数理统计·参数估计

合集下载

概率论与数理统计-参数估计_图文

概率论与数理统计-参数估计_图文


于是得到
的置信水平为 的置信区间为
为已知
其中
于是得到
的置信水平为 的置信区间为
其中
例3 为比较 I ,ቤተ መጻሕፍቲ ባይዱⅡ 两种型号步枪子弹的枪口
速度 ,随机地取 I 型子弹 10 发 ,得到枪口速度的平
均值 为
标准差

机地取 Ⅱ 型子弹 20 发 ,得到枪口速度的平均值为
标准差
假设两总
体都可认为近似地服从正态分布.且生产过程可认
2. 估计的精度要尽可能的高. 如要求区间长度
尽可能短,或能体现该要求的其它准则.
可靠度与精度是一对矛盾,一般是在保证 可靠度的条件下尽可能提高精度.
二、置信区间的求法
在求置信区间时,要查表求分位点.
定义 设
, 对随机变量X,称满足
的点 为X的概率分布的上 分位点.
若 X 为连续型随机变量 , 则有 所求置信区间为
X~N( )
样本均值是否是 的一个好的估计量?
样本方差是否是 的一个好的估计量?
这就需要讨论以下几个问题: (1) 我们希望一个“好的”估计量具有什么特性? (2) 怎样决定一个估计量是否比另一个估计量“好”?
(3) 如何求得合理的估计量?
常用的几条标准是:
1.无偏性 2.有效性 3.相合性
这里我们重点介绍前面两个标准 .
概率论与数理统计-参数估计_图文.ppt
参数估计
现在我们来介绍一类重要的统计推断问题 参数估计问题是利用从总体抽样得到的信息来估 计总体的某些参数或者参数的某些函数.
估计新生儿的体重
估计废品率
在参数估计问题
估计降雨量 中,假定总体分 布形式已知,未
… 知的仅仅是一个 … 或几个参数.

概率论与数理统计第7章参数估计PPT课件

概率论与数理统计第7章参数估计PPT课件
5
a1(1, ,k )=v1
1 f1(v1, ,vk )
假定方程组a2(1, ,k ) v2 ,则可求出2 f2(v1, ,vk )
ak (1, ,k ) vk
k fk (v1, ,vk )
则x1 xn为X的样本值时,可用样本值的j阶原点矩Aj估计vj,其中
Aj
1 n
n i1
xij ( j
L(x1, ,xn;ˆ)maxL(x1, ,xn;),则称ˆ(x1, ,xn)为
的一种参数估计方法 .
它首先是由德国数学家
高斯在1821年提出的 ,然而, 这个方法常归功于英国统
Gauss
计学家费歇(Fisher) . 费歇在1922年重新发现了
这一方法,并首先研究了这
种方法的一些性质 .
Fisher
10
极大似然估计是在已知总体分布形式的情形下的 点估计。
极大似然估计的基本思路:根据样本的具体情况
注:估计量为样本的函数,样本不同,估计量不 同。
常用估计量构造法:矩估计法、极大似然估计法。
4
7.1.1 矩估计法
矩估计法是通过参数与总体矩的关系,解出参数, 并用样本矩替代总体矩而得到的参数估计方法。 (由大数定理可知样本矩依概率收敛于总体矩, 且许多分布所含参数都是矩的函数)
下面我们考虑总体为连续型随机变量的情况:
n
它是的函数,记为L(x1, , xn; ) f (xi , ), i 1
并称其为似然函数,记为L( )。
注:似然函数的概念并不仅限于连续随机变量 ,
对于离散型随机变量,用 P {Xx}p(x,)
替代f ( x, )
即可。
14
设总体X的分布形式已知,且只含一个未知参数,

数理统计: 参数估计方法

数理统计: 参数估计方法
23
引例
设总体 X 服从参数为 的指数分布, 未知,
X1 , X 2 , , X n 是来自X的样本, x1 , x2 , , xn 是
相应的样本值,求 的矩估计量和矩估计值.
解 因为 E( X ) 所以 用样本矩替换总体矩, 得 的矩估计量
ˆ

1 n
n i 1
Xi

X
(
x)

1

e

x

,
x0
0,
其他.
但参数 未知。已知参数的取值范围,记为 。
给出样本的一组观察值,如何推断总体的分布?
【思路】给出 的估计,则得到对总体分布的推断。
【方法】根据一定的原则,从 中找到一个值(点) 作为的 估计。
点估计
2
点估计定义
设总体 X 的分布函数 F ( x; ) 的形式为已知,
的估计量.
4
二、估计量的评选标准 1. 无偏性
定义 若 X1, X 2 ,, X n 为总体 X 的一个样本,
是包含在总体 X 的分布中的待估参数, 若估计量ˆ ˆ( X1 , X 2 ,, X n )的数学期望 E(ˆ) 存在, 且对于任意 有
E(ˆ) 则称ˆ 是 的无偏估计量,否则称为有偏的.
(2) lim S 2 2 a.s. (强大数定律) n
即样本方差是总体方差2的强相合估计, 也是相合估计.
12
C. 样本标准差
其观察值:
S
S2
1 n1
n i 1
Xi

X
2
;
s
1 n1
n i 1
( xi

数理统计中的参数估计与置信区间估计

数理统计中的参数估计与置信区间估计

数理统计中的参数估计与置信区间估计数理统计是概率论、数学统计和实证研究的基础,它研究的是通过观测和实验来获取数据,从而对总体的特征进行推断和估计的方法和理论。

在数理统计中,参数估计和置信区间估计是两个重要的概念和方法,用于对总体参数进行推断和估计。

一、参数估计参数估计是指通过样本数据对总体参数进行估计的方法。

总体参数是指总体的某个特征或指标,如均值、方差等。

参数估计可以分为点估计和区间估计两种方法。

1. 点估计点估计是指使用样本数据来估计总体参数的一个具体值,这个估计值被称为点估计量。

常用的点估计量有样本均值、样本方差等。

点估计的目标是使得估计值尽量接近真实的总体参数,即具有无偏性和有效性。

无偏性是指估计值的期望等于真实参数,有效性是指估计值的方差最小。

无偏性是一个重要的性质,它保证了估计值在大样本下趋近于真实值。

有效性则是在无偏估计的前提下,使估计值的方差最小,从而提高估计的准确性。

2. 区间估计区间估计是指通过样本数据得到总体参数的一个范围,这个范围被称为置信区间。

置信区间表示了总体参数的估计精度和可信程度。

在构造置信区间时,需要指定置信水平,常用的置信水平有95%和99%等。

置信水平为95%表示在大量重复抽样中,有95%的置信区间会包含真实的总体参数。

构造置信区间的方法有很多,如正态分布的置信区间、t分布的置信区间等。

不同的方法适用于不同的总体分布和样本信息。

在实际应用中,要根据具体的问题和数据的特点选择合适的置信区间方法。

二、数理统计中的应用参数估计和置信区间估计在数理统计中有广泛的应用,可以用于推断和估计各种领域的问题。

1. 总体均值的估计当我们要估计总体的均值时,可以使用点估计和区间估计的方法。

点估计是通过样本均值来估计总体均值,区间估计则是给出总体均值的一个范围。

2. 总体比例的估计当我们要估计总体的比例时,例如某种特征在总体中出现的比例,也可以使用点估计和区间估计的方法。

点估计是通过样本比例来估计总体比例,区间估计则是给出总体比例的一个范围。

概率论与数理统计教材第六章习题

概率论与数理统计教材第六章习题

X σ0 n
~ N(0,1)
对于置信水平1- ,总体均值的置信区间为 对于置信水平 -α,总体均值 的置信区间为
X
σ0
n
uα < < X +
2
σ0
n

