数理统计: 参数估计方法

合集下载

概率论与数理统计教案参数估计

概率论与数理统计教案参数估计

概率论与数理统计教案-参数估计教案章节一:参数估计概述教学目标:1. 理解参数估计的定义及意义;2. 掌握参数估计的两种方法:最大似然估计和最小二乘估计;3. 了解参数估计的假设条件。

教学内容:1. 参数估计的定义及意义;2. 最大似然估计和最小二乘估计的方法及步骤;3. 参数估计的假设条件。

教学方法:1. 讲授法:讲解参数估计的定义、意义、方法及步骤;2. 案例分析法:分析实际案例,让学生更好地理解参数估计的方法及应用。

教学难点:1. 最大似然估计和最小二乘估计的方法及步骤;2. 参数估计的假设条件。

教学准备:1. 教学PPT;2. 相关案例资料。

教学过程:1. 引入参数估计的概念,讲解其意义;2. 讲解最大似然估计和最小二乘估计的方法及步骤;3. 分析实际案例,展示参数估计的应用;4. 讲解参数估计的假设条件;5. 课堂互动,回答学生问题。

作业布置:1. 复习parameter estimation 的定义及意义;2. 学习maximum likelihood estimation 和least squares estimation 的相关知识;3. 思考如何应用parameter estimation 解决实际问题。

教案章节二:最大似然估计教学目标:1. 理解最大似然估计的定义及意义;2. 掌握最大似然估计的计算方法;3. 了解最大似然估计的应用场景。

教学内容:1. 最大似然估计的定义及意义;2. 最大似然估计的计算方法;3. 最大似然估计的应用场景。

教学方法:1. 讲授法:讲解最大似然估计的定义、意义、计算方法;2. 案例分析法:分析实际案例,展示最大似然估计的应用。

教学难点:1. 最大似然估计的计算方法;2. 最大似然估计的应用场景。

教学准备:1. 教学PPT;2. 相关案例资料。

教学过程:1. 引入最大似然估计的概念,讲解其意义;2. 讲解最大似然估计的计算方法;3. 分析实际案例,展示最大似然估计的应用;4. 课堂互动,回答学生问题。

概率论与数理统计第7章参数估计PPT课件

概率论与数理统计第7章参数估计PPT课件
5
a1(1, ,k )=v1
1 f1(v1, ,vk )
假定方程组a2(1, ,k ) v2 ,则可求出2 f2(v1, ,vk )
ak (1, ,k ) vk
k fk (v1, ,vk )
则x1 xn为X的样本值时,可用样本值的j阶原点矩Aj估计vj,其中
Aj
1 n
n i1
xij ( j
L(x1, ,xn;ˆ)maxL(x1, ,xn;),则称ˆ(x1, ,xn)为
的一种参数估计方法 .
它首先是由德国数学家
高斯在1821年提出的 ,然而, 这个方法常归功于英国统
Gauss
计学家费歇(Fisher) . 费歇在1922年重新发现了
这一方法,并首先研究了这
种方法的一些性质 .
Fisher
10
极大似然估计是在已知总体分布形式的情形下的 点估计。
极大似然估计的基本思路:根据样本的具体情况
注:估计量为样本的函数,样本不同,估计量不 同。
常用估计量构造法:矩估计法、极大似然估计法。
4
7.1.1 矩估计法
矩估计法是通过参数与总体矩的关系,解出参数, 并用样本矩替代总体矩而得到的参数估计方法。 (由大数定理可知样本矩依概率收敛于总体矩, 且许多分布所含参数都是矩的函数)
下面我们考虑总体为连续型随机变量的情况:
n
它是的函数,记为L(x1, , xn; ) f (xi , ), i 1
并称其为似然函数,记为L( )。
注:似然函数的概念并不仅限于连续随机变量 ,
对于离散型随机变量,用 P {Xx}p(x,)
替代f ( x, )
即可。
14
设总体X的分布形式已知,且只含一个未知参数,

概率论和数理统计(第三学期)第8章参数估计

概率论和数理统计(第三学期)第8章参数估计
n n 1
由契比雪夫不等式,有
P( S 2 ES2
n
n
)
DS
2
n

2 4
2 n 1 2
即 lim P( S 2 ES2 ) 0
n
n
n
(n 1)S 2
E
2
n n 1
ES2 2 n
故 lim P( S 2 2 ) 0
n
n
§8.3 参数的区间估计
定义
设是总体的未知参数,若 (1 1
6
S~2 1 1.20 0.162 0.85 0.162 0.30 0.162 6 0.45 0.162 0.82 0.162 0.12 0.162 1 1.042 0.692 0.142 0.612 0.982 0.282 6 1 2.99 6 0.498 2
n
p xi
1
p
1 xi
xi p i1
1
p
n
n xi
i1
i 1
n
令y xi,得: i 1 ln Lxi , p y ln p n yln1 p
由对数似然方程
d ln L y n y 0 dp p 1 p
解得
p
y n
1 n
n i 1
xi
x
因为这是惟一的解,所 以p的极大似然估计值为
二、顺序统计量法
定义
1
, 2
,
,
为总体
n
的一个样本,将它
们按大小次序排列,取 居中的一个数 (若n为偶
数时,则取居中两数的 平均值)记为~,称~为
样本中位数。

