《第25章 概率初步》同步练习及答案
人教版九年级数学上册 第25章《概率初步》单元同步练习(有答案)
九年级数学第25章《概率初步》单元同步练习一、选择题:1、小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为 10% ,他明天将参加一场比赛,下面几种说法正确的是( )A.小亮明天的进球率为 10%B.小亮明天每射球10次必进球1次C.小亮明天有可能进球D.小亮明天肯定进球2、下列不是必然事件的是()A. 角平分线上的点到角两边的距离相等B. 面积相等的两个三角形全等C. 三角形任意两边之和大于第三边D. 三角形内心到三边距离相等3、有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为()A. 4/5B. 3/5C. 2/5D. 1/54、小燕一家三口在商场参加抽奖活动,每人只有一次抽奖机会:在一个不透明的箱子中装有红、黄、白三种球各1 个,这些球除颜色外无其他差别,从箱子中随机摸出 1 个球,然后放回箱子中轮到下一个人摸球,三人摸到球的颜色都不相同的概率是()A. 1/27B. 1/3C. 2/9D. 1/95、甲、乙两人各自掷一个普通的正方体骰子,如果两者之积为偶数,甲得1分;如果两者之积为奇数,乙得1分,此游戏()A. 对甲有利B. 对乙有利C. 是公平的D. 以上都有不对6、如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A. 1/2B. 1/3C. 4/9D. 5/97、有三条带子,第一条的一头是黑色,另一头是黄色,第二条的一头是黄色,另一头是白色,第三条的一头是白色,另一头是黑色.若任意选取这三条带子的一头,颜色各不相同的概率是( )A. 1/2B. 1/3C. 1/4D. 1/58、某小组做“用频率估计概率”的实验时,绘出的某一结果出现的频率折线图,则符合这一结果的实验可能是( )A.抛一枚硬币,出现正面朝上B.掷一个正六面体的骰子,出现 3 点朝上C.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃D.从一个装有 2 个红球 1 个黑球的袋子中任取一球,取到的是黑球二、填空题:9、某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是.10、小明和小丽按如下规则做游戏:桌面上放有7根火柴棒,每次取1根或2根,最后取完者获胜.若由小明先取,且小明获胜是必然事件,则小明第一次应该取走火柴棒的根数是.11、中华文化源远流长,如图是中国古代文化符号的太极图,圆中的黑色部分和白色部分关于圆心中心对称.在圆内随机取一点,则此点取黑色部分的概率是______.12、一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字1—6)朝上一面的数字。
人教版九年级上册数学第二十五章 概率初步 含答案
人教版九年级上册数学第二十五章概率初步含答案一、单选题(共15题,共计45分)1、不透明的袋子中有5张卡片,上面分别写着数字1,2,3,4,5,除数字外五张卡片无其它差别.从袋子中随机摸出一张卡片,其数字为偶数的概率是()A. B. C. D.2、下列事件是必然事件的是()A.抛一枚硬币,正面朝上B.通常加热到100℃,水沸腾C.明天会下雪D.经过某一有交通信号灯的路口恰好遇到红灯3、下列说法中正确的是()A.“打开电视,正在播放《新闻联播》”是必然事件B.了解某种饮料中含色素的情况,采用抽样调查C.数据1,1,2,2,3的众数是3D.一组数据的波动越大,方差越小4、关于概率,下列说法正确的是()A.莒县“明天降雨的概率是75%”表明明天莒县会有75%的时间会下雨B.随机抛掷一枚质地均匀的硬币,落地后一定反面向上C.在一次抽奖活动中,中奖的概率是1%,则抽奖100次就一定会中奖D.同时抛掷两枚质地均匀硬币,“一枚硬币正面向上,一枚硬币反面向上”的概率是5、做重复实验:抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的频率约为0.44,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为()A.0.22B.0.44C.0.50D.0.566、下列事件中,必然事件是()A.抛物线y=ax 2的开口向上B.投掷一枚质地均匀的硬币100次,正面向上的次数为50次C.任意一个一元二次方程都有实数根D.三角形三个内角的和等于1807、在有22名男生和20名女生的班级中,随机抽签确定一名学生代表,则下列说法正确的是()A.男、女生做代表的可能性一样大B.男生做代表的可能性较大C.女生做代表的可能性较大D.男、女生做代表的可能性的大小不能确定8、如果事件A发生的概率是,那么在相同条件下重复试验,下列4种陈述中,不正确的有①说明做100次这种试验,事件A必发生1次②说明事件A发生的频率是③说明做100次这种试验中,前99次事件A没发生,后1次事件A才发生④说明做100次这种试验,事件A可能发生1次()A.①、②、③B.①、②、④C.②、③、④D.①、②、③、④9、在一个不透明的容器中装有若干个除颜色外其他都相同的黑球和白球,张伟每次摸出一个球记录下颜色后放回,通过多次试验后发现,摸到黑球的频率稳定在0.2左右,若布袋中白球有28个,则布袋中黑球的个数可能为()A.6B.7C.8D.910、袋中有3个红球,2个白球,若从袋中任意摸出1个球,则摸出白球的概率是()A. B. C. D.11、下列说法正确的是()A.打开电视,它正在播天气预报是不可能事件B.要考察一个班级中学生的视力情况适合用抽样调查C.抛掷一枚均匀的硬币,正面朝上的概率是,若抛掷10次,就一定有5次正面朝上.D.甲、乙两人射中环数的方差分别为,,说明乙的射击成绩比甲稳定12、甲、乙两人下棋,甲获胜的概率为30%,和棋的概率为50%,那么乙不输的概率为()A.20%B.50%C.70%D.80%13、某校食堂每天中午为学生提供A、两种套餐,甲乙两人同去该食堂打饭,那么甲乙两人选择同款套餐的概率为()A. B. C. D.14、甲、乙两盒中各放入分别写有数字1,2,3的三张卡片,每张卡片除数字外其他完全相同.从甲盒中随机抽出一张卡片,再从乙盒中随机摸出一张卡片,摸出的两张卡片上的数字之和是3的概率是()A. B. C. D.15、下列事件中确定事件是A.掷一枚均匀的硬币,正面朝上B.买一注福利彩票一定会中奖C.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球D.掷一枚六个面分别标有,1,2,3,4,5,6的均匀正方体骰子,骰子停止转动后奇数点朝上二、填空题(共10题,共计30分)16、小颖妈妈经营的玩具店某次进了一箱黑白两种颜色的塑料球3000个,为了估计两种颜色的球各有多少个,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到黑球的频率在0.7附近波动,据此可以估计黑球的个数约是________.17、某同学家长应邀参加孩子就读中学的开放日活动,他打算上午随机听一节孩子所在1班的课,下表是他拿到的当天上午1班的课表,如果每一节课被听的机会均等,那么他听数学课的概率是________.18、如图所示,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1、2、3、4、5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P(偶数),指针指向标有奇数所在区域的概率为P(奇数),则P(偶数)________ P(奇数)(填“>”“<”或“=”).19、“小红所在班级中有位同学的身高是4米”是________事件.20、瑞安某服装厂对一批服装质量抽检情况如下:抽检件数(件)10 100 200 500 1000正品件数(件)10 97 194 475 950根据表格中的数据,从这批服装中任选一件是正品的概率约为________.21、在一个不透明的袋子中装有除颜色外其他均相同的4个红球,3个白球,2个绿球,则摸出绿球的概率是________.22、如图,正六边形卡片被分成六个全等的正三角形.若向该六边形内投掷飞镖,则飞镖落在阴影区域的概率为________ .23、一个不透明的盒子里装有120个红、黄两种颜色的小球,这些球除颜色外其他完全相同,每次摸球前先将盒子里的球摇匀任意摸出一个球记下颜包后再放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在0.4,那么估计盒子中红球的个数为________.24、如图,点O为正方形的中心,点E、F分别在正方形的边上,且∠EOF=90°,随机地往图中投一粒米,则米粒落在图中阴影部分的概率是________.25、如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为________(精确到0.1).投篮次数(n)50 100 150 200 250 300 500 投中次数(m)28 60 78 104 123 152 251 投中频率(m/n) 0.56 0.60 0.52 0.52 0.49 0.51 0.50三、解答题(共5题,共计25分)26、有四张正面分别写有数字:20,15,10,5的卡片,背面完全相同,将卡片洗匀后背面朝上.放在桌面上小明先随机抽取一张,记下牌面上的数字(不放回),再从剩下的卡片中随机抽取一张,记下牌面上的数字.如果卡片上的数字分别对应价值为20元,15元,10元,5元的四件奖品,请用列表或画树状图法求小明两次所获奖品总值不低于30元的概率?27、一个不透明的盒子中装有2枚黑色的棋子和1枚白色的棋子,每枚棋子除了颜色外其余均相同.从盒中随机摸出一枚棋子,记下颜色后放回并搅匀,再从盒子中随机摸出一枚棋子,记下颜色,用画树状图(或列表)的方法,求两次摸出的棋子颜色不同的概率.28、如图,转盘A中的4个扇形的面积相等,转盘B中的3个扇形面积相等.小明设计了如下游戏规则:甲、乙两人分别任意转动转盘A、B一次,当转盘停止转动时,将指针所落扇形中的2个数相乘,如果所得的积是偶数,那么是甲获胜;如果所得的积是奇数,那么是乙获胜.这样的规则公平吗?为什么?29、中秋节来临,小红家自己制作月饼.小红做了三个月饼,1个芝麻馅,2个豆沙馅;小红的爸爸做了两个月饼,1个芝麻馅,1个豆沙馅(除馅料不同,其它都相同).做好后他们请奶奶品尝月饼,奶奶从小红做的月饼中拿了一个,从小红爸爸做的月饼中拿了一个.请利用列表或画树状图的方法求奶奶拿到的月饼都是豆沙馅的概率.30、已知直线L1∥L2,点A,B,C在直线L1上,点E,F,G在直线L2上,任取三个点连成一个三角形,求:(1)连成△ABE的概率;(2)连成的三角形的两个顶点在直线L2上的概率.参考答案一、单选题(共15题,共计45分)1、B2、B3、B4、D5、D6、D7、B9、B10、B11、D12、C13、A14、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、27、29、30、。
人教版初三数学九年级上册第25章概率初步随机事件同步训练题含答案
人教版初三数学九年级上册第25章概率初步随机事件同步训练题含答案1. 以下事情中是肯定事情的是( )A.明天太阳从西边升起B.篮球队员在罚球线投篮一次,未投中C.实心铁球投入水中会沉入水底D.抛出一枚硬币,落地后正面向上2. 以下事情是随机事情的是( )A.姚明站在罚球线上投篮一次,投中B.农历初一的早晨能看到圆月C.在只装有五个红球的袋中摸出1球是红球D.在一小时内人步行了80千米3. 以下事情中属于不能够事情的是( )A.某投篮高手投篮一次就进球B.翻开电视机,正在播放世界杯足球竞赛C.掷一次骰子,向上的一面出现的点数不大于6D.在一个规范大气压下,90°的水会沸腾4. 一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相反.假定从中恣意摸出一个球,那么以下表达正确的选项是( )A.摸到红球是肯定事情B.摸到白球是不能够事情C.摸到红球与摸到白球的能够性相等D.摸到红球比摸到白球的能够性大5. 以下成语描画的事情为随机事情的是( )A.水涨船高B.守株待兔C.水中捞月D.缘木求鱼6. 以下事情中,是确定事情的是( )A.打雷后会下雨B.明天是晴天C.1小时等于60分钟D.下雨后有彩虹7. 以下事情中,是不能够事情的是( )A.某个数有平方根B.某个数的相反数等于它自身C.三角形中有两个直角D.三角形中有两条边相等8. 袋中有红球4个,白球假定干个,它们只要颜色上的区别.从袋中随机地取出一个球,假设取到白球的能够性较大,那么袋中白球的个数能够是( ) A.3个B.缺乏3个C.4个D.5个或5个以上9. 不透明的袋子中装有4个红球、3个黄球和5个蓝球,每个球除颜色不同外其他都相反,从中恣意摸出一个球,那么摸出球的能够性最大.10. 一只不透明的袋子共装有3个小球,它们的标号区分为1,2,3,从中摸出1个小球,标号为〝4”,这个事情是(填〝肯定事情〞〝不能够事情〞或〝随机事情〞).11. 九年级(1)班共有先生44人,其中男生有26人,女生有18人,假定在此班上恣意找一名先生,找到男生的能够性比找到女性的能够性(填〝大〞或〝小〞).12. 以下事情:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100℃;③掷一次骰子,向上一面的数字是2;④度量四边形的内角和,结果是360°.其中是随机事情的是(填序号).13. 抛掷1枚区分标有1、2、3、4、5、6的正六面体骰子,写出这个实验中的一个随机事情是,写出这个实验中的一个肯定事情是,写出这个实验中的一个不能够事情是 .14. ①②③④⑤区分表示〝一定发作〞〝很有能够发作〞〝能够发作〞〝不太能够发作〞〝不能够发作〞,请描画以下事情发作的能够性大小(填序号).(1)翻开电视,正在播放科教片:;(2)100件商品中有5件次品,95件正品,从这100件产品中任取一件,取到正品;;(3)李波同窗能跳10米高:;(4)从装有15只白球的不透明的口袋中摸出一只白球:;(5)七位同窗每人各报一个数,所组成的一个七位数恰恰是王教员家的号码:.15. 如图是几个转盘,假定区分用它们做转盘游戏,你以为每个转盘转出白色和黄色的能够性相反吗?假定不同,哪个能够性大?16. 以下事情中,哪些是肯定事情?哪些是不能够事情?哪些是随机事情?①太阳从西边落下;②某人的体温是100℃;③一元二次方程x2+2x+3=0无实数解;④经过有信号灯的十字路口,遇见红灯.17. 小明与小强用如下图的转盘(六个区域大小一样)做游戏,两人随意转它,转盘中止后,假定指针指向阴影区域,那么小明胜;假定转盘指向白色区域,那么小强胜,你以为此游戏对双方公允吗?为什么?18. 一个不透明的口袋里有5个红球、3个白球、2个绿球,这些球外形和大小完全相反,小明现从中任摸一个球.(1)你以为小明摸到的球很能够是什么颜色?为什么?(2)摸到每一种颜色球的能够性一样吗?(3)假设想让小明摸到白色球和白色球的能够性一样,该怎样办?写出你的方案.参考答案;1---8 CADDB CCD9. 蓝10. 不能够事情11. 大12. ①③13. 抛掷这枚正六面体骰子一次恰恰2点朝上抛掷这枚正六面体骰子一次,朝上的数总大于0小于7抛掷一枚六面体骰子一次出现7点朝上14. (1)③(2) ②(3) ⑤(4) ①(5) ④15. 解:①③能够性相反;②④能够性不同,关于②转出白色的能够性大,关于④转出黄色的能够性大16. 解:事情①③是肯定事情;事情②是不能够事情;事情④是随机事情.17. 解:公允,由于阴影局部和白色局部面积相等,指针中止在阴影和白色区域的时机相等.18. 解:(1)白色由于红球最多;(2)不一样;(3)取2个红球出来,或放2个白球出来。
人教版九年级上册数学第二十五章 概率初步 含答案
人教版九年级上册数学第二十五章概率初步含答案一、单选题(共15题,共计45分)1、在不透明的布袋中装有1个红球,2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,则摸出红球的概率是()A. B. C. D.2、在一个不透明的盒子里有3个分别标有数字5,6,7的小球,它们除数字外其他均相同.充分摇匀后,先摸出1个球不放回,再摸出1个球,那么这两个球上的数字之和为奇数的概率为().A. B. C. D.3、下列成语所描述的事件是随机事件的是()A.水中捞月B.空中楼阁C.守株待兔D.瓮中捉鳖4、从-3,5,-7,10四个数中任取一个数为奇数的概率是( )A. B. C. D.15、下列诗句所描述的事件中,是不可能事件的是()A.手可摘星辰B.锄禾日当午C.大漠孤烟直D.黄河入海流6、下列说法正确的是()A.方差越大,数据的波动越大B.某种彩票中奖概率为1%,是指买100张彩票一定有1张中奖C.旅客上飞机前的安检应采用抽样调查D.掷一枚硬币,正面一定朝上7、公路上行驶的一辆汽车车牌为偶数的频率约是()A.50%B.100%C.由各车所在单位或个人定D.无法确定8、从长度分别为3,5,7,9,11的5条线段中任取3条,这3条线段能组成三角形的概率为 ( )A. B. C. D.9、在一个不透明的布袋中装有2个白球和3个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,摸到白球的概率是()A. B. C. D.10、袋子中装有4个黑球、2个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别.在看不到球的情况下,随机从袋子中摸出1个球.下面说法正确的是()A.这个球一定是黑球B.这个球一定是白球C.“摸出黑球”的可能性大D.“摸出黑球”和“摸出白球”的可能性一样大11、一天晚上,婷婷帮助妈妈清洗3个只有颜色不同的有盖茶杯,突然停电了,婷婷只好把杯盖和杯身随机地搭配在一起,则颜色搭配正确的概率是()A. B. C. D.12、同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率为()A. B. C. D.13、有20张背面完全一样的卡片,其中8张正面印有天鹅湖风光,7张正面印有黄河入海口自然风景,5张正面印有孙武湖景色.把这些卡片的背面朝上,搅匀后从中随机抽出一张卡片,抽到正面是天鹅湖风光卡片的概率是()A. B. C. D.14、如图,两个转盘A,B都被分成了3个全等的扇形,在每一扇形内均标有不同的自然数,固定指针,同时转动转盘A,B,两个转盘停止后观察两个指针所指扇形内的数字(若指针停在扇形的边线上,当作指向上边的扇形).小明每转动一次就记录数据,并算出两数之和,其中“和为7”的频数及频率如下表:如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率为()A.0.33B.0.34C.0.20D.0.3515、下列事件是必然事件的是()A.打开电视机,正在播放动画片B.2018年世界杯德国队一定能夺得冠军 C.某彩票中奖率是1%,买100张一定会中奖 D.投掷一枚普通的正方体骰子,连续投掷3次,出现的点数之和不可能等于19二、填空题(共10题,共计30分)16、在不透明的口袋中装有除颜色外其它都相同的2个黑球和3个白球,任意从口袋中摸出一个球来,摸到白球的概率为________.17、某商场在“元旦”期间推出购物摸奖活动,摸奖箱内有除颜色以外完全相同的红色、白色乒乓球各两个.顾客摸奖时,一次摸出两个球,如果两个球的颜色相同就得奖,颜色不同则不得奖.那么顾客摸奖一次,得奖的概率是________.18、某数学活动小组自制一个飞镖游戏盘,如图,若向游戏盘内投掷飞镖,投掷在阴影区域的概率是________.19、如图,随机地闭合开关S1, S2, S3, S4, S5中的三个,能够使灯泡L 1, L2同时发光的概率是________.20、如图,有三个同心圆,由里向外的半径依次是2cm, 4cm, 6cm将圆盘分为三部分,飞镖可以落在任何一部分内,那么飞镖落在阴影圆环内的概率是________。