2
(2)设总体 ~ N(,σ 2 ), 未知 ,求的置信区间。 设总体X~ 未知σ, 的置信区间。 设总体 的置信区间
σ 0 ,则样本函数 t = X ~ t(n 1) 用 S 代替 S n
i =1
n1
n1
F
1
α ∑ Yj 2
2 j =1
n2
(
)
2
n2
10
2 2 及 (1)设两个总体 ~ N(1,σ1 ) 及Y~ N(2 ,σ 2 ), 未知 1 2, )设两个总体X~ ~
2 σ1 的置信区间。 求 2 的置信区间。 σ2
选取样本函数 选取样本函数
2 2 S1 σ1 F = 2 2 ~ F(n1 1, n2 1) S2 σ2
∑x
i =1
n
i =1
i
n = 0.
1 p
得 p 的极大似然估计值为 p =
n
∑x
i =1
n
1 = x
i
12
1 θ 2. 设总体 服从拉普拉斯分布:f ( x;θ ) = e ,∞< x < +∞, 设总体X 服从拉普拉斯分布: 2θ 求参数 θ 其中 > 0. 如果取得样本观测值为 x1 , x2 ,L, xn , 求参数θ
第六章 参数估计
(一)基本内容
一、参数估计的概念 1 定义:取样本的一个函数θ ( X 1 , X 2 ,L , X n ), 如果以它的观测 定义:

概率论与数理统计-参数估计

概率论与数理统计-参数估计

第七章 参数估计
例:
引言
设总体 X 是服从参数为 的指数分布,其中参数
未 知 ,
0 .X1 ,,
X
是总体
n
X
的一个样本,
我们的任务是根据样本,来估计 的取值,从
而估计总体的分布.
这 是 一 个 参 数 估 计 问 题.
第七章 参数估计
§1 点估计 §2 估计量的评选标准 §3 区间估计
第七章 参数估计 §1 点估计
2

A1
A2
, (
2
1)
.
第七章 参数估计
例6(续)
解此方程组,得
§1 点估计
ˆ
A1 2 A2 A12
,
ˆ
A2
A1 A12
.
ˆ X 2 ,

B2
ˆ X .
B2
其中 B2
1 n
n i 1
Xi X
2 为样本的二阶中心矩.
第七章 参数估计(第二十二讲) 三、 极大似然法
§1 点估计
1
第七章 参数估计
例6(续)
EX 2 x 2 f
x dx x 2
x 1e x dx
0
§1 点估计
2 2 x ( e 2)1 x dx
2 0 2
2 2
1 2
1
2
因此有
EX
,
EX
2
1 .
⑵ 在不引起混淆的情况下,我们统称估计量
与估计值为未知参数 的估计.
第七章 参数估计
二、 矩估计法
§1 点估计
设X为连续型随机变量,其概率密度为
f ( x;1 ,, k ), X为离散型随机变量,其分布列为

研究生应用数理统计参数估计

研究生应用数理统计参数估计

为来自总体的样本,
n
试求:(1)的极大似然估计;
(2)P{X 2}的极大似然估计。
极大似然估计的优点: 利用了总体的分布函数所提供的信息; 不要求总体原点矩的存在(柯西分布) 极大似然估计的缺点: 求解似然方程困难
四、用顺序统计量估计参数
无论X服从何种分布,都可以样本中位数X作为总体均值 E(X)的估计量,以样本极差R作为总体标准差 DX的估计量。 这种估计比较粗超。
研究生应用数理统 计参数估计
一、参数估计的概念
定义:已知母体的分布,估计某个或几个未 知数字特征(参数)的问题,称为参数估 计。
二、参数估计的分类
分为点估计和区间估计;
点估计就是根据样本,估计参数为某个数 值;
区间估计就是根据样本,估计参数在一定 范围内,即一个区间;
总体分布类型已知的统计问题,称为参数 型统计问题;
定理 设X1, X 2, , X n是来自总体X ~ N (, 2 )的样本,X 是
样本中位数,则对任意x,有
lim
n
P
2n(2 X

x
1
2
x t2
e 2 dt
§2点估计的优良性
一、无偏性
定义1 设 ( X1, , X n )是参数的估计量。 若E ,则称是的无偏估计量;
若E ,则称(E )是估计量的偏差;
例2.1.1 设总体服从泊松分布P(),
试求的矩估计量.
解1 因为E(X)=,所以的矩估计量为X .
解2 因为D(X)=,所以的矩估计量也为
1 n
X
i
2
X .
例2.1.1 设总体服从泊松分布P(),
试求的矩估计量.
解1 因为E(X)=,所以的矩估计量为X .

应用数理统计——参数估计

应用数理统计——参数估计

这就是矩法估计的理论依据。
三、正态总体参数的区间估计 前面讨论了未知参数的点估计问题,它是用估计
量 θ 的值作为未知参数θ的估计。然而不管θ 是一 个怎样优良的估计量,它也只是一定程度的精确, 至于如何反映精确度,参数的点估计并没有回答。 由于θ 是一随机变量,需说明用θ 去估计θ的精度, 也就是要说明在一定概率意义下, 与θ的误差有 θ 多大。即确定具有特定概率意义的区间,使它以 相当大的概率包含未知参数的真值,以表明总体 参数真值所处的范围。
α
α
α
2
− uα
σ
n } = 1−α ) = 1−α
2
2
2

2
σ
n
< µ < X + uα 2 < µ < x − uα 2
于是P{x − uα 2
σ
n
σ
n
例6:见教材82页例1。
(2)总体方差σ 2未知时,正态总体均值µ的区间估计
X −µ 因为若X服从N ( µ , σ ),则T = 服从t (n − 1) S n
2 2
小结:学习了
1、点估计法——矩法 2、评价估计量优劣的标准——无偏性、有效性 和一致性 3、正态总体的区间估计——均数和方差的区间估计 作业:教材98页第4题。 教材99页第10、13题。 教材100页第17、18题。
3、正态总体方差σ 的区间估计
2
因为若X服从N ( µ , σ 2 ),则χ 2 = 由附表4知P{χ12−α 2 < (n − 1) S 2
(n − 1) S 2
σ2
服从χ 2 (n − 1)
σ2
2 < χα 2 } = 1 − α

数理统计第七章 参数估计

数理统计第七章 参数估计
第七章 参数估计
点估计 估计量的评价标准 充分性与完备性 区间估计 正态总体参数的区间估计

7.1 点估计
一、参数估计的概念
定义 设X1, … , Xn是总体X的一个样本,其概率函 数为f(x; ), 。其中为未知参数, 为参数空间, f (x; )可表示分布律或密度函数. 若统计量g(X1, … , Xn)
随机误差 系统误差
二、无偏性
设 ( X 1 , , X n )为的估计量, 若E 则称 是的无偏估计量.
易知,样本均值和样本方差分别是总体均值和总体 方差的无偏估计。事实上,
1 n 1 n E ( X ) E ( X i ) EX i E ( X ), n i 1 n i 1
显然,根据均方误差准则,最小方差无偏估计是无偏估计 类中最好的估计。那么,如何寻求最小方差无偏估计呢?究 竟方差小到什么程度才可达到最小值呢?
罗—克拉美不等式给出了无偏估计的方差下界。 2.罗—克拉美(Rao-Cramer)不等式 定理7.2.1 设总体X为连续型随机变量,密度函数为f(x; ), 为未知参数, ,X1, …, Xn为来自该总体得一个样本。 T(X1, …, Xn)为可估计函数g( )的无偏估计量。如果满足下列 正则条件: ln f ( X ; ) 2 (1) I ( ) E[ ] 0; f ( X ; ) f ( X ; ) (2) 存在, 且有 f ( x; )dx dx,
MLE
三、有效性
1. 最小方差无偏估计
ˆ ˆ 设i i ( X 1 ,, X n ), i 1, 2分别是参数 的两个 ˆ ˆ ˆ ˆ 无偏估计, 若D1 D 2 , 则称1比 2有效.