~
k
1
,
1 2
k

《概率论与数理统计》学习笔记十一

《概率论与数理统计》学习笔记十一

σ 2 = S2 =
2 1 n Xi − X ) ( ∑ n i =1
n −1 2 ⎛ n −1 2 ⎞ n −1 S ⎟= E (S2 ) = 由于 E σ 2 = E S 2 = E ⎜ σ , n n ⎝ n ⎠
n 3 ⎡ X 2 − nX 2 ⎤ ∑ i ⎥ n⎢ ⎣ i =1 ⎦
3 ( X − X )2 i n∑ i =1
n
在总体 X 为离散型随机变量情形, 求未知参数 θ 的矩估计量的方法和连续型 情形完全相同。 极大似然估计法 直观想法:概率最大的事件最可能出现。 设总体 X 为连续型随机变量,具有密度函数 f ( x;θ ) ,其中 θ 是待估未知参 数,又设 ( x1 ,L , xn ) 是样本 ( X 1 ,L , X n ) 的一个观测值,则样本 ( X 1 ,L , X n ) 落在观
n
(1)
ˆr , 把上式中的 α r 都换成相应的样本矩 M r = 1 ∑ X ir ,便得到参数 θ r 的矩估计量 θ n i =1
概率论与数理统计—学习笔记十一

θˆr = hr ( M 1 ,L , M k ) , r = 1, 2,L , k .
(2)
这种求估计量的方法称为矩估计法(简称矩法) ,由矩估计法得出的估计量称为 矩估计量。 例1 设总体 X 在 [ a, b ] 上服从均匀分布,a,b 未知, X 1 ,L , X n 是总体 X 的 一个样本,试求 a,b 矩估计量。 解 X 的概率密度为 1 , a≤ x≤b ⎧ ⎪ f ( x; a, b ) = ⎨ b − a ⎪ 其它 ⎩ 0,
上节介绍了总体参数的常用点估计方法,对同一参数用不同的估计方法可能 得到不同的估计量,哪个估计量更好些呢?下面给出几种评选估计量好坏的标 准。 无偏估计 估计量是样本的函数,是随机变量,对不同的样本观测值,它有不同的估计 值,我们希望估计量的取值在未知参数真值附近摆动,即希望估计量的数学期望 等于未知参数的真值,这就是无偏性的概念。 定义 设 θˆ ( X 1 ,L , X n ) 是未知参数 θ 的估计量,若

参数估计

参数估计

一、参数估计(一)参数估计内涵参数估计(parameter estimation )是根据从总体中抽取的样本估计总体分布中包含的未知参数的方法。

它是统计推断的一种基本形式,是数理统计学的一个重要分支,分为点估计和区间估计两部分。

(二)估计量的评价准则对于同一参数,用不同方法来估计,结果是不一样的。

例1 设总体X 服从参数为λ的泊松分布,即,2,1,0,!}{===-k k ek X P kλλ则易知λλ==)(,)(X D X E ,分别用样本均值和样本方差取代)(X E 和)(X D ,于是得到λ的两个矩估计量21ˆ,ˆS X ==λλ. 既然估计的结果往往不是唯一的,那么究竟孰优孰劣?这里首先就有一个标准的问题。

1、 无偏性(Unbiased)定义1 设),,,(ˆˆ21nX X X θθ=是θ的一个估计量,若对任意的Θ∈θ,都有θθθ=)ˆ(E ,则称θˆ是θ的无偏估计量(Unbiased estimator),如果 0)(lim )),,,((lim 21=∆-∞→∧∞→θθθδn n n n b X X X E则称θˆ是θ的渐近无偏估计量(Approximation unbiased estimator),其中)(θn b 称为是θˆ的偏差(affect)。

无偏性反映了估计量的取值在真值θ周围摆动,显然,我们希望一个量具有无偏性。

例2 X 是总体期望值μ=)(X E 的无偏估计,因为μμ===⎪⎭⎫ ⎝⎛=∑∑==n n X E n X n E X E ni i n i i 1)(11)(112、 最小方差性和有效性(Minimum Variance and efficiency) 前面已经说过,无偏估计量只说明估计量的取值在真值周围摆动,但这个“周围”究竟有多大?我们自然希望摆动范围越小越好,即估计量的取值的集中程度要尽可能的高,这在统计上就引出最小方差无偏估计的概念。

