内蒙古鄂尔多斯市中考数学真题及答案
内蒙古鄂尔多斯市初中毕业升学考试数学试题(附答案)
2018年鄂尔多斯市初中毕业升学考试数 学注意事项:1.作答前,请将自己的姓名、准考证号、考场号、座位号填写在答题纸上相应位 置,并核对条形码上的姓名、准考证号等有关信息。
2.答题内容一律填涂或书写在答题纸上规定的位置,在试题卷上作答无效。
3.本试题共8页,3大题,24小题,满分120分。
考试时间共计120分钟。
一、单项选择题(本大题共10题,每题3分,共30分)1.-51的绝对值等于 A .5 B .-5C .-51D .512.下面四个几何体中,同一个几何体的左视图与俯视图相同的几何体共有A .1个B .2个C .3个D .4个3.下列计算正确的是 A .x 2·x 3=x 6B .(x 2)3=x 5 C .32-2=22 D .x 5-x 2=x 34.甲、乙两台机床同时生产一种零件,在5天中,两台机床每天出次品数如下表所示,. . .则出次品波动较小的是甲 2 1 3 1 3 乙1 2 142A .甲机床B .乙机床C .两台机床一样D .无法判断5.若8m -+|n -2|=0,且关于x 的一元二次方程ax 2+mx +n =0有实数根,则a 的 取值范围是A .a ≥8B . a <8且a ≠0C . a ≤8D .a ≤8且a ≠06.下列说法正确的有①在-9,8,π,-3.1415926,722中,共有3个无理数. ②若a =b ,则a 2=b 2. 它的逆命题是真命题.③若n 边形的内角和是外角和的3倍,则它是八边形. ④平分弦的直径垂直于弦,并且平分弦所对的两条弧. A .1个B .2个C .3个D .4个7.对于实数x ,我们规定:[x ]表示不小于x 的最小整数,例如:[1.4]=2,[4]=4, [-3.2]=-3,若[103x ]=6,则x 的取值可以是 A .41 B .47 C .50 D .588.如图,在4×4正方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分 的图形构成一个轴对称图形的概率是A .41 B .31C .61 D .1219.如图,在菱形ABCD 中,AB 的垂直平分线EF 交对角线AC 于 点F ,垂足为点E ,连接DF ,且∠CDF =24°,则∠DAB 等于A .100°B .104°C .105°D .110°10.如图,在Rt △ABC 中,∠C =90°,AC =6,BC =8,D 是AB 边上的动点,E 是BC 边上的动点,则AE +DE 的最小值为A .3+213B .10C .524D .548二、填空题(本大题共6题,每题3分,共18分) 11.分解因式:x 3-4xy 2= .12.2013年鄂尔多斯市地方财政总收入约为855亿元. 其中855亿元用科学记数法表示 为 元.13.若从长度分别为2,3,4,5的四条线段中任选取三条,能组成直角三角形的概率为 .14.如图,在△ABC 中,∠B =50°,在同一平面内,将△ABC 绕点A 逆时针方向旋转到△AB 'C '的位置, 使得AB '⊥BC ,连接CC ', 则∠AC 'C = 度.15.如图,在平面直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,OC 在x 轴的负半轴上,OA 在y 轴的 正半轴上,顶点B 的坐标为(-6,1). 反比例函数y =-x2(x <0)的图象与AB 交于点M ,与BC 交于点N ,若点P 在y 轴上,使S △OMP =S 四边形OMBN ,则点P 的坐标为 . 16.小明写出如下一组数:51,-93,177,-3315,…,请用你发现的规律,猜想第 2014个数为 .三、解答题(本大题共8题,共72分,解答时写出必要的文字说明,演算步骤或推证过 程)17.(本题满分8分)(1)解不等式组⎪⎩⎪⎨⎧>-+<+1321-3)12(5-x x x x - ,并写出该不等式组的最小整数解.(2)先化简,再求值:)2(2mmn -n m -m m n ÷-,其中m =2-1,n =2.18.(本题满分7分)鄂尔多斯市教体局为了了解初中学生每学期参加综合实践活动的情况,随机抽样调查了某校某学期部分学生参加综合实践活动的天数,并用得到的数据绘制了如下不完整的统计图,请根据图中提供的信息,回答下列问题:(1)在本次调查中,一共调查了多少名学生?并将条形统计图补充完整. (2)求出扇形统计图中,m 的值和活动时间为4天所对应的圆心角的度数. (3)求出本次调查中,学生参加综合实践活动的天数的众数和中位数. 19.(本题满分7分)某实践小组去公园测量人工湖AD 的长度. 小明进行如下测量:点D 在点A 的正北方向,点B 在点A 的北偏东50°方向,AB =40米. 点E 在点B 的正北方向,点C 在点B 的北偏东30°方向,CE =30① ②米. 点C和点E都在点D的正东方向,求AD的长(结果精确到1米).(参考数据:3≈1.732,sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)20.(本题满分9分)如图,AB是半圆O的直径,C是半圆O上的一点,BD与过点C的直线互相垂直,垂足为点D,BD与半圆O交于点E,且BC平分∠DBA.(1)求证:CD是半圆O的切线.(2)若DC=43,BE=8,求的长(结果保留π).21.(本题满分9分)下面的图象反映的过程是:甲、乙两人同时从A地出发,以各自的速度匀速向B地行驶,甲先到B地停留半小时后,按原路以另一速度匀速返回,直至与乙相遇. 乙的速度为60千米/时,y(千米)表示甲、乙两人相距的距离,x (小时)表示乙行驶的时间. 请根据图象回答下列问题:(1)A、B两地相距多少千米?(2)求点D的坐标.(3)甲往返的速度分别是多少?22.(本题满分9分)如图1,在□ABCD中,点E是BC边的中点,连接AE并延长,交DC的延长线于点F,且∠AEC =2∠ABE. 连接BF、AC.(1)求证:四边形ABFC是矩形.(2)在图1中,若点M是BF上的一点,沿AM折叠△ABM,使点B恰好落在线段DF上的点B′处(如图2),AB=13,AC=12,求FM的长.23.(本题满分10分)某商店经销甲、乙两种商品,现有如下信息:请根据以上信息,解答下列问题:(1)甲、乙两种商品的进货单价各是多少元?(2)该商店平均每天卖出甲商品500件,乙商品200件. 经调查发现,甲、乙两种商品零售单价分别每涨0.5元,这两种商品每天各少销售50件. 为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都涨n 元,在不考虑其它因素的条件下,当甲、乙两种商品的零售单价分别定为多少元时,才能使商店每天销售这两种商品获取的利润最大?每天的最大利润是多少元?24.(本题满分13分)如图,抛物线y =41x 2-23x -4 与x 轴交于点A 和点B (点B 在点A 的左侧),与y 轴交于点C ,⊙O ′是△ABC 的外接圆,AB 是⊙O ′的直径,过点C 作⊙O ′的切线与x 轴交于点F ,过点A 作AD ⊥CF 于点D . (1)求A 、B 、C 三点的坐标.(2)试判断抛物线的顶点E 是否在直线CD 上,并说明理由.(3)在抛物线上是否存在一点P ,使得S △ACP =S △ACO ,若存在,直接写出所有满足条件的点P 坐标,若不存在,请说明理由.. .2018年鄂尔多斯市初中毕业升学考试数学参考答案及评分标准阅卷评分说明:1.正式阅卷前先进行试评,在试评中认真阅读参考答案,统一评分标准,不得随意拔高或降低评分标准。
内蒙古鄂尔多斯市2022年中考数学真题
内蒙古鄂尔多斯市2022年中考数学真题(共10题;共20分)1.(2分)如图,数轴上点A表示的数的相反数是()A.﹣2B.﹣12C.2D.3【答案】C【解析】【解答】解:点A表示的数为﹣2,﹣2的相反数为2,故答案为:C.【分析】根据数轴先求出点A表示的数为﹣2,再求解即可。
2.(2分)下列几何体的三视图中没有矩形的是()A.B.C.D.【答案】D【解析】【解答】解:A.该长方体的主视图、左视图、俯视图都是矩形,因此选项A不符合题意;B.该三棱柱的主视图、左视图是矩形,因此选项B不符合题意;C.该圆柱体的主视图、左视图是矩形,因此选项C不符合题意;D.该圆锥的主视图、左视图是等腰三角形,俯视图是带圆心的圆、所以它的三视图没有矩形,因此选项D符合题意;故答案为:D.【分析】根据几何体的三视图对每个选项一一判断即可。
3.(2分)一组数据2,4,5,6,5.对该组数据描述正确的是()A.平均数是4.4B.中位数是4.5C.众数是4D.方差是9.2【答案】A【解析】【解答】解: A 、平均数为2+4+5+5+65=4.4,符合题意;B 、中位数为5,不符合题意;C 、将这组数据重新排列为2,4,5,5,6,所以这组数据的众数为5,不符合题意;D 、方差为15×[(2﹣4.4)2+(4﹣4.4)2+2×(5﹣4.4)2+(6﹣4.4)2]=1.84,不符合题意.故答案为:A .【分析】根据平均数,中位数,众数和方差的定义计算求解即可。
4.(2分)下列运算正确的是( )A .a 3b 2+2a 2b 3=3a 5b 5B .(﹣2a 2b )3=﹣6a 6b 3C .2﹣2=﹣14D .√2+ √8=3√2【答案】D【解析】【解答】A.a 3b 2与2a 2b 3不是同类项,不能合并,故A 不符合题意;B.(﹣2a 2b )3=﹣8a 6b 3,故B 不符合题意;C.2−2=122=14,故C 不符合题意; D.√2+√8=√2+2√2=3√2,故D 符合题意. 故答案为:D .【分析】利用合并同类项发展,幂的乘方,积的乘方,负整数指数幂,二次根式的性质计算求解即可。
鄂尔多斯市中考数学试题及答案
鄂尔多斯市中考数学试题及答案一、选择题(每小题 2 分,共 40 分)1. 30 ÷ (2 - 3 ÷ 4) 的值是(A) 20 (B) 30 (C) 40 (D) 502. 设函数 f(x) = 2x - 3,则 f t = f(t) 的值是(A) 5 (B) 2t - 3 (C) 3 - 2t (D) 2 - 3t3. 化简:(a + b)² - (a - b)²(A) 4ab (B) 2ab (C) a² + 2ab + b² (D) a² - 2ab + b²4. 若已知等差数列 {aₙ} 的公差为 2,首项为 3,则数列 {aₙ + 2aₙ₋₁} 的通项公式为(A) 2n + 3 (B) 4n + 1 (C) 2n - 3 (D) 4n - 15. 在平面直角坐标系中,点 A(4, 3) 关于 x 轴的对称点为(A) A'(-4, 3) (B) A'(4, -3) (C) A'(-4, -3) (D) A'(3, 4)......二、填空题(每小题 3 分,共 30 分)1. 解方程 2x - 5 = 3x = _______2. 已知图中的正方形 ABCD,AB = 3 cm,连接 AC,则△ABC 的面积为 _______ 平方厘米。
3. 若函数 y = ax² + bx + c 与 x 轴有两个不同的交点,则实数 a, b, c的关系是 _______。
4. 已知等差数列 {aₙ} 的公差为 3,首项为 2,则 a₁₀的值为_______。
......三、解答题(共 30 分)1. 计算:[(5 - 3) + 2] × (10 ÷ 2)2. 已知 sin A = 3/5,且 A 在第二象限,求 cos A 和 tan A 的值。
3. 解方程组:{ 2x - y = 3{ 4x + y = 74. 解直角三角形 ABC,已知 AC = 12 cm,BC = 5 cm。
2021年内蒙古鄂尔多斯市中考数学试卷(附答案详解)
2021年内蒙古鄂尔多斯市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.在实数0,π,|−2|,−1中,最小的数是()A. |−2|B. 0C. −1D. π2.如图所示的几何体是由五个小正方体组合而成的,它的左视图是()A.B.C.D.3.世卫组织宣布冠状病毒最大直径约为0.00000012m,“0.00000012”用科学记数法可表示为()A. 1.2×10−7B. 0.12×10−6C. 12×10−8D. 1.2×10−64.下列运算正确的是()A. a2+a2=2a4B. a6÷a2=a3C. (a+3)(a−3)=a2−6a+9D. (−3a3)2=9a65.一块含30°角的直角三角板和直尺如图放置,若∠1=146°33′,则∠2的度数为()A. 64°27′B. 63°27′C. 64°33′D. 63°33′6.小明收集了鄂尔多斯市某酒店2021年3月1日~3月6日每天的用水量(单位:吨),整理并绘制成如图所示的折线统计图,下列结论正确的是()A. 平均数是234B. 众数是10 C. 中位数是8.5 D. 方差是2537.已知:▱AOCD的顶点O(0,0),点C在x轴的正半轴上,按以下步骤作图:①以点O为圆心,适当长为半径画弧,分别交OA于点M,交OC于点N.②分别以点M,N为圆心,大于12MN的长为半径画弧,两弧在∠AOC内相交于点E.③画射线OE,交AD于点F(2,3),则点A的坐标为()A. (−54,3) B. (3−√13,3) C. (−45,3) D. (2−√13,3)8.2020年疫情防控期间,鄂尔多斯市某电信公司为了满足全体员工的需要,花1万元购买了一批口罩,随着2021年疫情的缓解,以及各种抗疫物资充足的供应,每包口罩下降10元,电信公司又花6000元购买了一批口罩,购买的数量比2020年购买的数量还多100包,设2020年每包口罩为x元,可列方程为()A. 1x +100=6000x−10B. 10000x−100=6000x+10C. 10000x =6000x−10−100 D. 10000x−100=6000x−109.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,将边BC沿CN折叠,使点B落在AB上的点B′处,再将边AC沿CM折叠,使点A落在CB′的延长线上的点A′处,两条折痕与斜边AB分别交于点N、M,则线段A′M的长为()A. 95B. 85C. 75D. 6510. 如图①,在矩形ABCD 中,H 为CD 边上的一点,点M 从点A 出发沿折线AH −HC −CB 运动到点B 停止,点N 从点A 出发沿AB 运动到点B 停止,它们的运动速度都是1cm/s ,若点M 、N 同时开始运动,设运动时间为t(s),△AMN 的面积为S(cm 2),已知S 与t 之间函数图象如图②所示,则下列结论正确的是( )①当0<t ≤6时,△AMN 是等边三角形.②在运动过程中,使得△ADM 为等腰三角形的点M 一共有3个.③当0<t ≤6时,S =√34t 2.④当t =9+√3时,△ADH∽△ABM . ⑤当9<t <9+3√3时,S =−3t +9+3√3.A. ①③④B. ①③⑤C. ①②④D. ③④⑤二、填空题(本大题共6小题,共18.0分)11. 函数y =√4−2x 的自变量x 的取值范围是______. 12. 计算:√−83+(2021−π)0+(−13)−1= ______ .13. 如图,小梅把一顶底面半径为10cm 的圆锥形小丑纸帽沿一条母线剪开并展平,得到一个圆心角为120°的扇形纸片,那么扇形纸片的半径为______ cm .14. 将一些相同的“〇”按如图所示的规律依次摆放,观察每个“龟图”的“〇”的个数,则第30个“龟图”中有______ 个“〇”.15. 下列说法不正确的是______ (只填序号)①7−√17的整数部分为2,小数部分为√17−4. ②外角为60°且边长为2的正多边形的内切圆的半径为√3.③把直线y =2x −3向左平移1个单位后得到的直线解析式为y =2x −2. ④新定义运算:m ∗n =mn 2−2n −1,则方程−1∗x =0有两个不相等的实数根. 16. 如图,已知正方形ABCD 的边长为6,点F 是正方形内一点,连接CF ,DF ,且∠ADF =∠DCF ,点E 是AD 边上一动点,连接EB ,EF ,则EB +EF 长度的最小值为______ .三、计算题(本大题共1小题,共8.0分)17. (1)解不等式组{4x −3(x −2)≥4①x−15>x+12−1②,并把解集在数轴上表示出来.(2)先化简:x2−4x+42x−x2÷(2x−4+x2x),再从−2,0,1,2中选取一个合适的x的值代入求值.四、解答题(本大题共7小题,共64.0分)18.某中学对九年级学生开展了“我最喜欢的鄂尔多斯景区”的抽样调查(每人只能选一项):A−动物园;B−七星湖;C−鄂尔多斯大草原;D−康镇;E−蒙古源流,根据收集的数据绘制了如图所示的两幅不完整的统计图,其中B对应的圆心角为90°,请根据图中信息解答下列问题.(1)求抽取的九年级学生共有多少人?并补全条形统计图;(2)扇形统计图中m=______ ,表示D的扇形的圆心角是______ 度;(3)九年级准备在最喜欢A景区的5名学生中随机选择2名进行实地考察,这5名学生中有2名男生和3名女生,请用树状图或列表法求选出的2名学生都是女生的概率.19.如图,矩形ABCD的两边AB,BC的长分别为3,8,C,D在y轴上,E是AD的中点,反比例函数y=kx(k≠0)的图象经过点E,与BC交于点F,且CF−BE=1.(1)求反比例函数的解析式;(2)在y轴上找一点P,使得S△CEP=23S矩形ABCD,求此时点P的坐标.20.图①是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图②是其侧面结构示意图,托板长AB=115mm,支撑板长CD=70mm,板AB固定在支撑板顶点C处,且CB=35mm,托板AB可绕点C转动,支撑板CD可绕点D 转动,∠CDE=60°.(1)若∠DCB=70°时,求点A到直线DE的距离(计算结果精确到个位);(2)为了观看舒适,把(1)中∠DCB=70°调整为90°,再将CD绕点D逆时针旋转,使点B落在直线DE上即可,求CD旋转的角度.(参考数据:sin50°≈0.8,cos50°≈0.6,tan50°≈1.2,sin26.6°≈0.4,cos26.6°≈0.9,tan26.6°≈0.5,√3≈1.7)21.如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC于点D,BC于点E,直线EF⊥AC于点F,交AB的延长线于点H.(1)求证:HF是⊙O的切线;(2)当EB=6,cos∠ABE=1时,求tan H的值.322.鄂尔多斯市某宾馆共有50个房间供游客居住,每间房价不低于200元且不超过320元、如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.已知每个房间定价x(元)和游客居住房间数y(间)符合一次函数关系,如图是y关于x的函数图象.(1)求y与x之间的函数解析式,并写出自变量x的取值范围;(2)当房价定为多少元时,宾馆利润最大?最大利润是多少元?23.如图,抛物线y=x2+2x−8与x轴交于A,B两点(点A在点B左侧),与y轴交于点C.(1)求A,B,C三点的坐标;(2)连接AC,直线x=m(−4<m<0)与该抛物线交于点E,与AC交于点D,连接OD.当OD⊥AC时,求线段DE的长;(3)点M在y轴上,点N在直线AC上,点P为抛物线对称轴上一点,是否存在点M,使得以C、M、N、P为顶点的四边形是菱形?若存在,请直接写出点M的坐标;若不存在,请说明理由.24.旋转是一种重要的图形变换,当图形中有一组邻边相等时往往可以通过旋转解决问题.(1)尝试解决:如图①,在等腰Rt△ABC中,∠BAC=90°,AB=AC,点M是BC上的一点,BM=1cm,CM=2cm,将△ABM绕点A旋转后得到△ACN,连接MN,则AM=______ cm.(2)类比探究:如图②,在“筝形”四边形ABCD中,AB=AD=a,CB=CD,AB⊥BC于点B,AD⊥CD于点D,点P、Q分别是AB、AD上的点,且∠PCB+∠QCD=∠PCQ,求△APQ的周长.(结果用a表示)(3)拓展应用:如图③,已知四边形ABCD,AD=CD,∠ADC=60°,∠ABC=75°,AB=2√2,BC=2,求四边形ABCD的面积.答案和解析1.【答案】C【解析】解:∵|−2|=2,∴−1<0<|−2|<π,∴最小的数是−1,故选:C.先化简|−2|,然后根据正数大于0,负数小于0即可得出答案.本题考查了实数的比较大小,绝对值,注意负数的绝对值等于它的相反数.2.【答案】B【解析】解:此几何体的左视图有两列,左边一列有2个小正方形,右边一列有1个小正方体,故选:B.找出几何体从左边看所得到的图形即可.此题主要考查了简单组合体的三视图,关键是掌握所看的位置.3.【答案】A【解析】解:0.00000012=1.2×10−7.故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.此题考查科学记数法的表示方法,表示时关键要确定a的值以及n的值.4.【答案】D【解析】解:A、a2+a2=2a2,原计算错误,故此选项不符合题意;B、a6÷a2=a4,原计算错误,故此选项不符合题意;C、(a+3)(a−3)=a2−9,原计算错误,故此选项不符合题意;D、(−3a3)2=9a6,原计算正确,故此选项符合题意;故选:D.根据合并同类项法则、同底数幂的除法运算法则、平方差公式、幂的乘方的运算法则分别化简得出答案.此题主要考查了整式的运算,正确掌握相关运算法则和乘法公式是解题的关键.5.【答案】B【解析】解:如图,∵∠1+∠4=180°,∠1=146°33′,∴∠4=33°27′,∵∠3=∠4+∠A,∠A=30°,∴∠3=63°27′,∵直尺的对边互相平行,∴∠2=∠3=63°27′,故选:B.根据平角的定义得到∠4=33°27′,再根据三角形外角性质得到∠3=63°27′,最后根据平行线的性质即可得解.此题考查了平行线的性质及三角形外角性质,熟记“两直线平行,内错角相等”及三角形外角的性质是解题的关键.6.【答案】D【解析】解:由折线图知:2021年3月1日~3月6日的用水量(单位:吨)依次是4,2,7,10,9,4,从小到大重新排列为:2,4,4,7,9,10,(4+2+7+10+9+4)=6,∴平均数是16(4+7)=5.5,中位数是12由4都出现了2次,故其众数为4.[2×(4−6)2+(2−6)2+(7−6)2+(10−6)2+(9−6)2]方差是S2=16=25.3综上只有选项D正确.故选:D.由折线图得到2021年3月1日~3月6日的用水数据,计算这组数据的平均数、中位数、众数、方差,然后判断得结论.本题考查了折线图、平均数、中位数、众数及方差等知识,读折线图得到用水量数据是解决本题的关键.7.【答案】A【解析】解:由作法得OE平分∠AOC,则∠AOF=∠COF,∵四边形AOCD为平行四边形,∴AD//OC,∴∠AFO=∠COF,∴∠AOF=∠AFO,∴OA=AF,设AF交y轴于M,如图,∵F(2,3),∴MF=2,OM=3,设A(t,3),∴AM=−t,AO=AF=−t+2,,在Rt△OAM中,t2+32=(−t+2)2,解得t=−54,3).∴A(−54故选:A.利用基本作图得到∠AOF=∠COF,再根据平行四边形的性质得到AD//OC,接着证明∠AOF=∠AFO得到OA=AF,设AF交y轴于M,如图,设A(t,3),则AM=−t,AO= AF=−t+2,利用勾股定理得到t2+32=(−t+2)2,然后解方程求出t即可得到A点坐标.本题考查了作图−基本作图:熟练掌握基本作图(作已知角的角平分线);也考查了平行四边形的性质.利用方程的思想求出AM是解决问题的关键.8.【答案】D【解析】解:设2020年每包口罩为x元,根据题意可得:10000x −100=6000x−10,故选:D.设2020年每包口罩为x元,根据数量=总价÷单价结合花花6000元购买了一批口罩,购买的数量比2020年购买的数量还多100包,即可得出关于x的分式方程.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.9.【答案】B【解析】解:由两次翻折知:CB=CB′=6,AC=A′C=8,∠A′=∠A,∠B=∠BB′C,∴A′B′=2,∵∠A+∠B=90°,∴∠A′+∠BB′C=90°,∴∠A+∠A′B′M=90°,∴A′M⊥AB,∵∠ACB=90°,AC=8,BC=6,由勾股定理得:AB=√62+82=10,∴cosA′=cosA=A′MA′B′=ACAB,∴A′M2=810,∴A′M=85,故选:B.由翻折知:A′B′=2,由角的关系推导出A′M⊥AB,再通过∠A=∠A′,则cosA′=cosA,求得A′M的长.本题主要考查了翻折的性质、三角函数等知识,推导出A′M⊥AB是解题的关键.10.【答案】A【解析】解:由图②可知:点M、N两点经过6秒时,S最大,此时点M在点H处,点N在点B处并停止不动,如图,①∵点M、N两点的运动速度为1cm/s,∴AH=AB=6cm,∵四边形ABCD是矩形,∴CD=AB=6cm.∵当t=6s时,S=9√3cm2,∴1×AB×BC=9√3.2∴BC=3√3.∵当6≤t≤9时,S=9√3且保持不变,∴点N在B处不动,点M在线段HC上运动,运动时间为(9−6)秒,∴HC=3cm,即点H为CD的中点.∴BH=√CH2+BC2=√32+(3√3)2=6.∴AB=AH=BH=6,∴△ABM为等边三角形.∴∠HAB=60°.∵点M、N同时开始运动,速度均为1cm/s,∴AM=AN,∴当0<t≤6时,△AMN为等边三角形.故①正确;②如图,当点M在AD的垂直平分线上时,△ADM为等腰三角形:此时有两个符合条件的点;当AD=AM时,△ADM为等腰三角形,如图:当DA=DM时,△ADM为等腰三角形,如图:综上所述,在运动过程中,使得△ADM为等腰三角形的点M一共有4个.∴②不正确;③过点M作ME⊥AB于点E,如图,由题意:AM=AN=t,由①知:∠HAB=60°.在Rt△AME中,∵sin∠MAE=ME,AM∴ME=AM⋅sin60°=√32t,∴S=12AN×ME=12×√32t×t=√34t2.∴③正确;④当t=9+√3时,CM=√3,如图,由①知:BC=3√3,∴MB=BC−CM=2√3.∵AB=6,∴tan∠MAB=BMAB =2√36=√33,∴∠MAB=30°.∵∠HAB=60°,∴∠DAH=90°−60°=30°.∴∠DAH=∠BAM.∵∠D=∠B=90°,∴△ADH∽△ABM.∴④正确;⑤当9<t<9+3√3时,此时点M在边BC上,如图,此时MB=9+3√3−t,∴S=12×AB×MB=12×6×(9+3√3−t)=27+9√3−3t.∴⑤不正确;综上,结论正确的有:①③④.故选:A.由图②可知:当0<t≤6时,点M、N两点经过6秒时,S最大,此时点M在点H处,点N在点B处并停止不动;由点M、N两点的运动速度为1cm/s,所以可得AH=AB= 6cm,利用四边形ABCD是矩形可知CD=AB=6cm;当6≤t≤9时,S=9√3且保持不变,说明点N在B处不动,点M在线段HC上运动,运动时间为(9−6)秒,可得HC= 3cm,即点H为CD的中点;利用以上的信息对每个结论进行分析判断后得出结论.本题主要考查了动点问题的函数图象,主要涉及函数图象上点的坐标的实际意义,三角形的面积,等腰三角形的判定,等边三角形的判定,相似三角形的判定,特殊角的三角函数值.对于动点问题,依据已知条件画出符合题意的图形并求得相应线段的长度是解题的关键.11.【答案】x≤2【解析】【分析】本题主要考查自变量的取值范围,函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.【解答】解:根据题意得:4−2x≥0,解得x≤2.故答案为x≤2.12.【答案】−4【解析】解:原式=−2+1−3=−4.故答案为:−4.利用立方根的意义,零指数幂的意义,负整数指数幂的意义化简即可.本题主要考查了了实数的运算,主要涉及立方根的意义,零指数幂的意义,负整数指数(a≠0,p为正整数)是解题的幂的意义.熟练应用非零实数的零次幂等于1,和a−p=1a p关键.13.