数理统计学中的参数估计和假设检验

数理统计学中的参数估计和假设检验

数理统计学中的参数估计和假设检验在现代统计学中,参数估计和假设检验是非常重要的概念。

这些概念互相关联,但是又有不同的应用。

在此,我们将讨论这两个概念的基本原则以及它们在现实生活中的应用。

参数估计可以被描述为研究一组数据的基本特征。

通过这个过程,我们试图推断出这个数据集的平均值、标准差和其他的参数。

这些参数会充当我们对整个数据集的总体特征的代表,是基于样本数据和概率等数学方法来实现的。

数理统计学中有两种常见的参数估计方法:点估计和区间估计。

点估计法指的是通过现有的样本数据,确定整体数据集的一个参数值。

这个参数值是一个点,代表了这个总体数据的典型特征。

例如,一个统计学家可能会利用一个样本数据集的均值来估计整个数据集的均值。

这个方法非常简单,但是也有缺点,因为单个点可能不能完整地反映出整个总体的信息。

相对于点估计方法,区间估计法则是根据样本数据并结合概率论提供一个充分范围内的参数估计值。

以信心水平的方式,给出估计结果的范围和信心度。

这样的区间被称为可信区间,其中的参数值处于一定的置信度内,一般用百分之几的置信度表示。

例如,一个样本数据的均值在一定的置信度下是x到y之间的。

区间估计法是一种更加准确的方法,因为它允许我们知道参数值的变化范围,而不仅仅是一个单点。

但是,这种技术会带来更多的复杂性,需要一些基本的统计技能。

另一方面,假设检验则是一种帮助我们确定一个假设是否正确的方法。

这个方法通常用于对两个数据组的统计分析中,并且可以用于比较一个数据集的平均值是否等于一个已知的值。

简单说就是,假设检验能够让我们确定样本数据是否足够代表总体,并且也让我们确认样本数据能否代表以前的观测和研究。

在假设检验中,我们制定一个假设被称为研究假设,并组对比之前已知的信息,提出一个对立假设。

之后,我们会挑选一个随机样本并采取测量行动。

我们利用这个测量行动来确定样本数据是否属于已知的总体比例,或者是否对研究假设做出了支持。

如果样本数据足够代表总体,并且不同于已知的比例,则我们可以拒绝研究假设并接受对立假设。

数理统计 第七章-参数估计

数理统计 第七章-参数估计

休息
结束
2. 最大似然法
是在总体类型已知条件下使用的一 种参数估计方法 。 它首先是由德国数学家高斯在1821 年提出的 ,费歇在1922年重新发现了这 一方法,并首先研究了这 种方法的一些 性质 。
休息 结束
最大似然法的基本思想:
已发生的事件具有最大概率。
休息
结束
先看一个简单例子: 在军训时,某位同学与一位教官同 时射击,而在靶纸上只留下一个弹孔。 如果要你推测,是谁打中的呢? 你会如何想呢?

max f ( xi , )

i 1
n
休息
结束
X 假设X 为连续型总体: f ( x; )
( X 1 , , X n ) 为子样
( x1 , , xn ) 为子样观察值。
已发生的事件为:
x x ,X {{X 11 1x, X 1 nx1 ,n } , xn x X n xn } x

休息
结束
ˆ
1 n ( X i X )2 n i 1
1 n ˆ X ( X i X )2 n i 1
休息
结束
矩法的优点是简单易行,并不需要 事先知道总体是什么分布 。 缺点是,当总体类型已知时,没有 充分利用分布提供的信息 . 一般场合下, 矩估计量不具有唯一性 。
( 1 )x , 0 x 1 f( x) 0, 其它
1
其中 1 是未知参数,
X1,X2,…,Xn是取自X的样本,求参数 的矩估计. 解:
1 E( X ) x( 1 )x dx

0
( 1 )
从 中解得
1
0
x
1

数理统计之参数估计

数理统计之参数估计

X )2 ,
S2
1 n1
n
(Xi
i 1
X )2,试
比较 E(Sn2 - σ2)2 与 E(S 2 - σ2)2.
解: 由于
(n 1)S 2
2
~
2 (n 1)

(n 1)S 2
2
2(n 1)
(n 1)2
4
D(S 2 ),D(S 2 )
2
n1
4
D(Sn2 )
D( n 1 S2 )
j
j
解出似然估计 ˆjL ˆjL( X1, , Xn ).
否则可通过单调性或放大缩小的方法直接推求.
极大似然估计的性质:
(1) 若(^θ1, …, ^θm)是(θ1, …, θm)的极大似然计, η = g(θ1, …, θm)存在单值反函数,则g(θ^1, …, ^θm)是g(θ1, …, θm)的极大似然估计.
设X1,…,Xn 是来自总体 X 的样本,则
μk = E(Xk )= ∑ xk p(x; θ1, θ2), X 为离散型

μk = E(Xk )= xk f (x; θ1, θ2)dx,
X 为连续型
Ak
1 n
n i 1
Xik
1 n
X
k 1
1 n
X
k 2
1 n
X
k n
矩法思想: 用样本矩Ak 作为总体同阶矩μk 的近似,
例 设某种设备的寿命X (小时)服从指数分布,概
率密度为
et , t 0
f ( x; )
0,
其他
其中 λ>0为未知参数. 现从这批设备中任取n台在t =0
时刻开始寿命试验,试验进行到预定时间T0 结束, 此时有 k(0< k < n)台失效,求