定义2 对于固定的样本容量n ,设),,,(21n X X X T T =是参数函数)(θg 的无偏估计量,若对)(θg 的任一个无偏估计量),,,(21n X X X T T '='有Θ∈≤θθθ对一切),'()(T D T D则称),,,(21n X X X T 为)(θg 的(一致)最小方差无偏估计量,简记为UMVUE(Uniformly Minimum Variance Unbiased Estimation)或者称为最优无偏估计量。

概率论与数理参数估计

概率论与数理参数估计

概率论与数理参数估计参数估计是概率论与数理统计中的一个重要问题,其目标是根据样本数据推断总体的未知参数。

参数估计分为点估计和区间估计两种方法。

点估计是通过样本计算得到总体未知参数的一个估计值。

常见的点估计方法有最大似然估计和矩估计。

最大似然估计是通过观察到的样本数据,选择使得观察到的样本数据出现的概率最大的未知参数值作为估计值。

矩估计是通过样本的矩(均值、方差等统计量),与总体矩进行对应,建立样本矩与总体矩之间的方程组,并求解未知参数。

这两种方法都可以给出参数的点估计值,但是其性质和效果不尽相同。

最大似然估计具有渐近正态性和不变性,但是可能存在偏差较大的问题;矩估计简单且易于计算,但是可能存在方程组无解的情况。

区间估计是给出参数估计结果的一个范围,表示对未知参数值的不确定性。

常见的区间估计方法有置信区间和预测区间。

置信区间是指给定的置信水平下,总体参数的真值落在一些区间内的概率。

置信区间的计算依赖于样本的分布和样本量。

预测区间是对一个新的观察值进行预测的区间,它比置信区间要宽一些,以充分考虑不确定性。

在参数估计过程中,需要注意样本的选取和样本量的确定。

样本是总体的一个子集,必须能够代表总体的特征才能得到准确的估计结果。

样本量的确定是通过统计方法和实际需求来确定的,要保证估计结果的可靠性。

参数估计在实际应用中有着广泛的应用。

例如,在医学领域中,通过对病人的样本数据进行统计分析,可以推断患者患其中一种疾病的概率,进而进行治疗和预防措施的制定。

在金融领域中,可以通过对股票的历史价格进行统计分析,推断未来股价的变动趋势,从而进行投资决策和风险评估。

在市场调研中,可以通过对消费者的问卷调查数据进行统计分析,推断消费者的偏好和需求,为企业的市场开发和产品设计提供依据。

综上所述,概率论与数理统计中的参数估计是一门重要的学科,通过对样本数据的统计分析,可以推断总体的未知参数,并对不确定性进行评估。

参数估计在实际应用中有着广泛的应用,对于科学研究和决策制定具有重要的意义。

概率论与数理统计-参数估计

概率论与数理统计-参数估计

第七章 参数估计
例:
引言
设总体 X 是服从参数为 的指数分布,其中参数
未 知 ,
0 .X1 ,,
X
是总体
n
X
的一个样本,
我们的任务是根据样本,来估计 的取值,从
而估计总体的分布.
这 是 一 个 参 数 估 计 问 题.
第七章 参数估计
§1 点估计 §2 估计量的评选标准 §3 区间估计
第七章 参数估计 §1 点估计
2

A1
A2
, (
2
1)
.
第七章 参数估计
例6(续)
解此方程组,得
§1 点估计
ˆ
A1 2 A2 A12
,
ˆ
A2
A1 A12
.
ˆ X 2 ,

B2
ˆ X .
B2
其中 B2
1 n
n i 1
Xi X
2 为样本的二阶中心矩.
第七章 参数估计(第二十二讲) 三、 极大似然法
§1 点估计
1
第七章 参数估计
例6(续)
EX 2 x 2 f
x dx x 2
x 1e x dx
0
§1 点估计
2 2 x ( e 2)1 x dx
2 0 2
2 2
1 2
1
2
因此有
EX
,
EX
2
1 .
⑵ 在不引起混淆的情况下,我们统称估计量
与估计值为未知参数 的估计.
第七章 参数估计
二、 矩估计法
§1 点估计
设X为连续型随机变量,其概率密度为
f ( x;1 ,, k ), X为离散型随机变量,其分布列为

应用数理统计——参数估计

应用数理统计——参数估计

这就是矩法估计的理论依据。
三、正态总体参数的区间估计 前面讨论了未知参数的点估计问题,它是用估计
量 θ 的值作为未知参数θ的估计。然而不管θ 是一 个怎样优良的估计量,它也只是一定程度的精确, 至于如何反映精确度,参数的点估计并没有回答。 由于θ 是一随机变量,需说明用θ 去估计θ的精度, 也就是要说明在一定概率意义下, 与θ的误差有 θ 多大。即确定具有特定概率意义的区间,使它以 相当大的概率包含未知参数的真值,以表明总体 参数真值所处的范围。
α
α
α
2
− uα
σ
n } = 1−α ) = 1−α
2
2
2