【答案】30【解析】解:设扇形纸片的半径为x cm,由圆锥底面圆的周长是展开扇形的弧长可得:2π×10=120πx,180解得x=30,故答案为:30.设扇形纸片的半径为x cm,根据圆锥底面圆的周长是展开扇形的弧长列方程即可解得答案.本题考查弧长的计算,解题的关键是找出等量关系:圆锥底面圆的周长是展开扇形的弧长.14.【答案】875【解析】解:∵第1个图形中小圆的个数为1+4=5;第2个图形中小圆的个数为1+5+1=7;第3个图形中小圆的个数为1+6+4=11;第4个图形中小圆的个数为1+7+9=17;…∴第n个图形中小圆的个数为1+(n+3)+(n−1)2.∴第30个“龟图”中的“〇”的个数为1+(30+3)+(30−1)2=1+33+841=875.故答案为:875.分析数据可得:第1个图形中小圆的个数为1+4=5;第2个图形中小圆的个数为1+5+1=7;第3个图形中小圆的个数为1+6+4=11;第4个图形中小圆的个数为1+ 7+9=17;…由此得出第n个图形中小圆的个数为1+(n+3)+(n−1)2.据此可以求得答案.本题主要考查了图形的变化规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键,注意公式必须符合所有的图形.15.【答案】①③④【解析】解:①)∵4<√17<5,∴2<7−√17<3,∴7−√17的整数部分是2,小数部分是小数部分为5−√17,故符合题意;②解:设正多边形是n边形.=60°,由题意:360°n∴n=6,∴这个正多边形的内切圆的半径为√3;故不符合题意;③把直线y=2x−3向左平移1个单位后得到的直线解析式为y=2x−1,故符合题意;④根据题意得−x2−2x−1=0,∵Δ=(−2)2−4=0,∴方程有两个相等的实数根,故符合题意.故答案为:①③④.①利用无理数的估算即可得到结论;=60°,求出n即可解决问题;②设正多边形是n边形.由题意:360°n③直接根据“上加下减,左加右减”的原则进行解答即可;④根据新运算得到−x2−2x−1=0,再计算判别式的值,然后根据判别式的意义确定方程根的情况.本题考查了正多边形与圆,估算无理数的大小,一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.16.【答案】3√13−3【解析】解:∵四边形ABCD是正方形,∴∠ADC=90°,∴∠ADF+∠FDC=90°,∵∠ADF=∠FCD,∴∠FDC+∠FDC=90°,∴∠DFC=90°,∴点F在以DC为直径的半圆上移动,如图,设DC的中点为O,作正方形ABCD关于直线AD对称的正方形AB′C′D,则点B 的对应点是B′,连接B′O交AD于E,交半圆O于F,则线段B′F的长即为BE+EF的长度最小值,OF=3,∵∠C′=90°,B′C′=C′D=CD=6,∴OC′=9,∴B′O=√B′C′2+OC′2=√62+92=3√13,∴EP=3√13−3,∴FD+FE的长度最小值为3√13−3,故答案为:3√13−3.根据正方形的性质得到∠ADC=90°,推出∠DFC=90°,得到点F在以DC为直径的半圆上移动,如图,设DC的中点为O,作正方形ABCD关于直线AD对称的正方形AB′C′D,则点B的对应点是B′,连接B′O交AD于E,交⊙O于F,则线段B′F的长即为EB+EF的长度最小值,根据勾股定理即可得到结论.本题考查了轴对称−最短路线问题,正方形的性质,勾股定理的综合运用.凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.17.【答案】解:(1)由①得,4x−3x+6≥4,x≥−2;由②得,2(x−1)>5(x+1)−10,2x−2>5x+5−10,−3x>−3,x<1,所以不等式组的解集是:−2≤x<1,它们的解集在数轴上表示如下:(2)x2−4x+42x−x2÷(2x−4+x2x)(x−2)2−x(x−2)÷(2x2x−4+x2x)=x−2−x÷x2−4x=x−2−x×x(x+2)(x−2)=−1x+2,∵x≠0,2,−2,∴当x=1时,原式=−13.【解析】(1)运用不等式性质分别解不等式①和②,然后借助数轴求解集的公共部分即可;(2)运用分式性质和因式分解进行化简,然后再选取合适的值代入计算.本题考查不等式性质及分式化简,重点是不等式两边同乘(除)一个负数时,注意要改变不等号方向;分式化简求值时,要注意选取使分式有意义的值代入计算.18.【答案】10 36B的人数是50,∴此次抽取的九年级学生共50÷90360=200(人),C对应的人数是:200−60−50−20−40=30,补全条形统计图如图1所示:(2)D所占的百分比为20200×100%=10%,∴m=10,表示D的扇形的圆心角是360°×20200=36°;故答案为:10,36°;(3)画树状图为:共有20种等可能的结果数,其中选出的2名学生都是女生的结果数为6,∴选出的2名学生都是女生的概率为620=310.(1)用A项目的人数除以它所占的百分比得到调查的总人数,用总人数分别减去其它项目的人数得到C项目的人数,即可补全条形图;(2)用D项目人数除以总人数得到D项目的百分比m的值,用360°乘以D项目人数所占比例可得其圆心角度数;(3)画树状图展示所有20种等可能的结果数,再找出2名学生都是女生的结果数,然后利用概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了统计图.∴AE=12AD=4,在Rt△ABE中,由勾股定理得:BE=√32+42=5,∵CF−BE=1,∴CF=6,∴F的横坐标为−6,设F(−6,m),则E(−4,m+3),∵E,F都在反比例函数图象上,∴−6m=−4(m+3),解得m=6,∴F(−6,6),∴k=−36,∴反比例函数y=−36x.(2)∵S△CEP=23S矩形ABCD,∴12×CP×4=23×8×3,∴CP=8,∴P(0,14)或(0,2).【解析】(1)根据勾股定理求出BE=5,由CF−BE=1得CF=6,设F(−6,m),则E(−4,m+3),因为E,F都在反比例函数图象上,得出方程−6m=−4(m+3),解方程即可;(2)由S△CEP=23S矩形ABCD,可得CP的长,从而得出P坐标.本题主要考查了反比例函数图象上点的坐标的特征、待定系数法求函数的解析式、勾股定理等知识,表示出E,F的坐标是解题的关键.20.【答案】解:(1)过点C作CG//DE,过点A作AH⊥CG于H,过点C作CF⊥DE于点F,则点A到直线DE的距离为:AH+CF.在Rt△CDF中,∵sin∠CDE=CFCD,∴CF=CD⋅sin60°=70×√32=35√3≈59.5(mm).∵∠DCB=70°,∴∠ACD=180°−∠DCB=110°,∵CG//DE,∴∠GCD=∠CDE=60°.∴∠ACH=∠ACD−∠DCG=50°.在Rt△ACH中,∵sin∠ACH=AHAC,∴AH=AC⋅sin∠ACH=(115−35)×sin50°≈80×0.8=64(mm).∴点A到直线DE的距离为AH+CF=59.5+64=123.5≈124(mm).(2)如下图所示,虚线部分为旋转后的位置,B的对应点为B′,C的对应点为C′,则B′C′=BC=35mm,DC′=DC=70mm.在Rt△B′C′D中,∵tan∠B′DC′=B′C′DC′=3570=0.5,tan26.6°≈0.5,∴∠B′DC′=26.6°.∴CD旋转的角度为∠CDC′=∠CDE−∠B′DC′=60°−26.6°=33.4°.【解析】(1)过点C作CG//DE,过点A作AH⊥CG于H,过点C作CF⊥DE于点F,则点A到直线DE的距离为:AH+CF;在Rt△CDF中,解直角三角形可得CF的长,在Rt△ACH中,解直角三角形可得AH的长.(2)画出符合题意的图形,在Rt△B′C′D中,解直角三角形可得∠B′DC′的度数,则CD旋转的角度等于∠CDE−∠B′DC′.本题主要考查了解直角三角形的应用,平行线的性质,特殊角的三角函数值,直角三角形的边角关系.正确理解题意的基础上建立数学模型,把实际问题转化为数学问题是解题的关键.21.【答案】解(1)如图证明:连接OE,∵AB=AC、OB=OE,∴OE//AC,又∵HF⊥AC,∴OE⊥HF,∴HF是⊙O的切线.(2)过点E作EG⊥AH于G,∴∠EGB=90°,EB=6,∵cos∠ABE=1,3∴BG=2,EG=4√2,∵∠H+∠HEG=90°,∠GEO+∠HEG=90°,∴∠H=∠GEO,在Rt△BEA中,cos∠ABE =13,EB =6,∴AB =18,∴OB =12AB =9, ∴GO =OB −BG =7,∴tanH =tan∠GEO =4√2=7√28.【解析】(1)连接OE ,先说明OE//AC ,再说明OE ⊥HF ,即可得到HF 是⊙O 的切线.(2)过点E 作EG ⊥AH 于G ,分别在Rt △BGE 和Rt △ABE 中求出线段BG 、GE 、GO 的长,最后根据锐角三角函数求出结果.本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”,也考查了圆周角定理、锐角三角函数等知识.22.【答案】解:(1)由题意,设y 关于x 的函数解析式为y =kx +b ,把(280,40,),(290,39)代入得:{280k +b =40290k +b =39, 解得:{k =−110b =68, ∴y 与x 之间的函数解析式为y =−110x +68(200≤x ≤320);(2)设宾馆的利润为w 元,则w =(x −20)y =(x −20)(−110x +68)=−110x 2+70x −1360=−110(x −350)2+10890,∵−110<0,∴当x <350时,w 随x 的增大而增大,∵200≤x ≤320,∴当x =320时,w 取得最大值,最大值为10800元,答:当每间房价定价为320元时,宾馆每天所获利润最大,最大利润是10800元.【解析】(1)根据图象设y 关于x 的函数解析式为y =kx +b ,然后用待定系数法求函数解析式即可;(2)根据宾馆利润数=单个房间的利润×游客居住房间数列出二次函数的关系式,再根据二次函数的性质解决问题.本题考查二次函数的应用,解题的关键是根据宾馆利润数=单个房间的利润×游客居住房间数列出二次函数的关系式,用二次函数解决实际问题中的最值问题.23.【答案】解:(1)在y =x 2+2x −8中,令y =0,得x 2+2x −8=0,解得:x 1=−4,x 2=2,∴A(−4,0),B(2,0),令x =0,得y =−8,∴C(0,−8);(2)设直线AC 的解析式为y =kx +b ,∵A(−4,0),C(0,−8),∴{−4k +b =0b =−8, 解得:{k =−2b =−8, ∴直线AC 的解析式为y =−2x −8,∵直线x =m(−4<m <0)与该抛物线交于点E ,与AC 交于点D ,∴E(m,m 2+2m −8),D(m,−2m −8),∴DE =−2m −8−(m 2+2m −8)=−m 2−4m ,设DE 交x 轴于点F ,则F(m,0),∴OF =−m ,∴AF =m −(−4)=m +4,DF =2m +8,∵OD ⊥AC ,EF ⊥OA ,∴∠ODA =∠OFD =∠DFA =∠AOC =90°,∴∠DOF +∠COD =∠OCD +∠COD =90°,∴∠DOF =∠OCD ,∴△ACO∽△DOF , ∴OA OC =DFOF ,∴OC ⋅DF =OA ⋅OF ,∴8(2m+8)=4(−m),解得:m=−165,∴DE=−m2−4m=−(−165)2−4×(−165)=6425;(3)存在,如图2,∵y=x2+2x−8=(x+1)2−9,抛物线对称轴为直线x=−1,∵以C、M、N、P为顶点的四边形是菱形,∴分三种情况:CM对角线或CN为对角线或CP为对角线,①当CP为对角线时,CM//PN,CM=PN=CN,∴N点为直线AC与抛物线对称轴的交点,即N(−1,−6),CN=√(−1−0)2+(−6+8)2=√5,∴CM=PN=√5,∴M1(0,−8+√5),M2(0,−8−√5);②当CN为对角线时,CM//PN,CM=PN=CP,设CM=a,则M(0,−8+a),P(−1,−6−a),∴(−1−0)2+(−6−a+8)2=a2,解得:a=54,∴M3(0,−274),③当CM对角线时,PN与CM互相垂直平分,设P(−1,b),则N(1,b),M(0,2b+8),∵N(1,b)在直线y=−2x−8上,∴b=−2×1−8=−10,∴M4(0,−12),综上所述,点M的坐标为:M1(0,−8+√5),M2(0,−8−√5),M3(0,−274),M4(0,−12).【解析】(1)令y=0,得x2+2x−8=0,可得A(−4,0),B(2,0),令x=0,得y=−8,可得C(0,−8);(2)利用待定系数法求得直线AC的解析式为y=−2x−8,根据题意得E(m,m2+2m−8),D(m,−2m−8),即可得出DE=−m2−4m,利用△ACO∽△DOF,建立方程求解即可;(3)分三种情况:CM对角线或CN为对角线或CP为对角线,①当CP为对角线时,CM//PN,CM=PN=CN,可得出N(−1,−6),根据CM=PN=CN=√5,即可求出答案;②当CN为对角线时,CM//PN,CM=PN=CP,设CM=a,则M(0,−8+a),P(−1,−6−a),建立方程求解即可;③当CM对角线时,PN与CM互相垂直平分,设P(−1,b),则N(1,b),M(0,2b+8),根据N(1,b)在直线y=−2x−8上,即可求得答案.本题是二次函数综合题,考查了抛物线与坐标轴的交点坐标,待定系数法,相似三角形的判定和性质,菱形性质等知识,第(2)问利用相似三角形性质建立方程求解是解题关键,第(3)问题运用分类讨论思想和数形结合思想是解题关键.24.【答案】√102【解析】解:(1)如图①,∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,由旋转得:CN=BM=1,∠ACN=∠B=45°,∠MAN=∠BAC=90°,AM=AN,∴∠MCN=∠ACB+∠ACN=45°+45°=90°,△AMN是等腰直角三角形,∵CM=2,∴MN=√22+12=√5,∴AM=√22MN=√102(cm);故答案为:√102;(2)如图②,延长AB到E,使BE=DQ,连接CE,∵AB⊥BC,AD⊥CD,∴∠ADC=∠ABC=90°,∴∠CBE=∠CDQ=90°,在△CDQ和△CBE中,{CD=CB∠CDQ=∠CBE DQ=BE,∴△CDQ≌△CBE(SAS),∴∠DCQ=∠BCE,CQ=CE,∵∠PCB+∠QCD=∠PCQ,∴∠PCB+∠BCE=∠PCQ=∠PCE,在△QCP和△ECP中,{CQ=CE∠QCP=∠ECP CP=CP,∴△QCP≌△ECP(SAS),∴PQ=PE,∴△APQ的周长=AQ+PQ+AP=AQ+PE+AP=AQ+BE+PB+AP=AQ+DQ+AB=2AB=2a;(3)如图③,连接BD,由于AD=CD,所以可将△BCD绕点D顺时针方向旋转60°,得到△DAB′,连接BB′,延长BA,作B′E⊥BA于E,由旋转得:△BCD≌△B′AD,∴BD=B′D,∠BDB′=60°,∠CBD=∠AB′D,∴S四边形ABCD =S四边形BDB′A,△BDB′是等边三角形,∵∠ABC=75°,∠ADC=60°,∴∠BAB′=∠BDB′+∠AB′D+∠ABD=135°,∴∠B′AE=45°,∵B′A=BC=2,∴B′E=AE=√2,∴BE=AB+AE=2√2+√2=3√2,∴BB′=√(√2)2+(3√2)2=2√5,设等边三角形的高为h,则勾股定理得:ℎ=√(2√5)2−(√5)2=√15,∴S四边形ABCD =S四边形BDB′A=S△BDB′−S△ABB′=12×2√5×√15−12×2√2×√2=5√3−2.(1)如图①,先根据等腰直角三角形得两锐角为45°,由旋转得∠MCN=90°,CN=BM= 1,由勾股定理可得MN的长,最后根据△AMN是等腰直角三角形可得结论;(2)如图②,延长AB到E,使BE=DQ,连接CE,证明△CDQ≌△CBE(SAS)和△QCP≌△ECP(SAS),根据等量代换可得△APQ的周长=2AB=2a;(3)如图③,连接BD,由于AD=CD,所以可将△BCD绕点D顺时针方向旋转60°,得到△DAB′,连接BB′,延长BA,作B′E⊥BA;易证△BDB′是等边三角形,△AEB′是等腰直角三角形,利用勾股定理计算AE=B′E=√2,BB′=2√5,根据面积差可得结论.本题是四边形的综合题,主要考查旋转的性质,等腰直角三角形的性质,三角形全等,四边形和三角形面积计算等知识,关键是利用旋转的性质作辅助线,构建全等三角形来解决问题.。
2020年内蒙古鄂尔多斯市中考数学试卷-解析版
2020年内蒙古鄂尔多斯市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.实数−√3的绝对值是()A. √3B. −√33C. −√3 D. √332.已知某物体的三视图如图所示,那么与它对应的物体是()A. B. C.D.3.函数y=√x+3中自变量x的取值范围在数轴上表示正确的是()A. B.C. D.4.下列计算错误的是()A. (−3ab2)2=9a2b4B. −6a3b÷3ab=−2a2C. (a2)3−(−a3)2=0D. (x+1)2=x2+15.将三角尺按如图所示放置在一张矩形纸片上,∠EGF=90°,∠FEG=30°,∠1=125°,则∠BFG的大小为()A. 125°B. 115°C. 110°D. 120°6.组员甲乙丙丁戊平均成绩众数得分7781■808280■则被遮盖的两个数据依次是()A. 81,80B. 80,2C. 81,2D. 80,807.在四边形ABCD中,AD//BC,∠D=90°,AD=8,BC=6,分别以A,C为圆心,大于12AC的长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O,若点O是AC的中点,则CD的长为()A. 4√2B. 2√10C. 6D. 88.下列说法正确的是()②正六边形的内角和是720°,它的边长等于半径;③从一副扑克牌中随机抽取一张,它是黑桃的概率是14;④甲、乙两人各进行了10次射击测试,他们的平均成绩相同,方差分别是s甲2=1.3,s乙2=1.1,则乙的射击成绩比甲稳定.A. ①②③④B. ①②④C. ①④D. ②③9.如图,四边形OAA1B1是边长为1的正方形,以对角线OA1为边作第二个正方形OA1A2B2,连接AA2,得到△AA1A2;再以对角线OA2为边作第三个正方形OA2A3B3,连接A1A3,得到△A1A2A3,再以对角线OA3为边作第四个正方形OA2A4B4,连接A2A4,得到△A2A3A4,…,设△AA1A2,△A1A2A3,△A2A3A4,…,的面积分别为S1,S2,S3,…,如此下去,则S2020的值为()A. 122020B. 22018 C. 22018+12D. 101010.鄂尔多斯动物园内的一段线路如图1所示,动物园内有免费的班车,从入口处出发,沿该线路开往大象馆,途中停靠花鸟馆(上下车时间忽略不计),第一班车上午9:20发车,以后每隔10分钟有一班车从入口处发车,且每一班车速度均相同.小聪周末到动物园游玩,上午9点到达入口处,因还没到班车发车时间,于是从入口处出发,沿该线路步行25分钟后到达花鸟馆,离入口处的路程y(米)与时间x(分)的函数关系如图2所示,下列结论错误的是()A. 第一班车离入口处的距离y(米)与时间x(分)的解析式为y=200x−4000(20≤x≤38)B. 第一班车从入口处到达花鸟馆所需的时间为10分钟C. 小聪在花鸟馆游玩40分钟后,想坐班车到大象馆,则小聪最早能够坐上第四班D. 小聪在花鸟馆游玩40分钟后,如果坐第五班车到大象馆,那么比他在花鸟馆游玩结束后立即步行到大象馆提前了7分钟(假设小聪步行速度不变)二、填空题(本大题共6小题,共18.0分)11.截至2020年7月2日,全球新冠肺炎确诊病例已超过1051万例,其中数据1051万用科学记数法表示为______.)−2−3tan60°+(π−√2)0=______.12.计算:√27+(1313.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,∠BCD=30°,CD=2√3,则阴影部分面积S阴影=______.14.如图,平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为6,4,反比例函(x>0)的图象经过A,B两点,若菱形ABCD的面数y=kx积为2√5,则k的值为______.15.如图,在等边△ABC中,AB=6,点D,E分别在边BC,AC上,且BD=CE,连接AD,BE交于点F,连接CF,则CF的最小值是______.16.如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由△DAM平移得到,若过点E作EH⊥AC,H为垂足,则有以下结论:①点M位置变化,使得∠DHC=60°时,2BE=DM;②无论点M运动到何处,都有DM=√2HM;③在点M的运动过程中,四边形CEMD可能成为菱形;④无论点M运动到何处,∠CHM一定大于135°.以上结论正确的有______(把所有正确结论的序号都填上).三、解答题(本大题共8小题,共72.0分)17. (1)解不等式组{3(x −1)<5x +2①x−22≤7−32x②,并求出该不等式组的最小整数解. (2)先化简,再求值:(a 2−1a 2−2a+1−11−a)÷2a 2−a,其中a 满足a 2+2a −15=0.18. “学而时习之,不亦说乎?”古人把经常复习当作是一种乐趣.某校为了解九年级(一)班学生每周的复习情况,班长对该班学生每周的复习时间进行了调查,复习时间四舍五入后只有4种:1小时,2小时,3小时,4小时,已知该班共有50人,根据调查结果,制作了两幅不完整的统计图表,该班女生一周的复习时间数据(单位:小时)如下:1,1,1,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4() 复习时间 频数(学生人数) 1小时 3 2小时 a 3小时 4 4小时6______小时; (2)扇形统计图中,该班男生一周复习时间为4小时所对应圆心角的度数为______°; (3)该校九年级共有600名学生,通过计算估计一周复习时间为4小时的学生有多少名?(4)在该班复习时间为4小时的女生中,选择其中四名分别记为A ,B ,C.,D ,为了培养更多学生对复习的兴趣,随机从该四名女生中选取两名进行班会演讲,请用树状图或者列表法求恰好选中B 和D 的概率.19. 如图,一次函数y =kx +b 的图象分别与反比例函数y =ax 的图象在第一象限交于点A(4,3),与y 轴的负半轴交于点B ,且OA =OB .(1)求函数y =kx +b 和y =ax 的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M ,使得MB =MC ,求此时点M 的坐标.20.图1是挂墙式淋浴花洒的实物图,图2是抽象出来的几何图形.为使身高175cm的人能方便地淋浴,应当使旋转头固定在墙上的某个位置O,花洒的最高点B与人的头顶的铅垂距离为15cm,已知龙头手柄OA长为10cm,花洒直径AB是8cm,龙头手柄与墙面的较小夹角∠COA=26°,∠OAB=146°,则安装时,旋转头的固定点O与地面的距离应为多少?(计算结果精确到1cm,参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49)21.我们知道,顶点坐标为(ℎ,k)的抛物线的解析式为y=a(x−ℎ)2+k(a≠0).今后我们还会学到,圆心坐标为(a,b),半径为r的圆的方程(x−a)2+(y−b)2=r2,如:圆心为P(−2,1),半径为3的圆的方程为(x+2)2+(y−1)2=9.(1)以M(−3,−1)为圆心,√3为半径的圆的方程为______.(2)如图,以B(−3,0)为圆心的圆与y轴相切于原点,C是⊙B上一点,连接OC,作BD⊥OC,垂足为D,延长BD交y轴于点E,已知sin∠AOC=3.5①连接EC,证明:EC是⊙B的切线;②在BE上是否存在一点Q,使QB=QC=QE=QO?若存在,求点Q的坐标,并写出以Q为圆心,以QB为半径的⊙Q的方程;若不存在,请说明理由.22.某水果店将标价为10元/斤的某种水果.经过两次降价后,价格为8.1元/斤,并且两次降价的百分率相同.(1)求该水果每次降价的百分率;(2)从第二次降价的第1天算起,第x天(x为整数)的销量及储藏和损耗费用的相关信息如下表所示:时间(天)x销量(斤)120−x储藏和损耗费用(元)3x2−64x+400元),求y与x(1≤x<10)之间的函数解析式,并求出第几天时销售利润最大,最大利润是多少?23.(1)【操作发现】如图1,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.①请按要求画图:将△ABC绕点A顺时针方向旋转90°,点B的对应点为点B′,点C的对应点为点C′.连接BB′;②在①中所画图形中,∠AB′B=______°.(2)【问题解决】如图2,在Rt△ABC中,BC=1,∠C=90°,延长CA到D,使CD=1,将斜边AB绕点A顺时针旋转90°到AE,连接DE,求∠ADE的度数.(3)【拓展延伸】如图3,在四边形ABCD中,AE⊥BC,垂足为E,∠BAE=∠ADC,BE=CE=1,CD=3,AD=kAB(k为常数),求BD的长(用含k的式子表示).24.如图1,抛物线y=x2+bx+c交x轴于A,B两点,其中点A的坐标为(1,0),与y轴交于点C(0,−3).(1)求抛物线的函数解析式;(2)点D为y轴上一点,如果直线BD与直线BC的夹角为15°,求线段CD的长度;(3)如图2,连接AC,点P在抛物线上,且满足∠PAB=2∠ACO,求点P的坐标.答案和解析1.【答案】A【解析】解:实数−√3的绝对值是:√3.故选:A.直接利用绝对值的性质分析得出答案.此题主要考查了绝对值,正确掌握绝对值的性质是解题关键.2.【答案】C【解析】解:由三视图知,该几何体是下面是长方体,上面是一个圆柱体,且长方体的宽与圆柱底面直径相等,符合这一条件的是C选项几何体,故选:C.该几何体是下面是长方体,上面是一个圆柱体,且长方体的宽与圆柱底面直径相等,从而得出答案.本题主要考查由三视图判断几何体,由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.3.【答案】C【解析】解:由题意得:x+3≥0,解得:x≥−3,在数轴上表示为,故选:C.根据二次根式有意义的条件可得x+3≥0,再解即可.此题主要考查了二次根式有意义的条件和在数轴上表示不等式的解集,关键是掌握二次根式的被开方数为非负数.4.【答案】D【解析】解:A、(−3ab2)2=9a2b4,原式计算正确,不合题意;B、−6a3b÷3ab=−2a2,原式计算正确,不合题意;C、(a2)3−(−a3)2=0,原式计算正确,不合题意;D、(x+1)2=x2++2x+1,原式计算错误,符合题意.故选:D.直接利用积的乘方运算法则以及整式的除法运算法则、完全平方公式分别化简得出答案.此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.5.【答案】B【解析】解:∵四边形ABCD是矩形,∴AD//BC,∵∠1=125°,∴∠BFE=55°,∵在△EGF中,∠EGF=90°,∠FEG=30°,∴∠EFG=180°−∠EGF−∠FEG=60°,∴∠BFG=∠BFE+∠EFG=55°+60°=115°,故选:B.根据矩形得出AD//BC,根据平行线的性质得出∠1+∠BFE=180°,求出∠BFE,根据三角形内角和定理求出∠EFG,即可求出答案.本题考查了平行线的性质,矩形的性质,三角形的内角和定理等知识点,能灵活运用知识点进行推理是解此题的关键.6.【答案】D【解析】解:设丙的成绩为x,则77+81+x+80+825=80,解得x=80,∴丙的成绩为80,在这5名学生的成绩中80出现次数最多,所以众数为80,所以被遮盖的两个数据依次是80,80,故选:D.