概率论与数理统计第七章参数估计演示文档

概率论与数理统计第七章参数估计演示文档

概率论与数理统计第七章参数估计演示文档参数估计是概率论与数理统计中的重要内容之一,是通过样本数据来推断总体参数的方法。

在实际应用中,参数估计广泛应用于市场调查、医学研究、经济预测等领域。

本文将以一些常用的参数估计方法为例,进行演示说明。

首先,我们介绍最常见的点估计方法,矩估计。

矩估计是通过样本矩来估计总体矩。

以正态分布的均值和方差为例,假设我们有一个样本数据集,通过计算样本均值和样本方差,可以分别得到正态分布的均值和方差的矩估计值。

接下来我们介绍第二种常见的点估计方法,最大似然估计。

最大似然估计是通过找到使得观察到的样本数据出现的概率最大的参数值。

以二项分布的成功概率为例,假设我们有一组二项分布的观察数据,通过计算二项分布的似然函数,并求导得到其极大值点,可以得到二项分布的成功概率的最大似然估计值。

此外,假设检验是参数估计的重要应用。

在进行参数估计时,我们常常需要进行假设检验来判断参数估计是否具有统计意义。

以均值的假设检验为例,假设我们有两组样本数据,通过计算样本均值和样本方差,可以得到均值的矩估计值。

然后,我们可以利用假设检验的方法,比较这两个样本的均值,从而判断两个样本是否具有统计意义上的差异。

最后,我们介绍一种常用的参数区间估计方法,置信区间估计。

置信区间估计是通过样本数据得到一个区间,该区间内的参数值有一定的置信度。

以总体均值的置信区间估计为例,假设我们有一组样本数据,通过计算样本均值和样本标准差,可以得到总体均值的点估计值。

然后,我们可以利用参数估计的理论知识,计算得到总体均值的置信区间,从而对总体均值进行估计。

综上所述,参数估计是概率论与数理统计中的重要内容,应用广泛。

通过点估计方法可以从样本数据中推断总体参数的值,通过假设检验可以判断参数估计的统计意义,通过置信区间估计可以得到参数值的置信区间。

这些参数估计方法为我们提供了在实际问题中进行估计和推断的依据,使我们能够更好地理解和分析数据。

概率论与数理统计第七章 参数估计

概率论与数理统计第七章 参数估计

第七章 参数估计参数估计是数理统计研究的主要问题之一. 假设总体X ~N (μ,σ2),μ,σ2是未知参数,X 1,X 2,…,X n 是来自X 的样本,样本值是x 1,x 2,…,x n ,我们要由样本值来确定μ和σ2的估计值,这就是参数估计问题,参数估计分为点估计(Point estimation )和区间估计(Interval estimation).第一节 点估计所谓点估计是指把总体的未知参数估计为某个确定的值或在某个确定的点上,故点估计又称为定值估计.定义7.1 设总体X 的分布函数为F (x ,θ),θ是未知参数,X 1,X 2,…,X n 是X 的一样本,样本值为x 1,x 2,…,x n ,构造一个统计量(X 1,X 2,…,X n ),用它的观察值 (x 1,x 2,…,x n )作为θ的估计值,这种问题称为点估计问题.习惯上称随机变量(X 1,X 2,…,X n )为θ的估计量,称(x 1,x 2,…,x n )为的估计值.构造估计量(X 1,X 2,…,X n )的方法很多,下面仅介绍矩法和极大似然估计法. 1.矩法矩法(Moment method of estimation )是一种古老的估计方法.它是由英国统计学家皮尔逊(K .Pearson )于1894年首创的.它虽然古老,但目前仍常用.矩法估计的一般原则是:用样本矩作为总体矩的估计,若不够良好,再作适当调整. 矩法的一般作法:设总体X ~F (X ;θ1,θ2,…,θl )其中θ1,θ2,…,θl 均未知. (1) 如果总体X 的k 阶矩μk =E (X k ) (1≤k ≤l)均存在,则μk =μk (θ1,θ2,…,θl ),(1≤k ≤l ).(2) 令⎪⎪⎩⎪⎪⎨⎧.),,,(,),,,(,),,,(2122121211l l l l l A A A θθθμθθθμθθθμ其中A k (1≤k ≤l )为样本k 阶矩.求出方程组的解,ˆ,,ˆ,ˆ21l θθθ 我们称),,,(ˆˆ21n k k X X X θθ=为参数θk (1≤k ≤l )的矩估计量, ),,,(ˆˆ21nk k x x x θθ=为参数θk 的矩估计值. 例7.1 设总体X 的密度函数为:f (x )=⎩⎨⎧-><<+.,0),1(,10,)1(其他αααx x其中α未知,样本为(X 1,X 2,…,X n ),求参数α的矩法估计.解 A 1=X .由μ1=A 1及μ1=E (X )=21)1()(1++=+=⎰⎰+∞∞-ααααx x x x x xf d d , 有21++=ααX ,得121ˆ--=X Xα.例7.2 设X ~N (μ,σ2),μ,σ2未知,试用矩法对μ,σ2进行估计. 解⎪⎪⎩⎪⎪⎨⎧======∑∑==.1)(,1)(12222111ni i ni i X n A X E X n A X E μμ 又 E (X )=μ, E (X 2)=D (X )+(EX )2=σ2+μ2,那么 .1ˆˆ,ˆ2222S nn A X -=-==μσμ. 例7.3 在某班期末数学考试成绩中随机抽取9人的成绩.结果如下:试求该班数学成绩的平均分数、标准差的矩估计值.解 设X 为该班数学成绩,μ=E (X ),σ2=D (X ))558994(919191+++==∑= i i x x =75;2/19122)(819898⎥⎦⎤⎢⎣⎡-⋅=∑=i i x x s =12.14.⎪⎪⎩⎪⎪⎨⎧======∑∑==.91)(,91)(9122229111i i i i X A X E X A X E μμ 由于E (X 2)=D (X )+(EX )2=σ2+μ2,那么,2222228ˆˆˆ,().9X A A x S μσμ==-=-= 所以,该班数学成绩的平均分数的矩估计值x =μˆ=75分,标准差的矩估计值298ˆs =σ=12.14. 作矩法估计时无需知道总体的概率分布,只要知道总体矩即可.但矩法估计量有时不惟一,如总体X 服从参数为λ的泊松分布时,X 和B 2都是参数λ的矩法估计.2.极(最)大似然估计法极大似然估计法(Maximum likelihood estimation)只能在已知总体分布的前提下进行,为了对它的思想有所了解,我们先看一个例子.例7.4 假定一个盒子里装有许多大小相同的黑球和白球,并且假定它们的数目之比为3∶1,但不知是白球多还是黑球多,现在有放回地从盒中抽了3个球,试根据所抽3个球中黑球的数目确定是白球多还是黑球多.解 设所抽3个球中黑球数为X ,摸到黑球的概率为p ,则X 服从二项分布P {X =k }=k 3C p k(1-p )3-k , k =0,1,2,3.问题是p =1/4还是p =3/4?现根据样本中黑球数,对未知参数p 进行估计.抽样后,共有4种可能结果,其概率如表7-1所示.假如某次抽样中,只出现一个黑球,即X =1,p =1/4时,P {X =1}=27/64;p =3/4时,P {X =1}=9/64,这时我们就会选择p =1/4,即黑球数比白球数为1∶3.因为在一次试验中,事件“1个黑球”发生了.我们认为它应有较大的概率27/64(27/64>9/64),而27/64对应着参数p =1/4,同样可以考虑X =0,2,3的情形,最后可得p =⎪⎩⎪⎨⎧==.3,2,43,1,0,41时当时当x x(1) 似然函数在极大似然估计法中,最关键的问题是如何求得似然函数(定义下文给出),有了似然函数,问题就简单了,下面分两种情形来介绍似然函数. (a ) 离散型总体设总体X 为离散型,P {X =x }=p (x ,θ),其中θ为待估计的未知参数,假定x 1,x 2,…,x n 为样本X 1,X 2,…,X n 的一组观测值.P {X 1=x 1,X 2=x 2,…,X n =x n }=P {X 1=x 1}P {X 2=x 2}…P {X n =x n }=p (x 1,θ)p (x 2,θ)…p (x n ,θ)=∏=ni ix p 1),(θ.将∏=ni ix p 1),(θ看作是参数θ的函数,记为L (θ),即 L (θ)=∏=ni ix p 1),(θ. (7.1)(b ) 连续型总体设总体X 为连续型,已知其分布密度函数为f (x ,θ),θ为待估计的未知参数,则样本(X 1,X 2,…,X n )的联合密度为:f (x 1,θ)f (x 2,θ)…f (x n ,θ)=∏=ni ix f 1),(θ.将它也看作是关于参数θ的函数,记为L (θ),即L (θ)=∏=ni ix f 1),(θ. (7.2)由此可见:不管是离散型总体,还是连续型总体,只要知道它的概率分布或密度函数,我们总可以得到一个关于参数θ的函数L (θ),称L (θ)为似然函数.(2) 极大似然估计极大似然估计法的主要思想是:如果随机抽样得到的样本观测值为x 1,x 2,…,x n ,则我们应当这样来选取未知参数θ的值,使得出现该样本值的可能性最大,即使得似然函数L (θ)取最大值,从而求参数θ的极大似然估计的问题,就转化为求似然函数L (θ)的极值点的问题,一般来说,这个问题可以通过求解下面的方程来解决0)(=θθd d L . (7.3)然而,L (θ)是n 个函数的连乘积,求导数比较复杂,由于ln L (θ)是L (θ)的单调增函数,所以L (θ)与ln L (θ)在θ的同一点处取得极大值.于是求解(7.3)可转化为求解0)(=θθd dln L .(7.4)称ln L (θ)为对数似然函数,方程(7.4)为对数似然方程,求解此方程就可得到参数θ的估计值.如果总体X 的分布中含有k 个未知参数:θ1,θ2,…,θk ,则极大似然估计法也适用.