2
σ
n
< µ < X + uα 2 < µ < x − uα 2
于是P{x − uα 2
σ
n
σ
n
例6:见教材82页例1。
(2)总体方差σ 2未知时,正态总体均值µ的区间估计
X −µ 因为若X服从N ( µ , σ ),则T = 服从t (n − 1) S n
2 2
小结:学习了
1、点估计法——矩法 2、评价估计量优劣的标准——无偏性、有效性 和一致性 3、正态总体的区间估计——均数和方差的区间估计 作业:教材98页第4题。 教材99页第10、13题。 教材100页第17、18题。
3、正态总体方差σ 的区间估计
2
因为若X服从N ( µ , σ 2 ),则χ 2 = 由附表4知P{χ12−α 2 < (n − 1) S 2
(n − 1) S 2
σ2
服从χ 2 (n − 1)
σ2
2 < χα 2 } = 1 − α

参数估计在数理统计学中总体的分布是未知的包括两种情形

参数估计在数理统计学中总体的分布是未知的包括两种情形
第12页
第七章 参数估计
1、 矩估计法原理: 以样本矩作为相应地总体矩的估计量; 以样本矩的连续函数作为相应地总体矩的连续函数 的估计量.
设总体 X的 l阶矩 : l E ( X )(l 1,2, , k )存在时 ,
l
由辛钦大数定理知:
1 n l Al X i n i 1
参数估计问题是利用从总体抽样得到的信息来估 计总体的某些参数或者参数的某些函数. 估计新生儿的体重 估计废品率 估计湖中鱼数 在参数估计问题 中,假定总体分 估计降雨量 布形式已知,未 … 知的仅仅是一个 … 或几个参数.
第 2页
第七章 参数估计
参数估计方法:
(1)根据抽自总体的样本 X 1 , X 2 , , X n 去确定参数 空间 中的一点作为 的值
l x p( x;1 ,, k ), l 1,2,, k.
第14页
第七章 参数估计
这是包含 k个未知参数 1, , k 的联立方程组,
1 1 1 , 2 , , k , , , 2 2 1 2 k k k 1 , 2 , , k
其中 1 , , k 是待估参数 , X 1 , , X n为来自 X的样本 .
1) 求总体 X 的 l 阶矩 :
l E ( X ) x f ( x;1 ,, k )dx, l 1,2,, k .
l l

或 l E ( X l )
xR X
------点估计
(2)确定中的某一小部分作为 的取值的范围
------区间估计
第 3页
第七章 参数估计 §1 点估计 §3 估计量的评选标准 §4 区间估计 §5 正态总体均值与方差的区间估计 §6 (0-1)分布参数的区间估计 §7 单侧置信区间