设丙的成绩为x,根据算术平均数的定义列出关于x的方程,解之求出x的值,据此可得第1个被遮盖的数据,再利用众数的定义可得第2个被遮盖的数据,从而得出答案.本题主要考查众数,解题的关键是掌握众数和中位数的定义.7.【答案】A【解析】解:如图,连接FC,由题可得,点E和点O在AC的垂直平分线上,∴EO垂直平分AC,∴AF=FC,∵AD//BC,∴∠FAO=∠BCO,在△FOA与△BOC中,{∠FAO=∠BCO OA=OC∠AOF=∠COB,∴△FOA≌△BOC(ASA),∴AF=BC=6,∴FC=AF=6,FD=AD−AF=2.在△FDC中,∵∠D=90°,∴CD2+DF2=FC2,即CD2+22=62,解得CD=4√2.故选:A.连接FC,根据基本作图,可得OE垂直平分AC,由垂直平分线的性质得出AF=FC.再段的和差关系求出FD =AD −AF =2.然后在Rt △FDC 中利用勾股定理即可求出CD 的长.本题考查了基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质的综合运用.线段垂直平分线上任意一点,到线段两端点的距离相等,确定EO 垂直平分AC 是解决问题的关键.8.【答案】B【解析】解:①√5−12的值约为0.618,大于12,此说法正确;②正六边形的内角和是720°,它的边长等于半径,此说法正确; ③从一副扑克牌中随机抽取一张,它是黑桃的概率是1354,此说法错误;④∵s 甲2=1.3,s 乙2=1.1,∴s 甲2>s 乙2,故乙的射击成绩比甲稳定,此说法正确;故选:B .分别根据黄金数的近似值、多边形的内角和与半径的定义与性质、概率公式、方差的意义分别判断可得.本题主要考查概率公式,解题的关键是掌握多边形的内角和与半径的定义与性质、概率公式、方差的意义.9.【答案】B【解析】解:∵四边形OAA 1B 1是正方形, ∴OA =AA 1=A 1B 1=1, ∴S 1=12×1×1=12,∵∠OAA 1=90°, ∴OA 12=12+12=2, ∴OA 2=A 2A 3=2, ∴S 2=12×2×1=1,同理可求:S 3=12×2×2=2,S 4=4…,∴S n =2n−2, ∴S 2020=22018, 故选:B .首先求出S 1、S 2、S 3,然后猜测命题中隐含的数学规律,即可解决问题. 本题考查了勾股定理在直角三角形中的运用,考查了学生找规律的能力,本题中找到a n 的规律是解题的关键.10.【答案】C【解析】解:由题意得,可设第一班车离入口处的距离y(米)与时间x(分)的解析式为:y =kx +b(k ≠0),把(20,0),(38,3600)代入y =kx +b ,得{0=20k +b 3600=38k +b ,解得{k =200b =−4000,38);故选项A不合题意;把y=2000代入y=200x−4000,解得x=30,30−20=10(分),∴第一班车从入口处到达塔林所需时间10分钟;故选项B不合题意;设小聪坐上了第n班车,则30−25+10(n−1)≥40,解得n≥4.5,∴小聪坐上了第5班车,故选项C符合题意;等车的时间为5分钟,坐班车所需时间为:1600÷200=8(分),步行所需时间:1600÷(2000÷25)=20(分),20−(8+5)=7(分),∴比他在花鸟馆游玩结束后立即步行到大象馆提前了7分钟.故选项D不合题意.故选:C.设y=kx+b,运用待定系数法求解即可得出第一班车离入口处的距离y(米)与时间x(分)的解析式;把y=2500代入函数解析式即可求出第一班车从入口处到达花鸟馆所需的时间;设小聪坐上了第n班车,30−25+10(n−1)≥40,解得n≥4.5,可得小聪坐上了第5班车,再根据“路程、速度与时间的关系”解答即可.本题主要考查了一次函数的应用,熟练掌握待定系数法求出函数解析式是解答本题的关键.11.【答案】1.051×107.【解析】解:1051万=10510000=1.051×107.故答案为:1.051×107.绝对值大于10的数用科学记数法表示一般形式为a×10n,n为整数位数减1.本题考查了科学记数法−表示较大的数,科学记数法中a的要求和10的指数n的表示规律为关键,12.【答案】10【解析】解:原式=3√3+9−3√3+1=10.故答案为:10.直接利用零指数幂的性质以及特殊角的三角函数值、负整数指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.13.【答案】2π3【解析】解:连接OC.∵AB⊥CD,∴BC⏜=BD⏜,CE=DE=√3,∴∠COD=∠BOD,∵∠BOD=2∠BCD=60°,∴∠COB=60°,∵OC=OB=OD,∴△OBC,△OBD都是等边三角形,∴OC=BC=BD=OD,∴四边形OCBD是菱形,∴OC//BD,∴S△BDC=S△BOD,∴S阴=S扇形OBD,∵OD=EDsin60∘=2,∴S阴=60⋅π⋅22360=2π3,故答案为2π3.连接OC.证明OC//BD,推出S阴=S扇形OBD即可解决问题.本题考查扇形的面积,菱形的判定和性质,平行线的判定和性质等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.14.【答案】12【解析】解:过点A作x轴的垂线,交CB的延长线于点E,∵BC//x轴,∴AE⊥BC,∵A,B两点在反比例函数y=kx(x>0)的图象,且纵坐标分别为6,4,∴A(k6,6),B(k4,4),∴AE=2,BE=k4−k6=k12,∵菱形ABCD的面积为2√5,∴BC×AE=2√5,即BC=√5,∴AB=BC=√5,在Rt△AEB中,BE=√AB2−AE2=√(√5)2−22=1,∴112k=1,∴k=12.故答案为12.过点A作x轴的垂线,交CB的延长线于点E,根据A,B两点的纵坐标分别为6,4,可得出横坐标,即可表示AE,BE的长,根据菱形的面积为2√5,求得AE的长,在Rt△AEB 中,计算BE的长,列方程即可得出k的值.本题考查了菱形的性质以及反比例函数图象上点的坐标特征,熟记菱形的面积公式是解题的关键.15.【答案】2√3【解析】解:如图,∵△ABC是等边三角形,∴AB=BC=AC,∠ABC=∠BAC=∠BCE=60°,∵BD=CE,∴△ABD≌△BCE(SAS)∴∠BAD=∠CBE,又∵∠AFE=∠BAD+∠ABE,∴∠AFE=∠CBE+∠ABE=∠ABC,∴∠AFE=60°,∴∠AFB=120°,∴点F的运动轨迹是O为圆心,OA为半径的弧上运动(∠AOB=120°,OA=2√3),连接OC交⊙O于N,当点F与N重合时,CF的值最小,最小值=OC−ON=4√3−2√3=2√3.故答案为2√3.首先证明∠AFB=120°,推出点F的运动轨迹是O为圆心,OA为半径的弧上运动(∠AOB=120°,OA=2√3),连接OC交⊙O于N,当点F与N重合时,CF的值最小.本题考查全等三角形的判定和性质、等边三角形的性质、圆的有关性质等知识,解题的关键是学会添加辅助圆解决问题,属于中考填空题中的压轴题.16.【答案】①②③④【解析】解:如图,连接DH,HM.由题可得,AM=BE,∴AB=EM=AD,∵四边形ABCD是正方形,EH⊥AC,∴EM=AD,∠AHE=90°,∠MEH=∠DAH=45°=∠EAH,∴EH=AH,∴△MEH≌△DAH(SAS),∴∠MHE=∠DHA,MH=DH,∴∠MHD=∠AHE=90°,△DHM是等腰直角三角形,∴DM=√2HM,故②正确;当∠DHC=60°时,∠ADH=60°−45°=15°,∴∠ADM=45°−15°=30°,∴Rt△ADM中,DM=2AM,即DM=2BE,故①正确;∵CD//EM,EC//DM,∴四边形CEMD是平行四边形,∵DM>AD,AD=CD,∴DM>CD,∴四边形CEMD不可能是菱形,故③正确,∵点M是边BA延长线上的动点(不与点A重合),且AM<AB,∴∠AHM<∠BAC=45°,∴∠CHM>135°,故④正确;由上可得正确结论的序号为①②③.故答案为①②③④.①正确.证明∠ADM=30°,即可得出结论.②正确.证明△DHM是等腰直角三角形即可.③正确.首先证明四边形CEMD是平行四边形,再证明,DM>CD即可判断.④正确.证明∠AHM<∠BAC=45°,即可判断.本题考查正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,直角三角形30度角的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考填空题中的压轴题.17.【答案】解:(1)解不等式①,得:x>−52,解不等式②,得:x≤4,则不等式组的解集为−52<x≤4,∴不等式组的最小整数解为−2;(2)原式=[(a+1)(a−1)(a−1)2+1a−1]÷2a(a−1)=(a+1a−1+1a−1)⋅a(a−1)2=a+2a−1⋅a(a−1)2=a(a+2)2=a2+2a2,∵a2+2a−15=0,∴a2+2a=15,则原式=152.【解析】(1)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集;(2)先根据分式的混合运算顺序和运算法则化简原式,再由已知等式得出a2+2a=15,整体代入计算可得.本题考查的是解一元一次不等式组和分式的化简求值,正确求出每一个不等式解集是基础,熟练掌握分式的混合运算顺序和运算法则是解题的关键.18.【答案】7 2.572【解析】解:(1)由题意知a=7,该班女生一周复习时间的中位数为2+32=2.5(小时),故答案为:7,2.5;(2)扇形统计图中,该班男生一周复习时间为4小时所对应的百分比为1−(10%+ 20%+50%)=20%,∴该班男生一周复习时间为4小时所对应的圆心角的度数为360°×20%=72°,故答案为:72;(3)估计一周复习时间为4小时的学生有600×(620+20%)=300(名);答:估计一周复习时间为4小时的学生有300名.(4)画树状图得:∵一共有12种可能出现的结果,它们都是等可能的,恰好选中B和D的有2种结果,∴恰好选中B和D的概率为P=212=16.答:恰好选中B和D的概率为16.(1)由已知数据可得a的值,利用中位数的定义求解可得;(2)先根据百分比之和等于1求出该班男生一周复习时间为4小时所对应的百分比,再乘以360°即可得;(3)用总人数乘以样本中一周复习时间为4小时的学生所占比例即可得;(4)通过树状图展示12种等可能的结果数,找出恰好选中B和D的结果数,然后根据概率公式求解.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时考查了概率公式.19.【答案】解:(1)把点A(4,3)代入函数y=ax得:a=3×4=12,∴y=12x.OA=√32+42=5,∵OA=OB,∴OB=5,∴点B的坐标为(0,−5),把B(0,−5),A(4,3)代入y =kx +b 得:{b =−54k +b =3解得:{k =2b =−5∴y =2x −5.(2)方法一:∵点M 在一次函数y =2x −5上,∴设点M 的坐标为(x,2x −5),∵MB =MC ,∴√x 2+(2x −5+5)2=√x 2+(2x −5−5)2解得:x =2.5,∴点M 的坐标为(2.5,0).方法二:∵B(0,−5)、C(0,5),∴BC 的垂直平分线为:直线y =0,当y =0时,2x −5=0,即x =2.5,∴点M 的坐标为(2.5,0).【解析】(1)利用待定系数法即可解答;(2)方法一:设点M 的坐标为(x,2x −5),根据MB =MC ,得到√x 2+(2x −5+5)2=√x 2+(2x −5−5)2,即可解答.方法二:根据垂直平分线的性质求解.本题考查了一次函数与反比例函数的交点,解决本题的关键是利用待定系数法求解析式.20.【答案】解:如图,过点B 作地面的垂线,垂足为D ,过点A作地面GD 的平行线,交OC 于点E ,交BD 于点F ,在Rt △AOE 中,∠AOE =26°,OA =10,则OE =OA ⋅cos∠AOE ≈10×0.90=9cm ,在Rt △ABF 中,∠BOF =146°−90°−26°=30°,AB =8,则BF =AB ⋅sin∠BOF =8×12=4cm ,∴OG =BD −BF −OE =(175+15)−4−9=177cm ,答:旋转头的固定点O 与地面的距离应为177cm .【解析】通过作辅助线构造直角三角形,分别在Rt △ABF 和在Rt △AOE 中,根据锐角三角函数求出OE 、BF ,而点B 到地面的高度为175+15=190cm ,进而取出后OG 即可.本题考查解直角三角形的应用,掌握直角三角形的边角关系是正确计算的前提,构造直角三角形是解决问题的关键.21.【答案】(x +3)2+(y +1)2=3【解析】解:(1)以M(−3,−1)为圆心,√3为半径的圆的方程为(x +3)2+(y +1)2=3,故答案为:(x +3)2+(y +1)2=3;(2)①∵OE 是⊙B 切线,∴∠BOE =90°,∵CB =OB ,BD ⊥CO ,∴∠CBE =∠OBE ,又∵BC =BO ,BE =BE ,∴△CBE≌△OBE(SAS),∴∠BCE=∠BOE=90°,∴BC⊥CE,又∵BC是半径,∴EC是⊙B的切线;②如图,连接CQ,QO,∵点B(−3,0),∴OB=3,∵∠AOC+∠DOE=90°,∠DOE+∠DEO=90°,∴∠AOC=∠BEO,∵sin∠AOC=35.∴sin∠BEO=BOBE =3BE,∴BE=5,∴OE=√BE2−OB2=√25−9=4,∴点E(0,4),∵QB=QC=QE=QO,∴点Q是BE的中点,∵点B(−3,0),点E(0,4),∴点Q(−32,2),∴以Q为圆心,以QB为半径的⊙Q的方程为(x+32)2+(y−2)2=9.(1)由圆的方程的定义可求解;(2)①由“SAS”可证△CBE≌△OBE,可得∠BCE=∠BOE=90°,可得结论;②如图,连接CQ,QO,由余角性质可得∠AOC=∠BEO,由锐角三角函数可求EO的长,可得点E坐标,由QB=QC=QE=QO,可得点Q是BE中点,由中点坐标公式可求点Q坐标,即可求解.本题是圆的综合题,考查了圆的有关知识,全等三角形的判定和性质,锐角三角函数等知识,理解圆的方程定义是本题的关键.22.【答案】解:(1)设该水果每次降价的百分率为x,10(1−x)2=8.1,解得,x1=0.1,x2=1.9(舍去),答:该水果每次降价的百分率是10%;(2)由题意可得,y=(8.1−4.1)×(120−x)−(3x2−64x+400)=−3x2+60x+80=−3(x−10)2+380,∵1≤x<10,∴当x=9时,y取得最大值,此时y=377,由上可得,y与x(1≤x<10)之间的函数解析式是y=−3x2+60x+80,第9天时销售利润最大,最大利润是377元.【解析】(1)根据题意,可以列出相应的方程,从而可以求得相应的百分率;(2)根据题意和表格中的数据,可以求得y与x(1≤x<10)之间的函数解析式,然后利用二次函数的性质可以求出第几天时销售利润最大,最大利润是多少.本题考查二次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,利用二次函数的性质和方程的知识解答.23.【答案】45【解析】解:(1)①如图,△AB′C′即为所求.②由作图可知,△ABB′是等腰直角三角形,∴∠AB′B=45°,故答案为45.(2)如图2中,过点E作EH⊥CD交CD的延长线于H.∵∠C=∠BAE=∠H=90°,∴∠B+∠CAB=90°,∠CAB+∠EAH=90°,∴∠B=∠EAH,∵AB=AE,∴△ABC≌△EAH(AAS),∴BC=AH,EH=AC,∵BC=CD,∴CD=AH,∴DH=AC=EH,∴∠EDH=45°,∴∠ADE=135°.(3)如图③中,∵AE⊥BC,BE=EC,∴AB=AC,将△ABD绕点A逆时针旋转得到△ACG,连接DG.则BD=CG,∵∠BAD =∠CAG ,∴∠BAC =∠DAG ,∵AB =AC ,AD =AG ,∴∠ABC =∠ACB =∠ADG =∠AGD ,∴△ABC∽△ADG ,∵AD =kAB ,∴DG =kBC =2k ,∵∠BAE +∠ABC =90°,∠BAE =∠ADC ,∴∠ADG +∠ADC =90°,∴∠GDC =90°,∴CG =√DG 2+CD 2=√4k 2+9.∴BD =CG =√4k 2+9.(1)①根据旋转角,旋转方向画出图形即可.②只要证明△ABB′是等腰直角三角形即可.(2)如图2,过点E 作EH ⊥CD 交CD 的延长线于H.证明△ABC≌△EAH(AAS)即可解决问题.(3)如图3中,由AE ⊥BC ,BE =EC ,推出AB =AC ,将△ABD 绕点A 逆时针旋转得到△ACG ,连接DG.则BD =CG ,只要证明∠GDC =90°,可得CG =√DG 2+CD 2,由此即可解决问题.本题属于几何变换综合题,考查了等边三角形的判定和性质,等腰三角形的判定和性质,勾股定理,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是学会用旋转法添加辅助线,构造全等三角形或相似三角形解决问题,属于中考压轴题.24.【答案】解:(1)∵抛物线y =x 2+bx +c 交x 轴于点A(1,0),与y 轴交于点C(0,−3), ∴{0=1+b +c c =−3, 解得:{b =2c =−3, ∴抛物线解析式为:y =x 2+2x −3;(2)∵抛物线y =x 2+2x −3与x 轴于A ,B 两点,∴点B(−3,0),∵点B(−3,0),点C(0,−3),∴OB =OC =3,∴∠OBC =∠OCB =45°,如图1,当点D 在点C 上方时,∵∠DBC=15°,∴∠OBD=30°,∴tan∠DBO=ODBO =√33,∴OD=√33×3=√3,∴CD=3−√3;若点D在点C下方时,∵∠DBC=15°,∴∠OBD=60°,∴tan∠DBO=ODBO=√3,∴OD=3√3,∴DC=3√3−3,综上所述:线段CD的长度为3−√3或3√3−3;(3)如图2,在BO上截取OE=OA,连接CE,过点E作EF⊥AC,∵点A(1,0),点C(0,−3),∴OA=1,OC=3,∴AC=√OA2+OC2=√1+9=√10,∵OE=OA,∠COE=∠COA=90°,OC=OC,∴△OCE≌△OCA(SAS),∴∠ACO=∠ECO,CE=AC=√10,∴∠ECA=2∠ACO,∵∠PAB =2∠ACO ,∴∠PAB =∠ECA ,∵S △AEC =12AE ×OC =12AC ×EF , ∴EF =√10=3√105, ∴CF =√CE 2−EF 2=√10−185=4√105, ∴tan∠ECA =EF CF =34, 如图2,当点P 在AB 的下方时,设AO 与y 轴交于点N ,∵∠PAB =∠ECA ,∴tan∠ECA =tan∠PAB =ON AO =34, ∴ON =34, ∴点N(0,34),又∵点A(1,0),∴直线AP 解析式为:y =34x −34,联立方程组得:{y =34x −34y =x 2+2x −3, 解得:{x 1=1y 1=0或{x 2=−94y 2=−3916, ∴点P 坐标为:(−94,−3916),当点P 在AB 的上方时,同理可求直线AP 解析式为:y =−34x +34,联立方程组得:{y =−34x +34y =x 2+2x −3, 解得:{x 1=1y 1=0或{x 2=−154y 2=5716, ∴点P 坐标为:(−154,5716),综上所述:点P 的坐标为(−154,5716),(−94,−3916).【解析】(1)将点A ,点C 坐标代入解析式可求解;(2)先求出点B 坐标,可得OB =OC ,可得∠OBC =∠OCB =45°,再分点D 在点C 上方或下方两种情况讨论,由锐角三角函数可求解;(3)在BO 上截取OE =OA ,连接CE ,过点E 作EF ⊥AC ,由“SAS ”可证△OCE≌△OCA ,可得∠ACO =∠ECO ,CE =AC =√10,由面积法可求EF 的长,由勾股定理可求CF 的长,可求tan∠ECA=tan∠PAB=3,分点P在AB上方和下方两种情况讨论,求出AP4解析式,联立方程组可求点P坐标.本题是二次函数综合题,考查了待定系数法求解析式,全等三角形的判定和性质,直角三角形的性质,锐角三角函数等知识,求出tan∠ECA=tan∠PAB=3是本题的关键.4第21页,共21页。
2022年内蒙古鄂尔多斯市中考数学试题及参考答案(word解析版)
2022年内蒙古鄂尔多斯市中考数学试题及参考答案(word解析版)一、选择题(本大题共10个小题,每小题3分,共30分)1.数轴上,表示数a的点的绝对值是()A.2B.12C.12D.﹣22.空气中有一种有害粉尘颗粒,其直径大约为0.000000017m,该直径可用科学记数法表示为()﹣﹣A.0.17某107mB.1.7某107mC.1.7某108mD.1.7某108m3.下列计算正确的是()A.a4·a1=a4B.(a3)2=a5C.3某2﹣某2=2D.2a2÷3a=2a34.四张形状大小完全一致的卡片,放在不透明的箱子中,每张卡片正反面上分别标的点的坐标如下表所示:第一张第二张第三张第四张正面(2,3)(1,3)(﹣1,2)(2,4)反面(﹣2,1)(﹣1,﹣3)(1,2)(﹣3,4)若从中随机抽取一张,其正反面上两点正好关于y轴对称的概率是()A.14B.13C.24D.15.如图是一副三角尺ABC和与DEF拼成的图案,若将三角尺DEF绕点M按顺时针方向旋转,则边DE与边AB第一次平行时,旋转角的度数是()A.75°B.60°C.45°D.30°6.桌上摆着一个由若干个相同正方体组成的几何体,其三视图如图所示,则组成此几何体需要正方体的个数是()A.6B.7C.8D.97.如图,在Rt△ABC中,∠C=90°,∠B=30°,以A为圆心适当长为半径画弧,分别交AC、AB于点M、N,分别以点M、N 为圆心,大于1MN的长为半径画弧交于点P,作射线AP交BC于点21D,再作射线DE交AB于点E,则下列结论错误的是()A.∠ADB=120°B.S△ADC:S△ABC=1:3C.若CD=2,则BD=4D.DE 垂直平分AB8.2022年5月15日从呼市到鄂尔多斯市的D6767次动车首发成功,鄂尔多斯市自此迎来了动车时代,已知两地铁路长为450千米,动车比火车每小时多行驶50千米,从呼市到鄂尔多斯市乘动车比乘火车少用40分钟,设动车速度为每小时某千米,则可列方程为()A.4504504504504504502450450240B.40C.D.某50某某某50某某503某50某3的中点P落在OP上的点P'处,且9.如图,将半圆形纸片折叠,使折痕CD与直径AB平行,CDOP'=1OP,折痕CD=23,则tan∠COP的值为()3A.655B.2355C.D.52210.如图1,正△ABC的边长为4,点P为BC边上的任意一点,且∠APD=60°,PD交AC于点D,设线段PB的长度为某,图1中某线段的长度为y,y与某的函数关系的大致图象如图2,则这条线段可能是图1中的()A.线段ADB.线段APC.线段PDD.线段CD二、填空题(本大题共6个小题,每小题3分,共18分)11.函数y某2的自变量某的取值范围是.10112.计算:3.1423in60.213.如图,由一些点组成形如正多边形的图案,按照这样的规律摆下去,则第n(n>0)个图案需要点的个数是.214.下列说法正确的是,(请直接填写序号)①2<23<3;②四边形的内角和与外角和相等;③64的立方根为4;④一元二次方程某2﹣6某=10无实数根;⑤若一组数据7,4,某,3,5,6的众数和中位数都是5,则这组数据的平均数也是5.15.如图所示,反比例函数yk(某<0)的图象经过矩形OABC的对角线AC的中点M,分别与某AB,BC交于点D、E,若BD=3,OA=4,则k的值为.16.如图,M、N是正方形ABCD的边CD上的两个动点,满足AM=BN,连接AC交BN于点E,连接DE交AM于点F,连接CF,若正方形的边长为4,则线段CF的最小值是.三、解答题(本大题共8小题,共72分)2某24某4某217.(8分)(1)化简求值:,其中某是一元二次方程某(某﹣1)=2某﹣2某1某211某的解.2某3某3≥9①(2)解不等式组:2某1某2,并求其整数解的和.>1②5318.(9分)鄂尔多斯市加快国家旅游改革先行示范区建设,越来越多的游客慕名而来,感受鄂尔多斯市“24℃夏天的独特魅力”,市旅游局工作人员依据2022年7月份鄂尔多斯市各景点的游客数量,绘制了如下尚不完整的统计图;3根据以上信息解答下列问题:(1)2022年7月份,鄂尔多斯市共接待游客万人,扇形统计图中乌兰木伦景观湖所对应的圆心角的度数是,并补全条形统计图;(2)预计2022年7月份约有200万人选择来鄂尔多斯市旅游,通过计算预估其中选择去响沙湾旅游的人数;(3)甲、乙两个旅行团准备去响沙湾、成吉思汗陵、蒙古源流三个景点旅游,若这三个景点分别记作a、b、c,请用树状图或列表法求他们选择去同一个景点的概率.19.(7分)一般情况下,中学生完成数学家庭作业时,注意力指数随时间某(分钟)的变化规律如图所示(其中AB、BC为线段,CD为双曲线的一部分).(1)分别求出线段AB和双曲线CD的函数关系式;(2)若学生的注意力指数不低于40为高效时间,根据图中信息,求出一般情况下,完成一份数学家庭作业的高效时间是多少分钟?20.(9分)某商场试销A、B两种型号的台灯,下表是两次进货情况统计:进货情况进货数量(台)进货资金(元)进货次数AB53230第一次104440第二次(1)求A、B两种型号台灯的进价各为多少元?(2)经试销发现,A型号台灯售价某(元)与销售数量y(台)满足关系式2某+y=140此商场决定两种型号台灯共进货100台,并一周内全部售出,若B型号台灯售价定为20元,求A型号台灯售价定为多少时,商场可获得最大利润?并通过计算说明商场获得最大利润时的进货方案.21.(8分)某机场为了方便旅客换乘,计划在一、二层之间安装电梯,截面设计图如图所示,已知两层AD与BC平行,层高AB为8米,A、D间水平距离为5米,∠ACB=21.5°.4(1)通过计算说明身高2.4米的人在竖直站立的情况下,搭乘电梯在D处会不会碰到头部;(2)若采用中段加平台设计(如图虚线所示),已知平台MN∥BC,且AM段和NC段的坡度均为1:2(坡度是指坡面的铅直高度与水平宽度的比),求平台MN的长度.(参考数据:in21.5°= 992,co21.5°=,tan21.5°=)1052522.(8分)如图,四边形ABCD中,MA=MC,MB=MD,以AB为直径的O过点M且与DC延长线相切于点E.(1)求证:四边形ABCD是菱形;的长(结果请保留π)(2)若AB=4,求BM23.(11分)已知抛物线y=a(某﹣1)2+3(a≠0)与y轴交于点A(0,2),顶点为B,且对称轴l1与某轴交于点M(1)求a的值,并写出点B的坐标;(2)有一个动点P从原点O出发,沿某轴正方向以每秒2个单位的速度运动,设运动时间为t秒,求t为何值时PA+PB最短;(3)将此抛物线向右平移所得新的抛物线与原抛物线交于点C,且新抛物线的对称轴l2与某轴交于点N,过点C作DE∥某轴,分别交l1,l2于点D、E,若四边形MDEN是正方形,求平移后抛物线的解析式.24.(12分)【问题情景】利用三角形的面积相等来求解的方法是一种常见的等积法,此方法是我们解决几何问题的途径之一.5例如:张老师给小聪提出这样一个问题:如图1,在△ABC中,AB=3,AD=6,问△ABC的高AD与CE的比是多少?小聪的计算思路是:11BC·AD=AB·CE.22AD1.从而得2AD=CE,∴CE2根据题意得:S△ABC=请运用上述材料中所积累的经验和方法解决下列问题:(1)【类比探究】如图2,在ABCD中,点E、F分别在AD,CD上,且AF=CE,并相交于点O,连接BE、BF,求证:BO平分角AOC.(2)【探究延伸】如图3,已知直线m∥n,点A、C是直线m上两点,点B、D是直线n上两点,点P是线段CD中点,且∠APB=90°,两平行线m、n间的距离为4.求证:P A·PB=2AB.(3)【迁移应用】如图4,E为AB边上一点,ED⊥AD,CE⊥CB,垂足分别为D,C,∠DAB=∠B,AB=34,BC=2,AC=26,又已知M、N分别为AE、BE的中点,连接DM、CN.求△DEM与△CEN的周长之和.参考答案与解析一、选择题(本大题共10个小题,每小题3分,共30分)1.数轴上,表示数a的点的绝对值是()A.2B.12C.12D.﹣26【考点】数轴;绝对值.【分析】根据绝对值的定义即可求出答案.【解答】解:由题意可知:a=﹣2∴|a|=2故选A.【点评】本题考查绝对值的性质,解题的关键是熟练运用绝对值的性质,本题属于基础题型.2.空气中有一种有害粉尘颗粒,其直径大约为0.000000017m,该直径可用科学记数法表示为()﹣﹣A.0.17某107mB.1.7某107mC.1.7某108mD.1.7某108m【考点】科学记数法—表示较小的数.﹣【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a某10n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.﹣【解答】解:0.000000017=1.7某108,故选C.﹣【点评】本题考查用科学记数法表示较小的数,一般形式为a某10n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.下列计算正确的是()A.a4·a1=a4B.(a3)2=a5C.3某2﹣某2=2D.2a2÷3a=2a3【考点】整式的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同类项、同底数幂的乘法、幂的乘方和同底数幂的除法计算即可.【解答】解:A、a4·a1=a5,错误;B、(a3)2=a6,错误;C、3某2﹣某2=2某2,错误;D、2a2÷3a=2a,正确.3故选D.【点评】此题考查同类项、同底数幂的乘法、幂的乘方和同底数幂的除法,关键是根据法则进行计算.4.四张形状大小完全一致的卡片,放在不透明的箱子中,每张卡片正反面上分别标的点的坐标如下表所示:第一张第二张第三张第四张正面(2,3)(1,3)(﹣1,2)(2,4)反面(﹣2,1)(﹣1,﹣3)(1,2)(﹣3,4)若从中随机抽取一张,其正反面上两点正好关于y轴对称的概率是()A.14B.13C.24D.1【考点】概率公式;关于某轴、y轴对称的点的坐标.【分析】直接利用关于y轴对称点的性质得出符合题意的答案,进而求出概率.【解答】解:∵有四张形状大小完全一致的卡片,关于y轴对称的只有第三张,∴从中随机抽取一张,其正反面上两点正好关于y轴对称的概率是:1.4故选:A.【点评】此题主要考查了概率公式,正确应用概率公式是解题关键.5.如图是一副三角尺ABC和与DEF拼成的图案,若将三角尺DEF绕点M按顺时针方向旋转,则7。