人教版初中九年级数学上册第二十五章《概率初步》习题(含答案解析)
一、选择题1.在不透明的布袋中,装有三个颜色分别为红色、白色、绿色的小球,所有小球除颜色外其他都相同,若分别从两个布袋中随机各取出一个小球,则所取出的两个小球颜色相同的概率是()A.13B.12C.23D.12.甲、乙、丙三个小朋友玩滑梯,他们通过抽签的方式决定玩滑梯的先后顺序,则顺序恰好是甲→乙→丙的概率是()A.13B.14C.15D.163.做重复试验:抛掷一枚啤酒瓶盖1 000次,经过统计得“凸面向上”的次数为420次,则可以由此估计抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为( )A.0.50 B.0.21 C.0.42 D.0.584.下列事件中,属于必然事件的是()A.掷一枚硬币,正面朝上B.三角形任意两边之差小于第三边C.一个三角形三个内角之和大于180°D.在只有红球的盒子里摸到白球5.如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,那么它最终停留在黑色区域的概率是()A.14B.34C.12D.386.在“众志成城,共战疫情”党员志愿者进社区服务活动中,小晴和小霞分别从“A,B,C 三个社区”中随机选择一个参加活动,两人恰好选择同一社区的概率是()A.13B.23C.19D.297.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是()A.13B.415C.15D.2158.如图,随机闭合开关1S,2S,3S中的两个,则能让两盏灯泡同时发光的概率为()A.23B.12C.13D.169.现有两个可以自由转动的转盘,每个转盘分成三个相同的扇形,涂色情况如图所示,指针的位置固定,同时转动两个转盘,则转盘停止后指针指向同种颜色区域的概率是()A.19B.16C.23D.1310.在70周年国庆阅兵式上有两辆阅兵车的车牌号如图所示(每辆阅兵车的车牌号含7位数字或字母),则“9”这个数字在这两辆车牌号中出现的概率为()A.37B.314C.326D.11211.盒子中装有形状、大小完全相同的3个小球,球上分别标有数字-1,1,2,从中随机取出一个,其上的数字记为k,放回后再取一次,其上的数记为b,则函数y=kx+b是增函数的概率为()A.38B.116C.12D.2312.三张外观相同的卡片分别标有数字1,2,3,从中随机一次性抽出两张,则这两张卡片上的数字恰好都小于3的概率是()A.19B.16C.13D.2313.罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响很大.如图是对某球员罚球训练时命中情况的统计:下面三个推断:①当罚球次数是500时,该球员命中次数是411,所以“罚球命中”的概率是0.822;②随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.812;③由于该球员“罚球命中”的频率的平均值是0.809,所以“罚球命中”的概率是0.809.其中合理的是()A.①B.②C.①③D.②③第II卷(非选择题)请点击修改第II卷的文字说明参考答案14.下列事件发生的可能性为0的是( )A.掷两枚骰子,同时出现数字“6”朝上B.小明从家里到学校用了10分钟,从学校回到家里却用了15分钟C.今天是星期天,昨天必定是星期六D.小明步行的速度是每小时50千米15.有下列事件:①367人中必有2人的生日相同;②抛掷一枚均匀的骰子两次,朝上一面的点数之和一定不小于2;③在标准大气压下,温度低于0℃时冰融化;④如果a,b 为实数,那么a+b=b+a.其中是必然事件的有( )A.1个B.2个C.3个D.4个二、填空题16.一个盒子中装有10个红球和若干个白球,这些球除颜色外都相同,摇匀后从中随机摸出一个球,若摸到白球的概率为57,则盒子中原有的白球的个数为_________个.17.一只袋中装有三只完全相同的小球,三只小球上分别标有1,2-,3,第一次从袋中摸出一只小球,把这只小球的标号数字记作一次函数y kx b=+中的k,然后放回袋中搅匀后,再摸出一只小球,把这只小球的标号数字记作一次函数y kx b=+中的b.则一次函数y kx b=+的图象经过一、二、三象限的概率为______.18.在3*4的正方形网格中,有三块小正方形被涂黑色,其余均为白色(如图),先任选一个白色的小正方形涂黑,使黑色部分所构成的图形是轴对称图形的概率是:_______.19.从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是__________. 20.有两组牌,每组三张,牌面上的数字分别是1,2,3,且除数字外均相同,若从每组摸出一张牌,那么两张牌面数字和是4的概率是________.21.重庆市某校初二(3)班同学,在学校组织的语文作文选拔考试中,有三名同学满分,其中有一名男生和两名女生,现在从三名满分同学中随机抽取两名同学参加重庆市优秀作文比赛,则选出来的两名同学刚好是一男一女的概率是_____.22.一个仅装有球的不透明布袋里共有4个球(只有编号不同),编号分别为1,2,3,5.从中任意摸出一个球,记下编号后放回,搅匀,再任意摸出一个球,则两次摸出的球的编号之和为偶数的概率是_____.23.在一个不透明的布袋中装有红色、白色玻璃球共60除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到白色球的频率稳定在30%左右,则口袋中白色球可能有______个.24.往一个装了很多黑球的袋子里放入10个白球,每次倒出5个,记下所倒出的白球的数目,再把它们放回去,共倒了120次,倒出白球共180个,袋子里原有黑球约______个.25.如图是计算机中“扫雷"游戏的画面,在99⨯小方格的正方形雷区中,随机埋藏着10颗地雷,每个小方格内最多只能藏1颗地雷.小红在游戏开始时随机踩中一个方格,踩中后出现了如图所示的情况,我们把与标号1的方格相邻的方格记为A区域(画线部分),A 区域外的部分记为B区域,数字1表示在A区域中有1颗地雷,那么第二步踩到地雷的概率A区域______B区域(填“>”“<”“=”).26.完全相同的4个小球,上面分别标有数字1、-1、2、-2,将其放入一个不透明的盒子中摇匀,再从中随机摸球两次(第一次摸出球后放回摇匀).把第一次、第二次摸到的球上标有的数字分别记作m,n,以m,n分别作为一个点的横坐标与纵坐标,定义点(),m n在反比例函数kyx=上为事件kQ(44,k k-≤≤为整数),当kQ的概率最大时,则k的所有可能的值为__________.三、解答题27.2017年《星洲日报》报道,西安被国际知名旅游指南《孤独星球》评选为亚洲十大最佳旅游地.截至2020年1月,西安已有4家国家5A级旅游景区,分别是A:西安市秦始皇兵马俑博物馆(2007年);B:西安市华清池景区(2007年);C:西安市大雁塔·大唐芙蓉园景区(2011年);D:西安市城墙·碑林历史文化景区(2018年).欢乐同学于父母计划在周末期间从中选择部分景区游玩.(1)欢乐同学一家选择D:西安市城墙·碑林历史文化景区(2018年)的概率是多少?(2)若欢乐同学一家在选择D:西安市城墙·碑林历史文化景区(2018年)后,他们再从剩下的景区中任选两个景区去游玩,试求选择A、C两个景区的概率.(要求画树状图或列表求概率)28.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(为了方便记录,把a≤x<b记作:[a,b).)最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天数216362574以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.29.某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整统计图.请你根据图中信息,回答下列问题:(1)本次共调查了名学生.(2)在扇形统计图中,“歌曲”所在扇形的圆心角等于度.(3)补全条形统计图(标注频数).(4)根据以上统计分析,估计该校2000名学生中最喜爱小品的人数为人.(5)九年一班和九年二班各有2名学生擅长舞蹈,学校准备从这4名学生中随机抽取2名学生参加舞蹈节目的编排,那么抽取的2名学生恰好来自同一个班级的概率是多少?30.在一只不透明的口袋里,装有若干个除了颜色外均相同的小球,某数学学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:(1)上表中的a=________,b=________;(2)“摸到白球的”的概率的估计值是_________(精确到0.1);(3)如果袋中有12个白球,那么袋中除了白球外,还有多少个其它颜色的球?。
第25章 概率初步 测试卷(含答案)
第二十五章测试卷一、选择题(每题3分,共30分)1.下列事件中,属于随机事件的是()A.|-63|>|-8|B.抛一枚质地均匀的硬币一次,正面朝上C.地球自转的同时也在绕太阳公转D.袋中只有五个黄球,摸出一个球是白球2.抛掷一枚质地均匀的硬币2 000次,正面朝上的次数最有可能为() A.500 B.800C.1 000 D.1 2003.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是()A.12 B.34 C.112 D.5124.若在“正三角形”“平行四边形”“菱形”“正五边形”“正六边形”这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是()A.15 B.25 C.35 D.455.如图,▱ABCD的对角线AC,BD相交于点O,EF,GH过点O,且点E,H 在边AB上,点G,F在边CD上,向▱ABCD内部投掷飞镖(每次均落在▱ABCD 内,且落在▱ABCD内任何一点的机会均等)恰好落在阴影区域的概率为()A.12 B.13 C.14 D.18(第5题)(第8题)6.一个不透明的盒子里有n个除颜色外其他完全相同的球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出1个球记下颜色后再放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在0.3,那么估计盒子中球的个数n为()A.20 B.24 C.28 D.307.一个质地均匀的正方体骰子的六个面上分别刻有1到6的点数,将骰子抛掷两次,抛第一次将朝上一面的点数记为x,抛第二次将朝上一面的点数记为y,则点(x,y)落在直线y=-x+5上的概率为()A.118 B.112 C.19 D.148. 如图,五一期间,某景区规定A和B为入口,C,D,E为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A入口进入、从C或D出口离开的概率是()A.12 B.13 C.16 D.239.同时抛掷三枚质地均匀的硬币,至少有两枚硬币正面向上的概率是()A.38 B.58 C.23 D.1210.从1,2,3,4中任取两个不同的数,分别记为a和b,则a2+b2>19的概率是()A.12 B.512 C.712 D.13二、填空题(每题3分,共24分)11.下表记录了一名球员在罚球线上投篮的结果,这名球员投篮一次投中的概率约为________(精确到0.1).12.从长度分别为1,3,5,7的四条线段中任取三条作边,能构成三角形的概率为________.13. 在m2□6m□9的“□”中任意填上“+”或“-”,所得的代数式为完全平方式的概率为________.14.如图,随机闭合开关S1,S2,S3中的两个,能让灯泡发光的概率是________.(第14题)(第18题)15.经过某十字路口的汽车,可直行,也可左转或右转,如果这三种可能性大小相同,则两辆汽车经过该十字路口时都直行的概率是________.16.在5瓶饮料中,有2瓶已过了保质期,随机从这5瓶饮料中取2瓶,则至少有1瓶过保质期的饮料的概率为________.17.同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是________.18.如图,有两个转盘A,B,在每个转盘各自的两个扇形区域中分别标有数字1,2,分别转动转盘A,B,当转盘停止转动时,若事件“指针都落在标有数字1的扇形区域内”的概率是19,则转盘B中标有数字1的扇形的圆心角的度数是________.三、解答题(19~21题每题10分,其余每题12分,共66分)19.小兰和小颖用下面两个可以自由转动的转盘做游戏,每个转盘被分成面积相等的几个扇形,转动两个转盘各一次,若两次指针所指数字之和小于4,则小兰胜,否则小颖胜(指针指在分界线时重转),这个游戏对双方公平吗?请用画树状图法或列表法说明理由.20.一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球、8个黑球、7个红球.(1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是1 3,求从袋中取出黑球的个数.21.将图中的A型、B型、C型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.(1)搅匀后从中摸出1个盒子,求摸出的盒子中是A型矩形纸片的概率;(2)搅匀后先从中摸出1个盒子(不放回),再从余下的两个盒子中摸出1个盒子,求2次摸出的盒子中的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接).22.在甲、乙两个不透明的口袋中,分别有大小、材质完全相同的小球,其中甲口袋中的小球上分别标有数字1,2,3,4,乙口袋中的小球上分别标有数字2,3,4,先从甲口袋中任意摸出一个小球,记下数字为m,再从乙口袋中摸出一个小球,记下数字为n.(1)请用列表或画树状图的方法表示出所有(m,n)可能的结果.(2)若m,n都是方程x2-5x+6=0的解,则小明获胜;若m,n都不是方程x2-5x+6=0的解,则小利获胜,问他们两人谁获胜的概率大?23.某中学开设的体育选修课有篮球、足球、排球、羽毛球、乒乓球,学生可以根据自己的爱好选修其中1门.某班班主任对全班同学的选课情况进行了调查统计,制成了两幅不完整的统计图(图①和图②).(1)请你求出该班的总人数,并补全条形统计图(注:在所补小矩形上方标出人数).(2)在该班团支部4人中,有1人选修排球、2人选修羽毛球、1人选修乒乓球.如果该班班主任要从他们4人中任选2人作为学生会候选人,那么选出的2人中恰好有1人选修排球、1人选修羽毛球的概率是多少?24.某球室有三种品牌的4个乒乓球,价格是7,8,9(单位:元)三种.从中随机拿出一个球,已知P(一次拿到8元球)=1 2.(1)求这4个球价格的众数.(2)若甲组已拿走一个7元球训练,乙组准备从剩余3个球中随机拿一个训练.①所剩的3个球价格的中位数与原来4个球价格的中位数是否相同?并简要说明理由.②乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如下表)求乙组两次都拿到8元球的概率.答案一、1.B 2.C 3.D 4.C 5.C 6.D 7.C 8.B 9.D 10.D 二、11.0.5 12.14 13.12 14.23 15.19 16.710 17.1418.80° 设转盘B 中指针落在标有数字1的扇形区域内的概率为x .根据题意,得12x =19,解得x =29.∴转盘B 中标有数字1的扇形的圆心角的度数为360°×29=80°.三、19.解:这个游戏对双方公平.理由:如图所示.一共有6种等可能的结果,和小于4的有3种, ∴P (和小于4)=36=12. ∴这个游戏对双方公平.20.解:(1)袋中共有20个球,其中黄球有5个,所以从袋中摸出一个球是黄球的概率为520=14.(2)设从袋中取出黑球的个数为x . 由题意得8-x 20-x =13,解得x =2. 经检验x =2是方程的解且符合题意,即从袋中取出黑球的个数为2. 21.解:(1)搅匀后从中摸出1个盒子有3种等可能的结果,所以摸出的盒子中是A 型矩形纸片的概率为13.(2)共有6种等可能的结果,分别为AB ,AC ,BA ,BC ,CA ,CB ,其中2次摸出的盒子中的纸片能拼成一个新矩形的有4种结果,即AB ,BA ,BC ,CB.所以2次摸出的盒子中的纸片能拼成一个新矩形的概率为46=23.22.解:(1)画树状图如图所示.(2)∵m,n都是方程x2-5x+6=0的解,∴m=2,n=3或m=3,n=2或m=n=2或m=n=3.由树状图得,共有12种等可能的结果,m,n都是方程x2-5x+6=0的解的结果有4种,m,n都不是方程x2-5x+6=0的解的结果有2种,∴小明获胜的概率为412=13,小利获胜的概率为212=16,∴小明获胜的概率大.23.解:(1)该班的总人数为12÷24%=50,足球科目人数为50×14%=7.补全条形统计图如图所示.(2)记选修排球的学生为A、选修羽毛球的学生为B1,B2,选修乒乓球的学生为C,则列举所有结果如下:AB1,AB2,AC,B1B2,B1C,B2C,共有6种等可能的结果,其中有1人选修排球、1人选修羽毛球的占2种,所以恰好有1人选修排球、1人选修羽毛球的概率为26=13.24.解:(1)∵P(一次拿到8元球)=12,∴8元球的个数为4×12=2(个).按照从小到大的顺序排列为7元、8元、8元、9元,∴这4个球价格的众数为8元.(2)①所剩的3个球价格的中位数与原来4个球价格的中位数相同.理由如下:原来4个球的价格按照从小到大的顺序排列为7元、8元、8元、9元,∴原来4个球价格的中位数为8+82=8(元),所剩的3个球价格为8元、8元、9元.∴所剩的3个球价格的中位数为8元.∴所剩的3个球价格的中位数与原来4个球价格的中位数相同.②列表如下:共有9种等可能的结果,乙组两次都拿到8元球的结果有4种,∴乙组两次都拿到8元球的概率为4 9.。
人教版九年级数学上册第二十五章 概率初步练习(含答案)