数理统计主要知识点

数理统计主要知识点

数理统计主要知识点数理统计是统计学的重要分支,旨在通过对概率论和数学方法的研究和应用,解决实际问题上的不确定性和随机性。

本文将介绍数理统计中的主要知识点,包括概率分布、参数估计、假设检验和回归分析。

一、概率分布概率分布是数理统计的基础。

它描述了一个随机变量所有可能的取值及其对应的概率。

常见的概率分布包括:1. 均匀分布:假设一个随机变量在某一区间内取值的概率是相等的,则该随机变量服从均匀分布。

2. 正态分布:正态分布是最常见的连续型概率分布,其概率密度函数呈钟形曲线,具有均值和标准差两个参数。

3. 泊松分布:泊松分布描述了在一定时间内发生某个事件的次数的概率分布,例如在一天内发生交通事故的次数。

4. 二项分布:二项分布描述了进行一系列独立实验,每次实验成功的概率为p时,实验成功的次数在n次内取特定值的概率。

二、参数估计参数估计是根据样本数据来推断随机变量的参数值。

常见的参数估计方法包括:1. 最大似然估计:假设数据服从某种分布,最大似然估计方法寻找最能“解释”数据的那个分布,计算出分布的参数值。

2. 矩估计:矩估计方法利用样本矩来估计分布的参数值,例如用样本均值估计正态分布的均值,样本方差估计正态分布的方差。

三、假设检验假设检验是为了判断一个统计假设是否成立而进行的一种统计方法。

它包括假设、检验统计量和显著性水平三个重要概念。

1. 假设:假设指的是要进行验证的观察结果,分为零假设和备择假设两种。

2. 检验统计量:检验统计量是为了检验零假设而构造的统计量,其值代表目标样本符合零假设的程度。

3. 显著性水平:显著性水平是用来决定是否拒绝零假设的标准,通常为0.01或0.05。

四、回归分析回归分析是用来研究和描述两个或多个变量之间关系的统计方法。

它可以帮助人们了解因果关系,做出预测和控制因素的效果。

1. 简单线性回归:简单线性回归是一种简单的回归分析方法,它描述一个因变量和一个自变量之间的线性关系。

2. 多元线性回归:多元线性回归描述多个自变量和一个因变量之间的关系,通过多元回归模型可以找到最佳的回归系数,从而用来预测未来的结果。

数理统计 第七章-参数估计

数理统计 第七章-参数估计

休息
结束
2. 最大似然法
是在总体类型已知条件下使用的一 种参数估计方法 。 它首先是由德国数学家高斯在1821 年提出的 ,费歇在1922年重新发现了这 一方法,并首先研究了这 种方法的一些 性质 。
休息 结束
最大似然法的基本思想:
已发生的事件具有最大概率。
休息
结束
先看一个简单例子: 在军训时,某位同学与一位教官同 时射击,而在靶纸上只留下一个弹孔。 如果要你推测,是谁打中的呢? 你会如何想呢?

max f ( xi , )

i 1
n
休息
结束
X 假设X 为连续型总体: f ( x; )
( X 1 , , X n ) 为子样
( x1 , , xn ) 为子样观察值。
已发生的事件为:
x x ,X {{X 11 1x, X 1 nx1 ,n } , xn x X n xn } x

休息
结束
ˆ
1 n ( X i X )2 n i 1
1 n ˆ X ( X i X )2 n i 1
休息
结束
矩法的优点是简单易行,并不需要 事先知道总体是什么分布 。 缺点是,当总体类型已知时,没有 充分利用分布提供的信息 . 一般场合下, 矩估计量不具有唯一性 。
( 1 )x , 0 x 1 f( x) 0, 其它
1
其中 1 是未知参数,
X1,X2,…,Xn是取自X的样本,求参数 的矩估计. 解:
1 E( X ) x( 1 )x dx

0
( 1 )
从 中解得
1
0
x
1

数理统计之参数估计

数理统计之参数估计

X )2 ,
S2
1 n1
n
(Xi
i 1
X )2,试
比较 E(Sn2 - σ2)2 与 E(S 2 - σ2)2.
解: 由于
(n 1)S 2
2
~
2 (n 1)

(n 1)S 2
2
2(n 1)
(n 1)2
4
D(S 2 ),D(S 2 )
2
n1
4
D(Sn2 )
D( n 1 S2 )
j
j
解出似然估计 ˆjL ˆjL( X1, , Xn ).
否则可通过单调性或放大缩小的方法直接推求.
极大似然估计的性质:
(1) 若(^θ1, …, ^θm)是(θ1, …, θm)的极大似然计, η = g(θ1, …, θm)存在单值反函数,则g(θ^1, …, ^θm)是g(θ1, …, θm)的极大似然估计.
设X1,…,Xn 是来自总体 X 的样本,则
μk = E(Xk )= ∑ xk p(x; θ1, θ2), X 为离散型

μk = E(Xk )= xk f (x; θ1, θ2)dx,
X 为连续型
Ak
1 n
n i 1
Xik
1 n
X
k 1
1 n
X
k 2
1 n
X
k n
矩法思想: 用样本矩Ak 作为总体同阶矩μk 的近似,
例 设某种设备的寿命X (小时)服从指数分布,概
率密度为
et , t 0
f ( x; )
0,
其他
其中 λ>0为未知参数. 现从这批设备中任取n台在t =0
时刻开始寿命试验,试验进行到预定时间T0 结束, 此时有 k(0< k < n)台失效,求

概率论与数理统计(叶慈南 刘锡平 科学出版社)第7章 参数估计教程

概率论与数理统计(叶慈南 刘锡平 科学出版社)第7章 参数估计教程
注:由于 θ ( x1 ,L, xn ) 是实数域上的一个点,现用它来
估计 θ ,故称这种估计为点估计.
5 6
,σ 2未知,
… 随机抽查100个婴儿 得100个体重数据 10,7,6,6.5,5,5.2, …
而全部信息就由这100个数组成. 据此,我们应如何估计 和 σ 呢?
我们知道,服从正态分布N ( , σ 2 )的r.v. X , E ( X ) = , 由大数定律, 样本体重的平均值 1 → ∑ X i P n i =1 自然想到把样本体重的平均值作为总体平均 体重的一个估计. X= 用样本体重的均值 X估计 , 类似地,用样本体重的方差 S 2估计 σ 2 . 1 n 1 n 2 X = ∑ Xi, S = ∑ ( X i X )2 n 1 i =1 n i =1
(一)矩估计法
基本思想:用样本矩估计总体矩
(二)最大似然估计法
基本思想:
15
16
最大似然估计法 (最大似然法)
它首先是由德国数学家 高斯在1821年提出的 , 然而,这个方法常归功于 英国统计学家费希尔(Fisher) . 费希尔在1922年重新发现了 这一方法,并首先研究了这 种 方法的一些性质 . Fisher
1. 矩估计法 2. 最大似然法 3. 最小二乘法 4. 贝叶斯方法 ……
(一) 矩估计法(简称"矩法")
它是基于一种简单的"替换"思想 建立起来的一种估计方法 . 英国统计学家 K. 皮尔逊 最早提出的 . 基本思想: 用样本矩估计总体矩 . 理论依据: 大数定律
Ak = 1 n k P ∑ X i → k = E ( X k ) n i =1
4
在参数估计问题中,假定总体分布 形式已知,未知的仅仅是一个或几个 参数.