内蒙古鄂尔多斯中考数学试卷(及答案)
2010年鄂尔多斯市初中毕业升学考试数学注意事项:1.本试题满分120分,考试用时120分钟.答题前将密封线内的项目填写清楚.题号一二三总分1~10 11~18 19 20 21 22 23 24 25 26得分一、选择题(本大题10个小题,每小题3分,共30分.每小题给出的四个选项中只有一个是正确的,请把正确选项填在下面的选项栏内)题号 1 2 3 4 5 6 7 8 9 10 选项1.如果a与1互为相反数,则a等于().A.2B.2-C.1D.1-2.如图,数轴上的点P表示的数可能是().A.5B.-5-C. 3.8-D.10-3.下列计算正确的是().A.2323a a a+=B.326a a a=gC.329()a a=D.341(0)a a a a-÷=≠4.如图,形状相同、大小相等的两个小木块放在一起,其俯视图如图所示,则其主视图是().5.用折纸的方法,可以直接剪出一个正五边形.折纸过程如图所示,则α∠等于().A.108︒B.90︒C.72°D.60°第5题图第4题图(俯视图)A.B.C.D.第2题图6.如图,小明从家走了10分钟后到达了一个离家900米的报亭,看了10分钟的报纸,然后用了15分钟返回到家,下列图象中能表示小明离家距离y (米)与时间x (分)关系的是( ).7.如图,在ABCD Y中,E 是BC 的中点,且AEC DCE ∠=∠,则下列结论不正确...的是( ). A .2ADF EBF S S =△△B .12BF DF =C .四边形AECD 是等腰梯形D .AEB ADC ∠=∠8.已知二次函数2y x bx c =-++中函数y 与自变量x 之间的部分对应值如右表所示,点1122()()A x y B x y ,,,在函数的图象上,当12123o x x <<<<,时,1y 与2y 的大小关系正确的是( ).A .12y y ≥B .12y y >C .12y y <D .12y y ≤9.定义新运算:1()(0)a a b a b a a b b b⎧-⎪⊕=⎨->≠⎪⎩且≤,则函数3y x =⊕的图象大致是( ).10.某移动通讯公司提供了A 、B 两种方案的通讯费用y (元)与通话时间x (分)之间的关系,如图所示,则以下说法错误..的是( ).A .若通话时间少于120分,则A 方案比B 方案便宜20元 B .若通话时间超过200分,则B 方案比A 方案便宜C .若通讯费用为60元,则B 方案比A 方案的通话时间多D .若两种方案通讯费用相差10元,则通话时间是145分或185分第6题图D .C .B .A . D .第9题图C .B .A .第7题图第10题图二、填空题(本大题8个小题,每小题3分,共24分) 11.在函数2y x =-中,自变量x 的取值范围是__________.12.把[]332(1)a a +--化简得_________.13.“五一”期间,某服装商店举行促销活动,全部商品八折销售,小华购买一件原价为140元的运动服,打折后他比按原价购买节省了________元. 14.为参加“初中毕业升学体育考试”,小亮同学在练习掷实心球时,测得5次投掷的成绩分别为:8,8.2,8.5,8,8.6(单位:m ),这组数据的众数、中位数依次是___________. 15.如图,用小棒摆下面的图形,图形(1)需要3根小棒,图形(2)需要7根小棒……照这样的规律继续摆下去,第n 个图形需要__________根小棒(用含n 的代数式表示).16.已知关于x 的方程232x mx +=-的解是正数,则m 的取值范围为________. 17.如图,现有圆心角为90°的一个扇形纸片,该扇形的半径为50cm .小红同学为了在“圣诞”节联欢晚会上表演节目,她打算剪去部分扇形纸片后,利用剩下的纸片制作成一个底面半径为10cm 的圆锥形纸帽(接缝处不重叠),那么被剪去的扇形纸片的圆心角应该是______度.18.如图,1O ⊙和2O ⊙的半径分别为1和2,连接12O O ,交2O ⊙于点P ,125O O =,若将1O ⊙绕点P 按顺时针方向旋转360°,则1O ⊙与2O ⊙共相切_________次.三、解答题(本大题8个小题,共66分,解答时要写出必要的文字说明、演算步骤或推证过程) 19.(本小题满分8分)(1)计算:12031227(π2)3-⎛⎫-+--⨯- ⎪⎝⎭;第15题图第17题图第18题图1O2OP(2)先化简:再求值:22222a b ab baa ab a⎛⎫-+÷+⎪-⎝⎭,其中211a b=-=,.20.(本小题满分7分)近年来,随着经济的快速发展,我市城市环境不断改观,社会知名度越来越高,吸引了很多外地游客.某旅行社对5月份本社接待外地游客来我市观光的首选景点作了一次抽样调查,调查结果图表如下:(1)此次共调查了多少人?并将上面的图表补充完整.(2)如果将上表制成扇形统计图,那么“恩格贝”所对的圆心角是多少度?(3)该旅行社预计6月份接待外地来我市的游客2 500人,请你估算一个首选去成陵观光的约有多少人?景点频数频率成陵116 29%响沙湾25%恩格贝84 21%七星湖63 15.75%巴图湾37 9.25%21.(本小题满分6分)如图,A信封中装有两张卡片,卡片上分别写着7cm、3cm;B信封中装有三张卡片,卡片上分别写着2cm、4cm、6cm;信封外有一张写着5cm的卡片.所有卡片的形状、大小都完全相同.现随机从两个信封中各取出一张卡片,与信封外的卡片放在一起,用卡片上标明的数量分别作三条线段的长度.(1)求这三条线段能组成三角形的概率(画出树状图);(2)求这三条线段能组成直角三角形的概率.第20题图第21题图22.(本小题满分8分)如图,在梯形ABCD 中,90AD BC C E ∠=∥,°,为CD 的中点,EF AB ∥交BC 于点F .(1)求证:BF AD CF =+; (2)当17AD BC ==,,且BE 平分ABC ∠时,求EF 的长. 23.(本小题满分7分)某数学兴趣小组,利用树影测量树高,如图(1),已测出树AB 的影长AC 为12米,并测出此时太阳光线与地面成30°夹角.(2 1.43 1.7)≈,≈(1)求出树高AB ;(2)因水土流失,此时树AB 沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变.(用图(2)解答) ①求树与地面成45°角时的影长; ②求树的最大影长.第22题图 第23题图24.(本小题满分9分)如图,AB 为O ⊙的直径,劣弧»»BCBE BD CE =,∥,连接AE 并延长交BD 于D . 求证:(1)BD 是O ⊙的切线; (2)2AB AC AD =·. 25.(本小题满分10分)在实施“中小学校舍安全工程”之际,某市计划对A 、B 两类学校的校舍进行改造,根据预算,改造一所A 类学校和三所B 类学校的校舍共需资金480万元,改造三所A 类学校和一所B 类学校的校舍共需资金400万元.(1)改造一所A 类学校的校舍和一所B 类学校的校舍所需资金分别是多少万元?(2)该市某县A 、B 两类学校共有8所需要改造.改造资金由国家财政和地方财政共同承担,若国家财政拨付的改造资金不超过770万元,地方财政投入的资金不少于210万元,其中地方财政投入到A 、B 两类学校的改造资金分别为每所20万元和30万元,请你通过计算求出有几种改造方案,每个方案中A 、B 两类学校各有几所.第24题图26.(本小题满分11分)如图,四边形OABC 是一张放在平面直角坐标系的矩形纸片,O 为原点,点A 在x 轴上,点C 在y 轴上,159OA OC ==,,在AB 上取一点M ,使得CBM △沿CM 翻折后,点B 落在x 轴上,记作N 点. (1)求N 点、M 点的坐标;(2)将抛物线236y x =-向右平移(010)a a <<个单位后,得到抛物线l ,l 经过N 点,求抛物线l 的解析式;(3)①抛物线l 的对称轴上存在点P ,使得P 点到M N ,两点的距离之差最大,求P 点的坐标;②若点D 是线段OC 上的一个动点(不与O 、C 重合),过点D 作DE OA ∥交CN 于E ,设CD 的长为m ,PDE △的面积为S ,求S 与m 之间的函数关系式,并说明S 是否存在最大值.若存在,请求出最大值;若不存在,请说明理由.第26题图2010年鄂尔多斯市初中毕业升学考试数学试题参考答案及评分说明(一)阅卷评分说明1.正式阅卷前先进行试评,在试评中认真阅读参考答案,明确评分标准,不得随意拔高或降低评分标准.试评的试卷必须在阅卷后期予以复查,防止前后期评分标准宽严不一致. 2.评分方式为分步累计评分,解答过程的某一步骤发生笔误,只要不降低后继部分的难度,而后继部分再无新的错误,后继部分可评应得分数的50%;若是几个相对独立的得分点,其中一处错误不影响其它得分点的评分.3.最小记分单位为1分,不得将评分标准细化至1分以下(即不得记小数分).4.解答题题头一律记该题的实际得分,不得用记负分的方式记分.对解题中的错误须用红笔标出,并继续评分,直至将解题过程评阅完毕,并在最后得分点处标上该题实际得分. 5.本参考答案只给出一至两种解法,凡有其它正确解法都应参照本评分说明分步确定得分点,并同样实行分步累计评分.6.合理精简解题步骤者,其简化的解题过程不影响评分. (二)参考答案及评分标准二、填空题(本大题8个小题,每小题3分,共24分) 11.2x ≥ 12.5a + 13.28 14.8,8.215.41n -16.64m m >-≠-且17.18(18)°18.3三、解答题(本大题8个小题,共66分) 19.(本小题满分8分)(1)计算:12012(π3-⎛⎫-⨯ ⎪⎝⎭解:原式=433--- ····························································· 3分(一处正确给1分)10=-. ······································································································· 4分(2)先化简:再求值:22222a b ab b a a ab a ⎛⎫-+÷+ ⎪-⎝⎭,其中11a b ==,.解:原式=2()()()()a b a b a b a a b a+-+÷- ·········································· 2分(一处正确给1分)=1a b+ ·········································································································· 3分2==·························································································· 4分 20.(本小题满分7分)景点 频数 频率 成陵 116 29% 响沙湾 100 25% 恩格贝 84 21% 七星湖 63 15.75% 巴图湾379.25%解:(1)8421%400÷=(人).答:共调查了400人. ········································ 2分40025%100⨯=(人),补充图表如下 ················································ 4分(各1分) (2)36021%75.6⨯=°°.答:“恩格贝”所对的圆心角是75.6°. ·························· 6分 (3)250029%725⨯=(人).答:首选去成陵的人数约725人. ··························· 7分 21.(本小题满分6分) 解:(1)树状图:············································· 3分42()63P ==组成三角形.···················································································· 5分 (2)1()6P =组成直角三角形. ··········································································· 6分 22.(本小题满分8分) (1)证法一: 如图(1),延长AD 交FE 的延长线于N ,90NDE FCE DEN FEC DE EC ∠=∠=∠=∠=Q °,,,NDE FCE ∴△≌△. ····················································································· 3分 DN CF ∴=. ······························································································· 4分 AB FN AN BF Q ∥,∥,∴四边形ABFN 是平行四边形. ··································· 5分 BF AD DN AD FC ∴=+=+. ······································································· 6分 (2)解:1.AB EF BEF ∴∠=∠Q ∥,122BEF ∠=∠∴∠=∠Q ,.EF BF ∴=. ································································································ 7分 17422AD BC EF AD CF ++∴=+=+=. ························································· 8分 (1)证法二:如图(2)过D 点作DN AB ∥交BC 于N ,AD BN AB DN AD BN ∴=Q ∥,∥,. ····················· 1分 EF AB DN EF ∴Q ∥,∥. ····································· 2分 CEF CDN ∴△∽△. ············································· 3分 图(1)图(2)CE CFDC CN∴=. ······························································································ 4分 1122CE CF NF CF DC CN ===∴Q,,即. ····································································· 5分 BF BN NF AD FC ∴=+=+. ········································································ 6分 23.(本小题满分7分) 解:(1)tan30AB AC =° ··············································································· 1分3124373=⨯=≈(米).(结果也可以保留一位小数,下同) 答:树高约7米. ···························································································· 2分(2)①如图(2),112sin 454352B N AN AB ===⨯°≈(米) ························ 3分 11tan602638NC NB ==⨯°≈(米) ··························································· 4分 115813AC AN NC =+=+=(米).答:树与地面成45°角时影长约13米. ······························································· 5分 ②如图(2)当树与地面成60°角时影长最大2AC (或树与光线垂直时影长最大或光线与半径为AB 的A ⊙相切时影长最大) ······································································ 6分22214AC AB =≈(米).答:树的最大影长约14米. ·············································································· 7分24.(本小题满分9分)证明:(1)»»CBBE =Q , »»12AC AE AC AE ∴∠=∠==,,, ······························ 2分AB CE ∴⊥. ·························································· 3分 CE BD AB BD ∴⊥Q ∥,. ········································ 4分 BD ∴是O ⊙的切线. ················································ 5分 (2)连接CB .AB Q 是O ⊙的直径,90ACB ∴∠=°. ······························································ 6分 90ABD ACB ABD ∠=∴∠=∠Q °,. ································································· 7分 12ACB ABD ∠=∠∴Q ,△∽△. ····································································· 8分2AC AB AB AD AC AB AD∴=∴=,·. ····································································· 9分 (证法二,连接BE ,证明略) 25.(本小题满分10分)解:(1)设改造一所A 类学校的校舍需资金x 万元,改造一所B 类学校的校舍需资金y 万元,则34803400x y x y +=⎧⎨+=⎩ ···························································· 3分(正确一个方程组2分) 解之得90130x y =⎧⎨=⎩. ·························································································· 4分 答:改造一所A 类学校的校舍需资金90万元,改造一所B 类学校的校舍需资金130万元. ···················································································································· 5分(2)设A 类学校应该有a 所,则B 类学校有(8)a -所,则2030(8)210(9020)(13030)(8)770a a a a +-⎧⎨-+--⎩≥≤ ························· 7分(正确一个不等式给1分) 解得31a a ⎧⎨⎩≤≥. ································································································ 8分 13a ∴≤≤,即123a =,,. ············································································· 9分 答:有3种改造方案:方案一:A 类学校1所,B 类学校7所;方案二:A 类学校2所,B 类学校6所;方案三:A 类学校3所,B 类学校5所. ··························································· 10分26.(本小题满分11分)解:如图(1)159CN CB OC ===Q ,,2215912(120)ON N ∴=-=∴,,.································ 1分 又15123AN OA ON =-=-=Q ,设AM x =,2223(9)x x ∴+=-, ···················································· 2分4(154)x M ∴=,,. ······················································································· 3分(2)解法一:设抛物线l 为2()36y x a =--,则2(12)36.a -= ···························································································· 4分 16a ∴=或218a =(舍去). ············································································· 5分∴抛物线2:(6)36l y x =--. ·········································································· 6分解法二:21236066x x x -==-=Q ,,,236y x ∴=-与x 轴的交点为(60)-,和(60),. ···················································· 4分 由题意知,交点(60),向右平移6个单位到N 点, ·················································· 5分 所以236y x =-向右平移6个单位得到抛物线2:(6)36l y x =--. ························· 6分(3)①由“三角形任意两边的差小于第三边”知,P 点是直线MN 与对称轴6x =的交点,···································· 7分 设直线MN 的解析式为y kx b =+,则120154k b k b +=⎧⎨+=⎩,解之得4316k b ⎧=⎪⎨⎪=-⎩ 416.(68)3y x P ∴=-∴-,. ············································································· 8分 ②DE OA ACB ABD ∴Q ∥,△∽△,49123m DE DE m ∴==,. ···························· 9分 214234(98)2333S m m m m ∴=⨯⨯+-=-+. ···················································· 10分 203a =-<Q ,开口向下,又343431739234223m ⨯=-==<⨯⎛⎫⨯- ⎪⎝⎭,S ∴有最大值, 2217341728932326S ⎛⎫=-⨯+⨯= ⎪⎝⎭最大. ······························································ 11分。
2020内蒙古鄂尔多斯市中考数学试卷(附答案解析)
接 AD,BE 交于点 F,连接 CF,则 CF 的最小值是
.
16.如图,已知正方形 ABCD,点 M 是边 BA 延长线上的动点(不与点 A 重合),且
AM<AB,△CBE 由△DAM 平移得到,若过点 E 作 EH⊥AC,H 为垂足,则有以下
第 4 页(共 10 页)
结论: ①点 M 位置变化,使得∠DHC=60°时,2BE=DM; ②无论点 M 运动到何处,都有 DM= HM; ③在点 M 的运动过程中,四边形 CEMD 可能成为菱形; ④无论点 M 运动到何处,∠CHM 一定大于 135°.
第 3 页(共 10 页)
二、填空题(本大题共 6 题,每题 3 分,共 18 分) 11.截至 2020 年 7 月 2 日,全球新冠肺炎确诊病例已超过 1051 万例,其中数据 1051
万用科学记数法表示为
.
12.计算:
+( )﹣2﹣3tan60°+(π
0
)=
.
13.如图,AB 是⊙O 的直径,弦 CD⊥AB,垂足为 E,∠BCD=30°,CD=2 ,则
A.
