,⑤三、列方程(组)解应用题的一般步骤①。
设,②。
列,③。
解,④。
检,⑤。
答第七章二元一次方程组一、几个概念1、二元一次方程:2、二元一次方程组:3、二元一次方程组的解:使二元一次方程组的的两个未知数的值。
二、二元一次方程组的解法:1、代入消元的条件:将一个方程化为的形式。
(当一个方程中有一个未知数系数为±1时,最适合)。
2、加减消元的条件:两个方程中,其中一未知数的系数或。
(当两个方程中,其中一未知数系数成倍数关系时,最适合)。
三、解三元一次方程组的一般步骤:①。
先用代入法或加减法消去系数较简单的一个未知数,转化为;②。
然后再解,得到两个未知数的值;③。
最后将上步所得两个未知数的值代回前边其中一方程,求出另一未知数的值。
第八章一元一次不等式一、几个概念1、不等式:叫做不等式。
2、不等式的解:叫做不等式的解。
3、不等式的解集:5、一元一次不等式:6、一元一次不等式组:7、一元一次不等式组的解集:二、一元一次不等式(组)的解法:1、解一元一次不等式的一般步骤:①。
,②。
,③。
,④。
,⑤。
2、怎样在数轴上表示不等式的解集:①先定起点:有等号时用点;无等号时用点。
②再画范围:小于号向画;大于号向画。
3、一元一次不等式组的解法:先分别求;再求4、注意:①。
在不等式两边同时乘或除以负数时,不等号必须②。
求公共部分时:一般将各不等式的解集在同一数轴上表示;还有如下规律:同大取,同小取;“大小,小大”取,“大大,小小”则第九章多边形一、几个概念1、三角形的有关概念:①三角形:是由三条不在同一直线上的组成的平面图形,这三条就是三角形的边。
七年级下册数学知识点归纳(全)
【例】用正三角形与正方形铺满地面,设在一个顶点周围有m 个正三角形、n 个正方形,则m ,n 的值分别为多少?
平面直角坐标系
▲基本要求:在平面直角坐标系中
1. 给出一点,能够写出该点坐标
2. 给出坐标,能够找到该点
▲建系原则:原点、正方向、横纵轴名称(即x 、y )
√语言描述:以…(哪一点)为原点,以…(哪一条直线)为x 轴,以…(哪一条直线)为y 轴建立直角坐标系
▲ 基本概念:有顺序的两个数组成的数对称为(有序数对)
【三大规律】
1. 平移规律★
点的平移规律(P51归纳)
例 将向左平移3个单位,向上平移5个单位得到点Q ,则Q 点的坐标为(2,3)P -_____________
图形的平移规律(P52归纳)
重点题目:P53 练习; P54 3、4题; P55 7题。
2. 对称规律▲
关于x 轴对称,纵坐标取相反数
关于y 轴对称,横坐标取相反数
关于原点对称,横、纵坐标同时取相反数
例:P 点的坐标为,则P 点
(5,7)-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学下册知识点归纳整理七年级数学下册知识点归纳整理在我们平凡无奇的学生时代,相信大家一定都接触过知识点吧!知识点有时候特指教科书上或考试的知识。
相信很多人都在为知识点发愁,下面是小编帮大家整理的七年级数学下册知识点归纳整理,欢迎大家分享。
七年级数学下册知识点归纳整理篇1相交线与平行线1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。
性质是对顶角相等。
2、三线八角:对顶角(相等),邻补角(互补),同位角,内错角,同旁内角。
3、两条直线被第三条直线所截:同位角F(在两条直线的同一旁,第三条直线的同一侧)内错角Z(在两条直线内部,位于第三条直线两侧)同旁内角U(在两条直线内部,位于第三条直线同侧)4、两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。
其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。
5、垂直三要素:垂直关系,垂直记号,垂足6、垂直公理:过一点有且只有一条直线与已知直线垂直。
7、垂线段最短。
8、点到直线的距离:直线外一点到这条直线的垂线段的长度。
9、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
如果b//a,c//a,那么b//c10、平行线的判定:①同位角相等,两直线平行。
②内错角相等,两直线平行。
③同旁内角互补,两直线平行。
11、推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。
七年级数学下册知识点归纳整理篇2(一)正负数1.正数:大于0的数。
2.负数:小于0的数。
3.0即不是正数也不是负数。
4.正数大于0,负数小于0,正数大于负数。
(二)有理数1.有理数:由整数和分数组成的数。
包括:正整数、0、负整数,正分数、负分数。
可以写成两个整之比的形式。
(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。
如:π)2.整数:正整数、0、负整数,统称整数。
3.分数:正分数、负分数。
(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。
(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。
)2.数轴的三要素:原点、正方向、单位长度。
3.相反数:只有符号不同的两个数叫做互为相反数。
0的相反数还是0。
4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。
(四)有理数的加减法1.先定符号,再算绝对值。
2.加法运算法则:同号相加,到相同符号,并把绝对值相加。
异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
一个数同0相加减,仍得这个数。
3.加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变。
4.加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
5.a-b=a+(-b)减去一个数,等于加这个数的相反数。
七年级数学下册知识点归纳整理篇3丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、常见的几何体及其特点长方体:有8个顶点,12条棱,6个面,且各面都是长方形(正方形是特殊的长方形),正方体是特殊的长方体。
棱柱:上下两个面称为棱柱的底面,其它各面称为侧面,长方体是四棱柱。
棱锥:一个面是多边形,其余各面是有一个公共顶点的三角形。
圆柱:有上下两个底面和一个侧面(曲面),两个底面是半径相等的圆。
圆柱的表面展开图是由两个相同的圆形和一个长方形连成。
圆锥:有一个底面和一个侧面(曲面)。