《概率论与数理统计》课件第七章 参数估计

《概率论与数理统计》课件第七章 参数估计
添加标题
03
若存在, 是否惟一?
添加标题
1
2
3
4
5
6
对于同一个未知参数,不同的方法得到的估计量可能不同,于是提出问题
应该选用哪一种估计量? 用何标准来评价一个估计量的好坏?
常用标准
(1)无偏性
(3)一致性
(2)有效性
7.2 估计量的评选标准
无偏性
一致性
有效性
一 、无偏性
定义1 设 是未知参数θ的估计量
09
则称 有效.
10

11
例4 设 X1, X2, …, Xn 是X 的一个样本,
添加标题
问那个估计量最有效?
添加标题
解 ⑴
添加标题
由于
添加标题
验证
添加标题
都是
添加标题
的无偏估计.
都是总体均值
的无偏估计量.

D
C
A
B
因为
所以
更有效.
例5 设总体 X 的概率密度为
关于一致性的两个常用结论
1. 样本 k 阶矩是总体 k 阶矩的一致性估计量.
是 的一致估计量.
由大数定律证明
用切比雪夫不 等式证明
似然函数为
其中
解得参数θ和μ的矩估计量为
2

3

1

6
,故
5
,表明L是μ的严格递增函数,又
4
第二个似然方程求不出θ的估计值,观察
添加标题
所以当
01
添加标题
从而参数θ和μ的最大似然估计值分别为
03
添加标题
时L 取到最大值
02
添加标题