此时,所得的似然函数是关于θ1,θ2,…,θk 的多元函数L (θ1,θ2,…,θk ),解下列方程组,就可得到θ1,θ2,…,θk 的估计值,⎪⎪⎪⎩⎪⎪⎪⎨⎧=∂∂=∂∂=∂∂.0),,,(ln ,0),,,(ln ,0),,,(ln 21221121k k k k L L L θθθθθθθθθθθθ(7.5) 例7.5 在泊松总体中抽取样本,其样本值为:x 1,x 2,…,x n ,试对泊松分布的未知参数λ作极大似然估计.解 因泊松总体是离散型的,其概率分布为:P {X =x }=λλ-e !x x,故似然函数为:L (λ)=∏∏==∑--⋅⋅==ni ni i x nixx x ni ii11!1!1λλλλee. ln L (λ)=11ln ln (!)nniii i n x x λλ==-+-∑∏,∑=+-=ni i x n 11)ln(λλλd d . 令λλd d ln =0,得: ∑=+-ni i x n 11λ=0.所以x x n ni i L ==∑=11ˆλ,λ的极大似然估计量为X L=λˆ(为了和λ的矩法估计区别起见,我们将λ的极大似然估计记为Lλˆ). 例7.6 设一批产品含有次品,今从中随机抽出100件,发现其中有8件次品,试求次品率θ的极大似然估计值.解 用极大似然法时必须明确总体的分布,现在题目没有说明这一点,故应先来确定总体的分布.设 X i =,100,,2,1,0,1 =⎩⎨⎧i ,i ,i 次取正品第次取次品第则X i 服从两点分布:12100p (x i ,θ)=P {X i =x i }=θ xi (1-θ)1-xi ,x i =0,1,故似然函数为:L (θ)=∑-∑=-==-=-∏1001100110010011)1()1(i ii i iix x i x x θθθθ由题知:∑=1001i ix =8,所以 L (θ)=θ8(1-θ)92. 两边取对数得:ln L (θ)=8ln θ+92ln (1-θ).对数似然方程为:θθθθ--=1928)(ln d d L =0.解之得θ=8/100=0.08.所以Lθˆ=0.08. 例7.7 设x 1,x 2,…,x n 为来自正态总体N (μ,σ2)的观测值,试求总体未知参数μ,σ2的极大似然估计.解 因正态总体为连续型,其密度函数为f (x )=222)(21σμσ--x e π,所以似然函数为:L (μ,σ2)=⎭⎬⎫⎩⎨⎧--⎪⎭⎫ ⎝⎛=⎭⎬⎫⎩⎨⎧--∑∏==n i i nni i x x 122122)(21exp 212)(exp 21μσσσμσππ ln L (μ,σ2)=∑=----n i i x n n 1222)(21ln 22ln 2μσσπ. 故似然方程组为:⎪⎪⎩⎪⎪⎨⎧=-+-=∂∂=-=∂∂∑∑==.0)(212),(ln ,0)(1),(ln 124222122ni i ni i x n L x L μσσσσμμσμσμ 解以上方程组得:⎪⎪⎩⎪⎪⎨⎧=-=-===∑∑∑===.ˆ)(1)(1,12121221B x x n x n x x n ni i n i i ni i μσμ 所以 ⎩⎨⎧==.ˆ,ˆ22B X L σμ例7.8 设总体X 服从[0,θ]上的均匀分布,X 1,X 2,…,X n 是来自X 的样本,求θ的矩法估计和极大似然估计.解 因为E (X )=θ/2,令X =E (X ),得.2ˆX =矩θ 又 f (x )=⎪⎩⎪⎨⎧≤≤.,0,0,1其他θθx所以L (θ)=n θ1,0≤x i ≤θ. 要L (θ)最大,θ必须尽可能小,又θ≥x i ,i =1,2,…,n ,所以{}ini L X ≤≤=1max ˆθ.第二节 估计量的评价标准设总体X 服从[0,θ]上的均匀分布,由上节例7可知ˆ2X θ=矩,{}1ˆmax L ii nX θ≤≤ 都是θ的估计,这两个估计哪一个好?下面我们首先讨论衡量估计量好坏的标准问题.1.无偏性定义7.2 若估计量(X 1,X 2,…,X n )的数学期望等于未知参数θ,即:ˆ()E θθ=, (7.6) 则称ˆθ为θ的无偏估计量(Non -deviation estimator ).估计量ˆθ的值不一定就是θ的真值,因为它是一个随机变量,若ˆθ是θ的无偏估计,则尽管ˆθ的值随样本值的不同而变化,但平均来说它会等于θ的真值.例7.9 设X 1,X 2,…,X n 为总体X 的一个样本,E (X )=μ,则样本平均数11nii X X n ==∑是μ的无偏估计量.证 因为E (X )=μ,所以E (X i )=μ,i =1,2,…,n ,于是1111()()n ni i i i E X E X E X n n ==⎛⎫== ⎪⎝⎭∑∑=μ.所以X 是μ的无偏估计量.例7.10 设有总体X ,E (X )=μ,D (X )=σ2,(X 1,X 2,…,X n )为从该总体中抽得的一个样本,样本方差S 2及二阶样本中心矩B 2=11()ni i X X n =-∑是否为总体方差σ2的无偏估计?解 因为E (S 2)=σ2,所以S 2是σ2的一个无偏估计,这也是我们称S 2为样本方差的理由.由于B 2=21n S n -, 那么 E (B 2)=2211()n n E S n nσ--=, 所以B 2不是σ2的一个无偏估计.还需指出:一般说来无偏估计量的函数并不是未知参数相应函数的无偏估计量.例如,当X ~N (μ,σ2)时,X 是μ的无偏估计量,但2X 不是μ2的无偏估计量,事实上:22222()()().E X D X E X nσμμ⎡⎤=+=+≠⎣⎦2.有效性对于未知参数θ,如果有两个无偏估计量1ˆθ与2ˆθ,即E (1ˆθ)=E (2ˆθ)=θ,那么在1ˆθ,2ˆθ中谁更好呢?此时我们自然希望对θ的平均偏差E (ˆθ-θ)2越小越好,即一个好的估计量应该有尽可能小的方差,这就是有效性.定义7.3 设1ˆθ和2ˆθ都是未知参数θ的无偏估计,若对任意的参数θ,有 D (1ˆθ)≤D (2ˆθ), (7.7)则称1ˆθ比2ˆθ有效. 如果1ˆθ比2ˆθ有效,则虽然1ˆθ还不是θ的真值,但1ˆθ在θ附近取值的密集程度较2ˆθ高,即用1ˆθ估计θ精度要高些. 例如,对正态总体N (μ,σ2),11ni i X X n ==∑,X i 和X 都是E (X )=μ的无偏估计量,但D (X )=2nσ≤D (X i )=σ2,故X 较个别观测值X i 有效.实际当中也是如此,比如要估计某个班学生的平均成绩,可用两种方法进行估计,一种是在该班任意抽一个同学,就以该同学的成绩作为全班的平均成绩;另一种方法是在该班抽取n 位同学,以这n 个同学的平均成绩作为全班的平均成绩,显然第二种方法比第一种方法好.3.一致性无偏性、有效性都是在样本容量n 一定的条件下进行讨论的,然而(X 1,X 2,…,X n )不仅与样本值有关,而且与样本容量n 有关,不妨记为n ,很自然,我们希望n 越大时,n 对θ的估计应该越精确.定义7.4 如果n 依概率收敛于θ,即∀ε>0,有{}ˆlim 1,nn P θθε→∞-<=,(7.8) 则称ˆnθ是θ的一致估计量(Uniform estimator ). 由辛钦大数定律可以证明:样本平均数X 是总体均值μ的一致估计量,样本的方差S 2及二阶样本中心矩B 2都是总体方差σ2的一致估计量.第三节 区间估计1.区间估计的概念上节我们介绍了参数的点估计,假设总体X ~N (μ,σ2),对于样本(X 1,X 2,…,X n ),ˆX μ=是参数μ的矩法估计和极大似然估计,并且满足无偏性和一致性.但实际上X =μ的可能性有多大呢?由于X 是一连续型随机变量,P {X =μ}=0,即ˆμ=μ的可能性为0,为此,我们希望给出μ的一个大致范围,使得μ有较高的概率在这个范围内,这就是区间估计问题.定义7.5 设1ˆθ(X 1,X 2,…,X n )及2ˆθ (X 1,X 2,…,X n )是两个统计量,如果对于给定的概率1-α(0<α<1),有:P {1ˆθ<θ<2ˆθ}=1-α, (7.9) 则称随机区间(1ˆθ,2ˆθ)为参数θ的置信区间(Confidence interval ),1ˆθ称为置信下限,2ˆθ称为置信上限,1-α叫置信概率或置信度(Confidence level).定义中的随机区间(1ˆθ,2ˆθ)的大小依赖于随机抽取的样本观测值,它可能包含θ,也可能不包含θ,(7.9)式的意义是指(1ˆθ,2ˆθ)以1-α的概率包含θ.例如,若取α=0.05,那么置信概率为1-α=0.95,这时,置信区间(1ˆθ,2ˆθ)的意义是指:在100次重复抽样中所得到的100个置信区间中,大约有95个区间包含参数真值θ,有5个区间不包含真值θ,亦即随机区间(1ˆθ,2ˆθ)包含参数θ真值的频率近似为0.95. 例7.11 设X ~N (μ,σ2),μ未知,σ2已知,样本X 1,X 2,…,X n 来自总体X ,求μ的置信区间,置信概率为1-α.解 因为X 1,X 2,…,X n 为来自X 的样本,而X ~N (μ,σ2),所以uX ~N (0,1),对于给定的α,查附录中表2可得上分位点2z α,使得2P z α⎫<⎬⎭=1-α,即22P X z X z ααμ⎧-<<+⎨⎩=1-α. 所以μ的置信概率为1-α的置信区间为X z X z αα⎛-+ ⎝. (7.10) 由(7.10)式可知置信区间的长度为22z α,若n 越大,置信区间就越短;若置信概率1-α越大,α就越小,2z α就越大,从而置信区间就越长.2.正态总体参数的区间估计由于在大多数情况下,我们所遇到的总体是服从正态分布的(有的是近似正态分布),故我们现在来重点讨论正态总体参数的区间估计问题.在下面的讨论中,总假定X ~N (μ,σ2),X 1,X 2,…,X n 为其样本. (1) 对μ的估计 分两种情况进行讨论. (a ) σ2已知此时就是例7.11的情形,结论是:μ的置信区间为22X z X z αα⎛-+ ⎝, 置信概率为1-α.(b ) σ2未知当σ2未知时,不能使用(7.10)式作为置信区间,因为(7.10)式中区间的端点与σ有关,考虑到S 2=211()1n ii X X n =--∑是σ2X σ换成S 得 TX ~t (n -1).