侧面展开图是扇形,底面是圆。
球:由一个面(曲面)围成的几何体4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
5、正方体的平面展开图:11种6、截一个正方体:(1)用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
注意:①、正方体只有六个面,所以截面最多有六条边,即截面边数最多的图形是六边形.②、长方体、棱柱的截面与正方体的'截面有相似之处.(2)用平面截圆柱体,可能出现以下的几种情况.(3)用平面去截一个圆锥,能截出圆和三角形两种截面(还有其他截面,初中不予研究)(4)用平面去截球体,只能出现一种形状的截面——圆七年级数学下册知识点归纳整理篇4整式的加减一、代数式1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
2、用数值代替代数式里的字母,按照代数式里的运算关系计算得出的结果,叫做代数式的值。
二、整式1、单项式:(1)由数和字母的乘积组成的代数式叫做单项式。
(2)单项式中的数字因数叫做这个单项式的系数。
(3)一个单项式中,所有字母的指数的和叫做这个单项式的次数。
2、多项式(1)几个单项式的和,叫做多项式。
(2)每个单项式叫做多项式的项。
(3)不含字母的项叫做常数项。
3、升幂排列与降幂排列(1)把多项式按x的指数从大到小的顺序排列,叫做降幂排列。
(2)把多项式按x的指数从小到大的顺序排列,叫做升幂排列。
三、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。
2、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
合并同类项:(1)合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。
(2)合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
(3)合并同类项步骤:a.准确的找出同类项。
b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。
c.写出合并后的结果。
(4)在掌握合并同类项时注意:a.如果两个同类项的系数互为相反数,合并同类项后,结果为0.b.不要漏掉不能合并的项。
c.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。
说明:合并同类项的关键是正确判断同类项。
3、几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。
(2)按去括号法则去括号。
(3)合并同类项。
4、代数式求值的一般步骤:(1)代数式化简(2)代入计算(3)对于某些特殊的代数式,可采用“整体代入”进行计算。
图形的初步认识一、立体图形与平面图形1、长方体、正方体、球、圆柱、圆锥等都是立体图形。
此外棱柱、棱锥也是常见的立体图形。
2、长方形、正方形、三角形、圆等都是平面图形。
3、许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。
二、点和线1、经过两点有一条直线,并且只有一条直线。
2、两点之间线段最短。
3、点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。
类似的还有线段的三等分点、四等分点等。
4、把线段向一方无限延伸所形成的图形叫做射线。
三、角1、角是由两条有公共端点的射线组成的图形。
2、绕着端点旋转到角的终边和始边成一条直线,所成的角叫做平角。
3、绕着端点旋转到终边和始边再次重合,所成的角叫做周角。
4、度、分、秒是常用的角的度量单位。
把一个周角360等分,每一份就是一度的角,记作1°;把1度的角60等分,每份叫做1分的角,记作1′;把1分的角60等分,每份叫做1秒的角,记作1″。
四、角的比较从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。
类似的,还有叫的三等分线。
五、余角和补角1、如果两个角的和等于90(直角),就说这两个角互为余角。
2、如果两个角的和等于180(平角),就说这两个角互为补角。
3、等角的补角相等。
4、等角的余角相等。
六、相交线1、定义:两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。
其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
2、注意:⑴垂线是一条直线。
⑵具有垂直关系的两条直线所成的4个角都是90。
⑶垂直是相交的特殊情况。
⑷垂直的记法:a⊥b,AB⊥CD。
3、画已知直线的垂线有无数条。
4、过一点有且只有一条直线与已知直线垂直。
5、连接直线外一点与直线上各点的所有线段中,垂线段最短。
简单说成:垂线段最短。
6、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
7、有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。
两条直线相交有4对邻补角。
8、有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。
两条直线相交,有2对对顶角。
对顶角相等。
七、平行线1、在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:a∥b。
2、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
3、如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
4、判定两条直线平行的方法:(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
简单说成:同位角相等,两直线平行。
(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。
简单说成:内错角相等,两直线平行。
(3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。
简单说成:同旁内角互补,两直线平行。
5、平行线的性质(1)两条平行线被第三条直线所截,同位角相等。
简单说成:两直线平行,同位角相等。
(2)两条平行线被第三条直线所截,内错角相等。
简单说成:两直线平行,内错角相等。
(3)两条平行线被第三条直线所截,同旁内角互补。
简单说成:两直线平行,同旁内角互补。