数理统计法种类

数理统计法种类

数理统计法种类数理统计法是数学分析和统计学原理的应用,通过对实验数据的收集、整理、分析和解释,从而得出科学结论的一种方法。

下面,我们将介绍数理统计法的种类。

一、描述性统计描述性统计是对数据进行描述的一种方法,它是所有统计分析的基础。

在描述性统计中,我们使用各种指标,如均值、中位数、众数、标准差和方差等,来揭示数据的分布和趋势,从而帮助我们更好地理解数据。

二、参数估计参数估计是基于统计分布来推断数据特征参数的一种方法。

在参数估计中,我们通过采样数据并应用概率分布来推断总体参数,如均值、标准差、比例等。

其中最常见的参数估计方法是最大似然估计。

三、假设检验假设检验是一种确定数据是否与某个假设相符或不符的方法。

在假设检验中,我们提出一个原假设和备择假设,并通过样本数据来判断原假设是否成立,从而决定是否拒绝原假设。

其中最常见的假设检验方法是 t 检验和 z 检验。

四、回归分析回归分析用于研究变量之间的关系和预测目标变量的值。

在回归分析中,我们将自变量和因变量之间的关系表达为一个数学方程,并通过拟合数据来确定方程参数。

其中最常见的回归分析方法是线性回归和多元回归。

五、方差分析方差分析用于比较各个组之间的差异以及确定因素对变量的影响。

在方差分析中,我们通过对不同组的差异进行分析来判断因素是否对变量有显著影响。

其中最常见的方差分析方法是单因素方差分析和双因素方差分析。

总结:数理统计法是科学研究中非常重要的一部分。

各种统计方法可以帮助我们更好地理解数据和问题,并从中得出结论。

同时,应用不同的统计方法和技术需要针对具体情况选择最适合的方法,以得到最可靠的结果。

概率论与数理统计第七章参数估计

概率论与数理统计第七章参数估计
则以hi (X1, X2,…, Xn)作为θi 的估计量 ,并 称hi(X1, X2,…, Xn)为θi 的矩法估计量,而 称hi(x1, x2,…, xn) 为θi 的矩法估计值。
例1. 设总体X的数学期望和方差分别是μ,
σ2 ,求μ , σ2的矩估计量。
E(X )
E( X 2 ) D( X ) [EX ]2 2 2
(3) 写出方程 ln L 0
i1
若方程有解,
求出L(θ)的最大值点 ˆ(x1,x2,..x.n,)
于 是 ˆ ˆ ( X 1 , X 2 , . . . , X n ) 即 为 的 极 大 似 然 估 计 量
例2. 设总体X服从参数λ>0的泊松分布,求 参数λ的极大似然估计量。
例3. 已知某产品的不合格率为p,有简单随机样本 X1 ,X2 ,…, Xn,求p的极大似然估计量。 若抽取100件产品,发现10件次品,试估计p.
ˆ(x1,x2,..x.n,),使得
L (ˆ) m a x L (), (或 L (ˆ) s u p L ())
则 称 ˆ ( x 1 ,x 2 , . . . ,x n ) 为 的 极 大 似 然 估 计 值
称 ˆ ( X 1 ,X 2 ,...,X n ) 为 极 大 似 然 估 计 量
第7章 参数估计
总体所服从的分布类型已知/未知
抽样
参数 估计
估计总体中未知的参数
参数估计 参数估计问题是利用从总体抽样得到的信息
来估计总体的某些参数. 估计新生儿的体重
估计废品率
估计湖中鱼数
§7.1
点估计
设有一个统计总体,总体的分布函数
为 F(x, ),其中为未知参数 (可以是向量) .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
23
引例
设总体 X 服从参数为 的指数分布, 未知,
X1 , X 2 , , X n 是来自X的样本, x1 , x2 , , xn 是
相应的样本值,求 的矩估计量和矩估计值.
解 因为 E( X ) 所以 用样本矩替换总体矩, 得 的矩估计量
ˆ

1 n
n i 1
Xi

X
(
x)

1

e

x

,
x0
0,
其他.
但参数 未知。已知参数的取值范围,记为 。
给出样本的一组观察值,如何推断总体的分布?
【思路】给出 的估计,则得到对总体分布的推断。
【方法】根据一定的原则,从 中找到一个值(点) 作为的 估计。
点估计
2
点估计定义
设总体 X 的分布函数 F ( x; ) 的形式为已知,
的估计量.
4
二、估计量的评选标准 1. 无偏性
定义 若 X1, X 2 ,, X n 为总体 X 的一个样本,
是包含在总体 X 的分布中的待估参数, 若估计量ˆ ˆ( X1 , X 2 ,, X n )的数学期望 E(ˆ) 存在, 且对于任意 有
E(ˆ) 则称ˆ 是 的无偏估计量,否则称为有偏的.
(2) lim S 2 2 a.s. (强大数定律) n
即样本方差是总体方差2的强相合估计, 也是相合估计.
12
C. 样本标准差
其观察值:
S
S2
1 n1
n i 1
Xi

X
2
;
s
1 n1
n i 1
( xi

x )2
;
(1) lim S a.s. (强大数定律) n
估计一定是相合估计; ② 一个估计量起码应当是相合的,若估计量不具有
相合性,不论样本容量取多么大,都不能使参数 的估计足够精确,这样的估计量是不可取的.
10
设 X1, X2 , , Xn 是来自总体 X 的一个样本, x1, x2 , , xn 是这一样本的观察值,且总体均值
EX,总体方差 2 Var X 存在.
即样本标准差是总体标准差的强相合估计.
(2)样本标准差 S 不是总体标准差的无偏估计(>0). 证明:∵E(S2)=2 即 Var(S)+[E(S)]2 =2
∵Var (S)≥0 ∴[E(S)]2 =2 -Var (S)≤2 ∴E(S)≤.
即一般说S不是的无偏估计.
13
D. 样本 k 阶(原点)矩:
由关于依概率收敛的序列的性质知
g( A1 , A2 ,, Am ) P g(1 , 2 ,, m )
其 中g 是 连 续 函 数.
即样本矩的函数依概率收敛到总体矩的函数。
该结论是下一节要介绍的矩估计法的理论根据.
14
【注】(1)不论总体 X 服从什么分布, 只要它的期望 和方差存在, X 是总体 期望的强相合无偏估计,
即 Ak P E( X k ) k , k 1, 2,.
( 2)样本矩的连续函数依概 率收敛到总体矩的连续 函数
即 g( A1 , A2 ,, Ak ) P g(1 , 2 ,, k ), (3) 许多分布的参数是总体矩的函数。 2. 核心思想:用样本矩替换总体矩。
其中, a1 a2 an 1 证明: E(a1 X1 a2 X 2 an X n )
(a1 a2 an )
所以 a1 X1 a2 X2 an Xn 是 的无偏估计。
由上例可知, 参数的无偏估计量是不唯一的.
16
续例1 设总体方差Var(X)存在,求例1中E(X)的无