对于给定的α,查附录中t 分布表4可得上分位点t σ/2(n -1),使得2(1)P t n α⎫<-⎬⎭=1-α,即22(1)(1)P X t n X t n ααμ⎧⎫-<<-⎨⎬⎩⎭=1-α.所以μ的置信概率为1-α的置信区间为22(1),(1)X t n X t n αα⎛⎫-- ⎪⎝⎭. (7.11)=,S 0,所以μ的置信区间也可写成22(1),(1)X t n X t n αα⎛⎫-+- ⎪⎝⎭.(7.12) 例7.12 某车间生产滚珠,已知其直径X ~N (μ,σ2),现从某一天生产的产品中随机地抽出6个,测得直径如下(单位:毫米)14.6 15.1 14.9 14.8 15.2 15.1试求滚珠直径X 的均值μ的置信概率为95%的置信区间.解 111(14.615.114.914.815.215.1)6n i i x x n ===+++++∑=14.95,s 0, t α/2(n -1)=t 0.025(5)=2.571,所以2(t n α-=2.571=0.24, 置信区间为(14.95-0.24,14.95+0.24),即(14.71,15.19),置信概率为95%.σ2的置信区间我们只考虑μ未知的情形.此时由于S 2=211()1n i i X X n =--∑是σ2的无偏估计,我们考虑22(1)n S σ-,由于222(1)~(1)n S n χσ--,所以,对于给定的α,2122222(1)(1)(1)n S P n n ααχχσ-⎧⎫--<<-⎨⎬⎩⎭=1-α. 即222221(1)(1)(1)(1)n S n S P n n αασχχ-⎧⎫--⎪⎪<<⎨⎬--⎪⎪⎩⎭=1-α.所以σ2的置信区间为2222221(1)(1),(1)(1)n S n S n n ααχχ-⎛⎫-- ⎪ ⎪--⎝⎭(7.13) 或222200221,(1)(1)nS nS n n ααχχ-⎛⎫ ⎪ ⎪--⎝⎭, 其中S 02=211()ni i X X n =-∑. 例7.13 某种钢丝的折断力服从正态分布,今从一批钢丝中任取10根,试验其折断力,得数据如下:572 570 578 568 596 576 584 572 580 566试求方差的置信概率为0.9的置信区间.解 因为111(572570566)10n i i x x n ===+++∑=576.2,s 02=2211n i i x x n =-∑=71.56, α=0.10,n -1=9,查附表得:2220.05(1)(9)n αχχ-==16.919,220.951(1)(9)n αχχ--==3.325,22021071.56(1)16.919ns n αχ⨯=-=42.30,220211071.56(1) 3.325ns n αχ-⨯=-=215.22.所以,σ2的置信概率为0.9的置信区间为(42.30,215.22).以上仅介绍了正态总体的均值和方差两个参数的区间估计方法.在有些问题中并不知道总体X 服从什么分布,要对E (X )=μ作区间估计,在这种情况下只要X 的方差σ2已知,并且样本容量n 很大,X 准正态分布N (0,1),因而μ的置信概率为1-α的近似置信区间为X z X z αα⎛-+ ⎝.小 结参数估计问题分为点估计和区间估计.设θ是总体X 的待估计参数.用统计量ˆθ=ˆθ(X 1,X 2,…,X n )来估计θ称ˆθ是θ的估计量,点估计只给出未知参数θ的单一估计.本章介绍了两种点估计的方法:矩估计法和极大似然估计法.矩法的做法:设总体X ~F (X ;θ1,θ2,…,θl )其中θk (1≤k ≤l )为未知参数. (1) 求总体X 的k (1≤k ≤l )阶矩E (x k ); (2) 求方程组112112(,,,)(),(,,,)().l l l l l E X A E X A μθθθμθθθ==⎧⎪⎨⎪==⎩的一组解1ˆθ,2ˆθ,…, ˆl θ,那么ˆk θ=ˆk θ (X 1,X 2,…,X n )(1≤k ≤l)为k 的矩估计量. ˆkθ(x 1,x 2,…,x n )为θk 的矩估计值. 极大似然估计法的思想是若已观察到样本值为(x 1,x 2,…,x n ),而取到这一样本值的概率为P =P (θ1,θ2,…,θl ),我们就取θk (1≤k ≤l )的估计值使概率P 达到最大,其一般做法如下: (1) 写出似然函数L =L (θ1,θ2,…,θl ) 当总体X 是离散型随机变量时,L =121(;,,,)nil i P x θθθ=∏,当总体X 是连续型随机变量时L =121(;,,,)nil i f x θθθ=∏,(2) 对L 取对数ln L =121ln (;,,,)nil i f x θθθ=∑,(3) 求出方程组ln kLθ∂∂=0, k =1,2,…,l . 的一组解ˆk θ=ˆk θ (x 1,…,x n ) (1≤k ≤l )即k 为未知参数θ的极大似然估计值,ˆkθ=(X 1,X 2,…,X n )为θk 的极大似然估计量.在统计问题中往往先使用极大似然估计法,在此法使用不方便时,再用矩估计法进行未知参数的点估计.对于一个未知参数可以提出不同的估计量,那么就需要给出评定估计量好坏的标准.本章介绍了三个标准:无偏性、有效性、一致性.重点是无偏性.点估计不能反映估计的精度,我们就引人区间估计.设θ是总体X 的未知参数,1ˆθ,2ˆθ均是样本X 1,X 2,…,X n 的统计量,若对给定值α(0<α<1)满足P (1ˆθ<θ<2ˆθ)=1-α,称1-α为置信度或置信概率,(1ˆθ,2ˆθ)为θ的置信度为1-α的置信区间.参数的区间估计中一个典型、重要的问题是正态总体X (X ~N (μ,σ2))中μ或σ2的区间估计,其置信区间如表7-3所示.表7-3 正态总体的均值、方差的置信度为(1-α)的置信区间区间估计给出了估计的精度与可靠度(1-α),其精度与可靠度是相互制约的即精度越高(置信区间长度越小),可靠度越低;反之亦然.在实际中,应先固定可靠度,再估计精度. 重要术语及主题矩估计量 极大似然估计量估计量的评选标准:无偏性、有效性、一致性, 参数θ的置信度为(1-α)的置信区间, 单个正态总体均值、方差的置信区间.习 题 七1.设总体X 服从二项分布b (n ,p ),n 已知,X 1,X 2,…,X n 为来自X 的样本,求参数p 的矩法估计.2.设总体X 的密度函数f (x ,θ)=22(),0,0,.x x θθθ⎧-<<⎪⎨⎪⎩其他X 1,X 2,…,X n 为其样本,试求参数θ的矩法估计.3.设总体X 的密度函数为f (x ,θ),X 1,X 2,…,X n 为其样本,求θ的极大似然估计.(1) f (x ,θ)=,0,0,0.e x x x θθ-⎧≥⎨<⎩(2) f (x ,θ)=1,01,0,.x x θθ-⎧<<⎨⎩其他5.随机变量X 服从[0,θ]上的均匀分布,今得X 的样本观测值:0.9,0.8,0.2,0.8,0.4,0.4,0.7,0.6,求θ的矩法估计和极大似然估计,它们是否为θ的无偏估计.6.设X 1,X 2,…,X n 是取自总体X 的样本,E (X )=μ,D (X )=σ2,2ˆσ=k 1211()n i ii XX -+=-∑,问k 为何值时2ˆσ为σ2的无偏估计. 7.设X 1,X 2是从正态总体N (μ,σ2)中抽取的样本112212312211311ˆˆˆ;;;334422X X X X X X μμμ=+=+=+ 试证123ˆˆˆ,,μμμ都是μ的无偏估计量,并求出每一估计量的方差. 8.某车间生产的螺钉,其直径X ~N (μ,σ2),由过去的经验知道σ2=0.06,今随机抽取6枚,测得其长度(单位mm )如下:14.7 15.0 14.8 14.9 15.1 15.2 试求μ的置信概率为0.95的置信区间.9.总体X ~N (μ,σ2),σ2已知,问需抽取容量n 多大的样本,才能使μ的置信概率为1-α,且置信区间的长度不大于L ? 10.设某种砖头的抗压强度X ~N (μ,σ2),今随机抽取20块砖头,测得数据如下(kg ·cm -2):64 69 49 92 55 97 41 84 88 99 84 66 100 98 72 74 87 84 48 81 (1) 求μ的置信概率为0.95的置信区间. (2) 求σ2的置信概率为0.95的置信区间. 11.设总体X ~f (x )=(1),01;10,.x x θθθ⎧+<<>-⎨⎩其中其他 X 1,X 2,…,X n 是X 的一个样本,求θ的矩估计量及极大似然估计量. (1997年研考)12.设总体X ~f (x )= 36(),0;0,.xx x θθθ⎧-<<⎪⎨⎪⎩其他X 1,X 2,…,X n 为总体X 的一个样本(1) 求θ的矩估计量;(2) 求ˆ()D θ. (1999研考) 13.设某种电子元件的使用寿命X 的概率密度函数为f (x ,θ)= 2()2,0;0,.e x x x θθ--⎧>⎨≤⎩其中θ(θ>0)为未知参数,又设x 1,x 2,…,x n 是总体X 的一组样本观察值,求θ的极大似然估计值. (2000研考)估计值和极大似然估计值. (2002研考)15.设总体X 的分布函数为F (x ,β)=1,,0,.x xx ββααα⎧->⎪⎨⎪<⎩其中未知参数β>1,α>0,设X 1,X 2,…,X n 为来自总体X 的样本(1) 当α=1时,求β的矩估计量;(2) 当α=1时,求β的极大似然估计量;(3) 当β=2时,求α的极大似然估计量. (2004研考) 16.从正态总体X ~N (3.4,62)中抽取容量为n 的样本,如果其样本均值位于区间(1.4,5.4)内的概率不小于0.95,问n 至少应取多大?2/2()d zt z t ϕ-=⎰(1998研考)17. 设总体X 的概率密度为f (x ,θ)=,01,1,12,0,.x x θθ<<⎧⎪-≤<⎨⎪⎩其他 其中θ是未知参数(0<θ<1),X 1,X 2,…,X n 为来自总体X 的简单随机样本,记N 的样本值x 1,x 2,…,x n 中小于1的个数.求: (1) θ的矩估计;(2) θ的最大似然估计. (2006研考)。