第二十五章 概率初步一、单选题1.下列事件中,属于必然事件的是( )A .购买一张彩票,中奖B .三角形的两边之和大于第三边C .经过有交通信号灯的路口,遇到红灯D .对角线相等的四边形是矩形 2.下列事件中,属于随机事件的是( ).A .三角形一边上的中线和这条边上的高重合B .用长度分别是1cm ,3cm ,4cm 的细木条首尾顺次相连可组成一个三角形C .若两个图形关于某条直线对称,则这两个图形全等D .任意一个三角形的内角和等于180°3.已知袋中有若干个球,其中只有2个红球,它们除颜色外其它都相同.若随机从中摸出一个,摸到红球的概率是14,则袋中球的总个数是( ) A .2 B .4C .6D .8 4.随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷两次骰子,掷得面朝上的点数之和是5的概率是( )A .16B .19C .118D .2155.经过某十字路口的汽车,它可能继续直行,也可能向左或向右转.若这三种可能性大小相同,则两辆汽车经过该十字路口全部继续直行的概率为( )A .13B .23C .19D .126.从1、2、3、4四个数中随机选取两个不同的数,分别记为a 、c ,则关于x 的一元二次方程240ax x c ++=有实数解的概率为( )A.14B.13C.12D.237.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是( )A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.抛一个质地均匀的正六面体骰子,向上的面点数是5D.抛一枚硬币,出现反面的概率8.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( )A.6个B.15个C.13个D.12个9.学完《概率初步》这一章后,老师让同学结合实例说一说自己的认识,请你判断以下四位同学说法正确的是()A.小智说,做3次掷图钉试验,发现2次钉尖朝上,因此钉尖朝上的概率是2 3B.小慧说,某彩票的中奖概率是5%,那么如果买100张彩票一定会有5张中奖C.小通说,射击运动员射击一次只有两种结果:中靶与不中靶,所以它们发生的概率都是12D.小达做了20次抛掷均匀硬币的试验,其中有5次正面朝上,15次正面朝下,他认为再做一次,正面朝上的概率是二分之一10.如图,正方形ABCD中,点E是以AB为直径的半圆与对角线AC的交点.现随机向正方形ABCD内投掷一枚小针,则针尖落在阴影区域的概率为()A.18B.14C.13D.12二、填空题11.从一副扑克牌中任意抽一张扑克牌,是红桃2,此事件是____________事件.(填“必然”“随机”或“不可能”)12.在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是.13.如图是小明在抛掷图钉的试验中得到的图钉针尖朝上的折线统计图,请你估计抛掷图钉针尖朝上的概率是_____.14.现有五张质地大小完全相同的卡片,上面分别标有数字1、2、3、4、5,把分别标有数字3、4的两张卡片放入不透明的盒子A中,把分别标有数字1、2、5的三张卡片放入不透明的盆子B中.现随机从A和B两个盒子中各取出一张卡片,把从A盒中取出的卡片上标的数字记作a,从B盒中取出的卡片上标的数字记b,且a-b=k,则y关于x的正比例函数y=kx的图象经过一、三象限的概率是____________.三、解答题15.在一个不透明的口袋中装着大小、外形等一模一样的5个红球、3个蓝球和2个白球,它们已经在口袋中被搅匀了.请判断以下事情是不确定事件、不可能事件,还是必然事件.()1从口袋中任意取出一个球,是一个白球;()2从口袋中一次任取5个球,全是蓝球;()3从口袋中一次任意取出9个球,恰好红蓝白三种颜色的球都齐了.16.如图,现有一个均匀的转盘被平均分成六等份,分別标有2、3、4、5、6、7这六个数字,转动转盘,当转盘停止时,指针指向的数字即为转出的数字(当指针恰好指在分界线上时重转).(1)转动转盘,求转出的数字大于3的概率;(2)随机转动转盘,转盘停止后记下转出的数字,并与数字3和4分别作为三条线段的长度,求这三条线段能构成三角形的概率.17.某商场举办抽奖活动规则如下:在不透明的袋子中有2个黑球和2个红球,这些球除颜色外都相同,顾客每次摸出一个球,若摸到黑球,则获得1份奖品;若摸到红球,则没有奖品.(1)如果小芳只有一次摸球机会,那么小芳获得奖品的概率为.(2)如果小芳有两次摸球机会(摸出后不放回),请用表格法或树状图法求小芳获得2份奖品的概率.18.共享经济已经进入人们的生活.小沈收集了自已感兴趣的4个共享经济领域的图标,共享出行、共享服务、共享物品、共享知识,制成编号为A、B、C、D的四张卡片(除字母和内容外,其余完全相同).现将这四张卡片背面朝上,洗匀放好.(1)小沈从中随机抽取一张卡片是“共享服务”的概率是;(2)小沈从中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请你用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率.(这四张卡片分别用它们的编号A、B、C、D表示)答案1.B 2.A 3.D4.B 5.C 6.C 7.B 8.D 9.D 10.B 11.随机12.4 513.0.614.2 315.()1不确定事件;()2不可能事件;()3必然事件16.(1)23;(2)5617.(1)12;(2)1618.(1)14;(2)16。
2021年秋人教版初中九年级数学上册同步练习:第25章 概率初步(附答案)
第二十五章概率初步25.1随机事件与概率25.1.1随机事件01 基础题知识点1必然事件、不可能事件、随机事件的判断1.下列事件为必然事件的是(D)A.小王参加某次数学考试,成绩是500分B.某射击运动员射靶一次,正中靶心C.打开电视机,CCTV1正在播放新闻节目D.不透明袋子中装有2个红球和1个白球,从中摸出2个球,其中必有红球2.下列事件中,属于不可能事件的是(C)A.抛掷一枚质地均匀的骰子,出现4点向上B.五边形的内角和为540°C.实数的绝对值小于0D.明天会下雨3.(2019·安阳殷都区一模)下列事件是随机事件的是(C)A.2022年2月,在北京和张家口举行第24届冬季奥运会B.正八边形的每个外角的度数等于45°C.明年清明节会下雨D.在只装了黄球的盒子中,摸出红球4.“367人中至少有2人同月同日生”这一事件是(B)A.随机事件B.必然事件C.不可能事件D.确定性事件5.“一个不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为4”,这个事件是不可能事件.(填“必然事件”“不可能事件”或“随机事件”)6.下列事件中,哪些是必然事件?哪些是随机事件?哪些是不可能事件?①随意翻下日历,看到的是星期天;②农历七月十五日的月亮像弯弯的小船;③常温常压下,水在100 ℃时就开始沸腾;④小明买体彩,中了500万奖金;⑤两直线相交,对顶角相等.解:③⑤是必然事件;①④是随机事件;②是不可能事件.知识点2随机事件发生的可能性大小7.如图,一任意转动的转盘被均匀分成六份,当随意转动一次,停止后指针落在非阴影部分的可能性比指针落在阴影部分的可能性(B)A.大B.小C.相等D.不能确定8.在一副洗好的扑克牌中随意抽取一张,抽到“大王”的可能性与抽到“红桃5”的可能性相比(C)A.抽到“大王”的可能性大B.抽到“红桃5”的可能性大C.两种一样大D.无法确定9.在英语考试中,一道选择题有四个选项,小红任意选了一个,选错的可能性>选对的可能性.(填“>”“<”或“=”)02 中档题10.(2020·武汉)两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3.从这两个口袋中分别摸出一个小球,则下列事件为随机事件的是(B)A.两个小球的标号之和等于1B.两个小球的标号之和等于6C.两个小球的标号之和大于1D.两个小球的标号之和大于611.袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是(D)A.3个B.不足3个C.4个D.5个或5个以上12.(2020·泰州)如图,电路图上有4个开关A,B,C,D和1个小灯泡,同时闭合开关A,B或同时闭合开关C,D都可以使小灯泡发光.下列操作中,“小灯泡发光”这个事件是随机事件的是(B)A.只闭合1个开关B.只闭合2个开关C.只闭合3个开关D.闭合4个开关13.在如图所示(A,B,C三个区域)的图形中随机撒一把豆子,豆子落在A区域的可能性最大.(填“A”“B”或“C”)14.掷一枚质地均匀的正六面体骰子,请你写出一个必然发生的事件,一个不可能发生的事件,一个随机事件.解:(答案不唯一)必然发生的事件:整数点朝上;不可能发生的事件:7点朝上;随机事件:6点朝上.15.下面第一排表示各方盒中球的情况,第二排表示摸到黄球的可能性的大小,请连线.不太可能摸到黄球不可能摸到黄球一定能摸到黄球可能摸到黄球很可能摸到黄球通过上面的情况,你可以得到摸到黄球的可能性大小是由什么决定的?解:摸到黄球的可能性大小是由黄球占总球数的比例决定的.03 综合题16.请用适当的语言来描述以下词语所反映事件的发生情况:①十拿九稳②长生不老③水滴石穿④海枯石烂⑤东边日出西边雨⑥树倒猢狲散⑦大海捞针解:①随机事件(可能性较大);②不可能事件;③必然事件;④不可能事件;⑤随机事件(可能性较小);⑥必然事件;⑦随机事件(可能性极小).25.1.2 概率01 基础题知识点1 概率的意义1.河南姑娘朱婷是一位非常优秀且被观众喜爱的排球运动员.在某场排球比赛前的热身赛中,朱婷发球成功率大约是95.5%,下列说法错误的是(A) A .朱婷发球2次,一定全部成功 B .朱婷发球2次,不一定全部成功 C .朱婷发球1次,不成功的可能性较小 D .朱婷发球1次,成功的可能性较大2.掷一枚质地均匀的硬币10次,下列说法正确的是(B) A .每2次必有1次正面向上 B .可能有5次正面向上 C .必有5次正面向上D .不可能有10次正面向上知识点2 简单事件的概率的计算 3.(2019·宜昌)在“践行生态文明,你我一起行动”主题有奖竞赛活动中,903班共设置“生态知识、生态技能、生态习惯、生态文化”四个类别的竞赛内容.如果参赛同学抽到每一类别的可能性相同,那么小宇参赛时抽到“生态知识”的概率是(B)A .12B .14C .18D .1164.(2019·洛阳汝阳县期末)某存折的密码是一个六位数(每位都可以是0),由于小王忘记了密码的首位数字,则他能一次说对密码的概率是(D) A .15 B .16C .19D .1105.(2020·河南模拟)抛掷一枚质地均匀的正方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为偶数的概率是(C) A .16 B .13C .12D .566.(2020·河南三模)五张大小和质地均相同的卡片分别写有数字13 ,2 ,-1,0,π,从中任意抽取一张,抽到无理数的概率是25.知识点3 必然事件、不可能事件、随机事件的概率7.下列事件中,哪些是随机事件,哪些是概率为1的事件?哪些是概率为0的事件? ①太阳绕着地球转;②小明骑车经过某个十字路口时遇到红灯; ③今天数学考试小伟能得满分; ④鸡蛋里挑骨头;⑤将油滴入水中,油会浮在水面上; ⑥明天会下大雨;⑦地球上海洋面积大于陆地面积;⑧购买一张彩票,中奖. 解:随机事件有②③⑥⑧. 概率为1的事件有⑤⑦. 概率为0的事件有①④.知识点4 与几何图形有关的概率的计算8.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,停止后指针落在黄色区域的概率是(B)A.16 B .14C .13D .7129.(2020·苏州)一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上.每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是38.易错点 对概率的意义理解不清 10.(2020·阜新)掷一枚质地均匀的硬币5次,其中3次正面朝上,2次正面朝下,再次掷出这枚硬币,正面朝下的概率是(D)A .1B .25C .35D .1202 中档题 11.(2019·开封二模)在-4,-2,1,2,3五个数中,随机取一个数作为函数y =kx 中k 的值,则该函数的图象恰好经过第二、四象限的概率为(B) A .15 B .25C .35D .4512.如图,在4×4的正方形网格中,有3个小正方形已经涂黑,若再涂黑任意一个白色的小正方形(每一个白色的小正方形被涂黑的可能性相同),使新构成的黑色部分的图形是轴对称图形的概率是313.13.(2019·葫芦岛)在一个不透明的袋子中只装有n 个白球和2个红球,这些球除颜色外其他均相同.如果从袋子中随机摸出一个球,摸到红球的概率是13,那么n 的值为4.14.对于▱ABCD ,从以下五个关系式中任取一个作为条件:①AB =BC ;②∠BAD =90°;③AC =BD ;④AC ⊥BD ;⑤∠DAB =∠ABC ,能判定▱ABCD 是矩形的概率是35.15.(教材P131例1变式)抛掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有数字1,2,3,4,5,6,观察向上一面的点数,求下列事件的概率: (1)点数为偶数;(2)点数大于2且小于5.解:抛掷一个骰子,向上一面的点数可能为1,2,3,4,5,6,共6种.这些点数出现的可能性相等. (1)点数为偶数有3种可能,即点数为2,4,6, ∴P (点数为偶数)=36 =12.(2)点数大于2且小于5有2种可能,即点数为3,4, ∴P (点数大于2且小于5)=26 =13.03 综合题16.一个不透明的袋中装有5个黄球,13个黑球和22个红球,它们除颜色外都相同. (1)求从袋中摸出一个球是黄球的概率;(2)现在从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后,使从袋中摸出一个球是黄球的概率不小于13 .问至少取出了多少个黑球?解:(1)P (摸出一个球是黄球)=55+13+22 =18 .(2)设取出x 个黑球.由题意,得 5+x 5+13+22 ≥13.解得x ≥253 .答:至少取出了9个黑球.25.2 用列举法求概率 第1课时 用列表法求概率01 基础题 知识点1 用直接列举法求概率1.同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率为(A) A .14 B .13 C .12 D .342.小亮、小莹和大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是(B) A .12 B .13 C .23 D .163.为支援灾区,小慧准备通过爱心热线捐款,她只记得号码的前5位,后三位由5,1,2这三个数字组成,但具体顺序忘记了,她第一次就拨通电话的概率是(C)A .12B .14C .16D .18知识点2 用列表法求概率 4.(2020·周口西华县二模)如图,两个被四等分的转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向3的概率为(D)A .12B .14C .18D .1165.(2020·河南模拟)疫情防控,我们一直在坚守.某居委会组织两个检查组,分别对“居民体温”和“居民安全出行”的情况进行抽查.若这两个检查组在辖区内的某三个小区中各自随机抽取一个小区进行检查,则他们恰好抽到同一个小区的概率是(A)A .13B .49C .19D .236.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的概率是14.7.(2019·河南)现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1个球,则摸出的两个球颜色相同的概率是49.8.(2020·安阳县模拟)在一个不透明的口袋中,放入标有数字1,2,2,3,4的五个小球(除数字外完全相同),从中随机摸出一个小球后放回,再随机摸出一个小球,则两次摸出的小球标号之和为5的概率为625 .9.张华和李明两人玩“剪刀、石头、布”的游戏,游戏规则:剪刀胜布,布胜石头,石头胜剪刀. (1)请用列表法表示出所有可能出现的游戏结果; (2)求张华胜出的概率.剪刀 石头 布解:(1)列表如下:张华 李明 石头 剪刀 布 石头 (石头,石头) (剪刀,石头) (布,石头) 剪刀 (石头,剪刀) (剪刀,剪刀) (布,剪刀) 布(石头,布)(剪刀,布)(布,布)共有9种等可能结果.(2)由表可知,张华胜出的结果有3种, ∴P (张华胜出)=39 =13.02 中档题 10.(2020·宁夏)现有4条线段,长度依次是2,4,6,7,从中任选三条,能组成三角形的概率是(B) A .14 B .12C .35D .3411.(2019·安阳县一模)若一个不透明的袋子中装有形状与大小均完全相同的4张卡片,4张卡片上分别标有数字-2,-1,2,3,现从中任意抽出其中两张卡片分别记为x ,y ,并以此确定点P (x ,y ),则点P 落在直线y =-x +1上的概率是(B)A .12B .13C .14D .1612.若从-1,1,2这三个数中,任取两个数分别作为点M 的横、纵坐标,则点M 在第二象限的概率是13 .13.从1,2,3,4中任取一个数作为十位上的数字,再从余下的数字中任取一个数作为个位上的数字,那么组成的两位数是6的倍数的概率是14.14.(2020·漯河临颍县期末)如图,有5张不透明的卡片,除正面上的图案不同外,其他均相同,将这5张卡片背面向上洗匀后放在桌面上.(1)从中随机抽取1张卡片,卡片上的图案是轴对称图形的概率为35;(2)若从中随机抽取1张卡片后不放回,再随机抽取1张,请用画树状图或列表的方法求两次所抽取的卡片恰好都是中心对称图形的概率.第一次 第二次 A B C D E A (B ,A) (C ,A) (D ,A) (E ,A) B (A ,B) (C ,B) (D ,B) (E ,B) C (A ,C) (B ,C) (D ,C) (E ,C) D (A ,D) (B ,D) (C ,D) (E ,D) E(A ,E)(B ,E)(C ,E)(D ,E)∴两次所抽取的卡片恰好都是中心对称图形的概率为220 =110 .03 综合题15.如图为甲、乙两个可以自由转动的质地均匀的转盘,甲转盘被分成3个面积相等的扇形,乙转盘被分成4个面积相等的扇形,每一个扇形都标有相应的数字,同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为m ,乙转盘中指针所指区域内的数字为n (若指针指在边界线上,重转一次,直到指针指向一个区域为止).(1)请你用列表的方法求出|m +n |>1的概率;(2)直接写出点(m ,n )落在函数y =-x +1图象上的概率. 解:(1)列表如下:n m -1 0 1 2 -1 (-1,-1) (0,-1) (1,-1) (2,-1) -12 (-1,-12 )(0,-12 )(1,-12 )(2,-12 )1(-1,1)(0,1)(1,1)(2,1)由表格可知,所有等可能的结果有12种,其中满足|m +n |>1的情况有5种,所以|m +n |>1的概率为512.(2)点(m ,n )落在函数y =-x +1图象上的概率为16.16.郑州地铁1号线火车站站口分布如图所示,有A ,B ,C ,D ,E 五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是(C)A.13 B .14C .15D .16第2课时 用树状图法求概率01 基础题 知识点 用树状图法求概率 1.(2020·开封二模)某校组织社团活动,小明和小刚从“数学社团”“航模社团”“文艺社团”三个社团中,随机选择一个社团参加活动,两人恰好选择同一个社团的概率是(A) A .13 B .23 C .19 D .292.(2020·河南期中)有一首《对子歌》中唱到:天对地,雨对风,大陆对长空.现将“天,雨,大,空”四个字书写在材质、大小完全相同的卡片上,在暗箱搅匀后,随机抽取两张,恰为“天”“空”二字的概率为(D)A .13B .14C .15D .163.(2020·玉林)经过人民中路十字路口红绿灯处的两辆汽车,可能直行,也可能向左转.若这两种可能性大小相同,则至少有一辆向左转的概率是34.4.