B.22018
C.22018+
D.1010
10.鄂尔多斯动物园内的一段线路如图 1 所示,动物园内有免费的班车,从入口处出
发,沿该线路开往大象馆,途中停靠花鸟馆(上下车时间忽略不计),第一班车上午 9:20 发车,以后每隔 10 分钟有一班车从入口处发车,且每一班车速度均相同,小 聪周末到动物园游玩,上午 9 点到达入口处,因还没到班车发车时间,于是从入口 处出发,沿该线路步行 25 分钟后到达花鸟馆,离入口处的路程 y(米)与时间 x(分) 的函数关系如图 2 所示,下列结论错误的是( )
精品解析:内蒙古鄂尔多斯2021年中考数学试题(解析版)
内蒙古鄂尔多斯2021年中考数学试题一、单项选择题(本大题共10题,每题3分,共30分)π--中,最小的数是()1.在实数0,,2,1A.2-B.0C.1-D.π【答案】C【解析】【分析】先计算绝对值,再根据实数大小的比较法则得出答案;【详解】解:∵|-2|=2,∴-1<0<|-2|<π∴最小的数为:-1故选:C【点睛】本题考查了实数的大小比较和算术平方根,能根据实数的大小比较法则比较数的大小是解此题的关键,注意:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.2.如图所示的几何体是由五个小正方体组合而成的,它的左视图是()A. B. C. D.【答案】B【解析】【分析】找出几何体从左边看所得到的图形即可.【详解】解:此几何体的左视图有两列,左边一列有2个小正方形,右边一列有1个小正方体,故选:B.【点睛】此题主要考查了简单几何体的三视图,关键是掌握所看的位置.3.世卫组织宣布冠状病毒最大直径约为0.00000012m,“0.00000012”用科学记数法可表示为()A .71.210-⨯ B.60.1210-⨯ C.81210-⨯ D.61.210-⨯【答案】A【解析】【分析】将0.00000012写成a ×10n (1<|a |<10,n 为整数)的形式即可.【详解】解:0.00000012=71.210-⨯.故选A .【点睛】本题主要考查了科学记数法,将原数写成a ×10n (1<|a |<10,n 为整数)的形式,确定a 和n 的值成为解答本题的关键.4.下列运算正确的是()A.2242a a a += B.623a a a ÷= C.()()23369a a a a +-=-+ D.()23639a a -=【答案】D【解析】【分析】根据合并同类项、同底数幂的除法、平方差公式、以及积的乘方进行计算即可;【详解】解:2222+=a a a ,选选项A 错误;624a a a ÷=,选项B 错误;()()2339a a a +-=-,选项C 错误;()23639a a -=,选项D 正确;故选:D【点睛】本题考查了合并同类项、同底数幂的除法、平方差公式、以及积的乘方,熟练掌握相关的知识是解题的关键5.一块含30°角的直角三角板和直尺如图放置,若114633∠=︒',则2∠的度数为()A.6427︒'B.6327︒'C.6433︒'D.6333︒'【答案】B【解析】【分析】先根据邻补角的定义得出∠3=180°-∠1=33°27′,再根据平行线的性质得到∠4=∠2,然后根据三角形的外角的性质即可得到结论.【详解】解:∵114633∠=︒',∴∠3=180°-∠1=33°27′,∴∠4=∠3+30°=63°27′,∵AB ∥CD ,∴∠2=∠4=63°27′,故选:B .【点睛】本题考查了平行线的性质,三角形外角性质的应用,能求出∠3的度数是解此题的关键,注意:两直线平行,内错角相等.6.小明收集了鄂尔多斯市某酒店2021年3月1日~3月6日每天的用水量(单位:吨),整理并绘制成如图所示的折线统计图,下列结论正确的是()A.平均数是234 B.众数是10 C.中位数是8.5 D.方差是253【答案】D【解析】【分析】由折线图得到相关六天的用水数据,计算这组数据的平均数、中位数、众数、方差,然后判断得结论.【详解】解:由折线图知:1日用水4吨,二日用水2吨,三日用水7吨,四日用水10吨,5日用水9吨,6日4吨,平均数是:(4+2+7+10+9+4)÷6=6,数据2,4,4,7,9,10的中位数是(4+7)÷2=5.5,4出现的次数最多,故众数为4,方差是S 2=16×[(2−6)2+(4−6)2+(4−6)2+(7−6)2+(9−6)2+(10-6)2]=253.综上只有选项D 正确.故选:D .【点睛】本题考查了折线图、平均数、中位数、众数及方差等知识,读折线图得到用水量数据是解决本题的关键.7.已知:AOCD 的顶点()0,0O ,点C 在x 轴的正半轴上,按以下步骤作图:①以点O 为圆心,适当长为半径画弧,分别交OA 于点M ,交OC 于点N .②分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在AOC ∠内相交于点E .③画射线OE ,交AD 于点()2,3F ,则点A 的坐标为()A.5,34⎛⎫- ⎪⎝⎭B.(3-C.4,35⎛⎫- ⎪⎝⎭D.(2【答案】A【解析】【分析】由题意得:OE 平分∠AOC ,结合AD ∥OC ,可得AO=AF ,设AH =m ,则AO =AF =2+m ,根据勾股定理,列出方程,即可求解.【详解】解:由作图痕迹可知:OE 平分∠AOC ,∴∠AOF =∠COF ,∵在AOCD 中,AD ∥OC ,∴∠COF =∠AFO ,∴∠AOF =∠AFO ,∴AO=AF ,∵()2,3F ,∴FH =2,OH =3,设AH =m ,则AO =AF =2+m ,∵在Rt AOH 中,AH 2+OH 2=AO 2,∴m 2+32=(2+m )2,解得:54m =,∴A 5,34⎛⎫- ⎪⎝⎭,故选A .【点睛】本题主要考查平行四边形的性质,尺规作角平分线,勾股定理,等腰三角形的判定和性质,推出AO=AF ,利用勾股定理列出方程,是解题的关键.8.2020年疫情防控期间,鄂尔多斯市某电信公司为了满足全体员工的需要,花1万元购买了一批口罩,随着2021年疫情的缓解,以及各种抗疫物资充足的供应,每包口罩下降10元,电信公司又花6000元购买了一批口罩,购买的数量比2020年购买的数量还多100包,设2020年每包口罩为x 元,可列方程为()A.1600010010x x +=- B.10000600010010x x -=+C.10000600010010x x =-- D.10000600010010x x -=-【答案】C【解析】【分析】根据题中等量关系“2021年购买的口罩数量比2020年购买的口罩数量多100包”即可列出方程.【详解】解:设2020年每包口罩x 元,则2021年每包口罩(x -10)元.根据题意,得,60001000010010x x -=-.即:100006000=10010x x --.故选:C【点睛】本题考查了列分式方程的知识点,寻找已知量和未知量之间的等量关系是列出方程的关键.9.如图,在Rt ABC 中,90,8,6ACB AC BC ∠=︒==,将边BC 沿CN 折叠,使点B 落在AB 上的点B ′处,再将边AC 沿CM 折叠,使点A 落在CB '的延长线上的点A '处,两条折痕与斜边AB 分别交于点N 、M ,则线段A M '的长为()A.95B.85C.75 D.65【答案】B【解析】【分析】利用勾股定理求出AB =10,利用等积法求出CN =245,从而得AN =325,再证明∠NMC =∠NCM =45°,进而即可得到答案.【详解】解:∵90,8,6ACB AC BC ∠=︒==∴AB 10==,∵S △ABC =12×AB ×CN =12×AC ×BC ∴CN =245,∵AN 325==,∵折叠∴AM =A'M ,∠BCN =∠B'CN ,∠ACM =∠A'CM ,∵∠BCN +∠B'CN +∠ACM +∠A'CM =90°,∴∠B'CN +∠A'CM =45°,∴∠MCN =45°,且CN ⊥AB ,∴∠NMC =∠NCM =45°,∴MN =CN =245,∴A'M =AM =AN −MN =325-245=85.故选B .【点睛】本题考查了翻折变换,勾股定理,等腰直角三角形的性质,熟练运用折叠的性质是本题的关键.10.如图①,在矩形ABCD 中,H 为CD 边上的一点,点M 从点A 出发沿折线AH HC CB --运动到点B 停止,点N 从点A 出发沿AB 运动到点B 停止,它们的运动速度都是1cm/s ,若点M 、N 同时开始运动,设运动时间为()s t ,AMN 的面积为()2cmS ,已知S 与t 之间函数图象如图②所示,则下列结论正确的是()①当06t <≤时,AMN 是等边三角形.②在运动过程中,使得ADM △为等腰三角形的点M 一共有3个.③当06t <≤时,234S t =.④当9t =+ADH ABM ∽.⑤当99t <<+39S t =-++A.①③④B.①③⑤C.①②④D.③④⑤【答案】A【分析】由图②可知:当0<t ≤6时,点M 、N 两点经过6秒时,S 最大,此时点M 在点H 处,点N 在点B 处并停止不动;由点M 、N 两点的运动速度为1cm/s ,所以可得AH =AB =6cm ,利用四边形ABCD 是矩形可知CD =AB =6cm ;当6≤t ≤9时,S =且保持不变,说明点N 在B 处不动,点M 在线段HC 上运动,运动时间为(9-6)秒,可得HC =3cm ,即点H 为CD 的中点;利用以上的信息对每个结论进行分析判断后得出结论.【详解】解:由图②可知:点M 、N 两点经过6秒时,S 最大,此时点M 在点H 处,点N 在点B 处并停止不动,如图,①∵点M 、N 两点的运动速度为1cm/s ,∴AH =AB =6cm ,∵四边形ABCD 是矩形,∴CD =AB =6cm .∵当t =6s 时,S =cm 2,∴12×AB ×BC =.∴BC =∵当6≤t ≤9时,S =且保持不变,∴点N 在B 处不动,点M 在线段HC 上运动,运动时间为(9-6)秒,∴HC =3cm ,即点H 为CD 的中点.∴BH 6=.∴AB =AH =BH =6,∴△ABM 为等边三角形.∴∠HAB =60°.∵点M 、N 同时开始运动,速度均为1cm/s ,∴当0<t≤6时,△AMN为等边三角形.故①正确;②如图,当点M在AD的垂直平分线上时,△ADM为等腰三角形:此时有两个符合条件的点;当AD=AM时,△ADM为等腰三角形,如图:当DA=DM时,△ADM为等腰三角形,如图:综上所述,在运动过程中,使得△ADM为等腰三角形的点M一共有4个.∴②不正确;③过点M作ME⊥AB于点E,如图,由题意:AM=AN=t,由①知:∠HAB=60°.在Rt△AME中,∵sin∠MAE=ME AM,∴ME=AM•sin60°=32t,∴S=12AN×ME=2133224t t⨯⨯=.∴③正确;④当t3时,CM3,如图,由①知:BC=33∴MB=BC-CM=23∵AB=6,∴tan∠MAB=233 BMAB==∴∠MAB=30°.∵∠HAB=60°,∴∠DAH=90°-60°=30°.∴∠DAH=∠BAM.∵∠D=∠B=90°,∴△ADH ∽△ABM .∴④正确;⑤当9<t <9+M 在边BC 上,如图,此时MB =9+t ,∴S =()116927322AB MB t t ⨯⨯=⨯⨯+=+.∴⑤不正确;综上,结论正确的有:①③④.故选:A .【点睛】本题主要考查了动点问题的函数图象,主要涉及函数图象上点的坐标的实际意义,三角形的面积,等腰三角形的判定,等边三角形的判定,相似三角形的判定,特殊角的三角函数值.对于动点问题,依据已知条件画出符合题意的图形并求得相应线段的长度是解题的关键.二、填空题(本大题共6题,每题3分,共18分)11.函数y =的自变量x 的取值范围是_____.【答案】x ≤2.【解析】【分析】本题主要考查自变量的取值范围,函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数即可求解.【详解】根据题意得:4-2x≥0,解得x≤2.【点睛】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.12.()10120213π-⎛⎫+-+-= ⎪⎝⎭___________.【答案】-4【解析】【分析】根据立方根、零指数幂、负整数指数幂的运算法则即可求解.【详解】解:原式=()213-++-51=-+4=-.故答案为:-4【点睛】本题考查了立方根、零指数幂、负整数指数幂、实数的混合运算等知识点,熟知上述的各种运算法则是解题的基础.13.如图,小梅把一顶底面半径为10cm 的圆锥形小丑纸帽沿一条母线剪开并展平,得到一个圆心角为120︒的扇形纸片,那么扇形纸片的半径为___________cm .【答案】30【解析】【分析】先求出圆锥底面周长,再根据弧长公式,即可求解.【详解】解:∵圆锥的底面周长=2π×10=20π(cm ),∴12020180r ππ=,即:r =30,故答案是:30.【点睛】本题主要考查弧长公式,圆锥底面周长,掌握圆锥底面周长等于圆锥侧面展开图的弧长,是解题的关键.14.将一些相同的“〇”按如图所示的规律依次摆放,观察每个“龟图”的“〇”的个数,则第30个“龟图”中有___________个“〇”.【答案】875【解析】【分析】设第n 个“龟图”中有a n 个“〇”(n 为正整数),观察“龟图”,根据给定图形中“〇”个数的变化可找出变化规律“a n =n 2−n +5(n 为正整数)”,再代入n =30即可得出结论.【详解】解:设第n 个“龟图”中有a n 个“〇”(n 为正整数).观察图形,可知:a 1=1+2+2=5,a 2=1+3+12+2=7,a 3=1+4+22+2=11,a 4=1+5+32+2=17,…,∴a n =1+(n +1)+(n −1)2+2=n 2−n +5(n 为正整数),∴a 30=302−30+5=875.故答案是:875.【点睛】本题考查了规律型:图形的变化类,根据各图形中“〇”个数的变化找出变化规律“a n =n 2−n +5(n 为正整数)”是解题的关键.15.下列说法不正确的是___________(只填序号)①72,小数部分为4-.②外角为60︒且边长为2③把直线23y x =-向左平移1个单位后得到的直线解析式为22y x =-.④新定义运算:2*21m n mn n =--,则方程1*0x -=有两个不相等的实数根.【答案】①③④【解析】的整数部分即可判断①;先判断出正多边形为正六边形,再求出其内切圆半径即可判断②;根据直线的平移规律可判断③;根据新定义运算列出方程即可判断④.【详解】解:①∵161725<<,∴45<<∴54-<<-∴273<-<∴72,小数部分为5-,故①错误;②外角为60︒的正多边形的边数为:36060=6︒÷︒∴这个正多边形是正六边形,设这个正六边形为ABCDEF ,如图,O 为正六边形的中心,连接OA ,过O 作OG ⊥AB 于点G ,∵AB =2,∠BAF =120°∴AG =1,∠GAO =60°∴OG =,即外角为60︒且边长为2,故②正确;③把直线23y x =-向左平移1个单位后得到的直线解析式为2(1)321y x x =+-=-,故③错误;④∵新定义运算:2*21m n mn n =--,∴方程21*(1)210x x x -=-⨯--=,即2210x x ++=,∴2=24110∆-⨯⨯=∴方程1*0x -=有两个相等的实数根,故④错误,∴错误的结论是①③④帮答案为①③④.【点睛】此题主要考查了无理数的估算,正多边形和圆,直线的平移以及根的判别式,熟练掌握以上相关知识是解答此题的关键.16.如图,已知正方形ABCD 的边长为6,点F 是正方形内一点,连接,CF DF ,且ADF =DCF ∠∠,点E 是AD 边上一动点,连接,EB EF ,则EB EF +长度的最小值为___________.【答案】313-3【解析】【分析】根据正方形的性质得到∠ADC =90°,推出∠DFC =90°,点F 在以DC 为直径的半圆上移动,,如图,设CD 的中点为O ,作正方形ABCD 关于直线AD 对称的正方形APGD ,则点B 的对应点是P ,连接PO 交AD 于E ,交半圆O 于F ,则线段FP 的长即为BE +FE 的长度最小值,根据勾股定理即可得到结论.【详解】解:∵四边形ABCD 是正方形,∴∠ADC =90°,∴∠ADF +∠CDF =90°,∵ADF =DCF ∠∠,∴∠DCF +∠CDF =90°,∴∠DFC =90°,∴点F 在以DC 为直径的半圆上移动,如图,设CD 的中点为O ,作正方形ABCD 关于直线AD 对称的正方形APGD ,则点B 的对应点是P ,连接PO 交AD 于E ,交半圆O 于F ,则线段FP 的长即为BE +FE 的长度最小值,OF =3,∵∠G =90°,PG =DG =AB =6,∴OG =9,∴OP 222269313PG OG =+=+,∴FP =313-3,∴BE +FE 的长度最小值为313-3,故答案为:313-3.【点睛】本题考查了轴对称−最短路线问题,正方形的性质,勾股定理以及圆的基本性质.凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.三、解答题(本大题共8题,共72分,解答时写出必要的文字说明,演算步骤或推理过程.17.(1)解不等式组43(2)411152x x x x --≥⎧⎪-+⎨>-⎪⎩,并把解集在数轴上表示出来.(2)先化简:22244422x x x x x x x ⎛⎫-++÷- ⎪-⎝⎭,再从2-,0,1,2中选取一个合适的x 的值代入求值.【答案】(1)21x -£<,数轴见解析,(2)12x -+,13-.【解析】【分析】(1)先按照解一元一次不等式组的方法解不等式组,再在数轴上表示解集即可;(2)先按照分式运算法则进行化简,再选取1代入求值即可.【详解】解:(1)43(2)411152x x x x --≥⎧⎪-+⎨>-⎪⎩,解不等式43(2)4x x --≥得,2x ≥-,解不等式11152x x -+>-得,1x <,不等式组的解集为:21x -£<;在数轴上表示为,.(2)22244422x x x x x x x ⎛⎫-++÷- ⎪-⎝⎭,=222(2)24(2)x x x x x x x ⎛⎫-+÷- ⎪-⎝⎭,=22224x x x x x ⎛⎫---÷ ⎪⎝⎭,=2(2)(2)x x x x x -⨯+-,=12x -+,2-,0,1,2四个数中,只有1使原分式有意义,当x =1时,原式=11123-=-+.【点睛】本题考查了解不等式组和分式化简求值,解题关键是熟练掌握解不等式组和分式化简的方法和步骤,代入数值后准确进行计算.18.某中学对九年级学生开展了“我最喜欢的鄂尔多斯景区”的抽样调查(每人只能选一项):A -动物园;B -七星湖;C -鄂尔多斯大草原;D -康镇;E -蒙古源流,根据收集的数据绘制了如图所示的两幅不完整的统计图,其中B 对应的圆心角为90︒,请根据图中信息解答下列问题.(1)求抽取的九年级学生共有多少人?并补全条形统计图;(2)扇形统计图中m ___________,表示D的扇形的圆心角是___________度;(3)九年级准备在最喜欢A景区的5名学生中随机选择2名进行实地考察,这5名学生中有2名男生和3名女生,请用树状图或列表法求选出的2名学生都是女生的概率.【答案】(1)200,统计图见详解;(2)20,36°;(3)3 10【解析】【分析】(1)先根据B对应的圆心角为90°,B的人数是50,得出此次抽取的总人数,求出C对应的人数,补全条形统计图即可;(2)根据E的人数是40人求出所占的百分比,求出m的值,由D对应的人数,求出表示D的扇形的圆心角即可;(3)画出树状图,求出所有的情况和两名学生都是女生的情况,再根据概率公式计算即可.【详解】解:(1)∵B对应的圆心角为90°,B的人数是50,∴此次抽取的九年级学生共50÷90360=200(人),C对应的人数是:200−60−50−20−40=30(人),补全条形统计图如图所示:(2)E 所占的百分比为40÷200×100%=20%,∴m =20,表示D 的扇形的圆心角是360°×20200=36°;故答案为:20,36°;(3)画树状图如图所示:∵共有20种情况,选出的两名学生都是女生的情况有6种,∴选出的两名学生都是男生的概率是6÷20=310.【点睛】此题考查的是用列表法或树状图法求概率、条形统计图、扇形统计图;读懂统计图中的信息,画出树状图是解题的关键.19.如图,矩形ABCD 的两边,AB BC 的长分别为3,8,C ,D 在y 轴上,E 是AD 的中点,反比例函数()0k y k x=≠的图象经过点E ,与BC 交于点F ,且1CF BE -=.(1)求反比例函数的解析式;(2)在y 轴上找一点P ,使得23CEP ABCDS S = 矩形,求此时点P 的坐标.【答案】(1)36-y x=;(2)(0,14)或(0,-2)【解析】【分析】(1)根据矩形的性质和勾股定理得出225BE AB AE =+=,再结合1CF BE -=得出CF 的长,设E 点坐标为(-4,a ),则F 点坐标为(-6,a -3),再根据E ,F 两点在反比例函数(0)k y x x =<的图象上列出方程,解出a 的值即可得出反比例函数的解析式;(2)设P 点坐标为(0,y ),根据23CEP ABCD S S = 矩形得出1|6-y|4=162CEP S =⨯ ,从而确定点P 的坐标;【详解】解:(1)矩形ABCD 中,AB =3,BC =8,E 为AD 的中点,∴A D =BC =8,C D =AB =3,∵E 为AD 的中点,∴DE =AE =4,∴225BE AB AE =+=∵1CF BE -=,∴CF =6,设E 点坐标为(-4,a ),则F 点坐标为(-6,a -3),∵E ,F 两点在反比例函数(0)k y x x =<的图象上;∴-4a =-6(a -3),解得a =9,∴E (-4,9),∴k =-4×9=-36,.∴反比例函数的解析式为36-y x =;(2)∵a =9,∴C (0,6),∵3824ABCD S =⨯=矩形,23CEP ABCD S S = 矩形∴224=163CEP S =⨯ ,∵点P 在y 轴上,设P 点坐标为(0,y ),∴PC =|6-y |∴1|6-y|4=162CEP S =⨯ ∴y =14或-2;∴点P 的坐标为(0,14)或(0,-2)【点睛】本题考查了反比例函数图象上点的坐标特征以及矩形的性质,解题时注意:反比例函数图象上的点(x ,y )的横纵坐标的积是定值k ,即xy =k .20.图①是一种手机平板支架、由托板、支撑板和底座构成,手机放置在托板上,图②是其侧面结构示意图、托板长115mm AB =,支撑板长70mm CD =,板AB 固定在支撑板顶点C 处,且35mm CB =,托板AB 可绕点C 转动,支撑板CD 可绕点D 转动,60CDE ∠=︒.(1)若70DCB ∠=︒时,求点A 到直线DE 的距离(计算结果精确到个位);(2)为了观看舒适,把(1)中70DCB ∠=︒调整为90︒,再将CD 绕点D 逆时针旋转,使点B 落在直线DE 上即可、求CD 旋转的角度.(参考数:sin 500.8︒≈,cos 500.6︒≈,tan50 1.2︒≈,sin 26.60.4︒≈,cos26.60.9︒≈,tan 26.60.5≈°1.7≈)【答案】(1)133mm ;(2)33.4°【解析】【分析】(1)通过作垂线,构造直角三角形,利用直角三角形的边角关系,求出CN 、AF ,即可求出点A 到直线DE 的距离.(2)依题意画出图形,解直角三角形BCD 得出∠CDB =26.6°,即可得出答案;【详解】解:如图,过A 作AM ⊥DE ,交ED 的延长线于点M ,过点C 作CF ⊥AM ,垂足为F ,过点C 作CN ⊥DE ,垂足为N ,则四边形CFMN 为矩形;由题意可知,AC =AB -CB =115-35=80,CD =70,∠DCB =70°,∠CDE =60°,在Rt △CDN 中,sin 802=⋅∠=⨯==CN CD CDE FM ∠DCN =90°-60°=30°,又∵∠DCB =70°,∴∠BCN =70°-30°=40°,∵AM ⊥DE ,CN ⊥DE ,∴AM ∥CN ,∴∠A =∠BCN =40°,∴∠ACF =90°-40°=50°,在Rt △AFC 中,AF =AC •sin 50°=80×0.8≈64(mm ),∴AM =AF +FM ≈133(mm ),∴点A 到直线DE 的距离约为133mm .(2)依题意画出图形,如图在Rt △BCD 中,∠BCD =90°,BC =35mm ,CD =70mm ,∴35tan 0.570∠===BC BDC DC ∴∠CDB ≈26.6°,∴CD 旋转的角度=60°-26.6°=33.4°.【点睛】本题考查了解直角三角形的应用,通过作辅助线构造直角三角形是常用的方法,也是基本的方法.21.如图,在ABC 中,AB AC =,以AB 为直径的O 交AC 于点D ,BC 于点E ,直线EF AC ⊥于点F ,交AB 的延长线于点H .(1)求证:HF 是O 的切线;(2)当16,cos 3EB ABE =∠=时,求tan H 的值.【答案】(1)见详解;(2【解析】【分析】(1)连接OE ,先证明∠C =∠OEB ,可得OE ∥AC ,从而得HF ⊥OE ,进而即可得到答案;(2)连接AE ,由16,cos 3EB ABE =∠=,可得AB =18,AE =,再证明HBE HEA ∽,设HA =x ,则HE =4x ,OH =x -9,根据勾股定理,列出方程,即可求解.【详解】(1)证明:连接OE ,∵AB AC =,∴∠C =∠ABC ,∵OB =OE ,∴∠ABC =∠OEB ,∴∠C =∠OEB ,∴OE ∥AC ,∵EF AC ⊥,∴EF ⊥OE ,即:HF ⊥OE ,∴HF 是O 的切线;(2)连接AE ,∵AB 是O 的直径,∴∠AEB =90°,即AE ⊥BC ,∵16,cos 3EB ABE =∠=,∴AB=EB ÷cos ABE ∠=6÷13=18,AE =,∴OA =OE =192AB =,∵OE ⊥HF ,∠AEB =90°,∴∠HEB +∠BEO =∠AEO +∠BEO ,即:∠HEB =∠AEO ,∵OA =OE ,∴∠AEO =∠EAO ,∴∠HEB =∠EAO ,又∵∠H =∠H ,∴HBE HEA ∽,∴24HB HE BE HE HA AE ====,设HA =x ,则HE=4x ,OH =x -9,∴在Rt OHE △中,HE 2+OE 2=OH 2,即:(4x )2+92=(x -9)2,解得:1447x =或x =0(舍去),∴HE =24×1447,∴369tan OE H HE ===.【点睛】本题主要考查圆的基本性质,相似三角形的判定和性质,切线的判定定理,解直角三角形,添加辅助线构造直角三角形和相似三角形是解题的关键.22.鄂尔多斯市某宾馆共有50个房间供游客居住,每间房价不低于200元且不超过320元、如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.已知每个房间定价x (元)和游客居住房间数y (间)符合一次函数关系,如图是y 关于x的函数图象.(1)求y 与x 之间的函数解析式,并写出自变量x 的取值范围;(2)当房价定为多少元时,宾馆利润最大?最大利润是多少元?【答案】(1)y 与x 之间的函数解析式为y=-0.1x+68,200x 320≤≤;(2)当房价定为320元时,宾馆利润最大,最大利润是10800元【解析】【分析】(1)设y 与x 之间的函数解析式为y=kx+b ,根据待定系数法即可得出答案;(2)设宾馆每天的利润为W 元,利用房间数乘每一间房间的利润即可得到W 关于x 的函数解析式,配方法再结合增减性即可求得最大值.【详解】(1)根据题意,设y 与x 之间的函数解析式为y=kx+b ,图象过(280,40),(290,39),∴2804029039k b k b +=⎧⎨+=⎩,解得:-0.168k b =⎧⎨=⎩∴y 与x 之间的函数解析式为y=-0.1x+68,∵每间房价不低于200元且不超过320元∴200x 320≤≤(2)设宾馆每天的利润为W 元,()()()2w=x-20y=x-20-0.1x+68=-0.1x +70x-1360,∴()22w=-0.1x +70x-1360=-0.1x-350+10890当x <350时,w 随x 的增大而增大,∵200x 320≤≤,∴当x=320时,W 最大=10800∴当房价定为320元时,宾馆利润最大,最大利润是10800元【点睛】本题考查的是二次函数在实际生活中的应用及待定系数法求一次函数的解析式,注意利用配方法和函数的增减性求函数的最值,难度不大.23.如图,抛物线228=+-y x x 与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C .(1)求A ,B ,C 三点的坐标;(2)连接AC ,直线()40x m m =-<<与该抛物线交于点E ,与AC 交于点D ,连接OD .当OD AC ⊥时,求线段DE 的长;(3)点M 在y 轴上,点N 在直线AC 上,点P 为抛物线对称轴上一点,是否存在点M ,使得以C 、M 、N 、P 为顶点的四边形是菱形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.【答案】(1)A (-4,0),B (2,0),C (0,-8);(2)6425DE =;(3)存在,M (0,(0,8--、、(0,12)-【解析】【分析】(1)分别令x =0、y =0即可求出A ,B ,C 三点的坐标;(2)先求出AC 解析式,用m 表示出DE 坐标,最后根据OD AC ⊥求出m 的值即可;(3)考虑到CM 都在y 轴上,根据CM 为菱形的边和CM 为菱形的对角线分两种情况讨论即可.