的矩估计值为 ˆ

1 n
n

i 1
xi

x
24
3.矩估计法的基本步骤(两参数 1 , 2 未知为例)
(1)计算总体一阶矩、二阶矩,得到它们与参数的关系
1 E( X ) h1(1,2 ), 2 E( X 2 ) h2(1,2 )
(2)反解出 1,2 , 将它们表示为 1, 2 的函数
A. 样本均值
1 n
X n i1 X i ;
其观察值:
1 n
x n i1 xi ;
(1) E X 即样本均值是总体均值 的无偏估计.
(2)

lim
n

1 n
n i 1
Xi



a.s.
(强大数定律)
即样本均值是 的强相合估计,也是相合估计.
11
E [ˆ ( X 1 , X 2 , , X n ) ]
无偏性在数理统计上称作没有系统偏差。
6
2. 有效性 定义
设ˆ1 ˆ1(X1 , X 2 , , X n )与ˆ2 ˆ2 (X1 , X 2 , , X n ) 都是 的无偏估计量, 若对于任意的 ,有
Var(ˆ1 ) Var(ˆ2 ), 且至少对于某一个 上式中的“ ”成立, 则称 ˆ1较 ˆ2有效.
ˆ ( x 1 , x 2 , , x n )称 为 的 估 计 值 .
3
【注】 1. 参数的真值是一个确切的数,只是我们未知,
为了了解它,对它进行估计。 2. 由于估计量是样本的函数, 从而是随机变量。 3. 对不同的样本值, 得到的参数的估计值往往不同. 4. 用不同的构造统计量的方法,可能会得到不同
5
【说明】 无偏性的意义是,用一个估计量 ˆ ( X 1 , X 2 , , X n )
去估计未知参数,当取不同的样本值时,有时可能 比大,有时可能比小,但是平均来说它等于.
“任意的”是指该参数估计问题中,参数取 值范围 内的一切可能的值. 之所以要求对任意的 都成立,是因为在该参数估计问题中,并不知道参数 的真值,自然要求在的取值范围内都成立:

1 n
n i 1
Xi
矩估计值为
ˆ
1
6
6
knk
n k0 k
k0
1 [0 75 1 90 2 54 3 22 250
4 6 5 2 6 1] 1.22
27
例2 设总体 X在[a, b]上服从均匀分布,其中a, b
未知,
X
1
越大,样本所含的总体分布的信息越多。n 越大,越 能精确估计总体的未知参数。随着n 的无限增大,一
个好的估计量与被估参数的真值之间任意接近的可能 性会越来越大,这就是所谓的相合性或一致性。
定义 设ˆ ˆ(X1 , X2 , , X n )为参数的估计量, 若对于任意 , 当n 时, 依概率收敛于 ˆ(X1 , X 2 , , X n ) P 则称 ˆ 为 的相合估计量.
7
【注】 1、无偏性保证了 的估计量 ˆ 的取值不会 偏在 的一边,但不能保证 ˆ 的取值在 的附近。 方差小,则保证了ˆ取值就在 附近。
2、有效性只有在无偏性成立时才有价值。
若 E(ˆ) , ˆ 的方差小,ˆ 的取值聚集在
E(ˆ) 附近,反而远离了 。
8
3. 相合性 【分析】在参数估计中,很容易想到,如果样本容量
9
4. 强相合性
几种收敛性
定义 设ˆ ˆ(X1 , X 2 , , X n )为参数的估计量, 若对于任意 , 当n 时,以概率1收敛到
ˆ(X1 , X 2 , , X n ) a.s.
则称 ˆ 为 的强相合估计量.
【注】 ① 以概率1收敛可以推出依概率收敛,所以强相合
,
X
2
,,
X
是来自总体
n
X的样本,
求a
,
b
的矩估计量.

1

E(
X
)

a
2
b
,
2 E( X 2 ) D( X ) [E( X )]2
a b2 a b2 ,
S 2是总体方差的强相合无偏估计.
2 如 果ˆ是参 数 的 一个 估计 ,我 们 通常 总是 用
g(ˆ)为 g( )的 估 计 . 但 是 必 须 注 意 的 是 : ˆ是 的 无 偏 估 计 时 , g(ˆ)却 未 必 是 g( )的 无 偏 估 计.
15
例1 设总体X,E( X ) 存在,X1, X2,, Xn 为样本。 求证: a1 X1 a2 X 2 an X n是的无偏估计。
次数X是一个随机变量,假设它服从以 0为参 数的泊松分布, 参数为未知, 设有以下的样本值 , 试给出参数的矩估计值.
着火次数k 发生k次着
火的天数nk
0 1 2 34 75 90 54 22 6
56 21
250
26
解 X ~ (), E( X ).
的矩估计量为 ˆ=X
1 g1 1 , 2 , 2 g2 1 , 2
(3)用样本矩替换相应的总体矩,得参数的矩估计量
ˆ1

g1

X,
1 n
n i 1
X
2 i

,

ˆ2

g2

X,
1 n
n i 1
X
2 i

25
例1 在某炸药制造厂,一天中发生着火现象的
第二章 参数估计方法
§2.1 点估计 (样本均值和样本方差)
§2.2 矩估计 §2.3 最大似然估计
贝叶斯估计(补充1) §5.1抽样分布(提前)
次序统计量(补充2) 经验分布函数(补充3) §2.4 △方法(不讲)
相关文档
最新文档