(教材P138例3变式)甲口袋装有2个相同的小球,分别写有字母a 和b ;乙口袋中装有3个相同的小球,分别写有字母c ,d 和e.从两个口袋中各随机取出一个小球,恰好是一个元音和一个辅音字母的概率是12 .(字母a 和e是元音,字母b ,c 和d 是辅音) 5.(2020·南阳镇平县一模)在一个不透明的布袋中装有标着数字2,3,4,5的4个小球,这4个小球的材质、大小和形状完全相同,现从中随机摸出两个小球,这两个小球上的数字之积大于9的概率为23.6.(2020·长春)现有三张不透明的卡片,其中两张卡片的正面图案为“神舟首飞”,第三张卡片的正面图案为“保卫和平”,卡片除正面图案不同外,其余均相同.将这三张卡片背面向上洗匀,从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求两次抽出的卡片上的图案都是“保卫和平”的概率.(图案为“神舟首飞”的两张卡片分别记为A 1,A 2,图案为“保卫和平”的卡片记为B)解:根据题意画树状图如下:共有9种等可能的情况数,其中两次抽出的卡片上的图案都是“保卫和平”的有1种, ∴两次抽出的卡片上的图案都是“保卫和平”的概率是19.易错点 不能正确区分“放回”与“不放回”而出错 7.(2019·大连)不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为(D)A .23B .12C .13D .148.(2020·信阳模拟)在4张相同的小纸条上分别写上数字-2,0,1,2,做成4支签,放在一个盒子中,搅匀后从中任意抽出1支签(不放回),再从余下的3支签中任意抽出1支签,则2次抽出的签上的数字的和为正数的概率为(C)A .14B .13C .12D .2302 中档题9.在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率为(A)图1 图2A.23 B .12C .13D .110.(2019·洛阳二模)四张背面相同的扑克牌,分别为红桃1,2,3,4,背面朝上,先从中抽取一张,把抽到的点数记为a ,再在剩余的扑克中抽取一张,点数记为b ,则点(a ,b )在直线y =x +1上方的概率是(C) A.12 B .13 C .14 D .1611.小燕一家三口在商场参加抽奖活动,每人只有一次抽奖机会:在一个不透明的箱子中装有红、黄、白三种球各1个,这些球除颜色外无其他差别,从箱子中随机摸出1个球,然后放回箱子中,轮到下一个人摸球,三人摸到球的颜色都不相同的概率是(D)A .127B .13C .19D .2912.某超市开展早市促销活动,为早到的顾客准备一份简易早餐,餐品有四样:A .菜包,B .面包,C .鸡蛋,D .油条.超市约定:随机发放,早餐一人一份,一份两样,一样一个. (1)按约定,“某顾客在该天早餐得到两个鸡蛋”是不可能事件(填“随机”“必然”或“不可能”); (2)请用画树状图的方法,求出某顾客该天早餐刚好得到菜包和油条的概率. 解:画树状图如下:由树状图知共有12种等可能的情况,其中早餐刚好得到菜包和油条的情况有2种, 所以P (某顾客该天早餐刚好得到菜包和油条)=212 =16.13.小颖参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道题有3个选项,第二道题有4个选项,这两道题小颖都不会,不过小颖还有一个“求助”没有使用(使用“求助”可让主持人去掉其中一题中的一个错误选项).(1)若小颖第一道题不使用“求助”,则小颖答对第一道题的概率是13 ;(2)若小颖将“求助”留在第二道题使用,求小颖顺利通关的概率; (3)从概率的角度分析,你会建议小颖在答第几道题时使用“求助”? 解:(2)画树状图如下:(用Z 表示正确选项,C 表示错误选项)第一题:第二题:由树状图可知,共有9种等可能的结果,其中小颖顺利通关的结果有1种, ∴小颖将“求助”留在第二道题使用时,P (小颖顺利通关)=19.(3)若小颖将“求助”在第一道题使用,画树状图如下:(用Z 表示正确选项,C 表示错误选项)第一题:第二题:由树状图可知,共有8种等可能的结果,其中小颖顺利通关的结果有1种,∴小颖将“求助”在第一道题使用时,P (小颖顺利通关)=18 .∵18 >19, ∴建议小颖在答第一道题时使用“求助”.14.(2019·河南一模)为推广传统文化,某学校布置了年味十足的寒假作业,比如包饺子、写春联、逛庙会等等,并要求学生拍照.现将八(5)班的学生作品进行展示,分为A ,B ,C ,D 四个等级,并将结果绘制成如下两幅尚不完整的统计图:请根据图中的信息解答下列问题: (1)补全两个统计图;(2)请求出C 等级所在扇形的圆心角的度数;(3)现准备从A 等级的4个人中随机抽取2人去参加学校比赛,其中小明和小丽都被抽到的概率是多少? (4)请你对推广传统文化提出一条合理化建议.解:(1)∵C 等级对应的百分比为1-(10%+40%+20%)=30%, 被调查的总人数为4÷10%=40(人), ∴C 等级的人数为40×30%=12(人). 补全统计图如图.(2)C 等级所在扇形的圆心角的度数为360°×30%=108°.(3)记这4个人分别为甲、乙、丙、丁,其中小明和小丽分别为甲、乙, 画树状图:∵共有12种等可能的结果,小明和小丽两名选手恰好被抽到的有2种情况, ∴小明和小丽都被抽到的概率是212 =16.(4)建议以不同形式体现自己对传统文化的认知(答案不唯一).小专题15 概率的综合应用类型1 概率与数式的综合1.在盒子里放有分别写有整式2,π,x ,x +1的四张卡片,从中随机抽取两张,把卡片上的整式分别作为分子和分母,则能组成分式的概率是(A)A .12B .13C .14D .16类型2 概率与方程、不等式的综合2.(2019·武汉)从1,2,3,4四个数中随机选取两个不同的数,分别记为a ,c ,则关于x 的一元二次方程ax 2+4x +c =0有实数解的概率为(C)A .14B .13C .12D .233.从-2,-1,1,2这四个数中任取一个作为a 的值,再从余下的三个数中任取一个数作为b 的值,则不等式组⎩⎪⎨⎪⎧x >a ,x <b有整数解的概率是13.类型3 概率与函数的综合4.从-2,-1,1中任取两个不同的数作为一次函数y =kx +b 的系数k ,b ,则一次函数y =kx +b 的图象交x 轴于正半轴的概率是(A)A .23B .13C .16D .495.同时抛掷A ,B 两个质地均匀的小正方体(每个面上分别标有数字1,2,3,4,5,6),设两个正方体朝上的数字分别是x ,y ,并以此确定点P (x ,y ),那么点P 落在抛物线y =-x 2+3x 上的概率是(A) A .118 B .116C .112D .196.在-4,-2,1,2四个数中,随机取两个数分别作为函数y =ax 2+bx +1中a ,b 的值,则该二次函数图象恰好经过第一、二、四象限的概率为16.类型4 概率与几何的综合7.四张质地、大小、背面完全相同的卡片上,正面分别画有下列图案,现把它们正面朝下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案既是轴对称图形,又是中心对称图形的概率是(B)A .14B .12C .34D .18.关于四边形ABCD 有以下四个条件:①两组对边分别平行;②两条对角线互相平分;③两条对角线互相垂直;④一组邻边相等.从中任取两个条件,能得到四边形ABCD 是菱形的概率是(A) A .23 B .13 C .12 D .569.(2020·河南期末)如图,正方形ABCD 内接于⊙O ,正方形的边长为2 cm.若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD 内的概率是2π.类型5 概率与其他学科知识的综合 10.【渗透跨学科知识】(2020·东营)如图,随机闭合开关K 1,K 2,K 3中的两个,则能让两盏灯泡L 1,L 2同时发光的概率为(D)A .16B .12C .23D .13类型6 概率的实际应用 11.(2020·南通)某公司有甲、乙、丙三辆车去南京,它们出发的先后顺序随机.张先生和李先生乘坐该公司的车去南京出差,但有不同的需求.张先生:我要先处理一些事物,只坐第三个出发的那辆车. 李先生:我要早点出发,只坐第一个出发的那辆车.请用所学概率知识解决下列问题:(1)写出这三辆车按先后顺序出发的所有可能结果; (2)两人中,谁乘坐到甲车的可能性大?请说明理由. 解:(1)这三辆车按先后顺序出发的所有可能结果:甲、乙、丙;甲、丙、乙;乙、甲、丙;乙、丙、甲;丙、甲、乙;丙、乙、甲;共6种. (2)两人坐到甲车的可能性一样.理由如下:由(1)可知张先生坐到甲车有两种可能:乙、丙、甲,丙、乙、甲, 则张先生坐到甲车的概率是26 =13.由(1)可知李先生坐到甲车有两种可能:甲、乙、丙,甲、丙、乙, 则李先生坐到甲车的概率是26 =13.所以两人坐到甲车的可能性一样. 12.(2020·平顶山舞钢市期中)“一方有难,八方支援”是中华民族的传统美德,在抗击新冠病毒战役中,某省为支援武汉,派出了由1 460人组成的医疗队.其中小丽、小王和另外三个同事共五人直接派往一线的同一家医院,根据该医院人事安排,需要先抽出一人去急诊科,再派两人到该医院的发热门诊,请你利用所学知识完成下列问题. (1)小丽被派往该院急诊科的概率是15;(2)若正好抽出她们的一位同事去急诊科,请你利用画树状图或列表的方法,求出小丽和小王同时被派往发热门诊的概率.解:小丽、小王和另外两个同事分别用A ,B ,C 1,C 2表示,根据题意画树状图如下:由树状图可知,一共出现了12种等可能的结果,小丽和小王同时出现的有2种情况,则小丽和小王同时被派往发热门诊的概率是212=1 6.类型7概率与统计的综合13.(2019·开封一模)当今社会,手机越来越普遍,有很多人每天过分依赖手机,每天使用手机时间过长而形成了“手机瘾”,为了解某高校大学生每天使用手机时间的情况,某社团随机调查了部分学生用手机的时间,并将调查结果分为五类:A.基本不用;B.平均每天使用1~2小时;C.平均每天使用2~4小时;D.平均每天使用4~6小时;E.平均每天使用超过6小时.将所得数据绘制成如下两幅不完整的统计图:请根据相关信息解答下列问题.(1)将上面的条形统计图补充完整;(2)若每天使用手机的时间超过6小时,则患有严重的“手机瘾”,该校共有学生14 900人,试估计该校有多少人患有严重的“手机瘾”?(3)在被调查的基本不使用手机的四名同学中,有两男两女,现要从中随机抽取两名同学去参加座谈会,请你用列表法或画树状图法求出所选同学恰好是一名男同学和一名女同学的概率.解:(1)调查的学生数为4÷8%=50(名),则B类别人数为50-4-20-9-5=12(名).补全条形统计图如图.(2)该校学生患有严重的“手机瘾”的约有14 900×10%=1 490(名).(3)画树状图得:∵共有12种等可能的结果,所选同学恰好是一名男同学和一位女同学的有8种情况,∴所选同学恰好是一名男同学和一位女同学的概率为812=23.。
人教版九年级上册数学第二十五章 概率初步含答案(精练)
人教版九年级上册数学第二十五章概率初步含答案一、单选题(共15题,共计45分)1、如图是从一幅扑g牌中取出的两组牌,分别是黑桃1,2,3,4红桃1,2,3,4,将它们背面朝上分别重新洗牌后,从两组牌中各摸出一张,那么摸出的两张牌面数字之和等于7的概率是()A. B. C. D.2、某口袋中有20个球,其中白球x个,绿球2x个,其余为黑球.甲从袋中任意摸出一个球,若为绿球获胜,甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则获胜.则当x=()时,游戏对甲乙双方公平.A.3B.4C.5D.63、在6张完全相同的卡片上分别画上线段、等边三角形、平行四边形、直角梯形、正方形和圆,在看不见图形的情况下随机摸出1张,这张卡片上的图形是中心对称图形的概率是()A. B. C. D.4、下列说法中,正确的是()A.“任意画一个四边形,它是轴对称图形”属于随机事件B.“366人中至少有2个人的生日是相同的”属于随机事件C.“任意买一张电影票,座位号是2的倍数”属于必然事件D.“阴天一定下雨”属于不可能事件5、从长度分别为2、3、6、7、9的5条线段中任取3条作为三角形的边,能组成三角形的概率为()A. B. C. D.6、育种小组对某品种小麦发芽情况进行测试,在测试基本情况相同的条件下,得到如下数据:抽查小麦100 500 1000 2000 3000 4000粒数发芽粒数95 486 968 1940 2907则a的值最有可能是()A.3680B.3720C.3880D.39607、有四张背面完全相同且不透明的卡片,每张卡片的正面分别写有数字﹣2,, 0,,将它们背面朝上,洗均匀后放置在桌面上,若随机抽取一张卡片,则抽到的数字恰好是无理数的概率是()A. B. C. D.18、小刚掷一枚均匀的硬币,一连99次都掷出正面朝上,当他第100次掷硬币时,出现正面朝上的概率是()A.0B.1C.D.9、如图,在4×4正方形网格中,任选取一个白色的小正方形并涂红,使图中红色部分的图形构成一个轴对称图形的概率是()A. B. C. D.10、一只不透明的袋子中装有1个黑球和3个白球,这些球除颜色外都相同,搅匀后从中任意摸出1 个球,摸到黑球的概率为()A. B. C. D.11、如图①,有6张写有实数的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图②摆放,从中任意翻开两张都是无理数的概率是 ( )A. B. C. D.12、已知实数a<0,则下列事件中是必然事件的是()A.a+3<0B.a﹣3<0C.3a>0D.a 3>013、A,B,C,D四名同学随机分为两组,两个人一组去參加辩论赛,问A、B两人恰好分到一组的概率()A. B. C. D.14、一个不透明的袋子中有3个白球、2个黄球和1个红球,这些球除颜色不同外其他完全相同,则从袋子中随机摸出一个球是黄球的概率为()A. B. C. D.15、在某次国际乒乓球单打比赛中,甲、乙两名中国选手进入最后决赛,那么下列事件为必然事件的是()A.冠军属于中国选手B.冠军属于外国选手C.冠军属于中国选手甲 D.冠军属于中国选手乙二、填空题(共10题,共计30分)16、如图所示是一飞镖游戏板,大圆的直径把一组同心圆分成四等份,假设飞镖击中圆面上每一个点都是等可能的,则飞镖落在黑色区域的概率是________.17、若正整数使得在计算的过程中,各数位不产生进位现象,则称为“本位数.现从所有大于0,且小于100的“本位数”中,随机抽取一个数,抽到偶数的概率为= ________ .18、一枚质地均匀的正方体,其六面分别刻有﹣2,0,﹣3,﹣2,5,4这六个数字.投掷这枚正方体一次,则向上一面的数字是﹣2的概率是________.19、有一个只放满形状大小都一样的白色小球的不透明盒子,小刚想知道盒内有多少白球,于是小刚向这个盒中放了8个黑球(黑球的形状大小与白球一样),摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中80次摸到黑球,估计盒中大约有白球________.20、农业部门引进一批新麦种,在播种前做了五次发芽试验,目的是想了解一粒这样的麦种发芽情况,实验统计数据如下:实验的麦种数/粒500 500 500 500 500发芽的麦种数/粒492 487 491 493 489发芽率/% 98.40 97.40 98.20 98.60 97.80估计在与实验条件相同的情况下,种一粒这样的麦种发芽的概率约为________21、某同学遇到一道不会做的选择题,在四个选项中有且只有一个是正确的,则他选对的概率是________22、在一个不透明的袋子中装有除颜色外其余均相同的7个小球,其中红球2个,黑球5个,若再放入m个一样的黑球并摇匀,此时,随机摸出一个球是黑球的概率等于,则m的值为________.23、小明要用如图的两个转盘做“配紫色”游戏(红色和蓝色配成紫色),每个转盘均被等分成若干个扇形,他同时转动两个转盘,停止时指针所指的颜色恰好配成紫色的概率为________.24、在一个不透明的袋中装有一红一白2个球,这些球除颜色外都相同,小刚从袋中随机摸出一个球,记下颜色后放回袋中,再从袋中随机摸出一个球,两次都摸到红球的概率是________.25、有一个正十二面体,12个面上分别写有1~12这12个整数,投掷这个正十二面体一次,向上一面的数字是3的倍数或4的倍数的概率是________.三、解答题(共5题,共计25分)26、有四张正面分别写有数字:20,15,10,5的卡片,背面完全相同,将卡片洗匀后背面朝上.放在桌面上小明先随机抽取一张,记下牌面上的数字(不放回),再从剩下的卡片中随机抽取一张,记下牌面上的数字.如果卡片上的数字分别对应价值为20元,15元,10元,5元的四件奖品,请用列表或画树状图法求小明两次所获奖品总值不低于30元的概率?27、将背面相同,正面分别标有数字1、2、3、4的四张卡片洗匀后,背面朝上放在桌面上,先从中随机的抽取一张卡片(不放回),将该卡片正面上的数字作为十位数字,再随机的抽取一张卡片,将该卡片正面上的数字作为个位数字,则组成的两位数恰好是4的倍数的概率是多少?请用树状图或列表法加以说明.28、“数学文化节”中,获得“数学之星”称号的小颖得到了,,,四枚纪念章(除头像外完全相同)如图所示,四枚纪念章上分别印有四位数学家的头像她将纪念章背面朝上放在桌面上,然后从中随机选取两枚送给妹妹,求小颖送给妹妹的两枚纪念章中恰好有一枚印有华罗庚头像的概率.29、一盒乒乓球中共有6只,其中2只次品,4只正品,正品和次品大小和形状完全相同,每次任取3只,出现了下列事件:(1)3只正品;(2)至少有一只次品;(3)3只次品;(4)至少有一只正品.指出这些事件分别是什么事件.30、七巧板是我国流传已久的一种智力玩具.小鹏在玩七巧板时用它画成了3幅图案并将它贴在3张完全相同的不透明卡片上,如图.小鹏将这3张卡片背面朝上洗匀后放在桌子上,从中随机抽取一张卡片,放回后洗匀,再随机抽取一张卡片.请你用列表法或画树状图(树形图)法,帮助小鹏求出两张卡片上的图案都是小动物的概率(卡片名称可用字母表示).参考答案一、单选题(共15题,共计45分)1、B2、B3、D4、A5、B6、C7、B8、C9、A10、A11、D12、B13、C14、B15、A二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
人教版-九年级数学上册《第二十五章 概率初步》同步练习题及答案