【详解】(1)令x =0得8y =-,∴C 点坐标(0,-8)令y =0得:228=0x x +-解得:124,2=-=x x ∴A (-4,0),B (2,0)(2)设DE 交x 轴于F ,设AC 解析式为y kx b =+,代入AC 坐标得:048k b b =-+⎧⎨-=⎩,解得28k b =-⎧⎨=-⎩∴AC 解析式为28y x =--∵直线()40x m m =-<<与该抛物线交于点E ,与AC 交于点D∴2(,28),(,28),(,0)D m mE m m mF m --+-∴2,28,4OF m DF m DE m m=-=+=--∵OD AC⊥∴AOF ACO∠=∠∴FOD OCA∴OF OC DF OA=∴8284m m -=+解得165m =-∴264425DE m m =--=(3)抛物线228=+-y x x 对称轴为1x =-∵点M 在y 轴上,点N 在直线AC 上,点P 为抛物线对称轴上一点∴设(1,),(,28),(0,)P p N n n M t ---当CM 菱形的边时,则CM ∥PN ,CM =CN∴N 在对称轴上,即1n =-∴(1,6),N --∴8CN CM t===--解得8t =-±此时M 点坐标为(0,(0,8---、当CM 为菱形的对角线时,此时NP 关于CM 对称,即NP 关于y 轴对称∴1n =∴(1,10),(1,10)N P ---∵菱形对角线互相垂直平分∴NP 中点与CM 中点是同一个点∴(8)102t +-=-解得12t =-此时M 点坐标为(0,12)-综上所述,存在M (0,(0,8---、、(0,12)-使得以C 、M 、N 、P 为顶点的四边形是菱形.【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和菱形的性质;会利用相似三角形处理垂直.24.旋转是一种重要的图形变换,当图形中有一组邻边相等时往往可以通过旋转解决问题.(1)尝试解决:如图①,在等腰Rt ABC 中,90,BAC AB AC ∠=︒=,点M 是BC 上的一点,1cm BM =,2cm CM =,将ABM 绕点A 旋转后得到ACN △,连接MN ,则AM =___________cm .(2)类比探究:如图②,在“筝形”四边形ABCD 中,,,AB AD a CB CD AB BC ===⊥于点B ,AD CD ⊥于点D ,点P 、Q 分别是AB AD 、上的点,且PCB QCD PCQ ∠+∠=∠,求APQ 的周长.(结果用a 表示)(3)拓展应用:如图③,已知四边形ABCD ,,60,75,2AD CD ADC ABC AB BC =∠=︒∠=︒==,求四边形ABCD 的面积.【答案】(1)2;(2)2a ;(3)2-【解析】【分析】(1)由旋转的性质可得△ABM ≌△ACN ,从而得出∠MCN =∠ACB +∠ACN =90°,再根据勾股得出AM 的长;(2)将BCP 绕点C 旋转后得到DCM △,利用SAS 得出△QCP ≌△QCM ,从而得出APQ 的周长(3)连接BD ,由于AD =CD ,所以可将△BCD 绕点D 顺时针方向旋转60°,得到△DAB ′,连接BB ′,延长BA ,作B ′E ⊥BE ;易证△AFB ′是等腰直角三角形,△AEB 是等腰直角三角形,利用勾股定理计算AE =B ′E ,BB ′=ABB ′和△BDB ′的面积和即可.【详解】(1)∵90,BAC AB AC ∠=︒=,∴∠B =∠ACB =45°,将ABM 绕点A 旋转后得到ACN △,此时AB 与AC 重合,由旋转可得:△ABM ≌△ACN ,∴∠BAM =∠CAN ,AM =AN ,BM =CN =1,∠B =∠ACN =45°,∴∠MCN =∠ACB +∠ACN =90°,∠MAN =∠ABC =90°,∴MN ===∴22AM AN ===;(2)∵AD CD ⊥,,CB CD AB BC =⊥,∴将BCP 绕点C 旋转后得到DCM △,此时BC 与DC 重合,∴△BCP ≌△DCM ,∴∠DCM =∠PCB ,BP =DM ,PC =CM ,∵PCB QCD PCQ ∠+∠=∠,∴DCM QCD PCQ ∠+∠=∠,∴QCM PCQ ∠=∠,∵PC =CM ,QC =QC ,∴△QCP ≌△QCM ,∴PQ =QM ,∴APQ 的周长=AQ +AP +PQ =AQ +AP +QM =AQ +AP +DQ +DM =AQ +AP +DQ +BP =AD +AB ,∵==AB AD a ,∴APQ 的周长=2a ;(3)如图3,连接BD ,由于AD =CD ,所以可将△BCD 绕点D 顺时针方向旋转60°,得到△DAB ′,连接BB ′,延长BA ,作B ′E ⊥BE ;AD CD CDB ADB BD B D '=⎧⎪∠=∠⎨='⎪⎩∴△BCD ≌△B ′AD∴S 四边形ABCD =S 四边形BDB ′A ,∵∠ABC =75°,∠ADC =60°,∴∠BAB ′=135°∴∠B ′AE =45°,∵2B A BC '==∴B ′E =AE ,∴BE =AB +AE =∴BB '==∵等边△DBB ′,∴BB ′上的高=2==∴11.222ABB S AB B E ''∆=⋅⋅=⨯=∴12S BDB '∆=⨯=,∴S 四边形ABCD =S 四边形BDB ′A =S △BDB ′-S △ABB ′=2=;【点睛】本题考查了图形的旋转变换,三角形全等,勾股定理,等积代换思想,类比思想等.构造直角三角形,求出三角形的高是解决问题的关键.。
2020年内蒙古鄂尔多斯市中考数学试卷和答案解析
2020年内蒙古鄂尔多斯市中考数学试卷和答案解析一、单项选择题(本大题共10小题,每小题3分,共30分)1.(3分)实数﹣的绝对值是()A.B.﹣C.﹣D.解析:直接利用绝对值的性质分析得出答案.参考答案:解:实数﹣的绝对值是:.故选:A.参考答案:此题主要考查了绝对值,正确掌握绝对值的性质是解题关键.2.(3分)已知某物体的三视图如图所示,那么与它对应的物体是()A.B.C.D.解析:该几何体是下面是长方体,上面是一个圆柱体,且长方体的宽与圆柱底面直径相等,从而得出答案.参考答案:解:由三视图知,该几何体是下面是长方体,上面是一个圆柱体,且长方体的宽与圆柱底面直径相等,符合这一条件的是C选项几何体,故选:C.参考答案:本题主要考查由三视图判断几何体,由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.3.(3分)函数y=中自变量x的取值范围在数轴上表示正确的是()A.B.C.D.解析:根据二次根式有意义的条件可得x+3≥0,再解即可.参考答案:解:由题意得:x+3≥0,解得:x≥﹣3,在数轴上表示为,故选:C.参考答案:此题主要考查了二次根式有意义的条件和在数轴上表示不等式的解集,关键是掌握二次根式的被开方数为非负数.4.(3分)下列计算错误的是()A.(﹣3ab2)2=9a2b4B.﹣6a3b÷3ab=﹣2a2 C.(a2)3﹣(﹣a3)2=0D.(x+1)2=x2+1解析:直接利用积的乘方运算法则以及整式的除法运算法则、完全平方公式分别化简得出答案.参考答案:解:A、(﹣3ab2)2=9a2b4,原式计算正确,不合题意;B、﹣6a3b÷3ab=﹣2a2,原式计算正确,不合题意;C、(a2)3﹣(﹣a3)2=0,原式计算正确,不合题意;D、(x+1)2=x2++2x+1,原式计算错误,符合题意.故选:D.参考答案:此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.5.(3分)将三角尺按如图所示放置在一张矩形纸片上,∠EGF=90°,∠FEG=30°,∠1=125°,则∠BFG的大小为()A.125°B.115°C.110°D.120°解析:根据矩形得出AD∥BC,根据平行线的性质得出∠1+∠BFE =180°,求出∠BFE,根据三角形内角和定理求出∠EFG,即可求出答案.参考答案:解:∵四边形ABCD是矩形,∴AD∥BC,∴∠1+∠BFE=180°,∵∠1=125°,∴∠BFE=55°,∵在△EGF中,∠EGF=90°,∠FEG=30°,∴∠EFG=180°﹣∠EGF﹣∠FEG=60°,∴∠BFG=∠BFE+∠EFG=55°+60°=115°,故选:B.参考答案:本题考查了平行线的性质,矩形的性质,三角形的内角和定理等知识点,能灵活运用知识点进行推理是解此题的关键.6.(3分)一次数学测试,某小组5名同学的成绩统计如表(有两个数据被遮盖):组员甲乙丙丁戊平均成绩众数得分7781■808280■则被遮盖的两个数据依次是()A.81,80B.80,2C.81,2D.80,80解析:设丙的成绩为x,根据算术平均数的定义列出关于x的方程,解之求出x的值,据此可得第1个被遮盖的数据,再利用众数的定义可得第2个被遮盖的数据,从而得出答案.参考答案:解:设丙的成绩为x,则=80,解得x=80,∴丙的成绩为80,在这5名学生的成绩中80出现次数最多,所以众数为80,所以被遮盖的两个数据依次是80,80,故选:D.参考答案:本题主要考查众数,解题的关键是掌握众数和中位数的定义.7.(3分)在四边形ABCD中,AD∥BC,∠D=90°,AD=8,BC=6,分别以A,C为圆心,大于AC的长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O,若点O是AC的中点,则CD的长为()A.4B.2C.6D.8解析:连接FC,根据基本作图,可得OE垂直平分AC,由垂直平分线的性质得出AF=FC.再根据ASA证明△FOA≌△BOC,那么AF=BC=6,等量代换得到FC=AF=6,利用线段的和差关系求出FD=AD﹣AF=2.然后在Rt△FDC中利用勾股定理即可求出CD的长.参考答案:解:如图,连接FC,由题可得,点E和点O在AC的垂直平分线上,∴EO垂直平分AC,∴AF=FC,∵AD∥BC,∴∠FAO=∠BCO,在△FOA与△BOC中,,∴△FOA≌△BOC(ASA),∴AF=BC=6,∴FC=AF=6,FD=AD﹣AF=2.在△FDC中,∵∠D=90°,∴CD2+DF2=FC2,即CD2+22=62,解得CD=.故选:A.参考答案:本题考查了基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质的综合运用.线段垂直平分线上任意一点,到线段两端点的距离相等,确定EO垂直平分AC是解决问题的关键.8.(3分)下列说法正确的是()①的值大于;②正六边形的内角和是720°,它的边长等于半径;③从一副扑克牌中随机抽取一张,它是黑桃的概率是;④甲、乙两人各进行了10次射击测试,他们的平均成绩相同,方差分别是s2甲=1.3,s2乙=1.1,则乙的射击成绩比甲稳定.A.①②③④B.①②④C.①④D.②③解析:分别根据黄金数的近似值、多边形的内角和与半径的定义与性质、概率公式、方差的意义分别判断可得.参考答案:解:①的值约为0.618,大于,此说法正确;②正六边形的内角和是720°,它的边长等于半径,此说法正确;③从一副扑克牌中随机抽取一张,它是黑桃的概率是,此说法错误;④∵s2甲=1.3,s2乙=1.1,∴s2甲>s2乙,故乙的射击成绩比甲稳定,此说法正确;故选:B.参考答案:本题主要考查概率公式,解题的关键是掌握多边形的内角和与半径的定义与性质、概率公式、方差的意义.9.(3分)如图,四边形OAA1B1是边长为1的正方形,以对角线OA1为边作第二个正方形OA1A2B2,连接AA2,得到△AA1A2;再以对角线OA2为边作第三个正方形OA2A3B3,连接A1A3,得到△A1A2A3,再以对角线OA3为边作第四个正方形OA2A4B4,连接A2A4,得到△A2A3A4,…,设△AA1A2,△A1A2A3,△A2A3A4,…,的面积分别为S1,S2,S3,…,如此下去,则S2020的值为()A.B.22018C.22018+D.1010解析:首先求出S1、S2、S3,然后猜测命题中隐含的数学规律,即可解决问题.参考答案:解:∵四边形OAA1B1是正方形,∴OA=AA1=A1B1=1,∴S1=1×1=,∵∠OAA1=90°,∴OA12=12+12=2,∴OA2=A2A3=2,∴S2=2×1=1,同理可求:S3=2×2=2,S4=4…,∴S n=2n﹣2,∴S2020=22018,故选:B.参考答案:本题考查了勾股定理在直角三角形中的运用,考查了学生找规律的能力,本题中找到a n的规律是解题的关键.10.(3分)鄂尔多斯动物园内的一段线路如图1所示,动物园内有免费的班车,从入口处出发,沿该线路开往大象馆,途中停靠花鸟馆(上下车时间忽略不计),第一班车上午9:20发车,以后每隔10分钟有一班车从入口处发车,且每一班车速度均相同.小聪周末到动物园游玩,上午9点到达入口处,因还没到班车发车时间,于是从入口处出发,沿该线路步行25分钟后到达花鸟馆,离入口处的路程y(米)与时间x(分)的函数关系如图2所示,下列结论错误的是()A.第一班车离入口处的距离y(米)与时间x(分)的解析式为y=200x﹣4000(20≤x≤38)B.第一班车从入口处到达花鸟馆所需的时间为10分钟C.小聪在花鸟馆游玩40分钟后,想坐班车到大象馆,则小聪最早能够坐上第四班车D.小聪在花鸟馆游玩40分钟后,如果坐第五班车到大象馆,那么比他在花鸟馆游玩结束后立即步行到大象馆提前了7分钟(假设小聪步行速度不变)解析:设y=kx+b,运用待定系数法求解即可得出第一班车离入口处的距离y(米)与时间x(分)的解析式;把y=2500代入函数解析式即可求出第一班车从入口处到达花鸟馆所需的时间;设小聪坐上了第n班车,30﹣25+10(n﹣1)≥40,解得n≥4.5,可得小聪坐上了第5班车,再根据“路程、速度与时间的关系”解答即可.参考答案:解:由题意得,可设第一班车离入口处的距离y(米)与时间x(分)的解析式为:y=kx+b(k≠0),把(20,0),(38,3600)代入y=kx+b,得,解得,∴第一班车离入口处的路程y(米)与时间x(分)的函数表达为y =200x﹣4000(20≤x≤38);故选项A不合题意;把y=2000代入y=200x﹣4000,解得x=30,30﹣20=10(分),∴第一班车从入口处到达塔林所需时间10分钟;故选项B不合题意;设小聪坐上了第n班车,则30﹣25+10(n﹣1)≥40,解得n≥4.5,∴小聪坐上了第5班车,故选项C符合题意;等车的时间为5分钟,坐班车所需时间为:1600÷200=8(分),步行所需时间:1600÷(2000÷25)=20(分),20﹣(8+5)=7(分),∴比他在花鸟馆游玩结束后立即步行到大象馆提前了7分钟.故选项D不合题意.故选:C.参考答案:本题主要考查了一次函数的应用,熟练掌握待定系数法求出函数解析式是解答本题的关键.二、填空题(本大题共6题,每题3分,共18分)11.(3分)截至2020年7月2日,全球新冠肺炎确诊病例已超过1051万例,其中数据1051万用科学记数法表示为 1.051×107..解析:绝对值大于10的数用科学记数法表示一般形式为a×10n,n 为整数位数减1.参考答案:解:1051万=10510000=1.051×107.故答案为:1.051×107.参考答案:本题考查了科学记数法﹣表示较大的数,科学记数法中a的要求和10的指数n的表示规律为关键,12.(3分)计算:+()﹣2﹣3tan60°+(π)0=10.解析:直接利用零指数幂的性质以及特殊角的三角函数值、负整数指数幂的性质分别化简得出答案.参考答案:解:原式=3+9﹣3+1=10.故答案为:10.参考答案:此题主要考查了实数运算,正确化简各数是解题关键.13.(3分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,∠BCD =30°,CD=2,则阴影部分面积S 阴影=.解析:连接OC.证明OC∥BD,推出S阴=S扇形OBD即可解决问题.参考答案:解:连接OC.∵AB⊥CD,∴=,CE=DE=,∴∠COD=∠BOD,∵∠BOD=2∠BCD=60°,∴∠COB=60°,∵OC=OB=OD,∴△OBC,△OBD都是等边三角形,∴OC=BC=BD=OD,∴四边形OCBD是菱形,∴OC∥BD,∴S△BDC=S△BOD,∴S阴=S扇形OBD,∵OD==2,∴S阴==,故答案为.参考答案:本题考查扇形的面积,菱形的判定和性质,平行线的判定和性质等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.14.(3分)如图,平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为6,4,反比例函数y=(x>0)的图象经过A,B两点,若菱形ABCD的面积为2,则k的值为12.解析:过点A作x轴的垂线,交CB的延长线于点E,根据A,B 两点的纵坐标分别为6,4,可得出横坐标,即可表示AE,BE的长,根据菱形的面积为2,求得AE的长,在Rt△AEB中,计算BE的长,列方程即可得出k的值.参考答案:解:过点A作x轴的垂线,交CB的延长线于点E,∵BC∥x轴,∴AE⊥BC,∵A,B两点在反比例函数y=(x>0)的图象,且纵坐标分别为6,4,∴A(,6),B(,4),∴AE=2,BE=﹣=,∵菱形ABCD的面积为2,∴BC×AE=2,即BC=,∴AB=BC=,在Rt△AEB中,BE===1,∴k=1,∴k=12.故答案为12.参考答案:本题考查了菱形的性质以及反比例函数图象上点的坐标特征,熟记菱形的面积公式是解题的关键.15.(3分)如图,在等边△ABC中,AB=6,点D,E分别在边BC,AC上,且BD=CE,连接AD,BE交于点F,连接CF,则CF 的最小值是2.解析:首先证明∠AFB=120°,推出点F的运动轨迹是O为圆心,OA为半径的弧上运动(∠AOB=120°,OA=2),连接OC交⊙O 于N,当点F与N重合时,CF的值最小.参考答案:解:如图,∵△ABC是等边三角形,∴AB=BC=AC,∠ABC=∠BAC=∠BCE=60°,∵BD=CE,∴△ABD≌△BCE(SAS)∴∠BAD=∠CBE,又∵∠AFE=∠BAD+∠ABE,∴∠AFE=∠CBE+∠ABE=∠ABC,∴∠AFE=60°,∴∠AFB=120°,∴点F的运动轨迹是O为圆心,OA为半径的弧上运动(∠AOB=120°,OA=2),连接OC交⊙O于N,当点F与N重合时,CF的值最小,最小值=OC﹣ON=4﹣2=2.故答案为2.参考答案:本题考查全等三角形的判定和性质、等边三角形的性质、圆的有关性质等知识,解题的关键是学会添加辅助圆解决问题,属于中考填空题中的压轴题.16.(3分)如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由△DAM平移得到,若过点E作EH⊥AC,H为垂足,则有以下结论:①点M位置变化,使得∠DHC=60°时,2BE=DM;②无论点M运动到何处,都有DM=HM;③在点M的运动过程中,四边形CEMD可能成为菱形;④无论点M运动到何处,∠CHM一定大于135°.以上结论正确的有①②③④(把所有正确结论的序号都填上).解析:①正确.证明∠ADM=30°,即可得出结论.②正确.证明△DHM是等腰直角三角形即可.③正确.首先证明四边形CEMD是平行四边形,再证明,DM>CD即可判断.④正确.证明∠AHM<∠BAC=45°,即可判断.参考答案:解:如图,连接DH,HM.由题可得,AM=BE,∴AB=EM=AD,∵四边形ABCD是正方形,EH⊥AC,∴EM=AD,∠AHE=90°,∠MEH=∠DAH=45°=∠EAH,∴EH=AH,∴△MEH≌△DAH(SAS),∴∠MHE=∠DHA,MH=DH,∴∠MHD=∠AHE=90°,△DHM是等腰直角三角形,∴DM=2HM,故②正确;当∠DHC=60°时,∠ADH=60°﹣45°=15°,∴∠ADM=45°﹣15°=30°,∴Rt△ADM中,DM=2AM,即DM=2BE,故①正确;∵CD∥EM,EC∥DM,∴四边形CEMD是平行四边形,∵DM>AD,AD=CD,∴DM>CD,∴四边形CEMD不可能是菱形,故③正确,∵点M是边BA延长线上的动点(不与点A重合),且AM<AB,∴∠AHM<∠BAC=45°,∴∠CHM>135°,故④正确;由上可得正确结论的序号为①②③.故答案为①②③④.参考答案:本题考查正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,直角三角形30度角的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考填空题中的压轴题.三、解答题(本大题共8题,共72分.解答时写出必要的文字说明、演算步骤或推理过程)17.(8分)(1)解不等式组,并求出该不等式组的最小整数解.(2)先化简,再求值:(﹣)÷,其中a满足a2+2a ﹣15=0.解析:(1)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集;(2)先根据分式的混合运算顺序和运算法则化简原式,再由已知等式得出a2+2a=15,整体代入计算可得.参考答案:解:(1)解不等式①,得:x>﹣,解不等式②,得:x≤4,则不等式组的解集为﹣<x≤4,∴不等式组的最小整数解为﹣2;(2)原式=[+]÷=(+)•=•==,∵a2+2a﹣15=0,∴a2+2a=15,则原式=.参考答案:本题考查的是解一元一次不等式组和分式的化简求值,正确求出每一个不等式解集是基础,熟练掌握分式的混合运算顺序和运算法则是解题的关键.18.(9分)“学而时习之,不亦说乎?”古人把经常复习当作是一种乐趣.某校为了解九年级(一)班学生每周的复习情况,班长对该班学生每周的复习时间进行了调查,复习时间四舍五入后只有4种:1小时,2小时,3小时,4小时,已知该班共有50人,根据调查结果,制作了两幅不完整的统计图表,该班女生一周的复习时间数据(单位:小时)如下:1,1,1,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4九年级(一)班女生一周复习时间频数分布表复习时间频数(学生人数)1小时32小时a3小时44小时6(1)统计表中a=7,该班女生一周复习时间的中位数为 2.5小时;(2)扇形统计图中,该班男生一周复习时间为4小时所对应圆心角的度数为72°;(3)该校九年级共有600名学生,通过计算估计一周复习时间为4小时的学生有多少名?(4)在该班复习时间为4小时的女生中,选择其中四名分别记为A,B,C,D,为了培养更多学生对复习的兴趣,随机从该四名女生中选取两名进行班会演讲,请用树状图或者列表法求恰好选中B 和D的概率.解析:(1)由已知数据可得a的值,利用中位数的定义求解可得;(2)先根据百分比之和等于1求出该班男生一周复习时间为4小时所对应的百分比,再乘以360°即可得;(3)用总人数乘以样本中一周复习时间为4小时的学生所占比例即可得;(4)通过树状图展示12种等可能的结果数,找出恰好选中B和D 的结果数,然后根据概率公式求解.参考答案:解:(1)由题意知a=7,该班女生一周复习时间的中位数为=2.5(小时),故答案为:7,2.5;(2)扇形统计图中,该班男生一周复习时间为4小时所对应的百分比为1﹣(10%+20%+50%)=20%,∴该班男生一周复习时间为4小时所对应的圆心角的度数为360°×20%=72°,故答案为:72;(3)估计一周复习时间为4小时的学生有600×(+20%)=300(名);答:估计一周复习时间为4小时的学生有300名.(4)画树状图得:∵一共有12种可能出现的结果,它们都是等可能的,恰好选中B 和D的有2种结果,∴恰好选中B和D的概率为P==.答:恰好选中B和D的概率为.参考答案:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时考查了概率公式.19.(8分)如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.解析:(1)利用待定系数法即可解答;(2)设点M的坐标为(x,2x﹣5),根据MB=MC,得到,即可解答.参考答案:解:(1)把点A(4,3)代入函数y=得:a=3×4=12,∴y=.OA==5,∵OA=OB,∴OB=5,∴点B的坐标为(0,﹣5),把B(0,﹣5),A(4,3)代入y=kx+b得:解得:∴y=2x﹣5.(2)方法一:∵点M在一次函数y=2x﹣5上,∴设点M的坐标为(x,2x﹣5),∵MB=MC,∴解得:x=2.5,∴点M的坐标为(2.5,0).方法二:∵B(0,﹣5)、C(0,5),∴BC=10,∴BC的中垂线为:直线y=0,当y=0时,2x﹣5=0,即x=2.5,∴点M的坐标为(2.5,0).参考答案:本题考查了一次函数与反比例函数的交点,解决本题的关键是利用待定系数法求解析式.20.(8分)图1是挂墙式淋浴花洒的实物图,图2是抽象出来的几何图形.为使身高175cm的人能方便地淋浴,应当使旋转头固定在墙上的某个位置O,花洒的最高点B与人的头顶的铅垂距离为15cm,已知龙头手柄OA长为10cm,花洒直径AB是8cm,龙头手柄与墙面的较小夹角∠COA=26°,∠OAB=146°,则安装时,旋转头的固定点O与地面的距离应为多少?(计算结果精确到1cm,参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49)解析:通过作辅助线构造直角三角形,分别在Rt△ABF和在Rt△AOE中,根据锐角三角函数求出OE、BF,而点B到地面的高度为175+15=190cm,进而求出OG即可.参考答案:解:如图,过点B作地面的垂线,垂足为D,过点A 作地面GD的平行线,交OC于点E,交BD于点F,在Rt△AOE中,∠AOE=26°,OA=10,则OE=OA•cos∠AOE≈10×0.90=9cm,在Rt△ABF中,∠BOF=146°﹣90°﹣26°=30°,AB=8,则BF=AB•sin∠BOF=8×=4cm,∴OG=BD﹣BF﹣OE=(175+15)﹣4﹣9=177cm,答:旋转头的固定点O与地面的距离应为177cm.参考答案:本题考查解直角三角形的应用,掌握直角三角形的边角关系是正确计算的前提,构造直角三角形是解决问题的关键.21.(9分)我们知道,顶点坐标为(h,k)的抛物线的解析式为y =a(x﹣h)2+k(a≠0).今后我们还会学到,圆心坐标为(a,b),半径为r的圆的方程(x﹣a)2+(y﹣b)2=r2,如:圆心为P(﹣2,1),半径为3的圆的方程为(x+2)2+(y﹣1)2=9.(1)以M(﹣3,﹣1)为圆心,为半径的圆的方程为(x+3)2+(y+1)2=3.(2)如图,以B(﹣3,0)为圆心的圆与y轴相切于原点,C是⊙B上一点,连接OC,作BD⊥OC,垂足为D,延长BD交y轴于点E,已知sin∠AOC=.①连接EC,证明:EC是⊙B的切线;②在BE上是否存在一点Q,使QB=QC=QE=QO?若存在,求点Q的坐标,并写出以Q为圆心,以QB为半径的⊙Q的方程;若不存在,请说明理由.解析:(1)由圆的方程的定义可求解;(2)①由“SAS”可证△CBE≌△OBE,可得∠BCE=∠BOE=90°,可得结论;②如图,连接CQ,QO,由余角性质可得∠AOC=∠BEO,由锐角三角函数可求EO的长,可得点E坐标,由QB=QC=QE=QO,可得点Q是BE中点,由中点坐标公式可求点Q坐标,即可求解.参考答案:解:(1)以M(﹣3,﹣1)为圆心,为半径的圆的方程为(x+3)2+(y+1)2=3,故答案为:(x+3)2+(y+1)2=3;(2)①∵OE是⊙B切线,∴∠BOE=90°,∵CB=OB,BD⊥CO,∴∠CBE=∠OBE,又∵BC=BO,BE=BE,∴△CBE≌△OBE(SAS),∴∠BCE=∠BOE=90°,∴BC⊥CE,又∵BC是半径,∴EC是⊙B的切线;②如图,连接CQ,QO,∵点B(﹣3,0),∴OB=3,∵∠AOC+∠DOE=90°,∠DOE+∠DEO=90°,∴∠AOC=∠BEO,∵sin∠AOC=.∴sin∠BEO==,∴BE=5,∴OE===4,∴点E(0,4),∵QB=QC=QE=QO,∴点Q是BE的中点,∵点B(﹣3,0),点E(0,4),∴点Q(﹣,2),∴以Q为圆心,以QB为半径的⊙Q的方程为(x+)2+(y﹣2)2=9.参考答案:本题是圆的综合题,考查了圆的有关知识,全等三角形的判定和性质,锐角三角函数等知识,理解圆的方程定义是本题的关键.22.(8分)某水果店将标价为10元/斤的某种水果.经过两次降价后,价格为8.1元/斤,并且两次降价的百分率相同.(1)求该水果每次降价的百分率;(2)从第二次降价的第1天算起,第x天(x为整数)的销量及储藏和损耗费用的相关信息如下表所示:时间(天)x销量(斤)120﹣x储藏和损耗费用(元)3x2﹣64x+400已知该水果的进价为4.1元/斤,设销售该水果第x(天)的利润为y(元),求y与x(1≤x<10)之间的函数解析式,并求出第几天时销售利润最大,最大利润是多少?解析:(1)根据题意,可以列出相应的方程,从而可以求得相应的百分率;(2)根据题意和表格中的数据,可以求得y与x(1≤x<10)之间的函数解析式,然后利用二次函数的性质可以求出第几天时销售利润最大,最大利润是多少.参考答案:解:(1)设该水果每次降价的百分率为x,10(1﹣x)2=8.1,解得,x1=0.1,x2=1.9(舍去),答:该水果每次降价的百分率是10%;(2)由题意可得,y=(8.1﹣4.1)×(120﹣x)﹣(3x2﹣64x+400)=﹣3x2+60x+80=﹣3(x﹣10)2+380,∵1≤x<10,∴当x=9时,y取得最大值,此时y=377,由上可得,y与x(1≤x<10)之间的函数解析式是y=﹣3x2+60x+80,第9天时销售利润最大,最大利润是377元.参考答案:本题考查二次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,利用二次函数的性质和方程的知识解答.23.(10分)(1)【操作发现】如图1,在边长为1个单位长度的小正方形组成的网格中,△ABC 的三个顶点均在格点上.①请按要求画图:将△ABC绕点A顺时针方向旋转90°,点B的对应点为点B′,点C的对应点为点C′.连接BB′;②在①中所画图形中,∠AB′B=45°.(2)【问题解决】如图2,在Rt△ABC中,BC=1,∠C=90°,延长CA到D,使CD=1,将斜边AB绕点A顺时针旋转90°到AE,连接DE,求∠ADE 的度数.