《概率论与数理统计》课件第七章 参数估计

《概率论与数理统计》课件第七章 参数估计
添加标题
03
若存在, 是否惟一?
添加标题
1
2
3
4
5
6
对于同一个未知参数,不同的方法得到的估计量可能不同,于是提出问题
应该选用哪一种估计量? 用何标准来评价一个估计量的好坏?
常用标准
(1)无偏性
(3)一致性
(2)有效性
7.2 估计量的评选标准
无偏性
一致性
有效性
一 、无偏性
定义1 设 是未知参数θ的估计量
09
则称 有效.
10

11
例4 设 X1, X2, …, Xn 是X 的一个样本,
添加标题
问那个估计量最有效?
添加标题
解 ⑴
添加标题
由于
添加标题
验证
添加标题
都是
添加标题
的无偏估计.
都是总体均值
的无偏估计量.

D
C
A
B
因为
所以
更有效.
例5 设总体 X 的概率密度为
关于一致性的两个常用结论
1. 样本 k 阶矩是总体 k 阶矩的一致性估计量.
是 的一致估计量.
由大数定律证明
用切比雪夫不 等式证明
似然函数为
其中
解得参数θ和μ的矩估计量为
2

3

1

6
,故
5
,表明L是μ的严格递增函数,又
4
第二个似然方程求不出θ的估计值,观察
添加标题
所以当
01
添加标题
从而参数θ和μ的最大似然估计值分别为
03
添加标题
时L 取到最大值
02
添加标题

概率论与数理统计课件:参数估计

概率论与数理统计课件:参数估计

n
n
p( X xi; ) p(xi; ).
i 1
i 1
事实上,它们仅是参数 的函数,称为似然函数,记
为L( ) ,即 L( ) L(x1, x2,

n
, xn; ) f (xi; ), i 1
n
L( ) L( X x1, X x2, , X xn; ) p(xi; ). i 1
一个随机变量,其服从 0的泊松分布,即X ~ P(),
其中, 为未知参数. 已知在某小时进入该商场的人数的
样本值见表7.1,试求参数 的点估计值.
表7.1 在某小时进入某商场人数的统计情况
每分钟平均一秒钟进 入该商场的人数 0
1
2
3
4
5
6
7 8
分钟数
6 18 17 9 5 2 2 1 0
参数估计
解:因为X E( 1) ,所以 E( X ) .
由于仅有一个未知参数 ,故仅列一个方程
即可.
1( ) A1
因为1( ) E(X ) 和 A1 X ,所以ˆ X .
参数估计
首页 返回 退出
例7.1.3 设随机变量X在区间[a, b]中均匀取值,即 X U (a,b) ,其中,a 与 b均为未知参数,试求 a与 b的
i 1
i 1
参数估计
首页 返回 退出
(3) 似然函数 L( ) 与经自然对数变换后的函数 ln L( ) 等价,即求L( )的最大值点等价于求 ln L( )的最大值 点. 函数ln L( ) 对未知参数 求导数,并令其为0,即
d ln L( ) 0.
d
(4) 求解上述方程,得到参数 的最大似然估计值 ˆ(x1, x2 , , xn ),

数理统计参数估计

数理统计参数估计

数理统计参数估计数理统计是一门研究如何通过样本数据对总体特征进行推断的学科,它重点研究如何用样本数据估计总体参数。

参数估计是统计推断中的一个重要问题,通过寻找一个适当的函数来估计总体参数,以使得估计值尽可能地接近总体参数的真值。

在参数估计中,常用的方法有矩估计法、最大似然估计法和贝叶斯估计法等。

矩估计法是一种重要的参数估计方法。

它首先通过以一定的形式来给出样本矩与总体矩之间的关系,然后利用样本矩与样本矩的代数方程得到参数的估计值。

具体而言,设总体的概率密度函数为$f(x;\theta_1,\theta_2,...,\theta_k)$,其中$\theta_1,\theta_2,...,\theta_k$为待估参数,样本$x_1,x_2,...,x_n$满足总体分布,其期望为$$\mu_k = E(x_k) = \int x_kf(x;\theta_1,\theta_2,...,\theta_k)dx, \quad k = 1,2,...,k.$$由于总体的概率密度函数未知,因此用样本的矩,即原点矩来近似总体的矩。