人教版-九年级数学上册《第二十五章 概率初步》同步练习题及答案 学校 班级 姓名 学号一、选择题1.下列说法正确的是( ) A.袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机取出一个球,一定是红球 B.天气预报“明天降水概率10%”,是指明天有10%的时间会下雨C.某地发行一种福利彩票,中奖概率是千分之一.那么,买这种彩票1 000张,一定会中奖D.连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上2.下列事件中,属于必然事件的是( ).A.掷一枚硬币,正面朝上B.a 是实数,|a|≥0C.400人中不可能有两人的生日相同D.从车间刚生产的产品中任意抽取一个产品是次品3.小明把如图所示的平行四边形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是( )A.21B.31C.41D.61 4.如图是一个转盘,转盘分成8个相同的扇形,颜色分为红、绿、黄三种颜色,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向指针右边的扇形),则指针指向红色的概率是( )A.14B.38C.58D. 125.小江玩投掷飞镖的游戏,他设计了一个如图所示的靶子,点E,F 分别是长方形ABCD 的两边AD,BC 上的点,且EF ∥AB,点M,N 是EF 上任意两点,则投掷一次,飞镖落在阴影部分的概率是( )A.13B.23C.12D.346.如图所示为一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为( ).A.81B.61C.41D.21 7.用8个除颜色外均相同的球设计一个游戏,使摸到白球与摸不到白球的可能性一样大,摸到红球的可能性比摸到黄球的可能性大,则游戏设计中白、红、黄球的个数可能是( )A.4,2,2B.3,2,3C.4,3,1D.5,2,18.在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有( )A.15个B.20个C.30个D.35个9.甲、乙、丙三个箱子原本各装有相同数量的球,已知甲箱内的红球占甲箱内球数的14,乙箱内没有红球,丙箱内的红球占丙箱内球数的127.现将乙、丙两箱内的球全倒入甲箱后,从甲箱内取出一球,若甲箱内每球被取出的机会相等,则取出的球是红球的概率是( ). A 65 B.125 C.185 D.487 10.如图,△ABC 是一块绿化带,将阴影部分修建为花圃,已知AB =13,AC =5,BC =12,阴影部分是△ABC 的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A. B. C. D.11.如图所示,五一旅游黄金周期间,某景区规定A 和B 为入口,C ,D ,E 为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A 入口进入、从C 或D 出口离开的概率是( ).A.21B.31C.61D.32 12.如图所示为由四个全等的直角三角形围成的图形,若两条直角边分别为3和4,则向图中随机抛掷一枚飞镖,飞镖落在阴影区域的概率是(不考虑落在线上的情形)( ).A.53B.54C.2516D.4925 二、填空题13.小芳掷一枚质地均匀的硬币10次,有7次正面向上,当她掷第11次时,正面向上的概率为14.在-1,-2,1,2,3五个数中随机选取一个数作为二次函数y=ax 2+4x-2中a 的值,则该二次函数图象开口向上的概率是_____________.15.小明正在玩飞镖游戏,如果小明将飞镖随意投中如图所示的正方形木板,那么投中阴影部分的概率为 ;16.下表记录了某种幼树在一定条件下移植成活情况由此估计这种幼树在此条件下移植成活的概率约是(精确到0.1).17.如图,有A、B、C三类长方形(或正方形)卡片(a>b),其中甲同学持有A、B类卡片各一张,乙同学持有B、C类卡片各一张,丙同学持有A、C类卡片各一张,现随机选取两位同学手中的卡片共四张进行拼图,则能拼成一个正方形的概率是.18.如图,图1中有1个黑球;图2为3个同样大小的球叠成的图形,最下层的2个球为黑色,其余为白色;图3为6个同样大小的球叠成的图形,最下层的3个球为黑色,其余为白色……则从图n中随机取出一个球,是黑球的概率是.三、解答题19.一个不透明的口袋中装有4个完全相同的小球,分别标有数字1,2,3,4,另有一个可以自由旋转的圆盘,被分成面积相等的3个扇形区域,分别标有数字1,2,3(如图).小颖和小亮想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一人从口袋中摸出一个小球,另一个人转动圆盘,如果所摸球上的数字与圆盘上转出数字之和小于4,那么小颖去,否则小亮去.(1)用树状图或列表法求出小颖参加比赛的概率;(2)你认为该游戏公平吗?请说明理由;若不公平,请修改该游戏规则,使游戏公平.20.在一个不透明的盒子里装着只有颜色不同的黑、白两种球共30个,小鲍做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程.如图所示为“摸到白色球”的概率折线统计图.(1)当n很大时,摸到白球的频率将会接近 (精确到0.01),估计盒子里白球有个,假如摸一次,摸到白球的概率为 .(2)如果要使摸到白球的概率为34,需要往盒子里再放入多少个白球?21.大课间活动时,有两位同学做了一个数字游戏:有三张正面写有数字-1,0,1的卡片,它们背面完全相同,将这三张卡片背面朝上洗匀后,其中一位同学随机抽取一张,将其正面的数字作为p的值,然后将卡片放回并洗匀,另一位同学再从这三张卡片中随机抽取一张,将其正面的数字作为q的值,两次结果记为(p,q).(1)请你帮他们用树状图或列表法表示(p,q)所有可能出现的结果.(2)求满足关于x的方程x2+px+q=0没有实数根的概率.22.第二十四届冬季奥林匹克运动会将在北京举行,北京将成为历史上第一座举办过夏奥会又举办过冬奥会的城市,东宝区举办了一次冬奥会知识网上答题竞赛,甲、乙两校各有400名学生参加活动,为了解这两所学校的成绩情况,进行了抽样调查,过程如下,请补充完整. 【收集数据】从甲、乙两校各随机抽取20名学生,在这次竞赛中它们的成绩如下:甲30 60 60 70 60 80 30 90 100 6060 100 80 60 70 60 60 90 60 60乙80 90 40 60 80 80 90 40 80 5080 70 70 70 70 60 80 50 80 80【整理、描述数据】按如下分数段整理、描述这两组样本数据:(说明:优秀成绩为80<x≤100,良好成绩为50<x≤80,合格成绩为30≤x≤50.)学校平均分中位数众数甲67 60 60乙70 75 a30≤x≤50 50<x≤80 80<x≤100甲 2 14 4乙 4 14 2【分析数据】两组样本数据的平均分、中位数、众数如右表所示:其中a= .【得出结论】(1)小伟同学说:“这次竞赛我得了70分,在我们学校排名属中游略偏上!”由表中数据可知小明是校的学生;(填“甲”或“乙”)(2)老师从乙校随机抽取一名学生的竞赛成绩,试估计这名学生的竞赛成绩为优秀的概率为;(3)根据以上数据推断一所你认为竞赛成绩较好的学校,并说明理由.(至少从两个不同的角度说明推断的合理性)23.某数学兴趣小组就两会期间出现频率最高的热词:A脱贫攻坚.B.绿色发展.C.自主创新.D.简政放权等热词进行了抽样调查,每个同学只能从中选择一个“我最关注”的热词,如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了名同学;(2)条形统计图中,m= ,n= ;(3)扇形统计图中,热词B所在扇形的圆心角的度数是;(4)从该校学生中随机抽取一个最关注热词D的学生的概率是多少?24.最近两年雾霾对我国北方大部分地区影响较严重,其中和越来越多的汽车尾气排放有极大的关系.据报道,历经一百天的调查研究,我市PM2.5的源解析已经通过专家论证,各种调查显示,机动车为PM2.5的最大来源,一辆车每行驶20千米平均向大气里排放0.035千克污染物,校环保志愿小分队从环保局了解到我市100天的空气质量等级情况,并制成统计图和表:空气质量等级优良轻度污染中度污染重度污染严重污染天数(天)10 a 12 8 25 b(1)表中a= ,b= ,图中严重污染部分对应的圆心角n= ;(2)请你根据“我市100天空气质量等级天数统计表”计算100天内重度污染和严重污染出现的概率共是多少?(3)小明是社区环保志愿者,他和同学们调查了机动车每天的行驶路程,了解到每辆车每天平均出行25千米,已知我市机动车保有量已突破200万辆,请你通过计算,估计我市一天中出行的机动车至少要向大气里排放多少千克污染物?25.为了解中考体育科目训练情况,某区从九年级学生中抽取了部分学生进行了一次中考体育科测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是;(2)图1中∠α的度数是,并把图2条形统计图补充完整;(3)该区九年级有学生4000名,如果全部参加这次体育测试,请估计不及格的人数为;(4)测试老师想从4位同学(分别记为E、F、G、H,其中E为小明)中随机选择两位同学了解平时训练情况,请用列表或画树状图的方法求出选中小明的概率.答案1.D2.B.3.C4.B5.C6.C7.C8.D.9.C.10.B.11.B.12.D.13.答案为:0.5.14.答案为:35. 15.答案为:51816.答案为:0.9.17.答案为:13. 18.答案为:12 n . 19.解:(1)画树状图:共有12种等可能性结果,其中数字之和小于4的有3种情况 所以P(和小于4)==,即小颖参加比赛的概率为14;(2)该游戏不公平.理由如下:因为P(和不小于4)=34,所以P(和小于4)≠P(和不小于4)所以游戏不公平,可改为:若数字之和为偶数,则小颖去;若数字之和为奇数,则小亮去.20.解:(1)0.50,15,21 (2)设需要往盒子里再放入x 个白球.根据题意得x x ++3015=43,解得x=30. ∴需要往盒子里再放入30个白球.21.解:(1)画树状图如下:(p,q )有9种等可能的结果:(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1).(2)方程x 2+px+q=0没有实数根,即Δ=p 2-4q <0,满足条件的有:(-1,1),(0,1),(1,1)∴P =93=31. 22.解:【分析数据】,由表格中的数据可知,乙校的众数是80,故a=80,故答案为:80;(1)由表格可知,甲校的中位数是60,乙校的中位数是75小伟同学说:“这次竞赛我得了70分,在我们学校排名属中游略偏上!”由表中数据可知小明是甲校的学生故答案为:甲;(2)乙校随机抽取一名学生的竞赛成绩,这名学生的竞赛成绩为优秀的概率为:=0.1,故答案为:0.1;(3)乙学校竞赛成绩较好理由:第一,乙学校的中位数大于甲学校,说明乙学校的一半以上的学生成绩好于甲学校;第二,乙学校的平均分高于甲学校,说明乙学校学生的总体水平高于甲学校.23.解:(1)105÷35%=300(人).故答案为:300;(2)n=300×30%=90(人),m=300﹣105﹣90﹣45=60(人).故答案为:60,90;(3)72°;(4)从该校学生中随机抽取一个最关注热词D的学生的概率是0.15.24.解:(1)根据题意,得:a=100×25%=25(天)严重污染所占的百分比是:1﹣10%﹣25%﹣12%﹣8%﹣25%=20%b=100×20%=20(天),n=360°×20%=72°,故答案为:25,20,72°;(2)100天内重度污染和严重污染出现的频率为×100%=45%;(3)根据题意,得:200×10000×0.035×=87500(千克)答:估计2015年我市一天中出行的机动车至少要向大气里排放87500千克污染物.25.解:(1)12÷30%=40(人);故答案为:40人;(2)∠α的度数=360°×0.15=54°;故答案为:54°;40×35%=14(人);把条形统计图补充完整,如图所示:(3)4000×0.2=800(人),故答案为:800人;(4)根据题意画树形图如下:共有12种情况,选中小明的有6种,则P(选中小明)=0.5.。
人教版九年级数学 同步练习 含答案_第二十五章__概率初步
第二十五章概率初步测试1 随机事件学习要求了解随机事件的意义,会判断必然事件、不可能事件和随机事件,知道不同随机事件发生的可能性.课堂学习检测一、填空题1.在下列事件中:①投掷一枚均匀的硬币,正面朝上;②投掷一枚均匀的骰子,6点朝上;③任意找367人中,至少有2人的生日相同;④打开电视,正在播放广告;⑤小红买体育彩票中奖;⑥北京明年的元旦将下雪;⑦买一张电影票,座位号正好是偶数;⑧到2020年世界上将没有饥荒和战争;⑨抛掷一只均匀的骰子两次,朝上一面的点数之和一定大于等于2;⑩在标准大气压下,温度低于0℃时冰融化;⑾如果a,b为实数,那么a+b =b+a;⑿抛掷一枚图钉,钉尖朝上.确定的事件有______;随机事件有______,在随机事件中,你认为发生的可能性最小的是______,发生的可能性最大的是______.(只填序号)二、选择题2.下列事件中是必然事件的是( ).A.从一个装有蓝、白两色球的缸里摸出一个球,摸出的球是白球B.小丹的自行车轮胎被钉子扎坏C.小红期末考试数学成绩一定得满分D.将豆油滴入水中,豆油会浮在水面上3.同时投掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数.下列事件中是不可能事件的是( ).A.点数之和为12 B.点数之和小于3C.点数之和大于4且小于8 D.点数之和为134.下列事件中,是确定事件的是( ).A.明年元旦北京会下雪B.成人会骑摩托车C.地球总是绕着太阳转D.从北京去天津要乘火车5.下列说法中,正确的是( ).A.生活中,如果一个事件不是不可能事件,那么它就必然发生B.生活中,如果一个事件可能发生,那么它就是必然事件C.生活中,如果一个事件发生的可能性很大,那么它也可能不发生D.生活中,如果一个事件不是必然事件,那么它就不可能发生三、解答题6.“有位从不买彩票的人,在别人的劝说下用2元买了一随机号码,居然中了500万”,你认为这样的事情可能发生吗?请简述理由.综合、运用、诊断7.一张写有密码的纸片被随意地埋在如图所示的矩形区域内,图中的四个正方形大小一样,则纸片埋在几号区域的可能性最大?为什么?8.在如图所示的图案中,黑白两色的直角三角形都全等.甲、乙两人将它作为一个游戏盘,游戏规则是:按一定距离向盘中投镖一次,扎在黑色区域为甲胜,扎在白色区域为乙胜.你认为这个游戏公平吗?为什么?9.用力旋转如图所示的甲转盘和乙转盘的指针,如果指针停在蓝色区域就称为成功.A同学说:“乙转盘大,相应的蓝色部分的面积也大,所以选乙转盘成功的机会比较大.”B同学说:“转盘上只有两种颜色,指针不是停在红色上就是停在蓝色上,因此两个转盘成功的机会都是50%.”你同意两人的说法吗?如果不同意,请你预言旋转两个转盘成功的机会有多大?拓广、探究、思考10.分别列出下列各项操作的所有可能结果,并分别指出在各项操作中出现可能性最大的结果.(1)旋转各图中的转盘,指针所处的位置.(2)投掷各图中的骰子,朝上一面的数字.(3)投掷一枚均匀的硬币,朝上的一面.测试2 概率的意义学习要求理解概率的意义;对于大量重复试验,会用事件的频率来估计事件的概率.课堂学习检测一、填空题1.在大量重复进行同一试验时,随机事件A 发生的______总是会稳定在某个常数的附近,这个常数就叫做事件A 的______.2.在一篇英文短文中,共使用了6000个英文字母(含重复使用),其中“正”共使用了900次,则字母“正”在这篇短文中的使用频率是______.3.下表是一个机器人做9999次“抛硬币”游戏时记录下的出现正面的频数和频率.抛掷结果 5次 50次 300次 800次 3200次 6000次 9999次 出现正面的频数 1 31 135 408 1580 2980 5006 出现正面的频率20%62%45%51%49.4%49.7%50.1%(1)由这张频数和频率表可知,机器人抛掷完5次时,得到1次正面,正面出现的频率是20%,那么,也就是说机器人抛掷完5次后,得到______次反面,反面出现的频率是______;(2)由这张频数和频率表可知,机器人抛掷完9999次时,得到______次正面,正面出现的频率是______;那么,也就是说机器人抛掷完9999次时,得到______次反面,反面出现的频率是______;(3)请你估计一下,抛这枚硬币,正面出现的概率是______. 二、选择题4.某个事件发生的概率是21,这意味着( ). A .在两次重复实验中该事件必有一次发生 B .在一次实验中没有发生,下次肯定发生 C .在一次实验中已经发生,下次肯定不发生 D .每次实验中事件发生的可能性是50%5.在生产的100件产品中,有95件正品,5件次品.从中任抽一件是次品的概率为( ). A .0.05 B .0.5 C .0.95 D .95 三、解答题6.某篮球运动员在最近几场大赛中罚球投篮的结果如下:投篮次数n 8 10 12 9 16 10 进球次数m 6 8 9 7 12 7 进球频率nm(1)计算表中各次比赛进球的频率;(2)这位运动员每次投篮,进球的概率约为多少?综合、运用、诊断7.下列说法:①频率是反映事件发生的频繁程度,概率反映事件发生的可能性大小;②做n 次随机试验,事件A 发生m 次,则事件A 发生的概率一定等于nm;③频率是不能脱离具体的n 次试验的实验值,而概率是具有确定性的不依赖于试验次数的理论值;④频率是概率的近似值,概率是频率的稳定值.其中正确的是______(填序号).8.某市元宵节期间举行了“即开式社会福利彩票”销售活动,印制彩票3000万张(每张彩票2元).在这些彩票中,设置了如下的奖项:奖金/万元 501584…数量/个20 20 20 180 …如果花2元钱购买1张彩票,那么能得到8万元以上(包括8万元)大奖的概率是______ 9.下列说法中正确的是( ).A .抛一枚均匀的硬币,出现正面、反面的机会不能确定B .抛一枚均匀的硬币,出现正面的机会比较大C .抛一枚均匀的硬币,出现反面的机会比较大D .抛一枚均匀的硬币,出现正面与反面的机会相等 10.从不透明的口袋中摸出红球的概率为51,若袋中红球有3个,则袋中共有球( ). A .5个 B .8个 C .10个 D .15个 11.柜子里有5双鞋,取出一只鞋是右脚鞋的概率是( ).A .21B .31 C .51D .101 12.某储蓄卡上的密码是一组四位数字号码,每一位上的数字可在0~9这10个数字中选取.某人未记准储蓄卡密码的最后一位数字,他在使用这张储蓄卡时,如果随意地 按一下密码的最后一位数字,正好按对密码的概率有多少?13.某地区近5年出生婴儿性别的调查表如下:出生年份 出生数 共计n =m 1+m 2出生频率男孩m 1 女孩m 2 男孩P 1女孩P 21996 52807 49473 102280 1997 51365 47733 99098 1998 49698 46758 96456 1999 49654 46218 95872 2000 4824345223934665年共计251767 235405 487172完成该地区近5年出生婴儿性别的调查表,并分别求出出生男孩和女孩概率的近似值.(精确到0.001)14.小明在课堂做摸牌实验,从两张数字分别为1,2的牌(除数字外都相同)中任意摸出一张,共实验10次,恰好都摸到1,小明高兴地说:“我摸到数字为1的牌的概率为100%”,你同意他的结论吗?若不同意,你将怎样纠正他的结论.拓广、探究、思考15.小刚做掷硬币的游戏,得到结论:掷均匀的硬币两次,会出现三种情况:两正,一正一反,两反,所以出现一正一反的概率是31.他的结论对吗?说说你的理由.16.袋子中装有3个白球和2个红球,共5个球,每个球除颜色外都相同,从袋子中任意摸出一个球,则:(1)摸到白球的概率等于______; (2)摸到红球的概率等于______; (3)摸到绿球的概率等于______;(4)摸到白球或红球的概率等于______;(5)摸到红球的机会______于摸到白球的机会(填“大”或“小”).测试3 用列举法求概率(一)学习要求会通过列举法分析随机事件可能出现的结果,求出“结果发生的可能性相等”的随机事件的概率.课堂学习检测一、填空题1.一个袋中装有10个红球、3个黄球,每个球只有颜色不同,现在任意摸出一个球,摸到______球的可能性较大.2.掷一枚均匀正方体骰子,6个面上分别标有数字1,2,3,4,5,6,则有: (1)P (掷出的数字是1)=______;(2)P (掷出的数字大于4)=______.3.