(3)【拓展延伸】如图3,在四边形ABCD中,AE⊥BC,垂足为E,∠BAE=∠ADC,BE=CE=1,CD=3,AD=kAB(k为常数),求BD的长(用含k的式子表示).解析:(1)①根据旋转角,旋转方向画出图形即可.②只要证明△ABB′是等腰直角三角形即可.(2)如图2,过点E作EH⊥CD交CD的延长线于H.证明△ABC ≌△EAH(AAS)即可解决问题.(3)如图3中,由AE⊥BC,BE=EC,推出AB=AC,将△ABD 绕点A逆时针旋转得到△ACG,连接DG.则BD=CG,只要证明∠GDC=90°,可得CG=,由此即可解决问题.参考答案:解:(1)①如图,△AB′C′即为所求.②由作图可知,△ABB′是等腰直角三角形,∴∠AB′B=45°,故答案为45.(2)如图2中,过点E作EH⊥CD交CD的延长线于H.∵∠C=∠BAE=∠H=90°,∴∠B+∠CAB=90°,∠CAB+∠EAH=90°,∴∠B=∠EAH,∵AB=AE,∴△ABC≌△EAH(AAS),∴BC=AH,EH=AC,∵BC=CD,∴CD=AH,∴DH=AC=EH,∴∠EDH=45°,∴∠ADE=135°.(3)如图③中,∵AE⊥BC,BE=EC,∴AB=AC,将△ABD绕点A逆时针旋转得到△ACG,连接DG.则BD=CG,∵∠BAD=∠CAG,∴∠BAC=∠DAG,∵AB=AC,AD=AG,∴∠ABC=∠ACB=∠ADG=∠AGD,∴△ABC∽△ADG,∵AD=kAB,∴DG=kBC=2k,∵∠BAE+∠ABC=90°,∠BAE=∠ADC,∴∠ADG+∠ADC=90°,∴∠GDC=90°,∴CG==.∴BD=CG=.参考答案:本题属于几何变换综合题,考查了等边三角形的判定和性质,等腰三角形的判定和性质,勾股定理,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是学会用旋转法添加辅助线,构造全等三角形或相似三角形解决问题,属于中考压轴题.24.(12分)如图1,抛物线y=x2+bx+c交x轴于A,B两点,其中点A的坐标为(1,0),与y轴交于点C(0,﹣3).(1)求抛物线的函数解析式;(2)点D为y轴上一点,如果直线BD与直线BC的夹角为15°,求线段CD的长度;(3)如图2,连接AC,点P在抛物线上,且满足∠PAB=2∠ACO,求点P的坐标.解析:(1)将点A,点C坐标代入解析式可求解;(2)先求出点B坐标,可得OB=OC,可得∠OBC=∠OCB=45°,再分点D在点C上方或下方两种情况讨论,由锐角三角函数可求解;(3)在BO上截取OE=OA,连接CE,过点E作EF⊥AC,由“SAS”可证△OCE≌△OCA,可得∠ACO=∠ECO,CE=AC=,由面积法可求EF的长,由勾股定理可求CF的长,可求tan∠ECA =tan∠PAB=,分点P在AB上方和下方两种情况讨论,求出AP 解析式,联立方程组可求点P坐标.参考答案:解:(1)∵抛物线y=x2+bx+c交x轴于点A(1,0),与y轴交于点C(0,﹣3),∴,解得:,∴抛物线解析式为:y=x2+2x﹣3;(2)∵抛物线y=x2+2x﹣3与x轴于A,B两点,∴点B(﹣3,0),∵点B(﹣3,0),点C(0,﹣3),∴OB=OC=3,∴∠OBC=∠OCB=45°,如图1,当点D在点C上方时,∵∠DBC=15°,∴∠OBD=30°,∴tan∠DBO==,∴OD=×3=,∴CD=3﹣;若点D在点C下方时,∵∠DBC=15°,∴∠OBD=60°,∴tan∠DBO==,∴OD=3,∴DC=3﹣3,综上所述:线段CD的长度为3﹣或3﹣3;(3)如图2,在BO上截取OE=OA,连接CE,过点E作EF⊥AC,∵点A(1,0),点C(0,﹣3),∴OA=1,OC=3,∴AC===,∵OE=OA,∠COE=∠COA=90°,OC=OC,∴△OCE≌△OCA(SAS),∴∠ACO=∠ECO,CE=AC=,∴∠ECA=2∠ACO,∵∠PAB=2∠ACO,∴∠PAB=∠ECA,∵S△AEC=AE×OC=AC×EF,∴EF==,∴CF===,∴tan∠ECA==,如图2,当点P在AB的下方时,设AO与y轴交于点N,∵∠PAB=∠ECA,∴tan∠ECA=tan∠PAB==,∴ON=,∴点N(0,),又∵点A(1,0),∴直线AP解析式为:y=x﹣,联立方程组得:,解得:或,∴点P坐标为:(﹣,﹣),当点P在AB的上方时,同理可求直线AP解析式为:y=﹣x+,联立方程组得:,解得:或,∴点P坐标为:(﹣,),综上所述:点P的坐标为(﹣,),(﹣,﹣).参考答案:本题是二次函数综合题,考查了待定系数法求解析式,全等三角形的判定和性质,直角三角形的性质,锐角三角函数等知识,求出tan∠ECA=tan∠PAB=是本题的关键.。
内蒙古自治区鄂尔多斯市初中毕业升学考试数学试题及参考答案
鄂尔多斯市初中毕业升学考试数 学(课标)注意事项:1.本试题满分120分,考试用时120分钟; 2.答题前将密封线内的项目填写清楚;3.考试结束后将试卷按页码顺序排好,全部上交.一、选择题(本大题10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一个是正确的,请把正确选项的标号填在下面的选项栏内.) 题号 1 2 3 4 5 6 7 8 9 10 选项 1.3-的相反数是( ) A .3-B .3C .13-D .132.图1是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是( )3.我市2006年财政收入近150亿元,居自治区首位.150亿用科学记数法可表示为( ) A .81.510⨯B .91.510⨯C .101.510⨯D .111.510⨯4.能够刻画一组数据离散程度的统计量是( )A .平均数B .众数C .中位数D .方差 5.将圆柱形纸筒沿母线AB 剪开铺平,得到一个矩形(如图2).如果将这个纸筒沿线路B M A →→剪开铺平,得到的图形是( ) A .平行四边形 B .矩形C .三角形D .半圆6.鄂尔多斯市成陵旅游区到响沙湾旅游区之间的距离为105公里,在一张比例尺为1:2000000的交通旅游图上,它们之间的距离大约相当于( )A .一根火柴的长度B .一支钢笔的长度C .一支铅笔的长度D .一根筷子的长度 7.下列说法正确的有( ) (1)如图3(a ),可以利用刻度尺和三角板测量圆形工件的直径; (2)如图3(b ),可以利用直角曲尺检查工件是否为半圆形; (3)如图3(c ),两次使用丁字尺(CD 所在直线垂直平分线段AB )可以找到圆形工件的圆心;(4)如图3(d ),测倾器零刻度线和铅垂线的夹角,就是从P 点看A 点时仰角的度数.图1 A . B . C . D . A B MAB M ()A ()B 图2A .1个B .2个C .3个D .4个8.一种蔬菜加工后出售,单价可提高20%,但重量减少10%.现有未加工的这种蔬菜30千克,加工后可以比不加工多卖12元,则这种蔬菜加工前和加工后每千克各卖多少元?设这种蔬菜加工前每千克卖x 元,加工后每千克卖y 元,根据题意,所列方程组正确的是( ) A .(120)30(110)3012y xy x =+⎧⎨+-=⎩%%B .(120)30(110)3012y xy x =+⎧⎨--=⎩%%C .(120)30(110)3012y xy x =-⎧⎨--=⎩%%D .(120)30(110)3012y xy x =-⎧⎨+-=⎩%%9.如图4,一只蚂蚁以均匀的速度沿台阶12345A A A A A →→→→爬行,那么蚂蚁爬行的高度..h 随时间t 变化的图象大致是( )10.观察表1,寻找规律.表2是从表1中截取的一部分,其中a b c ,,的值分别为( ) 表1 表2 1 2 3 4 …… 2 4 6 8 …… 3 6 9 12 …… 4 8 12 16 …… …………………………A .20,25,24B .25,20,24C .18,25,24D .20,30,25二、填空题(本大题8个小题,每小题3分,共24分)11.如图5,AB CD ∥,58B =o∠,20E =o∠,则D ∠的度数为 .16 a20 bc30图3(a )图3(b )图3(c )图3(d )AABCDP图4 1A 2A 3A 4A 5A O h t A . O h tB . O h tC . O ht D .图5 A BC D E F图6B (12)A , yx O 1 212.若43x y =,则y x y=+ . 13.如图6,双曲线1k y x=与直线2y k x =相交于A B ,两点,如果A 点的坐标是(12),,那么B 点的坐标为 .14.不等式组30240x x -⎧⎨+>⎩≤的解集是 .15.如图7,以O 为圆心的两个同心圆中,大圆的弦AB 切小圆于P ,如果4cm AB =,则图中阴影部分的面积为 2cm (结果用π表示).16.如图8,点P 在AOB ∠的平分线上,若使AOP BOP △≌△,则需添加的一个条件是 (只写一个即可,不添加辅助线). 17.在边长为a 的正方形纸片中剪去一个边长为b 的小正方形()a b >(如图9(1)),把余下的部分沿虚线剪开,拼成一个矩形(如图9(2)),分别计算这两个图形阴影部分的面积,可以验证的乘法公式是 (用字母表示).18.如图10,房间里有一只老鼠,门外蹲着一只小猫,如果每块正方形地砖的边长为1米,那么老鼠在地面上能避开小猫视线的活动范围为 平方米(不计墙的厚度).三、解答题(本大题8个小题,共66分.解答时要写出必要的文字说明、演算步骤或推证过程) 19.(本小题满分8分)(1)计算:11(12)42-⎛⎫++-- ⎪⎝⎭.图7 A B P O图8ABP O图9(1) 图9(2) ab图10 猫 房间 门 1米(2)化简:212111a a a a a -+⎛⎫+- ⎪-⎝⎭.20.(本小题满分6分)某市教育行政部门为了解初中学生参加综合实践活动的情况,随机抽取了本市初一、初二、初三年级各500名学生进行了调查.调查结果如图11所示,请你根据图中的信息回答问题.(1)在被调查的学生中,参加综合实践活动的有多少人?参加科技活动的有多少人? (2)如果本市有3万名初中学生,请你估计参加科技活动的学生约有多少名? 21.(本小题满分6分) 有四张背面相同的纸牌A B C D ,,,,其正面分别画有四个不同的几何图形(如图12).小明将这4张纸牌背面朝上洗匀后摸出一张,将剩余3张洗匀后再摸出一张. (1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A B C D ,,,表示);(2)求摸出的两张牌面图形既是轴对称图形又是中心对称图形纸牌的概率.22.(本小题满分6分) 如图13,A B ,两镇相距60km ,小山C 在A 镇的北偏东60o方向,在B 镇的北偏西30o方向.经探测,发现小山C 周围20km 的圆形区域内储有大量煤炭,有关部门规定,该区域内禁止建房修路.现计划修筑连接A B ,两镇的一条笔直的公路,试分析这条公路是否会经过该区域?初一 初二 初三 年级人数 0100 200 300 400 500 450 350 150 参加综合实践活动人数统计图60% 14% 16%文体活动 社会调查 社区服务 科技活动 参加综合实践活动人数分布统计图 图11正三角形 A 正方形 B 菱 形 C 等腰梯形D图12 北北 A C B60o30o 图1323.(本小题满分9分)如图14,在ABC △中,90ACB =o∠,D 是AB 的中点,以DC 为直径的O e 交ABC △的边于G F E ,,点. 求证:(1)F 是BC 的中点;(2)A GEF =∠∠.24.(本小题满分10分)有甲、乙两家通迅公司,甲公司每月通话的收费标准如图15所示;乙公司每月通话收费标准如表3所示.表3(1)观察图15,甲公司用户月通话时间不超过100分钟时应付话费金额是 元;甲公司用户通话100分钟以后,每分钟的通话费为 元;(2)李女士买了一部手机,如果她的月通话时间不超过100分钟,她选择哪家通迅公司更合算?如果她的月通话时间超过100分钟,又将如何选择? 25.(本小题满分9分) 我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称 , ; (2)如图16(1),已知格点(小正方形的顶点)(00)O ,,(30)A ,,(04)B ,,请你画出以格点为顶点,OA OB ,为勾股边且对角线相等的勾股四边形OAMB ;(3)如图16(2),将ABC △绕顶点B 按顺时针方向旋转60o,得到DBE △,连结月租费 通话费 2.5元 0.15元/分钟A B C D E F GO图14图15 ()t 分()y 元O 100 20020 40 y B O A x 图16(1)AD DC ,,30DCB =o ∠.求证:222DC BC AC +=,即四边形ABCD 是勾股四边形. 26.(本小题满分12分)如图17,抛物线2229y x nx n =-++-(n 为常数)经过坐标原点和x 轴上另一点C ,顶点在第一象限.(1)确定抛物线所对应的函数关系式,并写出顶点坐标;(2)在四边形OABC 内有一矩形MNPQ ,点M N ,分别在OA BC ,上,点Q P ,在x 轴上.当MN 为多少时,矩形MNPQ 的面积最大?最大面积是多少?2007年鄂尔多斯市初中毕业升学考试 数学试题参考答案及评分说明(课标)(一)阅卷评分说明1.正式阅卷前先进行试评,在试评中认真阅读参考答案,明确评分标准,不得随意拔高或降低评分标准.试评的试卷必须在阅卷后期全部予以复查,防止阅卷前后期评分标准宽严不一致.2.评分方式为分步累计评分,解答过程的某一步骤发生笔误,只要不降低后继部分的难度,而后继部分再无新的错误,后继部分可评应得分数的50%;若是几个相对独立的得分点,其中一处错误不影响其它得分点的评分.ABCDE60o图16(2)yOC x图173.最小记分单位为1分,不得将评分标准细化至1分以下(即不得记小数分).4.解答题题头一律记该题的实际得分,不得用记负分的方式记分.对解题中的错误须用红笔标出,并继续评分,直至将解题过程评阅完毕,并在最后得分点处标上该题实际得分.5.本参考答案只给出一至两种解法,凡有其它正确解法都应参照本评分说明分步确定得分点,并同样实行分步累计评分.6.合理精简解题步骤者,其简化的解题过程不影响评分. (二)参考答案及评分标准一、选择题(本大题10个小题,每小题3分,共30分.) 题号 1 2 3 4 5 6 7 8 9 10 选项 B C C D A A D B B A 二、填空题(本大题8个小题,每小题3分,共24分.) 11.38o(或38)12.3713.(12)--, 14.23x -<≤ 15.4π16.OA OB =(或OAP OBP =∠∠或APO BPO =∠∠)17.22()()a b a b a b -=+-(或22()()a b a b a b +-=-)18.17(填空正确给3分,图形不正确不扣分;图形正确,计算不正确可给1分.) 三、解答题(本大题8个小题,共66分.) 19.(本小题满分8分)(1)计算:11(12)42-⎛⎫++-- ⎪⎝⎭解:原式124=+- ······················································· 3分(一处计算正确给1分) 1=- ······························································································· 4分(2)化简:212111a a a a a -+⎛⎫+- ⎪-⎝⎭解:原式2(1)(1)1a a a -=+-- ············································ 2分(一处计算正确给1分)(1)(1)a a =+-- ··············································································· 3分 2= ········································································································· 4分 20.(本小题满分6分) 解:(1)450350150950++=(人) ······································· 1分(无单位不扣分) 950(1601614)95⨯---=%%%(人) ···································· 3分(无单位不扣分) 答:参加综合实践活动的有950人,参加科技活动的有95人. ································ 4分(2)95030000105003⨯⨯⨯% ············································································· 5分95201900=⨯=(人) ··················································· 6分(无单位不扣分)答:参加科技活动的学生估计有1900人. 21.(本小题满分6分)树状图: 列表:··········································································· 4分 注:出现3处(共12处)错误扣1分,扣完为止.(2)21126P == ··························································································· 6分 答:概率是16.22.(本小题满分6分)解:作CD AB ⊥于D ,由题意知:30CAB =o∠ 60CBA =o∠ 90ACB =o∠ ································· 1分 30DCB ∴=o ∠ ··················································· 2分 ∴在Rt ABC △中,1302BC AB == ································································ 3分 在Rt DBC △中,cos30CD BC =o································································ 4分 3302=⨯··································································· 5分 15320=> ································································ 6分 答:这条公路不经过该区域. 23.(本小题满分9分) 证法一: (1)连结DF ,90ACB =o Q ∠,D 是AB 的中点12BD DC AB ∴==············································· 2分 DC Q 是O e 的直径DF BC ∴⊥ ······················································· 4分 BF FC ∴=,即F 是BC 的中点. ························· 5分 (2)D F Q ,分别是AB BC ,的中点A B C D A A BA C A DB A B BC BD C A C B C D C D A D B D D C AB C D D B C A D C A B D A B C 1 北北AD CB60o30oABCDEF GODF AC ∴∥ ································································································· 6分 A BDF ∴=∠∠ ···························································································· 7分 BDF GEF ∴=∠∠ ······················································································· 8分 A GEF ∴=∠∠ ···························································································· 9分 证法二:(1)连结DF DE , DC Q 是O e 直径90DEC DFC ∴==o ∠∠ ················································································ 1分 90ECF =o Q ∠ ∴四边形DECF 是矩形EF CD ∴=,DF EC = ······································· 2分 D Q 是AB 的中点,90ACB =o∠12EF CD BD AB ∴=== ····································· 3分 DBF EFC ∴△≌△ ············································· 4分 BF FC ∴=,即F 是BC 的中点. ························· 5分 (2)DBF EFC Q △≌△BDF FEC ∴=∠∠,B EFC =∠∠ ································································· 6分 90ACB =o Q ∠(也可证AB EF ∥,得A FEC =∠∠)A FEC ∴=∠∠····························································································· 7分 FEG BDF =Q ∠∠ ······················································································· 8分 A GEF ∴=∠∠ ···························································································· 9分 (此题证法较多,大纲卷参考答案中,又给出了两种不同的证法,可供参考.)24.(本小题满分10分) (1)20;0.2 ············································································ 4分(每空2分) (2)通话时间不超过100分钟选甲公司合算 ························································ 5分 解:设通话时间为t 分钟(100t >),甲公司用户通话费为1y 元,乙公司用户通话费为2y 元. 则:1200.2(100)0.2y t t =+-= ·························· 6分(条件100t >没有写出不扣分)2250.15y t =+ ····························································································· 7分当12y y = 即:0.2250.15t t =+时,500t = ···················································· 8分 当12y y > 即:0.2250.15t t >+时,500t >当12y y < 即:0.2250.15t t <+时,500t < ······················································ 9分 答:通话时间不超过500分钟选甲公司;500分钟选甲、乙公司均可;超过500分钟选乙公司. ··········································································································· 10分 25.(本小题满分9分)A BCD E F GO(1)正方形、长方形、直角梯形.(任选两个均可) ··············· 2分(填正确一个得1分) (2)答案如图所示.(34)M ,或(43)M ,.(没有写出不扣分)······· 2分(根据图形给分,一个图形正确得1分)(3)证明:连结ECABC DBE Q △≌△ ······················································································· 5分 AC DE ∴=,BC BE = ················································································· 6分 60CBE =o Q ∠ EC BC ∴=,60BCE =o ∠ ······················································ 7分 30DCB =o Q ∠ 90DCE ∴=o ∠ 222DC EC DE ∴+= ······································· 8分 222DC BC AC ∴+=,即四边形ABCD 是勾股四边形 ·········································· 9分 26.(本小题满分12分)解(1)Q 抛物线过(00),点.290n ∴-= ·························································· 1分 3n ∴=± ······································································································ 2分 Q 顶点在第一象限,02bn a∴-=>且22244044ac b n n a --==>-(不写不扣分) 3n ∴= ········································································································ 3分 ∴抛物线26y x x =-+ ···················································································· 4分顶点坐标为(39), ···························································································· 5分 (2)①B 点的坐标为(48), ·············································································· 6分 ②如图所示,作AH x ⊥轴于H .设M 点的坐标为()x y ,OMQ OAH ∴△∽△ OQ MQOH AH∴= ······················· 7分28x y∴= 4y x ∴= ·············································· 8分 由抛物线的对称性可知:62QP MN x ==- ············· 9分y B O MMA x ABC DE 60o y A MO Q H (39),B NP C x。
2021年内蒙古鄂尔多斯中考数学真题及答案
4出现 次数最多,故众数为4,
方差是S2= ×[(2−6)2+(4−6)2+(4−6)2+(7−6)2+(9−6)2+(10-6)2]= .
综上只有选项D正确.
故选:D.
【点睛】本题考查了折线图、平均数、中位数、众数及方差等知识,读折线图得到用水量数据是解决本题的关键.
C. D.
【答案】C
【解析】
【分析】根据题中等量关系“2021年购买的口罩数量比2020年购买的口罩数量多100包”即可列出方程.
【详解】解:设2020年每包口罩x元,则2021年每包口罩(x-10)元.
根据题意,得,
即:
故选:C
【点睛】本题考查了列分式方程的知识点,寻找已知量和未知量之间的等量关系是列出方程的关键.
【详解】解:∵
∴AB= ,
∵S△ABC= ×AB×CN= ×AC×BC
∴CN= ,
∵AN= ,
∵折叠
∴AM=A'M,∠BCN=∠B'CN,∠ACM=∠A'CM,
∵∠BCN+∠B'CN+∠ACM+∠A'CM=90°,
∴∠B'CN+∠A'CM=45°,
∴∠MCN=45°,且CN⊥AB,
∴∠NMC=∠NCM=45°,
5.一块含 角的直角三角板和直尺如图放置,若 ,则 的度数为( )
A. B. C. D.
【答案】B
【解析】
【分析】先根据邻补角的定义得出∠3=180°-∠1=33°27′,再根据平行线的性质得到∠4=∠2,然后根据三角形的外角的性质即可得到结论.
