八年级数学下册《勾股定理》知识点

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学下册《勾股定理》知识点

八年级数学下册《勾股定理》知识点

在日常的学习中,说到知识点,大家是不是都习惯性的重视?知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。你知道哪些知识点是真正对我们有帮助的吗?下面是店铺为大家收集的八年级数学下册《勾股定理》知识点,仅供参考,欢迎大家阅读。

八年级数学下册《勾股定理》知识点篇1

1.勾股定理的内容:

如果直角三角形的两直角边分别是a、b,斜边为c,那么a2+b2=c2.即直角三角形中两直角边的平方和等于斜边的平方。

注:勾最短的边、股较长的直角边、弦斜边。

勾股定理又叫毕达哥拉斯定理

2.勾股定理的逆定理:

如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

3.勾股数:

满足a2 +b2=c2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.常用勾股数:3、4、5; 5、12、13;7、24、25;8、15、17。

4.勾股定理常常用来算线段长度,对于初中阶段的线段的计算起到很大的作用

例题精讲:

练习:

例1:若一个直角三角形三边的长分别是三个连续的自然数,则这个三角形的周长为

解析:可知三边长度为3,4,5,因此周长为12

(变式)一个直角三角形的三边为三个连续偶数,则它的三边长分别为

解析:可知三边长度为6,8,10,则周长为24

例2:已知直角三角形的两边长分别为3、4,求第三边长.

解析:第一种情况:当直角边为3和4时,则斜边为5

第二种情况:当斜边长度为4时,一条直角边为3,则另一边为根号7

《点评》此题是一道易错题目,同学们应该认真审题!

例3:一个直角三角形中,两直角边长分别为3和4,下列说法正确的是( )

A.斜边长为25

B.三角形周长为25

C.斜边长为5

D.三角形面积为20

解析:根据勾股定理,可知斜边长度为5,选择C

八年级数学下册《勾股定理》知识点篇2

勾股定理

在任何一个直角三角形(Rt△)中(等腰直角三角形也算在内),两条直角边的长度的平方和等于斜边长度的平方,这就叫做勾股定理。即勾的长度的平方加股的长度的平方等于弦的长度的平方。[1]如果用a,b,c分别表示直角三角形的两条直角边和斜边,那么a+b=c.

简介

勾股定理是余弦定理的一个特例。这个定理在中国又称为“商高定理”(相传大禹治水时,就会运用此定理来解决治水中的计算问题),在外国称为“毕达哥拉斯定理”或者“百牛定理”。(毕达哥拉斯发现了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”)。

他们发现勾股定理的时间都比中国晚(中国是最早发现这一几何宝藏的国家)。目前初二学生开始学习,教材的证明方法大多采用赵爽弦图,证明使用青朱出入图。

勾股定理是一个基本的几何定理,是数形结合的纽带之一。

直角三角形两直角边的平方和等于斜边的平方。如果用a、b和c 分别表示直角三角形的两直角边和斜边,那么a^2+b^2=c^2。

勾股定理内容

直角三角形(等腰直角三角形也算在内)两直角边(即“勾”“股”短的为勾,长的为股)边长平方和等于斜边(即“弦”)边长的平方。

也就是说设直角三角形两直角边为a和b,斜边为c,那么a的平方+b的平方=c的平方a+b=c。

勾股定理现发现约有500种证明方法,是数学定理中证明方法最多的定理之一。

中国古代著名数学家商高说:“若勾三,股四,则弦五。”它被记录在了《九章算术》中。

推广

1、如果将直角三角形的斜边看作二维平面上的向量,将两直角边看作在平面直角坐标系坐标轴上的投影,则可以从另一个角度考察勾股定理的意义。即,向量长度的平方等于它在其所在空间一组正交基上投影长度的平方之和。

2.勾股定理是余弦定理的特殊情况。

八年级数学下册《勾股定理》知识点篇3

勾股定理

内容:直角三角形两直角边的平方和等于斜边的平方;

表示方法:如果直角三角形的两直角边分别为a,b,斜边为c,那么.

勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的.直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方。

勾股定理的证明

勾股定理的证明方法很多,常见的是拼图的方法

用拼图的方法验证勾股定理的思路是

①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变

②根据同一种图形的面积不同的表示方法,列出等式,推导出勾

股定理。

勾股定理的适用范围

勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形。

勾股定理的逆定理

如果三角形三边长a,b,c满足,那么这个三角形是直角三角形,其中c为斜边.

①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和与较长边的方作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;若,时,以a,b,c为三边的三角形是钝角三角形;若,时,以a,b,c为三边的三角形是锐角三角形;

②定理中a,b,c及只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足,那么以a,b,c为三边的三角形是直角三角形,但是b为斜边.

③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形

质数和合数应用

1、质数与密码学:所谓的公钥就是将想要传递的信息在编码时加入质数,编码之后传送给收信人,任何人收到此信息后,若没有此收信人所拥有的密钥,则解密的过程中(实为寻找素数的过程),将会因为找质数的过程(分解质因数)过久,使即使取得信息也会无意义。

2、质数与变速箱:在汽车变速箱齿轮的设计上,相邻的两个大小齿轮齿数设计成质数,以增加两齿轮内两个相同的齿相遇啮合次数的最小公倍数,可增强耐用度减少故障。

数学的方法技巧整理

预习的方法

相关文档
最新文档