某班的联欢会上,设有一个摇奖节目,奖品为钢笔、图书和糖果,标于一个转盘的相应区域上(如图所示),转盘可以自由转动,参与者转动转盘,当转盘停止时,指针落在哪一区域,就获得哪种奖品.则获得钢笔的概率为______,获得______的概率大.4.一副扑克牌有54张,任意从中抽一张. (1)抽到大王的概率为______;(2)抽到A 的概率为______; (3)抽到红桃的概率为______;(4)抽到红牌的概率为______;(红桃或方块) (5)抽到红牌或黑牌的概率为______. 二、选择题5.一道选择题共有4个答案,其中有且只有一个是正确的,有一位同学随意地选了一个答案,那么他选对的概率为( ).A .1B .21C .31D .416.掷一枚均匀的正方体骰子,骰子6个面分别标有数字1,1,2,2,3,3,则“3”朝上的概率为( ).A .61B .41C .31D .217.一个口袋共有50个球,其中白球20个,红球20个,蓝球10个,则摸到不是白球的概率是( ).A .54B .53C .52D .51三、解答题8.有10张卡片,每张卡片分别写有1,2,3,4,5,6,7,8,9,10,从中任意摸取一张卡片,问摸到2的倍数的卡片的概率是多少?3的倍数呢?5的倍数呢?9.小李新买了一部手机,并设置了六位数的开机密码(每位数码都是0~9这10个数字中的一个),第二天小李忘记了密码中间的两个数字,他一次就能打开手机的概率是多少?综合、运用、诊断一、填空题10.袋中有3个红球,2个白球,现从袋中任意摸出1球,摸出白球的概率是______. 11.有纯黑、纯白的袜子各一双,小明在黑暗中穿袜子,左脚穿黑袜子,右脚穿白袜子的概率为______.12.有7条线段,长度分别为2,4,6,8,10,12,14,从中任取三条,能构成三角形的概率是______. 二、选择题13.一个均匀的正方体各面上分别标有数字1,2,3,4,6,8,其表面展开图如图所示,抛掷这个立方体,则朝上一面的数字恰好等于朝下一面上的数字的2倍的概率是( ).A .32B .21 C .31D .6114.从6名同学中选出4人参加数学竞赛,其中甲被选中的概率是( ).A .31B .21C .53D .3215.柜子里有两双不同的鞋,取出两只刚好配一双鞋的概率是( ).A .21B .31 C .41 D .6116.设袋中有4个乒乓球,一个涂白色,一个涂红色,一个涂蓝、白两色,另一个涂白、红、蓝三色,今从袋中随机地取出一球.①取到的球上涂有白色的概率为43;②取到的球上涂有红色的概率为;21③取到的球上涂有蓝色的概率为;21④取到的球上涂有红色、蓝色的概率为,41以上四个命题中正确的有( ).A .4个B .3个C .2个D .1个 三、解答题17.随意安排甲、乙、丙3人在3天节日中值班,每人值班1天.(1)这3人的值班顺序共有多少种不同的排列方法? (2)其中甲排在乙之前的排法有多少种? (3)甲排在乙之前的概率是多少?18.甲、乙、丙三人参加科技知识竞赛,已知这三人分别获得了一、二、三等奖.在不知谁获一等奖、谁获二等奖、谁获三等奖的情况下,“小灵通”凭猜测事先写下了获奖证书,则“小灵通”写对获奖名次的概率是多少?拓广、探究、思考19.有两组相同的牌,每组4张,它们的牌面数字分别是1,2,3,4,那么从每组中各摸出一张牌,两张牌的牌面数字之和等于5的概率是多少?两张牌的牌面数字之和等于几的概率最小?20.用24个球设计一个摸球游戏,使得:(1)摸到红球的概率是,21摸到白球的概率是,31摸到黄球的概率是;61(2)摸到白球的概率是,41摸到红球和黄球的概率都是 83测试4 用列举法求概率(二)学习要求能运用列表法和树状图法计算一些事件发生的概率.课堂学习检测一、选择题 1.在一个暗箱里放入除颜色外其他都相同的3个红球和11个黄球,搅拌均匀后随机任取一个球,取到红球..的概率是( ). A .113B .118 C .1411 D .143 2.号码锁上有3个拨盘,每个拨盘上有0~9共10个数字,能打开锁的号码只有一个.任意拨一个号码,能打开锁的概率是( ).A .1B .101C .1001D .10001二、解答题3.在一个布口袋中装着只有颜色不同,其他都相同的白、红、黑三种颜色的小球各1只,甲乙两人进行摸球游戏;甲先从袋中摸出一球看清颜色后放回,再由乙从袋中摸出一球. (1)试用树状图(或列表法)表示摸球游戏所有可能的结果; (2)如果规定:乙摸到与甲相同颜色的球为乙胜,否则为负,试求乙在游戏中获胜的概率.4.一个袋子中装有红、黄、蓝三个小球,它们除颜色外均相同. (1)如果从中随机摸出一个小球,那么摸到蓝色小球的概率是多少?(2)小王和小李玩摸球游戏,游戏规则如下:先由小王随机摸出一个小球,记下颜色后放回,小李再随机摸出一个小球,记下颜色.当两个小球的颜色相同时,小王赢;当两个小球的颜色不同时,小李赢.请你分析这个游戏规则对双方是否公平?并用列表法或画树状图法加以说明.5.如图,两个转盘中指针落在每个数字上的机会相等,现同时转动A 、B 两个转盘,停止后,指针各指向一个数字.小力和小明利用这两个转盘做游戏,若两数之积为非负数则小力胜;否则,小明胜.你认为这个游戏公平吗?请你利用列举法说明理由.6.“石头、剪刀、布”是广为流传的游戏,游戏时比赛各方做“石头”、“剪刀”、“布”手势中的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,同种手势或三种手势循环不分胜负继续比赛,假定甲、乙、丙三人都是等可能地做这三种手势,那么:(1)一次比赛中三人不分胜负的概率是多少? (2)比赛中一人胜,二人负的概率是多少?7.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,三辆汽车经过这个十字路口,求下列事件的概率: (1)三辆车全部直行;(2)两辆车向右转,一辆车向左转; (3)至少有两辆车向左转.综合、运用、诊断一、填空题8.“五一”期间,梁先生驾驶汽车从甲地经过乙地到丙地游玩.甲地到乙地有两条公路,乙地到丙地有三条公路.每一条公路的长度如图所示(单位:km),梁先生任选一条从甲地到丙地的路线,这条路线正好是最短路线的概率是______.9.同时掷两枚普通的骰子,“出现数字之积为奇数”与“出现数字之积为偶数”的概率分别是______,______.10.银行为储户提供的储蓄卡的密码由0,1,2,…,9中的6个数字组成.某储户的储蓄卡被盗,盗贼如果随意按下6个数字,可以取出钱的概率是______.11.小明和小颖做游戏:桌面上放有5支铅笔,每次取1支或2支,由小明先取,最后取完铅笔的人获胜.如果小明获胜的概率为1,那么小明第一次应取走______支. 二、选择题12.有三条带子,第一条的一头是黑色,另一头是黄色,第二条的一头是黄色,另一头是白色,第三条的一头是白色,另一头是黑色.若任意选取这三条带子的一头,颜色各不相同的概率是( ).A .31B .41C .51D .6113.某校九年级学生中有5人在省数学竞赛中获奖,其中3人获一等奖,2人获二等奖.老师从5人中选2人向全校学生介绍学好数学的经验,则选出的2人中恰好一人是一等奖获得者,一人是二等奖获得者的概率是( ).A .51B .52C .53D .54三、解答题14.口袋里有红、绿、黄三种颜色的球,除颜色外其余都相同.其中有红球4个,绿球51个,任意摸出1个绿球的概率是3求:(1)口袋里黄球的个数;(2)任意摸出1个红球的概率.拓广、探究、思考15.小明走进迷宫,迷宫中的每一个门都相同,第一道关口有四个门,只有第三个门有开关,第二道关口有两个门,只有第一个门有开关,他一次就能走出迷宫的概率是______.16.请你设计一种均匀的正方体骰子,使得它掷出后满足下列所有条件:1(1)奇数点朝上的概率为;3(2)大于6的点数与小于3的点数朝上的概率相同.测试5 利用频率估计概率(一)学习要求会根据一个随机事件发生的频率估计这个事件发生的概率,学会用试验估计某事件出现的概率的操作过程.课堂学习检测一、填空题1.当实验次数很大时,同一事件发生的频率稳定在相应的______附近,所以我们可以通过多次实验,用同一个事件发生的______来估计这事件发生的概率.(填“频率”或“概率”) 2.50张牌,牌面朝下,每次抽出一张记下花色后放回,洗匀后再抽,抽到红桃、黑桃、梅花、方片的频率依次是16%、24%、8%、52%,估计四种花色分别有______张.3.在一个8万人的小镇,随机调查了1000人,其中有250人有订报纸的习惯,则该镇有订报纸习惯的人大约为______万人.4.为估计某天鹅湖中天鹅的数量,先捕捉10只,全部做上记号后放飞.过了一段时间后,重新捕捉40只,其中带有标记的天鹅有2只.据此可估算出该地区大约有天鹅______只.二、选择题5.如果手头没有硬币,用来模拟实验的替代物可用( ).A.汽水瓶盖B.骰子C.锥体D.两个红球6.在“抛硬币”的游戏中,如果抛了10000次,则出现正面的概率是50%,这是( ).A.确定的B.可能的C.不可能的D.不太可能的三、解答题7.对某厂生产的直径为4cm的乒乓球进行产品质量检查,结果如下:(1)计算各次检查中“优等品”的频率,填入表中;抽取球数n50 100 500 1000 5000优等品数m45 92 455 890 4500m优等品频率n(2)该厂生产乒乓球优等品的概率约为多少?8.某封闭的纸箱中有红色、黄色的玻璃球若干,为了估计出纸箱中红色、黄色球的数目,小亮向纸箱中放入25个白球,通过多次摸球实验后,发现摸到白球的频率为25%,摸到黄球的频率为40%,试估计出原纸箱中红球、黄球的数目.综合、运用、诊断一、填空题9.一口袋中有6个红球和若干个白球,除颜色外均相同,从口袋中随机摸出一球,记下颜色,再把它放回口袋中摇匀.重复上述实验共300次,其中120次摸到红球,则口袋中大约有______个白球.10.某班级有学生40人,其中共青团员15人,全班分成4个小组,第一小组有学生10人,其中共青团员4人.如果要在班内任选一人当学生代表,那么这个代表恰好在第一小组内的概率为______;现在要在班级任选一个共青团员当团员代表,问这个代表恰好在第一小组内的概率是______.二、解答题11.在5瓶饮料中有2瓶已过了保质期,从5瓶饮料中任取2瓶,则取到的2瓶都过了保质期的可能性是多少?请你用替代物进行模拟实验,估计问题的答案.12.某笔芯厂生产圆珠笔芯,每箱可装2000支.一位质检员误把一些已做标记的不合格产品也放入箱子里,若随机拿出100支,共做10次实验,这100支中不合格笔芯的平均数是5,你能估计箱子里有多少支不合格品吗?若每支合格品的利润为0.5元,如果顾客发现不合格品,需双倍赔偿(即每支赔1元),如果让这箱含不合格品的笔芯走上市场,根据你的估算这箱笔芯是赚是赔?赚多少或赔多少?13.为估计某一池塘中鱼的总数目,小英将100尾做了标记的鱼投入池塘中,几天后,随机捕捞,每次捕捞后做好记录,然后将鱼放回,如此进行20次,记录数据如下:总条数50 45 60 48 10 30 42 38 15 10标记数 2 1 3 2 0 1 1 2 0 1总条数53 36 27 34 43 26 18 22 25 47标记数 2 1 2 1 2 1 1 2 1 2(1)估计池塘中鱼的总数.根据这种方法估算是否准确?(2)请设计另一种标记的方法,使得估计更加精准.14.小明在乒乓球馆训练完后,不慎将若干白球放入了装有30个橙色球的袋子中,已知两种球除颜色外都相同,你能帮他设计一个方案来估计放进多少白球吗?拓广、探究、思考15.北京联通公司市场部经理小张想了解市内移动公司等对手的市场占有率及用户数量,你能帮他设计一种方案估计出其他公司用户的数量吗?16.一口袋中只有若干粒白色围棋子,没有其他颜色的棋子;而且不许将棋子倒出来数,请你设计一个方案估计出其中白色棋子的数目.测试6 利用频率估计概率(二)学习要求当调查估计某事件发生的概率比较困难时,会转化成某种“替代”实际调查的简易方法.课堂掌习检测一、填空题1.用频率来估计概率的值,得到的只是______,但随实验的次数增多,频率值与实际概率值的差会越来越趋近于______,此时对这个事件发生概率值估计的准确性也就越大. 2.某单位共有30名员工,现有6张音乐会门票,领导决定分给6名员工,为了公平起见,他将员工们按1~30进行编号,用计算器随机产生______~______之间的整数,随机产生的______个整数对应的编号去听音乐会.3.为了解某城市的空气质量,小明由于时间的限制,只随机记录了一年中73天空气质量情况,其中空气质量为优的有60天,请你估计该城市一年中空气质量为优的有______天. 4.利用计算器产生1~5的随机数(整数),连续两次随机数相同的概率是______. 二、选择题5.某口袋放有编号1~6的6个球,先从中摸出一球,将它放回口袋中后,再摸一次,两次摸到的球相同的概率是( )A .361B .181C .61D .216.某科研小组,为了考查某河流野生鱼的数量,从中捕捞200条,作上标记后,放回河里,经过一段时间,再从中捕捞300条,发现有标记的鱼有15条,则估计该河流中有野生鱼( )A .8000条B .4000条C .2000条D .1000条 三、解答题7.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:摸球的次数n 100 150 200 500 800 1000 摸到白球的次数m 58 96 116 295 484 601 摸到白球的频率nm 0.580.640.580.590.6050.601(1)请估计:当n 很大时,摸到白球的频率将会接近______;(2)假如你去摸一次,你摸到白球的概率是______,摸到黑球的概率是______; (3)试估算口袋中黑、白两种颜色的球各有多少只?(4)解决了上面的问题,小明同学猛然顿悟,过去一个悬而未决的问题有办法了.这个问题是:在一个不透明的口袋里装有若干个白球,在不允许将球倒出来数的情况下,如何估计白球的个数(可以借助其他工具及用品)?请你应用统计与概率的思想和方法解决这个问题,写出解决这个问题的主要步骤及估算方法.8.某学校有50位女教师,但不知其校男教师的人数,一位同学为了弄清该校男教师的人数,他对每天进校时的第一位老师的性别进行了记录,他一共记录了200次,记录到女教师有80次.你能根据这位同学的记录估计出该校男教师的人数吗?请说明理由.综合、运用、诊断一、填空题9.均匀的正四面体各面分别标有1,2,3,4四个数字,同时抛掷两个这样的四面体,它们着地一面数字相同的概率是______.如果没有正四面体,设计一个模拟实验用来替代此实验:______________________________.10.有4根完全相同的绳子放在盒子中,然后分别将它们的两端相接连成一条绳子,问一根绳子的两端刚好都接有绳子的概率是______. 二、解答题11.某数学兴趣小组为了估计π的值设计了投针实验.平行线间的距离α=0.5m ,针长为0.1m ,向地面随机投了150次,经统计有19次针与平行线相交.试求出针与平行线相交的概率的近似值,并估计出π的值.12.小明在操场上做游戏,他发现地上有一个不规则的封闭图形ABC .为了知道它的面积,小明在封闭图形内划出了一个半径为1m 的圆,在不远处向圈内掷石子,且记录如下:掷子次数 50次 150次 300次 石子落在⊙O 内 (含⊙O 上)的次数m 1443 93 石子落在图形内的次数n1985186你能否求出封闭图形ABC 的面积?试试看.。
人教版九年级上册数学第二十五章 概率的初步(含答案 )
第二十五章概率的初步一、单选题1.下列事件为必然事件的是()A.抛一枚硬币,正面朝上B.打开电视,正在播放动画片C.3个人分成两组,每组至少1人,一定有2个人分在同一组D.随意掷两个均匀的骰子,上面的点数之和为62.不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是不可能事件的是()A.3个球都是黑球B.3个球都是白球C.三个球中有黑球D.3个球中有白球3.下列说法正确的是()A.367人中至少有2人生日相同B.任意掷一枚均匀的骰子,掷出的点数是偶数的概率是1 3C.天气预报说明天的降水概率为90%,则明天一定会下雨D.某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖4.一个不透明的袋中,装有2个黄球、3个红球和5个白球,它们除颜色外都相同.从袋中任意摸出一个球,是白球的概率是()A.12B.13C.310D.155.下列事件是随机事件的为 ( )A.一个图形旋转后所得的图形与原来的图形不全等B.元旦是晴天C.y=(a²+1)x²+bx+c(a,b,c是常数)是二次函数D.在圆中任意画一个圆内接四边形,对角互补6.“我的梦,中国梦”这句话六个字中,“梦”字出现的频率是()A.12B.13C.14D.167.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为( )A.15B.14C.13D.128.如图,有四张不透明的卡片除正面的算式不同外,其余完全相同,将它们背面朝上洗匀后,从中随机抽取一张,则抽到得卡片上算式正确的概率是()A.12B.34C.14D.19.掷一枚质地均匀的骰子,骰子停止后,出现可能性大的是()A.大于的点数B.小于的点数C.大于的点数D.小于的点数10.下面四个实验中,实验结果概率最小的是( )A.如(1)图,在一次实验中,老师共做了400次掷图钉游戏,并记录了游戏的结果绘制了下面的折线统计图,估计出的钉尖朝上的概率B.如(2)图,是一个可以自由转动的转盘,任意转动转盘,当转盘停止时,指针落在蓝色区域的概率C.如(3)图,有一个小球在的地板上自由滚动,地板上的每个格都是边长为1的正方形,则小球在地板上最终停留在黑色区域的概率D.有7张卡片,分别标有数字1,2,3,4,6,8,9,将它们背面朝上洗匀后,从中随机抽出一张,抽出标有数字“大于6”的卡片的概率11.把一个球任意投人A、B、C、D四个盒子内,则A号盒子无球的概率是()A.1B.C.D.12.小鸡孵化场孵化出只小鸡,在只上做记号,再放入鸡群中让其充分跑散,再任意抓出只,其中左右记号的大约是()A.只B.只C.只D.只二、填空题13.一个不透明的布袋中只装有红球和白球两种球,它们除颜色外其余均相同.若白球有9个,摸到白球的概率为0.75,则红球的个数是_____.14.从﹣3,﹣l,π,0,3这五个数中随机抽取一个数,恰好是负数的概率是____________. 15.如图,第(1)个图有1个黑球;第(2)个图为3个同样大小球叠成的图形,最下一层的2个球为黑色,其余为白色;第(3)个图为6个同样大小球叠成的图形,最下一层的3个球为黑色,其余为白色;;则从第(n)个图中随机取出一个球,是黑球的概率是____________.16.在一次摸球实验中,摸球箱内放有白色、黄色乒乓球共50个,这两种乒乓球的大小、材质都相同.小明发现,摸到白色乒乓球的频率稳定在60%左右,则箱内黄色乒乓球的个数很可能是________.三、解答题17.如图,现有一个可以自由转动的转盘,盘面被平均分成6等份,分别标有2,3,4,5,6,7这六个数字.转动转盘,当转盘停止时,指针指向区域所标示的数字即为转出的数字(若指针落在相邻两扇形交界处,重新转动转盘).(1)转出数字10是________(填“随机事件”“必然事件”“不可能事件”中的一个);(2)转出的数字大于3的概率是_________;(3)现有两张分别写有3和4的卡片,随机转动转盘,转盘停止后记下转出的数字,该数字与两张卡片上的数字分别作为三条线段的长度.①这三条线段以有构成三角形的概率是___________;②这三条线段能构成等腰三角形的概率是_____________.18.