样本原点矩的估计值为$$\overline{\mu_k} = \frac{1}{n}\sum_{i=1}^{n}x_{ik}, \quad k = 1,2,...,k.$$于是我们可以列出一组关于待估参数$\theta_1,\theta_2,...,\theta_k$的方程$$\begin{cases}\overline{\mu_1} = \mu_1(\theta_1,\theta_2,...,\theta_k)\\ \overline{\mu_2} = \mu_2(\theta_1,\theta_2,...,\theta_k)\\ ...\\\overline{\mu_k} = \mu_k(\theta_1,\theta_2,...,\theta_k)\end{cases}$$解此方程组即可得到待估参数的估计值。

概率论与数理统计第七章参数估计

概率论与数理统计第七章参数估计
则以hi (X1, X2,…, Xn)作为θi 的估计量 ,并 称hi(X1, X2,…, Xn)为θi 的矩法估计量,而 称hi(x1, x2,…, xn) 为θi 的矩法估计值。
例1. 设总体X的数学期望和方差分别是μ,
σ2 ,求μ , σ2的矩估计量。
E(X )
E( X 2 ) D( X ) [EX ]2 2 2
(3) 写出方程 ln L 0
i1
若方程有解,
求出L(θ)的最大值点 ˆ(x1,x2,..x.n,)
于 是 ˆ ˆ ( X 1 , X 2 , . . . , X n ) 即 为 的 极 大 似 然 估 计 量
例2. 设总体X服从参数λ>0的泊松分布,求 参数λ的极大似然估计量。
例3. 已知某产品的不合格率为p,有简单随机样本 X1 ,X2 ,…, Xn,求p的极大似然估计量。 若抽取100件产品,发现10件次品,试估计p.
ˆ(x1,x2,..x.n,),使得
L (ˆ) m a x L (), (或 L (ˆ) s u p L ())
则 称 ˆ ( x 1 ,x 2 , . . . ,x n ) 为 的 极 大 似 然 估 计 值
称 ˆ ( X 1 ,X 2 ,...,X n ) 为 极 大 似 然 估 计 量
第7章 参数估计
总体所服从的分布类型已知/未知
抽样
参数 估计
估计总体中未知的参数
参数估计 参数估计问题是利用从总体抽样得到的信息
来估计总体的某些参数. 估计新生儿的体重
估计废品率
估计湖中鱼数
§7.1
点估计
设有一个统计总体,总体的分布函数
为 F(x, ),其中为未知参数 (可以是向量) .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§6 参数估计
数理统计
参数估计 数理推断问题
假设检验
点估计 区间估计
一、参数的点估计
定义1 设总体的分布函数已知但含未知参数 ,
X1, X2, , Xn 为来自总体的样本,相应的样本值 是 x1, x2, , xn .由样本构造一个统计量 (X1, X2, , Xn ),
用它的观测值 (x1, x2, , xn) 来估计未知参数 ,称 (X1, X2, , Xn ) 为 的点估计量,称 (x1, x2, , xn) 为
的点估计值.
1.数字特征法——用样本的数字特征估计 总体的数字特征
X1, X2, , X n 为来自总体 X 的一个样本,观测值
为 x1, x2, , xn :
用样本均值 的点估计量,即
X

1 n
n i 1
Xi 作为总体均值 E(X )



从而

为 的点估计值.

X x

所以样本方差 S 2为总体方差 2的无偏估计.
[3]
E(B)

E[ 1 n
n i 1
(Xi

X )2]
2
)] E 1
(
X
2
)]

1 n 1
n i 1
E(Xi2)

2 n 1
E(n X
2
)

n n 1
E(X
2
)]

1 n 1
n i 1
{D( Xi
)
[E( Xi )]2}
2n n 1
E(X
2
)

n n 1
E(X
2
)]

n
{D(X ) [E(X )]2}
n
2
E(X )

x
x2
xf (x)dx dx
0
0 2
0


2
由数字特征法有

2

1 n
n i 1
Xi
因此 代入数据得


2 n
n i 1
Xi


2 10
10 i 1
xi

1 (2 4 5 8 3 6 5 6 10 1) 5
10 从而等车时间不超过5min的概率为
n
( Xi X )2 为总体
i 1
( Xi X )2 不是总体
方差 2 的无偏估计.
证明
[1]因为随机变量Xi (i 1, 2, , n)与总体X 同分
布,故
E(Xi ) ,i 1, 2, , n
E(X
)

E(1 n
n i 1
Xi)

1 n
Hale Waihona Puke n i 1E( Xi )
P(X 5)
5
f (x)dx
0
5 1 dx x 0 10 10
5 0

0.5.
2.估计量的评价标准
对于同一个未知参数,不同的方法得到的估 计量可能不同,应该选用哪一个估计量?应该用 什么标准评价一个估计量的好坏? 常用的标准有三个: (1)无偏性; (2)有效性; (3)一致性.
例1 在一批某种零件中,随机地取8个,测得它 们的重量(单位:g)为:
801,804,799,794,802,800,803,805.
试用数字特征法估计总体均值 和方差 2 .



x

1 8
8 i1
xi
1 (801 804 799 794 802 800 803 805) 801
8
2


1
s2

1 8 1
8 i 1
( xi
[(801 801)2


x)2
(804

801)2

(799

801)2

(794

801)2
7
(802 801)2 (800 801)2 (803 801)2 (805 801)2 ] 12
例2 已知乘客在某公交汽车站等车的时间 X (单位:min)服从 [0, ] 上的均匀分布,现随机抽测
1
n
n


所以样本均值 X 为总体X 均值 的无偏估计.
[2]E(S 2 )

E[ 1 n 1
n i 1
(Xi

X
)2 ]

1 n 1
E[
n i 1
(Xi

X
)2 ]

1 n 1
E[
n i 1
(Xi2
2Xi
X

X
2
)]

1 n 1
n i 1
[E(Xi2)
n 1
n 1
n {D(X ) [E(X )]2} n {D( X ) [E( X )]2}
n 1
n 1
n {D(X ) [E(X )]2} n {D(X ) [E( X )]2}
n 1
n 1 n
n D(X ) n D(X )
n 1
n 1 n
D(X ) 2
(1)无偏性
设 是参数 的估计量,若 E( ) ,则称 是 的无偏估计量.
注:1.估计量 的值不一定就是 的真值 ,因为 它是一个随机变量,若 是 的无偏估计,则尽管
的值随样本值的不同而变化,但平均来说它会等于
的真值.
2.一般说来无偏估计量的函数并不是未知参数
相应函数的无偏估计量.例如,当 X ~ N (, 2 )时,
1
n 1
n
n i 1 n i 1
X xi
i
用样本方差
S2

1 n 1
n i 1
(Xi

X
)2 作为总体
方差 D( X ) 2的点估计量,即
从而
2

S2

1 n 1
n i 1
(Xi

X )2
2

s2

1 n 1
n i 1
( xi

x)2
为 2的点估计值.

2E(X
i
X
)

E(X
2
)]

1[ n 1
n i 1
E(Xi2)
2
n i 1
E(Xi
X
)

nE( X
2
)]

nn1111[in1in1EE( X( Xi2i)2
) 2E( 2
n 1
n in1 i 1
Xi E(
X Xi
) nE( X)
n
X n
是μ的X 无偏估计量,但 不是X 2的无偏2估计量,事
实上:
E(X
2)

D( X
)

E ( X
2
)

2
n

2

2.
例3 证明样本均值
的无偏估计.样本方差 S 方差 2 的无偏估计.而
X1 n
2 n1i1 n 1 1n
B n i1
Xi 为总体 X 均值
了10位乘客的等车时间,数据如下:
2,4,5,8,3,6,5,6,10,1.
试用数字特征法估计 的值,并求乘客等车时间不
超过5min的概率.
解 设 X1, X2, 密度函数为
, Xn 是抽得的样本,由于X ~ U[0, ] ,
f
(x)

1

,
0 x
0, 其他
总体的均值为E(X )
相关文档
最新文档