丹尼斯超市举行有奖促销活动:顾客凡一次性购买满300元者即可获得一次摇奖机会.摇奖机是一个圆形转盘,被等分成16个扇形,如果转盘停止后,指针正好对准红黄或蓝色区域,顾客就可以分别获得一、二、三等奖奖金依次为60元、50元、40元一次性购物满300元者,如果不摇奖可返还奖金15元.(1)摇奖一次,获一等奖、二等奖、三等奖的概率分别是多少?(2)小李一次性购物满300元他是参与摇奖划算,还是领15元现金划算?请你帮他算算19.某校随机选取了1000名学生,对他们喜欢的运动项目进行调查,整理成以下统计表,其中“√”表示喜欢,“×”表示不喜欢.项目长跑短跑跳绳跳远学生数200 √×√√300 ×√×√150 √√√×200 √×√×150 √×××(1)估计该校学生同时喜欢短跑和跳绳的概率;(2)估计该校学生在长跑、短跑、跳绳、跳远中同时喜欢三个项目的概率;20.一个不透明的口袋中有4个大小、质地完全相同的乒乓球,球面上分别标有数-1,2,-3,4.(1)摇匀后任意摸出1个球,则摸出的乒乓球球面上的数是负数的概率为________.(2)摇匀后先从中任意摸出1个球(不放回),再从余下的3个球中任意摸出1个球,用列表或画树状图的方法求两次摸出的乒乓球球面上的数之和是正数的概率.21.阳春三月,龙泉驿区的桃花又开了,小明乘坐地铁到龙泉看桃花,计划在龙平路地铁口下车,如图是龙平路地铁口的平面图,其有A、B、C、D四个出入口,小明任选一个出口下车出站,赏花结束后,任选一个入口入站乘车.(1)小明从出站到入站共有多少种可能的结果?请用树形图或列表说明;(2)求出小明从龙平路同一侧出入站的概率答案1.C 2.B3.A 4.A 5.B 6.B 7.C 8.A 9.D 10.C 11.C 12.A 13.314.2 515.16.2017.解:(1)转到数字10是不可能事件,故答案为:不可能事件;(2)转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,大于3的结果有4种,∴转出的数字大于3的概率是42 = 63故答案为:23;(3)①转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,能够成三角形的结果有5种,∴这三条线段能构成三角形的概率是56;②转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,能够成等腰三角形的结果有2种,∴这三条线段能构成等腰三角形的概率是21=63.18.(1)整个圆周被分成了16份,红色为1份,黄色为2份,蓝色为4份,所以获得-等奖的概率为116,二等奖概率为2=1618,三等奖概率为416=14.(2)转转盘:118160504020146⨯+⨯+⨯=(元),20元15>元,∴转转盘划算.19.(1)同时喜欢短跑和跳绳的概率为:1503 100020=;(2)同时喜欢三个项目的概率为:2001507 100020+=.20.(1)摇匀后任意摸出1个球,则摸出的乒乓球球面上的数是负数的概率21 42 ==;故答案为12;(2)画树状图为:共有12种等可能的结果数,其中两次摸出的乒乓球球面上的数之和是正数的结果数为8,所以两次摸出的乒乓球球面上的数之和是正数的概率82 123 ==.21.解:(1)画树状图如下:小明从出站到入站共有16种可能的结果.(2)∵小明从龙平路同一侧出入站的有8种等可能结果, ∴小明从龙平路同一侧出入站的概率为.。
人教版九年级上册数学 25章概率初步 同步检测带答案。
25.1随机事件与概率一.选择题1.下列事件中,是必然事件的是()A.明天太阳从西边出来B.打开电视,正在播放《云南新闻》C.昆明是云南的省会D.小明跑完800米所用的时间恰好为1分钟2.一个不透明的盒子里装有红、黄、白三种颜色的球,个数分别为2、3、4,这些球除颜色外都相同,从盒子中任抽一个球,则抽到红球的概率是()A.B.C.D.3.“翻开数学书,恰好翻到第16页”,这个事件是()A.随机事件B.必然事件C.不可能事件D.确定事件4.在一个不透明的袋子里装有2个黑球3个白球,它们除颜色外都相同,随机从中摸出一个球,是黑球的概率是()A.B.C.D.5.从﹣3,,0,,这5个数中任意抽取一个,抽到无理数的概率为()A.B.C.D.6.下列说法正确的是()A.“穿十条马路连遇十次红灯”是不可能事件B.任意画一个三角形,其内角和是180°是必然事件C.某彩票中奖概率为1%,那么买100张彩票一定会中奖D.“福山福地福人居”这句话中任选一个汉字,这个字是“福”字的概率是7.小丽书包里准备的3只包装相同的备用口罩中有2只是医用外科口罩,由于感冒她想取一只医用外科口罩去医院就医时佩戴,则她一次取对的概率是()A.0B.C.D.8.下列事件中,是随机事件的是()A.抛出的篮球会下落B.爸爸买彩票中奖了C.地球绕着太阳转D.一天有24小时9.掷一枚质地均匀的硬币6次,下列说法正确的是()A.必有3次正面朝上B.可能有3次正面朝上C.至少有1次正面朝上D.不可能有6次正面朝上10.某商店举办有奖销售活动,购货满100元者发奖券一张,在10000张奖券中设特等奖1个、一等奖10个、二等奖100个,若某人购物满100元,那么他中奖的概率是()A.B.C.D.二.填空题11.一个不透明的袋中装有3个红球,1个黑球,每个球除颜色外都相同.从中任意摸出2球,则“摸出的球至少有1个黑球”是事件.(填“必然”、“不可能”或“随机”)12.有8张卡片,标号为1,2,3,4,5,6,7,8从中任意抽取一张,P(抽到大于3)=.13.掷一枚均匀的硬币,前20次抛掷的结果都是正面朝上,那么第21次抛掷的结果正面朝上的概率为.14.在9张质地完全相同的卡片上分别写上数字﹣4、﹣3、﹣2、﹣1、0、1、2、3、4,从中任意抽取一张卡片,则所抽卡片上的数字的绝对值大于2的概率是.15.一个盒中装着大小、外形一模一样的x颗白色弹珠和12颗黑色弹珠,已知从盒中随机取出一颗弹珠,取得白色弹珠的概率是,则盒中有白色弹珠的颗数为.三.解答题16.①四边形内角和是180°;②今年的五四青年节是晴天;③367人中有2人同月同日生.指出上述3个事件分别是什么事件?并按事件发生的可能性由大到小排列.17.如图,转盘被等分成六个扇形,并在上面依次写上数字1、2、3、4、5、6.(1)若自由转动转盘,当它停止转动时,指针指向偶数区域的概率是多少?(2)请你用这个转盘设计一个游戏,当自由转动的转盘停止时,指针指向区域的概率为.18.一个不透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同.(1)求摸出1个球是白球的概率;(2)现再将n个白球放入布袋,搅匀后.使摸出1个白球的概率为.求n的值.参考答案1.解:A、明天太阳从西边出来是不可能事件;B、打开电视,正在播放《云南新闻》是随机事件;C、昆明是云南的省会是必然事件;D、小明跑完800米所用的时间恰好为1分钟是不可能事件;故选:C.2.解:∵盒子里装有红、黄、白三种颜色的球,个数分别为2、3、4,共9个球,从盒子中任抽一个球共有9种结果,其中出现红球的情况2种可能,∴抽到红球的概率是:.故选:C.3.解:“翻开数学书,恰好翻到第16页”确实有可能刚好翻到第16页,也有可能不是翻到第16页,故这个事件是随机事件.故选:A.4.解:∵在一个不透明的袋子里装有2个黑球3个白球,共5个球,∴随机从中摸出一个球,摸到黑球的概率是.故选:A.5.解:∵﹣3,,0,,这五个数中,无理数有2个,∴随机抽取一个,则抽到无理数的概率是,故选:B.6.解:A、“穿十条马路连遇十次红灯”是随机事件,故此选项错误;B、任意画一个三角形,其内角和是180°是必然事件,正确;C、某彩票中奖概率为1%,那么买100张彩票也不一定会中奖,故此选项错误;D、“福山福地福人居”这句话中任选一个汉字,这个字是“福”字的概率是,故此选项错误.故选:B.7.解:∵共有3只包装相同的备用口罩,其中有2只是医用外科口罩,∴她一次取对的概率为;故选:D.8.解:A、抛出的篮球会下落的是,是必然事件,不符合题意;B、爸爸买彩票中奖了,是随机事件,符合题意;C、地球绕着太阳转,是必然事件,不符合题意;D、一天有24小时是必然事件,不符合题意,故选:B.9.解:掷一枚质地均匀的硬币,可能正面向上,也可能反面向上,可能性是均等的,不会受到前一次的影响,掷一枚质地均匀的硬币6次,不一定3次正面朝上,因此A选项不符合题意,“可能有3次正面朝上”是正确的,因此B选项正确;可能6次都是反面向上,因此C不符合题意,有可能6次正面向上,因此D选项不符合题意;故选:B.10.解:∵在10000张奖券中设特等奖1个、一等奖10个、二等奖100个,∴他中奖的概率是=;故选:D.11.解:一个不透明的袋中装有3个红球,1个黑球,每个球除颜色外都相同.从中任意摸出2球,共有以下2种情况:1、2个红球;2、1个红球,1个黑球;所以从中任意摸出2球,“摸出的球至少有1个黑球”是随机事件,故答案为:随机.12.解:标号为1,2,3,4,5,6,7,8的卡片中大于3的有5张,∴P(抽到大于3)=,故答案为:.13.解:由于每一次正面朝上的概率相等,∴第21次抛掷的结果正面朝上的概率为0.5;故答案为:0.5.14.解:∵数的总个数有9个,绝对值大于2的数有﹣4、﹣3、3、4,共4个,∴任意抽取一张卡片,则所抽卡片上数字的绝对值大于2的概率是,故答案为:.15.解:设盒中有白色弹珠x颗,那么盒中一共有弹珠(x+12)颗,∵从盒中随机取出一颗弹珠,取得白色弹珠的概率是,∴=,解得:x=6.故答案为:6.16.解:①是不可能事件;②是随机事件;③必然事件.答:按事件发生的可能性由大到小排列为:③>②>①.17.解:(1)P(指针指向偶数区域)==;(2)方法一:如图,自由转动转盘,当转盘停止时,指针指向阴影部分区域的概率为;方法二:自由转动转盘,当它停止时,指针指向数字不大于4的区域的概率是.故答案为:18.解:(1)∵一个不透明的布袋里装有3个球,其中2个红球,1个白球,∴摸出1个球是白球的概率为;(2)由题意得:,解得:n=4.经检验,n=4是所列方程的解,且符合题意,∴n=4.人教版 九年级数学 25.2 用列举法求概率一、选择题(本大题共10道小题)1. 从同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为( ) A.16B.13C.12D.232. 2019·临沂 经过某十字路口的汽车,可能直行,也可能向左转或向右转,若这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是( ) A.23B.29C.13D.193. 如图25-2-1,有以下三个条件:①AC =AB ;②AB ∥CD ;③∠1=∠2.从这三个条件中选两个作为题设,另一个作为结论,则组成的命题是真命题的概率是( )A .0B.13C.23D .14. 一个盒子中装有标号分别为1,2,3,4,5的五个小球,这些球除标号不同外其余都相同,从中随机摸出两个小球,则摸出的小球标号之和大于5的概率为( ) A.15B.25C.35D.455. 如图,有一块质地均匀的圆铁片,两面上分别写有数字1,2,有一个均匀的三棱锥旋转器和一个均匀的四棱锥旋转器,它们的侧面上分别写有数字1,2,3和数字1,2,3,4.在桌面上同时旋转这三件器物,停下来后,面向桌面的三个数字的积为奇数的概率是( )A.12B.13C.16D.186. 小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中的一项,那么两人同时选择“参加社会调查”的概率为( ) A.14B.13C.12D.347. 如图,正方形ABCD 内的图形来自中国古代的太极图,现随机向正方形内掷一枚小针,则针尖落在阴影区域内的概率为( )A.14B.12C.π8D.π48. 三张背面完全相同的数字牌,它们的正面分别印有数字“1”“2”“3”,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a ,b ,c ,则以a ,b ,c 为边长的三角形是等边三角形的概率是( ) A.19B.127C.59D.139. 如图,在4×4的正方形网格中,阴影部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂上阴影,使阴影部分的图形仍然构成一个轴对称图形的概率是( )A.613 B.513C.413D.31310. 把十位上的数字比个位、百位上的数字都大的三位数叫做中高数,如796就是一个“中高数”.若十位上的数字为7,则从3,4,5,6,8,9中任选两数,与7组成“中高数”的概率是( ) A.12B.23C.25D.35二、填空题(本大题共8道小题)11. 如图,甲、乙两个转盘分别被分成了3等份与4等份,每份内均标有数字,分别转动这两个转盘,将转盘停止后指针所指区域内的两数相乘.(1)请将所有可能出现的结果填入下表:甲乙积 1 2 3 4123(2)积为9的概率为________,积为偶数的概率为________;(3)从1~12这12个整数中,随机选取1个整数,该数不是(1)中所填数字的概率为________.12. (2019·甘肃陇南)一个猜想是否正确,科学家们要经过反复的实验论证.下表是几位科学家“掷硬币”的实验数据:请根据以上数据,估计硬币出现“正面朝上”的概率为__________(精确到0.1).13. 一张圆桌旁有四个座位,A先坐在如图所示的位置上,B,C,D三人随机坐到其他三个座位上,则A与B不相邻坐的概率为________.14. 从2019年高中一年级学生开始,湖南省全面启动高考综合改革,学生学习完必修课程后,可以根据高校相关专业的选课要求和自身兴趣、志向、优势,从思想政治、历史、地理、物理、化学、生物6个科目中,自主选择3个科目参加等级考试.学生A已选物理,还要从思想政治、历史、地理3个文科科目中选1科,再从化学、生物2个理科科目中选1科,则选修地理和生物的概率为________.15. 如图,转盘中6个扇形的面积相等,任意转动转盘1次,转盘停止转动后,指针指向的数小于5的概率为________.16. 如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的展开图的一部分,现从其余的小正方形中任取1个涂上阴影,能构成这个正方体的展开图的概率是________.17. 某校欲从初三年级3名女生、2名男生中任取两名学生代表学校参加全市举办的“中国梦·青春梦”演讲比赛,则恰好选中一男一女的概率是________.18. 已知电路AB由如图所示的开关控制,闭合a,b,c,d,e五个开关中的任意两个,则能使电路形成通路的概率是________.三、解答题(本大题共4道小题)19. 某景区7月1日~7月7日一周的天气预报如图25-2-2,小丽打算选择这期间的一天或两天去该景区旅游,求下列事件的概率:(1)随机选择一天,恰好天气预报是晴;(2)随机选择连续的两天,恰好天气预报都是晴.20. 如图①,一枚质地均匀的正四面体骰子,它有四个面,且每个面上分别标有数字1,2,3,4.如图②,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边按顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从圈D开始顺时针连续跳2个边长,落到圈B……设游戏者从圈A起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;(2)淇淇随机掷两次骰子,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A 的可能性是否一样.21. 如图①,在Rt△ABC中,∠C=90°,两条直角边长分别为a,b,斜边长为c.如图②,现将与Rt△ABC全等的四个直角三角形拼成一个正方形EFMN.(1)若Rt△ABC的两直角边长之比为2∶3,现随机向图②掷一枚小针,则针尖落在四个直角三角形区域的概率是多少?(2)若正方形EFMN的边长为8,Rt△ABC的周长为18,求Rt△ABC的面积.22. 母亲节当天,小明去花店买花送给母亲,挑中了康乃馨和兰花两种花.已知康乃馨每枝5元,兰花每枝3元,小明只有30元,希望购买花的枝数不少于7枝,其中至少有一枝是康乃馨.(1)小明一共有多少种可能的购买方案?列出所有方案;(2)如果小明先购买一张2元的祝福卡,再从(1)中任选一种方案买花,求他能实现购买愿望的概率.人教版九年级数学25.2 用列举法求概率课时训练-答案一、选择题(本大题共10道小题)1. 【答案】A2. 【答案】B3. 【答案】D [解析] 构成如下命题:如果①AC =AB ,②AB ∥CD ,那么③∠1=∠2;如果②AB ∥CD ,③∠1=∠2,那么①AC =AB ;如果①AC =AB ,③∠1=∠2,那么②AB ∥CD .这三个命题都是真命题. 故选D.4. 【答案】C [解析] 随机摸出两个球,所有可能的结果有20种,每种结果的可能性相同,其中摸出的小球标号之和大于5的结果有12种,所以所求概率P =1220=35.故选 C.5. 【答案】C [解析] 画树状图如下:因为共有24种等可能结果,面向桌面的三个数字的积为奇数的结果有4种,所以所求概率为16.6. 【答案】A7. 【答案】C [解析] 设正方形ABCD 的边长为2a ,针尖落在阴影区域内的概率=12×π×a24a2=π8. 故选C.8. 【答案】A [解析] 画树状图如下:由树状图知,共有27种等可能的结果,构成等边三角形的结果有3种,所以以a ,b ,c 为边长的三边形是等边三角形的概率是327=19.故选A.9. 【答案】B [解析] 因为根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,共13种情况,而能构成一个轴对称图形的有下列5种情况:所以使图中阴影部分的图形仍然构成一个轴对称图形的概率是513.故选B.10. 【答案】C [解析] 列表如下:由表格可知,所有等可能的结果有30种,其中组成“中高数”的结果有12种,因此组成“中高数”的概率为1230=25.二、填空题(本大题共8道小题)11. 【答案】[解析] (2)一共有12种等可能的结果,其中积为9的结果只有1种,所以积为9的概率为112;12种的结果中积为偶数的结果有8种,所以积为偶数的概率为812=23.(3)1~12这12个数中,不是表格中所填数字的有5,7,10,11,所以所求的概率为412=13. 解:(1)填表如下:(2)112 23 (3)1312. 【答案】0.5【解析】因为表中硬币出现“正面朝上”的频率在0.5左右波动,所以估计硬币出现“正面朝上”的概率为0.5.故答案为:0.5.13. 【答案】13[解析] 可设第一个位置和第三个位置都与A 相邻.画树状图如下:∵共有6种等可能结果,A 与B 不相邻坐的结果有2种, ∴A 与B 不相邻坐的概率为13.14. 【答案】16[解析] 画树状图如下:由图可知,选修结果共有6种,每种结果出现的可能性相等,其中选修地理和生物的结果只有1种,因此所求概率为16.15. 【答案】23[解析] 转盘转动一次,出现6种等可能的结果,小于5的结果共有4种,故指针指向的数小于5的概率为46=23.16. 【答案】47[解析] 余下的小正方形共有7个,其中上面的4个涂上阴影都能构成正方体的展开图,所以任取1个小正方形涂上阴影,能构成正方体的展开图的概率为47.17. 【答案】35[解析] 解法1:列表如下:共有20种等可能的结果,其中恰好选中一男一女的结果有12种, 所以恰好选中一男一女的概率P =1220=35. 解法2:画树状图如下:共有20种等可能的结果,其中恰好选中一男一女的结果有12种, 所以恰好选中一男一女的概率P =1220=35.18. 【答案】35[解析] 列表如下:a b c d e e (a ,e ) (b ,e ) (c ,e ) (d ,e ) d (a ,d ) (b ,d ) (c ,d ) (e ,d ) c (a ,c ) (b ,c ) (d ,c ) (e ,c ) b (a ,b ) (c ,b ) (d ,b ) (e ,b ) a(b ,a )(c ,a )(d ,a )(e ,a )∴一共有20种等可能的结果,使电路形成通路的结果有12种, ∴使电路形成通路的概率是1220=35.三、解答题(本大题共4道小题)19. 【答案】解:(1)∵天气预报是晴的有4天,∴随机选择一天,恰好天气预报是晴的概率为47. (2)∵随机选择连续的两天的结果有晴晴,晴雨,雨阴,阴晴,晴晴,晴阴, ∴随机选择连续的两天,恰好天气预报都是晴的概率为26=13.20. 【答案】解:(1)∵掷一次骰子有4种等可能的结果,只有掷得4时,才会落回到圈A , ∴P 1=14. (2)列表如下:所有等可能的结果共有16种,当两次掷得的数字和为4的倍数,即掷得的结果为(1,3),(2,2),(3,1),(4,4)时,才可落回到圈A ,共有4种结果, ∴P 2=416=14.而P 1=14,∴淇淇与嘉嘉落回到圈A 的可能性一样.21. 【答案】(1)因为Rt △ABC 的两直角边长之比为2∶3, 所以设b =2k ,a =3k ,由勾股定理,得c =a2+b2=13k ,所以针尖落在四个直角三角形区域的概率为4×12×2k×3k13k2=1213. (2)因为正方形EFMN 的边长为8,所以c =8,所以a2+b2=c2=64. 因为Rt △ABC 的周长为18, 即a +b +c =18, 所以a +b =10,所以Rt △ABC 的面积=12ab =14[(a +b)2-(a2+b2)] =9.22. 【答案】(1)设小明购买x 枝康乃馨,y 枝兰花,其中x≥1,x ,y 均为整数,则⎩⎪⎨⎪⎧5x +3y≤30,①7≤x +y.②①+②×3,得5x +3y +21≤30+3x +3y , 所以x≤92,所以1≤x≤92. 当x =1时,5×1+3y≤30, 所以y≤253,所以y 可取8,7,6,所以可购买1枝康乃馨,8枝兰花或1枝康乃馨,7枝兰花或1枝康乃馨,6枝兰花. 当x =2时,5×2+3y≤30, 所以y≤203,所以y 可取6,5,所以可购买2枝康乃馨,6枝兰花或2枝康乃馨,5枝兰花. 当x =3时,5×3+3y≤30, 所以y≤5,所以y 可取5,4,所以可购买3枝康乃馨,5枝兰花或3枝康乃馨,4枝兰花. 当x =4时,5×4+3y≤30, 所以y≤103,所以y 可取3, 所以可购买4枝康乃馨,3枝兰花. 综上所述,共有8种购买方案. 方案如下表:(单位:枝)(2)若小明先购买一张2元的祝福卡,则5x +3y≤28,则他能实现购买愿望的方案为方案二、方案三、方案四、方案五、方案七,共5种,所以从(1)中任选一种方案买花,他能实现购买愿望的概率为58.第25章 概率初步 25.3 用频率估计概率1. 关于频率和概率的关系,下列说法正确的是( ) A .概率等于频率B .当试验次数很大时,频率稳定在概率附近C .当试验次数很大时,概率稳定在频率附近D .试验得到的频率与概率不可能相同2. 从生产的一批螺钉中抽取1000个进行质量检查,结果发现有5个是次品,那么从中任取1个是次品概率约为( ). A .11000 B .1200C .12 D .153.下列说法正确的是( ).A .抛一枚硬币正面朝上的机会与抛一枚图钉钉尖着地的机会一样大;B .为了解汉口火车站某一天中通过的列车车辆数,可采用全面调查的方式进行;C .彩票中奖的机会是1%,买100张一定会中奖;D .中学生小亮,对他所在的那栋住宅楼的家庭进行调查,发现拥有空调的家庭占100%,于是他得出全市拥有空调家庭的百分比为100%的结论.4. 在抛掷一枚硬币的试验中,第一小组做了 500 次试验,当出现正面的频数为________时,其出现正面的频率才是 49.6 %( ) A .248 B .250 C .258 D .无法确定5. 某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原来有( ). A .10粒 B .160粒 C .450粒 D .500粒 6.某校男生中,若随机抽取若干名同学做“是否喜欢足球”的问卷调查,抽到喜欢足球的同学的概率是53,这个53的含义是( ). A .只发出5份调查卷,其中三份是喜欢足球的答卷; B .在答卷中,喜欢足球的答卷与总问卷的比为3∶8; C .在答卷中,喜欢足球的答卷占总答卷的53;D.在答卷中,每抽出100份问卷,恰有60份答卷是不喜欢足球.7.要在一只口袋中装入若干个形状与大小都完全相同的球,使得从1,四位同学分别采用了下列装法,你认为他袋中摸到红球的概率为5们中装错的是().A.口袋中装入10个小球,其中只有两个红球;B.装入1个红球,1个白球,1个黄球,1个蓝球,1个黑球;C.装入红球5个,白球13个,黑球2个;D.装入红球7个,白球13个,黑球2个,黄球13个.8.某学生调查了同班同学身上的零用钱数,将每位同学的零用钱数记录了下来(单位:元):2,5,0,5,2,5,6,5,0,5,5,5,2,5,8,0,5,5,2,5,5,8,6,5,2,5,5,2,5,6,5,5,0,6,5,6,5,2,5,0.假如老师随机问一个同学的零用钱,老师最有可能得到的回答是().A. 2元 B.5元 C.6元 D.0元9. 小明想知道一碗芝麻有多少粒,于是就从中取出100粒涂上黑色,然后放入碗中充分搅匀后再随意取出100粒,其中有5粒是黑色的,因此可以估算这碗芝麻有粒.10. 为了估计水塘中的鱼的个数,养鱼者首先从鱼塘中捕获30条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘,再从鱼塘中打捞200条鱼.如果在这200条鱼中有5条鱼是有记号的,则鱼塘中鱼的条数可估计为条.11. 在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是个.12. 同时抛掷两枚硬币,按照正面出现的次数,可以分为“2个正面”、“1个正面”和“没有正面”这3种可能的结果,小红与小明两人共做了6组实验,每组实验都为同时抛掷两枚硬币10次,下表为实验记录的统计表:结果第一组第二组第三组第四组第五组第六组两个正面 3 3 5 1 4 2一个正面 6 5 5 5 5 7没有正面 1 2 0 4 1 1由上表结果,计算得出现“2个正面”、“1个正面”和“没有正面”这3种结果的频率分别是___________________.当试验组数增加到很大时,请你对这三种结果的可能性的大小作出预测:______________.13.红星养猪场400头猪的质量(质量均为整数千克)频率分布如下,其中数据不在分点上组别频数频率46 ~ 50 4051 ~ 55 8056 ~ 60 16061 ~ 65 80从中任选一头猪,质量在65kg以上的概率是___________.14. 图表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约是.(精确到0.1)从袋口里随机摸出5个球(不放回),其中有2个为黑球,请你估计口袋里大约有多少个白球?参考答案:1---8 BBBAC CCB9. 200010. 120011. 1512. 3113,,102020111 ,, 42413. 0.1, 0.2, 0.4, 0.2, 0.075, 0.025;0.114. 0.515. 解:设有x个白球,根据已知,得25=8x+8,解得x=12,所以可估计口袋中共有12个白球.。
人教版九年级上册数学第二十五章 概率初步 含答案
人教版九年级上册数学第二十五章概率初步含答案一、单选题(共15题,共计45分)1、一个布袋里装有5个球,其中3个红球,2个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是红球的概率是()A. B. C. D.2、小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A. B. C. D.3、下列事件为必然事件的是()A.如果a,b是实数,那么a•b=b•aB.抛掷一枚均匀的硬币,落地后正面朝上C.汽车行驶到交通岗遇到绿色的信号灯D. 口袋中装有3个红球,从中随机摸出一球,这个球的白球4、定义一种“十位上的数字比个位、百位上的数字都要小”的三位数叫做“V 数”如“967”就是一个“V数”.若十位上的数字为4,则从3,5,7,9中任选两数,能与4组成“V数”的概率是()A. B. C. D.5、如果小明将镖随意投中如图所示的正方形木板(假设投中每个小正方形是等可能的),那么镖落在阴影部分的概率为A. B. C. D.6、下列说法正确的是()A.25人中至少有3人的出生月份相同B.任意抛掷一枚均匀的1元硬币,若上一次正面朝上,则下一次一定反面朝上C.天气预报说明天降雨的概率为10%,则明天一定是晴天D.任意抛掷一枚均匀的骰子,掷出的点数小于3的概率是7、如图,有两个可以自由转动的转盘(每个转盘均被等分),同时转动这两个转盘,待转盘停止后,两个指针同时指在偶数上的概率是()A. B. C. D.8、下列事件中,属于随机事件的有( ) .①下周六下雨②在只装有5个红球的袋中摸出1个球,是红球③买一张电影票,座位号是偶数④掷一次骰子,向上的一面是8A.1个B.2个C.3个D.4个9、小明把如图所示的3×3的正方形网格纸板挂在墙上玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域(四个全等的直角三角形的每个顶点都在格点上)的概率是()A. B. C. D.10、如图,在4×4的正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是( )A. B. C. D.11、从一副扑g牌中任意抽出一张,以下四种牌中抽到可能性较大的是()A.大王B.红色图案C.梅花D.老K12、在如图的地板行走,随意停下来时,站在黑色地板上的概率是()A. B. C. D.13、下列说法正确的是()A.“明天降雨的概率是75%”表示明天有75%的时间都在降雨B.“抛一枚硬币正面朝上的概率为”表示每抛2次就有1次正面朝上C.“抛一枚均匀的正方体骰子,朝上的点数是2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数是2”这一事件发生的频率稳定在左右D.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖14、“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形.如图,是一“赵爽弦图”飞镖板,其直角三角形的两条直角边的长分别是2和4.小明同学距飞镖板一定距离向飞镖板投掷飞镖(假设投掷的飞镖均扎在飞镖板上),则投掷一次飞镖扎在中间小正方形区域(含边线)的概率是()A. B. C. D.15、如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1、2、3、4、5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有奇数所在区域的概率为P(奇数),则P(奇数)等于()A. B. C. D.二、填空题(共10题,共计30分)16、如图,在4×4的正方形网络中,已将部分小正方形涂上阴影,有一个小虫落到网格中,那么小虫落到阴影部分的概率是________.17、向上抛掷两枚硬币,落地后一枚正面朝上,别一枚反面朝上的概率是________.18、在一个不透明的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为它是黄球的概率的0.5,则n=________.19、同时投掷两个骰子,它们点数之和不大于4的概率是________.20、不透明的盒中装着大小、外形、质地一样的红色、黑色、白色的乒乓球共20个,通过多次摸球实验后发现其中摸到红色、黑色球的概率稳定在5%和15%,则盒子中白色球的个数很可能是________个.21、用2,3,4这三个数字排成一个三位数,则排成的三位数是奇数的概率是________.22、如图,在一块菱形菜地ABCD中,对角线AC与BD相交于点O,若在菱形菜地内均匀地撒上种子,则种子落在阴影部分的概率是________.23、一只蚂蚁在如图所示的树枝上寻觅食物,蚂蚁从点A出发,在每个岔路口都会随机地选择一条路径,则它获得食物的概率是________ .24、如图,正方形的阴影部分是由四个直角边长都是1和3的直角三角形组成的,假设可以在正方形内部随意取点,那么这个点取在阴影部分的概率为________.25、用1,2,3三个数字排成一个三位数,则排出的数是偶数的概率是________.三、解答题(共5题,共计25分)26、有3个完全相同的小球,把它们分别标号为1,2,3,放在一个不透明的口袋中,从口袋中随机摸出一个小球,记下标号后放回,再从口袋中随机摸出一个小球,记下标号.用画树状图(或列表)的方法,求两次摸出的小球号码恰好都大于1的概率.27、请你设计一个转盘,使得自由转动这个转盘,转盘停止后,指针落在1号区域的概率为,落在2号区域的概率为,落在3号区域的概率.28、n是一个两位正数,若n的个位数字小于十位数字,则称n为“两位递减数”(如21,73,42).从数字1,2,4,5中随机抽取2个数字组成一个两位数,用画树状图(或列表)的方法,求这个两位数是“两位递减数”的概率.29、小明和小刚用如图所示的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?若公平,说明理由.若不公平,如何修改规则才能使游戏对双方公平?30、小明在操场上做游戏,他发现地上有一个不规则的封闭图形ABC.为了知道它的面积,小明在封闭图形内划出了一个半径为1米的圆,在不远处向圈内掷石子,且记录如下:求出封闭图形ABC的面积.掷石子次数石子落在的区域50次150次300次石子落在⊙O内(含⊙O上)的次数m 14 43 93 石子落在阴影内的次数n 19 85 186参考答案一、单选题(共15题,共计45分)2、C3、A4、D5、B6、A7、B8、B9、C10、B11、B12、A13、C14、C15、B二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
人教版数学九年级上册第25章概率初步25.3用频率估计概率同步练习题含答案
人教版数学九年级上册第25章概率初步25.3用频率估计概率同步练习题含答案1. 关于频率和概率的关系,以下说法正确的选项是( )A.概率等于频率B.当实验次数很大时,频率动摇在概率左近C.当实验次数很大时,概率动摇在频率左近D.实验失掉的频率与概率不能够相反2. 从消费的一批螺钉中抽取1000个停止质量反省,结果发现有5个是次品,那么从中任取1个是次品概率约为〔〕.A.11000 B.1200C.12D.153.以下说法正确的选项是( ).A.抛一枚硬币正面朝上的时机与抛一枚图钉钉尖着地的时机一样大;B.为了解汉口火车站某一天中经过的列车车辆数,可采用片面调查的方式停止;C.彩票中奖的时机是1%,买100张一定会中奖;D.中先生小亮,对他所在的那栋住宅楼的家庭停止调查,发现拥有空调的家庭占100%,于是他得出全市拥有空调家庭的百分比为100%的结论.4. 在抛掷一枚硬币的实验中,第一小组做了 500 次实验,当出现正面的频数为________时,其出现正面的频率才是 49.6 %( )A.248 B.250 C.258 D.无法确定5. 某人把50粒黄豆染色后与一袋黄豆充沛混匀,接着抓出100黄豆,数出其中有10粒黄豆被染色,那么这袋黄豆原来有〔〕.A.10粒 B.160粒 C.450粒 D.500粒6.某校男生中,假定随机抽取假定干名同窗做〝能否喜欢足球〞的问卷调查,抽到喜欢足球的同窗的概率是53,这个53的含义是〔 〕. A .只收回5份调查卷,其中三份是喜欢足球的答卷; B .在答卷中,喜欢足球的答卷与总问卷的比为3∶8; C .在答卷中,喜欢足球的答卷占总答卷的53;D .在答卷中,每抽出100份问卷,恰有60份答卷是不喜欢足球.7.要在一只口袋中装入假定干个外形与大小都完全相反的球,使得从袋中摸到红球的概率为51,四位同窗区分采用了以下装法,你以为他们中装错的是〔 〕. A .口袋中装入10个小球,其中只要两个红球;B .装入1个红球,1个白球,1个黄球,1个蓝球,1个黑球;C .装入红球5个,白球13个,黑球2个;D .装入红球7个,白球13个,黑球2个,黄球13个.8.某先生调查了同班同窗身上的零用钱数,将每位同窗的零用钱数记载了上去〔单位:元〕:2,5,0,5,2,5,6,5,0,5,5,5,2,5,8,0,5,5,2,5,5,8,6,5,2,5,5,2,5,6,5,5,0,6,5,6,5,2,5,0. 假设教员随机问一个同窗的零用钱,教员最有能够失掉的回答是〔 〕. A . 2元 B .5元 C .6元 D .0元9. 小明想知道一碗芝麻有多少粒,于是就从中取出100粒涂上黑色,然后放入碗中充沛搅匀后再随意取出100粒,其中有5粒是黑色的,因此可以预算这碗芝麻有 粒.10. 为了估量水塘中的鱼的个数,养鱼者首先从鱼塘中捕捉30条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘,再从鱼塘中打捞200条鱼.假设在这200条鱼中有5条鱼是有记号的,那么鱼塘中鱼的条数可估量为 条. 11. 在一个不透明的箱子里装有白色、蓝色、黄色的球共20个,除颜色外,外形、大小、质地等完全相反,小明经过屡次摸球实验后发现摸到白色、黄色球的频率区分动摇在10%和15%,那么箱子里蓝色球的个数很能够是个.12. 同时抛掷两枚硬币,依照正面出现的次数,可以分为〝2个正面〞、〝1个正面〞和〝没有正面〞这3种能够的结果,小红与小明两人共做了6组实验,每组实验都为同时抛掷两枚硬币10次,下表为实验记载的统计表:结果第一组第二组第三组第四组第五组第六组两个正面 3 3 5 1 4 2一个正面 6 5 5 5 5 7没有正面 1 2 0 4 1 1由上表结果,计算得出现〝2个正面〞、〝1个正面〞和〝没有正面〞这3种结果的频率区分是___________________.当实验组数添加到很大时,请你对这三种结果的能够性的大小作出预测:______________.13.红星养猪场400头猪的质量(质量均为整数千克)频率散布如下,其中数据不在分点上组别频数频率46 ~ 50 4051 ~ 55 8056 ~ 60 16061 ~ 65 8066 ~ 70 3071~ 75 10从中任选一头猪,质量在65kg以上的概率是___________.14. 图表记载了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约是.(准确到0.1)里随机摸出5个球(不放回),其中有2个为黑球,请你估量口袋里大约有多少个白球? 参考答案:1---8 BBBAC CCB 9. 2021 10. 1200 11. 15 12.3113,,102020 111,,42413. 0.1, 0.2, 0.4, 0.2, 0.075, 0.025;0.1 14. 0.515. 解:设有x 个白球,依据,得25=8x +8,解得x =12,所以可估量口袋中共有12个白球.。