【详解】解:∵ ,
内蒙古鄂尔多斯2021年中考数学试题真题(Word版+答案+解析)
内蒙古鄂尔多斯2021年中考数学试卷一、单选题1.(2021·鄂尔多斯)在实数0,π,|−2|,−1中,最小的数是()A. |−2|B. 0C. -1D. π2.(2019·丽水模拟)如图所示的几何体是由五个小正方体组合而成的,它的左视图是( )A. B. C. D.3.(2021·鄂尔多斯)世卫组织宣布冠状病毒最大直径约为0.00000012m,“0.00000012”用科学记数法可表示为()A. 1.2×10−7B. 0.12×10−6C. 12×10−8D. 1.2×10−64.(2021·鄂尔多斯)下列运算正确的是()A. a2+a2=2a4B. a6÷a2=a3C. (a+3)(a−3)=a2−6a+9D. (−3a3)2=9a65.(2021·鄂尔多斯)一块含30°角的直角三角板和直尺如图放置,若∠1=146°33′,则∠2的度数为()A. 64°27′B. 63°27′C. 64°33′D. 63°33′6.(2021·鄂尔多斯)小明收集了鄂尔多斯市某酒店2021年3月1日~3月6日每天的用水量(单位:吨),整理并绘制成如图所示的折线统计图,下列结论正确的是()A. 平均数是234B. 众数是10C. 中位数是8.5D. 方差是 2537.(2021·鄂尔多斯)已知: ▱AOCD 的顶点 O(0,0) ,点C 在x 轴的正半轴上,按以下步骤作图: ①以点O 为圆心,适当长为半径画弧,分别交 OA 于点M , 交 OC 于点N . ②分别以点M , N 为圆心,大于 12MN 的长为半径画弧,两弧在 ∠AOC 内相交于点E . ③画射线 OE ,交 AD 于点 F(2,3) ,则点A 的坐标为( )A. (−54,3)B. (3−√13,3)C. (−45,3) D. (2−√13,3)8.(2021·鄂尔多斯)2020年疫情防控期间,鄂尔多斯市某电信公司为了满足全体员工的需要,花1万元购买了一批口罩,随着2021年疫情的缓解,以及各种抗疫物资充足的供应,每包口罩下降10元,电信公司又花6000元购买了一批口罩,购买的数量比2020年购买的数量还多100包,设2020年每包口罩为x 元,可列方程为( ) A. 1x +100=6000x−10 B. 10000x−100=6000x+10C.10000x =6000x−10−100 D.10000x−100=6000x−109.(2021·鄂尔多斯)如图,在 Rt △ABC 中, ∠ACB =90°,AC =8,BC =6 ,将边 BC 沿 CN 折叠,使点B 落在 AB 上的点 B ′ 处,再将边 AC 沿 CM 折叠,使点A 落在 CB ′ 的延长线上的点 A ′ 处,两条折痕与斜边 AB 分别交于点N 、M , 则线段 A ′M 的长为( )A. 95B. 85C. 75D. 6510.(2021·鄂尔多斯)如图①,在矩形 ABCD 中,H 为 CD 边上的一点,点M 从点A 出发沿折线 AH −HC −CB 运动到点B 停止,点N 从点A 出发沿 AB 运动到点B 停止,它们的运动速度都是 1cm/s ,若点M 、N 同时开始运动,设运动时间为 t(s ) , △AMN 的面积为 S(cm 2) ,已知S 与t 之间函数图象如图②所示,则下列结论正确的是( )①当 0<t ≤6 时, △AMN 是等边三角形.②在运动过程中,使得 △ADM 为等腰三角形的点M 一共有3个.③当 0<t ≤6 时, S =√34t 2 .④当 t =9+√3 时, △ADH ∽△ABM .⑤当 9<t <9+3√3 时, S =−3t +9+3√3 .A. ①③④B. ①③⑤C. ①②④D. ③④⑤二、填空题11.(2020八上·浙江月考)函数 y =√4−2x 的自变量x 的取值范围是________. 12.(2021·鄂尔多斯)计算: √−83+(2021−π)0+(−13)−1= ________.13.(2021·鄂尔多斯)如图,小梅把一顶底面半径为 10cm 的圆锥形小丑纸帽沿一条母线剪开并展平,得到一个圆心角为 120° 的扇形纸片,那么扇形纸片的半径为________ cm .14.(2021·鄂尔多斯)将一些相同的“〇”按如图所示的规律依次摆放,观察每个“龟图”的“〇”的个数,则第30个“龟图”中有________个“〇”.15.(2021·鄂尔多斯)下列说法错误的是________ (只填序号) ① 7−√17 的整数部分为2,小数部分为 √17−4 .②外角为 60° 且边长为2的正多边形的内切圆的半径为 √3 .③把直线 y =2x −3 向左平移1个单位后得到的直线解析式为 y =2x −2 . ④新定义运算: m ∗n =mn 2−2n −1 ,则方程 −1∗x =0 有两个不相等的实数根.16.(2021·鄂尔多斯)如图,已知正方形 ABCD 的边长为6,点F 是正方形内一点,连接 CF,DF ,且∠ADF =∠DCF ,点E 是 AD 边上一动点,连接 EB,EF ,则 EB +EF 长度的最小值为________.三、解答题17.(2021·鄂尔多斯)(1)解不等式组 {4x −3(x −2)≥4x−15>x+12−1,并把解集在数轴上表示出来.(2)先化简:x 2−4x+42x−x 2÷(2x −4+x 2x) ,再从 −2 ,0,1,2中选取一个合适的x 的值代入求值.18.(2021·鄂尔多斯)某中学对九年级学生开展了“我最喜欢的鄂尔多斯景区”的抽样调查(每人只能选一项):A -动物园;B -七星湖;C -鄂尔多斯大草原;D -康镇;E -蒙古源流,根据收集的数据绘制了如图所示的两幅不完整的统计图,其中B 对应的圆心角为 90° ,请根据图中信息解答下列问题.(1)求抽取的九年级学生共有多少人?并补全条形统计图;(2)扇形统计图中m=________,表示D的扇形的圆心角是________度;(3)九年级准备在最喜欢A景区的5名学生中随机选择2名进行实地考察,这5名学生中有2名男生和3名女生,请用树状图或列表法求选出的2名学生都是女生的概率.19.(2021·鄂尔多斯)如图,矩形ABCD的两边AB,BC的长分别为3,8,C,D在y轴上,E是AD的中点,反比例函数y=kx(k≠0)的图象经过点E,与BC交于点F,且CF−BE=1.(1)求反比例函数的解析式;(2)在y轴上找一点P,使得S△CEP=23S矩形ABCD,求此时点P的坐标.20.(2021·鄂尔多斯)图①是一种手机平板支架、由托板、支撑板和底座构成,手机放置在托板上,图②是其侧面结构示意图、托板长AB=115mm,支撑板长CD=70mm,板AB固定在支撑板顶点C 处,且CB=35mm,托板AB可绕点C转动,支撑板CD可绕点D转动,∠CDE=60°.(1)若∠DCB=70°时,求点A到直线DE的距离(计算结果精确到个位);(2)为了观看舒适,把(1)中∠DCB=70°调整为90°,再将CD绕点D逆时针旋转,使点B落在直线DE上即可、求CD旋转的角度.(参考数:sin50°≈0.8,cos50°≈0.6,tan50°≈1.2,sin26.6°≈0.4,cos26.6°≈0.9,tan26.6°≈0.5,√3≈1.7)21.(2021·鄂尔多斯)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC于点D,BC 于点E,直线EF⊥AC于点F,交AB的延长线于点H.(1)求证:HF是⊙O的切线;时,求tanH的值.(2)当EB=6,cos∠ABE=1322.(2021·鄂尔多斯)鄂尔多斯市某宾馆共有50个房间供游客居住,每间房价不低于200元且不超过320元、如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.已知每个房间定价x(元)和游客居住房间数y(间)符合一次函数关系,如图是y关于x的函数图象.(1)求y与x之间的函数解析式,并写出自变量x的取值范围;(2)当房价定为多少元时,宾馆利润最大?最大利润是多少元?23.(2021·鄂尔多斯)如图,抛物线y=x2+2x−8与x轴交于A,B两点(点A在点B左侧),与y轴交于点C.(1)求A,B,C三点的坐标;(2)连接AC,直线x=m(−4<m<0)与该抛物线交于点E,与AC交于点D,连接OD.当OD⊥AC时,求线段DE的长;(3)点M在y轴上,点N在直线AC上,点P为抛物线对称轴上一点,是否存在点M,使得以C、M、N、P为顶点的四边形是菱形?若存在,请直接写出点M的坐标;若不存在,请说明理由.24.(2021·鄂尔多斯)旋转是一种重要的图形变换,当图形中有一组邻边相等时往往可以通过旋转解决问题.(1)尝试解决:如图①,在等腰Rt△ABC中,∠BAC=90°,AB=AC,点M是BC上的一点,BM=1cm,CM=2cm,将△ABM绕点A旋转后得到△ACN,连接MN,则AM=________cm.(2)类比探究:如图②,在“筝形”四边形ABCD中,AB=AD=a,CB=CD,AB⊥BC于点B,AD⊥CD于点D,点P、Q分别是AB、AD上的点,且∠PCB+∠QCD=∠PCQ,求△APQ的周长.(结果用a表示)(3)拓展应用:如图③,已知四边形ABCD,AD=CD,∠ADC=60°,∠ABC=75°,AB=2√2,BC=2,求四边形ABCD的面积.答案解析部分一、单选题1.【答案】C【考点】实数大小的比较【解析】【解答】解:∵|-2|=2,∴-1<0<|-2|<π∴最小的数为:-1故答案为:C【分析】先求出-1<0<|-2|<π,再求出最小的数即可。
2020年内蒙古鄂尔多斯中考数学试卷(解析版)
2020年内蒙古鄂尔多斯中考数学试卷(解析版)一、选择题(本大题共10小题,每小题3分,共30分)1.实数的绝对值是( ).A. B. C. D.2.已知某物体的三视图如图所示,那么与它对应的物体是( ).A. B.C. D.3.函数中自变量的取值范围在数轴上表示正确的是( ).A. B.C. D.4.下列计算错误的是( ).A.B.5.将三角尺按如图所示放置在一张矩形纸片上,,,,则的大小为( ).A.B.C.D.6.一次数学测试,某小组名同学的成绩统计如下(有两个数据被遮盖):组员甲乙丙丁戊平均成绩众数得分■■则被遮盖的两个数据依次是( ).A.,B.,C.,D.,7.在四边形中,,,,,分别以,为圆心,大于的长为半径作弧,两弧交于点,作射线交于点交于点,若点是的中点,则的长为( ).A.D.8.下列说法正确的是( ).①的值大于;②正六边形的内角和是,它的边长等于半径;③从一副扑克牌中随机抽取一张,它是黑桃的概率是;④甲、乙两人各进行了次射击测试,它们的平均成绩相同,方差分别是,,则乙的射击成绩比甲稳定.A.①②③④B.①②④C.①④D.②③甲乙9.如图,四边形是边长为的正方形,以对角线为边作第二个正方形,连接,得到;再以对角线为边作第三个正方形,连接,得到,再以对角线为边作第四个正方形,连接,得到,,设,,,,的面积分别为,,,,如此下去,则的值为( ).A.B.C.D.10.鄂尔多斯动物园内的一段线路如图所示,动物园内有免费的班车,从入口处出发,沿该线路开往大象馆,途中停靠花鸟馆(上下车时间忽略不计),第一班车上午发车,以后每隔分钟有一班车发车时间,于是从入口处出发,沿该线路步行分钟后到达花鸟馆,离入口处的路程(米)与时间(分)的函数关系如图所示,下列结论错误的是( ).大象馆入口图花鸟馆米米图分米第一班车小聪A.第一班车离入口处的距离(米)与时间(分)的解析式为B.第一班车从入口处到达花鸟馆所需的时间为分钟C.小聪在花鸟馆游玩分钟后,想坐班车到大象馆,则小聪最早能够坐上第四班车D.小聪在花鸟馆游玩分钟后,如果坐第五班车到大象馆,那么比他在花鸟馆游玩结束后立即步行到大象馆提前了分钟(假设小聪步行速度不变)二、填空题(本大题共6小题,每小题3分,共18分)11.截至年月日,全球新冠肺炎确诊病例已超过万例,其中数据万用科学记数法表示为 .12.计算:.13.如图,是⊙的直径,弦,垂足为,,,则阴影部分面积.阴影14.如图,平面直角坐标系中,菱形在第一象限内,边与轴平行,,两点的纵坐标分别为,,反比例函数的图象经过,两点,若菱形的面积为,则的值为 .15.如图,等边中,,点、点分别在和上,且,连接、交于点,则的最小值为 .16.如图,已知正方形,点是边延长线上的动点(不与点重合),且,由平移得到,若过点作,为垂足,则有以下结论:①点位置变化,使得时,;②无论点运动到何处,都有;③在点的运动过程中,四边形可能成为菱形;④无论点运动到何处,一定大于.以上结论正确的有 (把所有正确结论的序号都填上).三、解答题(本大题共8小题,共72分)17.解答下列小题.(2)解不等式组,并求出该不等式组的最小整数解.先化简,再求值:,其中满足.(1)(2)(3)小时小时小时小时九年级(一)班男生一周复习时间扇形统计图(4)18.“学而时习之,不亦说乎?”古人把经常复习当作是一种乐趣.某校为了解九年级(一)班学生每周的复习情况,班长对该班学生每周的复习时间进行了调查,复习时间四舍五入后只有种:小时,小时,小时,小时,已知该班共有人,根据调查结果,制作了两幅不完整的统计图表,该班女生一周的复习时间数据(单位:小时)如下:,,,,,,,,,,,,,,,,,,,九年级(一)班女生一周复习时间频数分布表复习时间频率(学生人数)小时小时小时小时统计表中,该班女生一周复习时间的中位数为 小时.扇形统计图中,该班男生一周复习时间为小时所对应圆心角的度数为 .该校九年级共有名学生,通过计算估计一周复习时间为小时的学生有多少名?在该班复习时间为小时的女生中,选择其中四名分别记为,,,,为了培养更多学生对复习的兴趣,随机从该四名女生中选取两名进行班会演讲,请用树状图或者列表法求恰好选中和的概率.19.如图,一次函数的图象分别与反比例函数的图象在第一象限交于点,与(1)(2)求函数和的表达式.已知点,试在该一次函数图象上确定一点,使得,求此时点的坐标.20.图是挂墙式淋浴花洒的实物图,图是抽象出来的几何图形,为使身高的人能方便地淋浴,应当使旋转头固定在墙上的某个位置,花洒的最高点与人的头顶的铅垂距离为,已知龙头手柄长为,花洒直径是,龙头手柄与墙面的较小夹角,,则安装时,旋转头的固定点与地面的距离应为多少?(计算结果精确到,参考数据:,,)图图(1)(2)21.我们知道,顶点坐标为的抛物线的解析式为.今后我们还会学到,圆心坐标为,半径为的圆的方程,如:圆心为,半径为的圆的方程为.以为圆心,为半径的圆的方程为 .如图,以为圆心的圆与轴相切于原点,是⊙上一点,连接,作,垂足为,延长交轴于点,已知.12连接,证明:是⊙的切线.在上是否存在一点,使?若存在,求点的坐标,并写出以为圆心,以为半径的⊙的方程;若不存在,请说明理由.(1)(2)22.某水果店将标价为元斤的某种水果,经过两次降价后,价格为元斤,并且两次降价的百分率相同.求该水果每次降价的百分率.从第二次降价的第天算起,第天(为整数)的销量及储藏和损耗费用的相关信息如下表所示:时间(天)销量(斤)储藏和损耗费用(元)已知该水果的进价为元斤,设销售该水果第(天)的利润为(元),求与之间的函数解析式,并求出第几天时销售利润最大,最大利润是多少?图1(1)23.【操作发现】如图,在边长为个单位长度的小正方形组成的网格中,的三个顶点均在格点上.请按要求画图:将绕点顺时针方向旋转,点的对应点为点,点的对应点为点.连接2(2)(3)在①中所画图形中,.【问题解决】如图,在中,,,延长到,使,将斜边绕点顺时针旋转到,连接,求的度数.图【拓展延伸】如图,在四边形.中,,垂足为,,,,(为常数),求的长(用含的式子表示).图(1)24.如图,抛物线交轴于,两点,其中点的坐标为,与轴交于点.图求抛物线的函数解析式.【答案】解析:实数的绝对值是:.故选:.解析:由三视图知,该几何体是下面是长方体,上面是一个圆柱体,且长方体的宽与圆柱底面直径相等,符合这一条件的是选项几何体.(3)如图,连接,点在抛物线上,且满足,求点的坐标.图A 1.C 2.解析:由题意得:,解得:,在数轴上表示为:.故选:.解析:∵四边形是矩形,∴,∴,∵,∴,∵在中,,,∴,∴,故选:.解析:设丙的成绩为,则,解得,∴丙的成绩为,在这名学生的成绩中出现次数最多,所以众数为,所以被遮盖的两个数据依次是,.故选.C 3.D 4.B 5.D 6.解析:如图,连接,由题可得,点和点在的垂直平分线上,∴垂直平分,∴,∵,∴,在与,,∴≌,∴,∴,,在中,∵,∴,即,解得.故选.解析:①的值约为,大于,此说法正确;②正六边形的内角和是,它的边长等于半径,此说法正确;③从一副扑克牌中随机抽取一张,它是黑桃的概率是,此说法错误;④∵,,∴,故乙的射击成绩比甲稳定,此说法正确.A 7.B 8.甲乙甲乙故选.解析:∵四边形是正方形,∴,∴,∵,∴,∴,∴,同理可求:,,∴,∴,故选.解析:由题意得,可设第一班车离入口处的距离(米)与时间(分)的解析式为:,把,代入,得,解得,∴第一班车离入口处的路程(米)与时间(分)的函数表达为,故选项不合题意;把代入,解得,(分),∴第一班车从入口处到达塔林所需时间分钟;故选项不合题意;设小聪坐上了第班车,则,解得,B 9.C 10.∴小聪坐上了第班车,故选项符合题意;等车的时间为分钟,坐班车所需时间为:(分),步行所需时间:(分),(分),∴比他在花鸟馆游玩结束后立即步行到大象馆提前了分钟.故选项不合题意.故选:.11.解析:万.故答案为.12.解析:.故答案为:.13.解析:连接,∵,∴,,∴,∵,∴,∵,∴,都是等边三角形,∴,∴四边形是菱形,∴,∴,∴,∵,∴,故答案为.解析:过点作轴的垂线,交的延长线于点,∵轴,∴,∵,两点在反比例函数的图象,且纵坐标分别为,,∴,,∴,,∵菱形的面积为,∴,即,∴,在中,,∴,∴.阴菱形阴14.故答案为:.解析:等边,.≌..∴.∴作为边外正三角形的外接圆,在以为圆心,为半径的圆上,,.∴.解析:如图,连接,.由题可得,,∴,∵四边形是正方形,,∴,,,∴,∴≌,∴,,∴,是等腰直角三角形,∴,故②正确;15.①②④16.(1)(2)当时,,∴,∴中,,即,故①正确;∵,,∴四边形是平行四边形,∵,,∴,∴四边形不可能是菱形,故③错误;∵点是边延长线上的动点(不与点重合),且,∴,∴,故④正确;由上可得正确结论的序号为①②④.故答案为:①②④.解析:解不等式①,得:,解不等式②,得:,则不等式组的解集为,∴不等式组的最小整数解为.原式,∵,∴,(1);.(2).17.①②(1)(2)(3)(4)(1)则原式.解析:由题意知,该班女生一周复习时间的中位数为(小时),故答案为:,.扇形统计图中,该班男生一周复习时间为小时所对应的百分比为,∴该班男生一周复习时间为小时所对应的圆心角的度数为,故答案为:.估计一周复习时间为小时的学生有(名);答:估计一周复习时间为小时的学生有名.画树状图得:开始∵共有种可能出现的结果,它们都是等可能的,恰好选中和的有种结果,∴恰好选中和的概率为,答:恰好选中和的概率为.解析:把点代入函数得:,∴.,∵,(1) ; (2)(3)名.(4).18.(1),.(2).19.(2)∴,∴点的坐标为,把,代入得:,解得:,∴.∵点在一次函数上,∴设点的坐标为,∵,∴解得:,∴点的坐标为.解析:如图,过点作地面的垂线,垂足为,过点作地面的平行线,交于点,交于点,在中,,,则,在中,,,则,∴,答:旋转头的固定点与地面的距离应为.旋转头的固定点与地面的距离应为.20.(1)1(2)证明见解析.21.(1)12(2)解析:以为圆心,为半径的圆的方程为,故答案为:.∵是⊙切线,∴,∵,,∴,又∵,,≌,∴,∴,又∵是半径,∴是⊙的切线.如图,连接,,∵点,∴,∵,,∴,∵.∴,∴,∴,∴点,∵,2存在,,.(1)(2)1(1)∴点是的中点,∵点,点,∴点,∴以为圆心,以为半径的⊙的方程为.解析:设该水果每次降价的百分率为,,解得,,(舍去),答:该水果每次降价的百分率是.由题意可得,,∵,∴当时,取得最大值,此时,由上可得,与之间的函数解析式是,第天时销售利润最大,最大利润是元.解析:如图,即为所求.(1).(2)第天时销售利润最大,最大利润是元.22.12(1)画图见解析.(2).(3).23.图2(2)(3)由作图可知,是等腰直角三角形,∴,故答案为:.如图中,过点作交的延长线于,图∵ ,∴ , ,∴ ,∵ ,∴≌ ,∴, ,∵ ,∴ ,∴ ,∴ ,∴ .如图中,连接,∵ , ,∴ ,将绕点逆时针旋转得到,连接,则 ,(1)(2)图∵,∴,∵, ,∴,∴,∵,∴,∵, ,∴,∴,∴,∴.解析:∵抛物线交轴于点,与轴交于点,∴,解得:,∴抛物线解析式为:.∵抛物线与轴交于,两点,∴点,∵点,点,(1).(2)或.(3),.24.∴,∴,如图,当点在点上方时,图∵,∴,∴,∴,∴;若点在点下方时,∵,∴,∴,∴,∴,综上所述:线段的长度为或.(3)如图,在上截取,连接,过点作,图∵点,点,∴,,∴,∵,,,∴≌,∴,,∴,∵,∴,∵,∴,∴,∴,如图,当点在的下方时,设与轴交于点,图∵,∴,∴,∴点,又∵点,∴直线解析式为:,联立方程组得:,解得:或,∴点坐标为:,当点在的上方时,同理可求直线解析式为:,联立方程组得:,解得:或,∴点坐标为:,综上所述:点的坐标为,.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
内蒙古鄂尔多斯市中考数学真题及答案一、单项选择题(本大题共10小题,每小题3分,共30分)1.实数﹣的绝对值是()A.B.﹣C.﹣D.2.已知某物体的三视图如图所示,那么与它对应的物体是()A.B.C.D.3.函数y=中自变量x的取值范围在数轴上表示正确的是()A.B.C.D.4.下列计算错误的是()A.(﹣3ab2)2=9a2b4B.﹣6a3b÷3ab=﹣2a2C.(a2)3﹣(﹣a3)2=0 D.(x+1)2=x2+15.将三角尺按如图所示放置在一张矩形纸片上,∠EGF=90°,∠FEG=30°,∠1=125°,则∠BFG的大小为()A.125°B.115°C.110°D.120°6.一次数学测试,某小组5名同学的成绩统计如表(有两个数据被遮盖):组员甲乙丙丁戊平均成绩众数得分77 81 ■80 82 80 ■则被遮盖的两个数据依次是()A.81,80 B.80,2 C.81,2 D.80,807.在四边形ABCD中,AD∥BC,∠D=90°,AD=8,BC=6,分别以A,C为圆心,大于AC的长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O,若点O是AC的中点,则CD的长为()A.4B.2C.6 D.88.下列说法正确的是()①的值大于;②正六边形的内角和是720°,它的边长等于半径;③从一副扑克牌中随机抽取一张,它是黑桃的概率是;④甲、乙两人各进行了10次射击测试,他们的平均成绩相同,方差分别是s2甲=1.3,s2乙=1.1,则乙的射击成绩比甲稳定.A.①②③④B.①②④C.①④D.②③9.如图,四边形OAA1B1是边长为1的正方形,以对角线OA1为边作第二个正方形OA1A2B2,连接AA2,得到△AA1A2;再以对角线OA2为边作第三个正方形OA2A3B3,连接A1A3,得到△A1A2A3,再以对角线OA3为边作第四个正方形OA2A4B4,连接A2A4,得到△A2A3A4,…,设△AA1A2,△A1A2A3,△A2A3A4,…,的面积分别为S1,S2,S3,…,如此下去,则S2020的值为()A.B.22018C.22018+D.101010.鄂尔多斯动物园内的一段线路如图1所示,动物园内有免费的班车,从入口处出发,沿该线路开往大象馆,途中停靠花鸟馆(上下车时间忽略不计),第一班车上午9:20发车,以后每隔10分钟有一班车从入口处发车,且每一班车速度均相同.小聪周末到动物园游玩,上午9点到达入口处,因还没到班车发车时间,于是从入口处出发,沿该线路步行25分钟后到达花鸟馆,离入口处的路程y(米)与时间x(分)的函数关系如图2所示,下列结论错误的是()A.第一班车离入口处的距离y(米)与时间x(分)的解析式为y=200x﹣4000(20≤x≤38)B.第一班车从入口处到达花鸟馆所需的时间为10分钟C.小聪在花鸟馆游玩40分钟后,想坐班车到大象馆,则小聪最早能够坐上第四班车D.小聪在花鸟馆游玩40分钟后,如果坐第五班车到大象馆,那么比他在花鸟馆游玩结束后立即步行到大象馆提前了7分钟(假设小聪步行速度不变)二、填空题(本大题共6题,每题3分,共18分)11.截至2020年7月2日,全球新冠肺炎确诊病例已超过1051万例,其中数据1051万用科学记数法表示为.12.计算:+()﹣2﹣3tan60°+(π)0=.13.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,∠BCD=30°,CD=2,则阴影部分面积S阴影=.14.如图,平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为6,4,反比例函数y=(x>0)的图象经过A,B两点,若菱形ABCD的面积为2,则k的值为.15.如图,在等边△ABC中,AB=6,点D,E分别在边BC,AC上,且BD=CE,连接AD,BE交于点F,连接CF,则CF 的最小值是.16.如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由△DAM平移得到,若过点E作EH⊥AC,H为垂足,则有以下结论:①点M位置变化,使得∠DHC=60°时,2BE=DM;②无论点M运动到何处,都有DM=HM;③在点M的运动过程中,四边形CEMD可能成为菱形;④无论点M运动到何处,∠CHM一定大于135°.以上结论正确的有(把所有正确结论的序号都填上).三、解答题(本大题共8题,共72分.解答时写出必要的文字说明、演算步骤或推理过程)17.(1)解不等式组,并求出该不等式组的最小整数解.(2)先化简,再求值:(﹣)÷,其中a满足a2+2a﹣15=0.18.“学而时习之,不亦说乎?”古人把经常复习当作是一种乐趣.某校为了解九年级(一)班学生每周的复习情况,班长对该班学生每周的复习时间进行了调查,复习时间四舍五入后只有4种:1小时,2小时,3小时,4小时,已知该班共有50人,根据调查结果,制作了两幅不完整的统计图表,该班女生一周的复习时间数据(单位:小时)如下:1,1,1,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4九年级(一)班女生一周复习时间频数分布表复习时间频数(学生人数)1小时 32小时a3小时 44小时 6(1)统计表中a=7 ,该班女生一周复习时间的中位数为小时;(2)扇形统计图中,该班男生一周复习时间为4小时所对应圆心角的度数为°;(3)该校九年级共有600名学生,通过计算估计一周复习时间为4小时的学生有多少名?(4)在该班复习时间为4小时的女生中,选择其中四名分别记为A,B,C.,D,为了培养更多学生对复习的兴趣,随机从该四名女生中选取两名进行班会演讲,请用树状图或者列表法求恰好选中B和D的概率.19.如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.20.图1是挂墙式淋浴花洒的实物图,图2是抽象出来的几何图形.为使身高175cm的人能方便地淋浴,应当使旋转头固定在墙上的某个位置O,花洒的最高点B与人的头顶的铅垂距离为15cm,已知龙头手柄OA长为10cm,花洒直径AB是8cm,龙头手柄与墙面的较小夹角∠COA=26°,∠OAB=146°,则安装时,旋转头的固定点O与地面的距离应为多少?(计算结果精确到1cm,参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49)21.我们知道,顶点坐标为(h,k)的抛物线的解析式为y=a(x﹣h)2+k(a≠0).今后我们还会学到,圆心坐标为(a,b),半径为r的圆的方程(x﹣a)2+(y﹣b)2=r2,如:圆心为P(﹣2,1),半径为3的圆的方程为(x+2)2+(y﹣1)2=9.(1)以M(﹣3,﹣1)为圆心,为半径的圆的方程为.(2)如图,以B(﹣3,0)为圆心的圆与y轴相切于原点,C是⊙B上一点,连接OC,作BD⊥OC,垂足为D,延长BD交y轴于点E,已知sin∠AOC=.①连接EC,证明:EC是⊙B的切线;②在BE上是否存在一点Q,使QB=QC=QE=QO?若存在,求点Q的坐标,并写出以Q为圆心,以QB为半径的⊙Q的方程;若不存在,请说明理由.22.某水果店将标价为10元/斤的某种水果.经过两次降价后,价格为8.1元/斤,并且两次降价的百分率相同.(1)求该水果每次降价的百分率;(2)从第二次降价的第1天算起,第x天(x为整数)的销量及储藏和损耗费用的相关信息如下表所示:时间(天)x销量(斤)120﹣x储藏和损耗费用(元)3x2﹣64x+400已知该水果的进价为4.1元/斤,设销售该水果第x(天)的利润为y(元),求y与x(1≤x<10)之间的函数解析式,并求出第几天时销售利润最大,最大利润是多少?23.(1)【操作发现】如图1,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.①请按要求画图:将△ABC绕点A顺时针方向旋转90°,点B的对应点为点B′,点C的对应点为点C′.连接BB′;②在①中所画图形中,∠AB′B=°.(2)【问题解决】如图2,在Rt△ABC中,BC=1,∠C=90°,延长CA到D,使CD=1,将斜边AB绕点A顺时针旋转90°到AE,连接DE,求∠ADE的度数.(3)【拓展延伸】如图3,在四边形ABCD中,AE⊥BC,垂足为E,∠BAE=∠ADC,BE=CE=1,CD=3,AD=kAB(k为常数),求BD 的长(用含k的式子表示).24.如图1,抛物线y=x2+bx+c交x轴于A,B两点,其中点A的坐标为(1,0),与y轴交于点C(0,﹣3).(1)求抛物线的函数解析式;(2)点D为y轴上一点,如果直线BD与直线BC的夹角为15°,求线段CD的长度;(3)如图2,连接AC,点P在抛物线上,且满足∠PAB=2∠ACO,求点P的坐标.参考答案1.A.2.C.3.C.4.D.5.B.6.D.7.A.8.B.9.B.10.C.11.1.051×107.12.10.13..14.12.15.2.16.①②③④.17.解:(1)解不等式①,得:x>﹣,解不等式②,得:x≤4,则不等式组的解集为﹣<x≤4,∴不等式组的最小整数解为﹣2;(2)原式=[+]÷=(+)•=•==,∵a2+2a﹣15=0,∴a2+2a=15,则原式=.18.解:(1)由题意知a=7,该班女生一周复习时间的中位数为=2.5(小时),故答案为:7,2.5;(2)扇形统计图中,该班男生一周复习时间为4小时所对应的百分比为1﹣(10%+20%+50%)=20%, ∴该班男生一周复习时间为4小时所对应的圆心角的度数为360°×20%=72°,故答案为:72;(3)估计一周复习时间为4小时的学生有600×(+20%)=300(名);答:估计一周复习时间为4小时的学生有300名.(4)画树状图得:∵一共有12种可能出现的结果,它们都是等可能的,恰好选中B和D的有2种结果, ∴恰好选中B和D的概率为P==.答:恰好选中B和D的概率为.19.解:(1)把点A(4,3)代入函数y=得:a=3×4=12,∴y=.OA==5,∵OA=OB,∴OB=5,∴点B的坐标为(0,﹣5),把B(0,﹣5),A(4,3)代入y=kx+b得:解得:∴y=2x﹣5.(2)方法一:∵点M在一次函数y=2x﹣5上,∴设点M的坐标为(x,2x﹣5),∵MB=MC,∴解得:x=2.5,∴点M的坐标为(2.5,0).方法二:∵B(0,﹣5)、C(0,5),∴BC=10,∴BC的中垂线为:直线y=0,当y=0时,2x﹣5=0,即x=2.5,∴点M的坐标为(2.5,0).20.解:如图,过点B作地面的垂线,垂足为D,过点A作地面GD的平行线,交OC于点E,交BD于点F, 在Rt△AOE中,∠AOE=26°,OA=10,则OE=OA•cos∠AOE≈10×0.90=9cm,在Rt△ABF中,∠BOF=146°﹣90°﹣26°=30°,AB=8,则BF=AB•sin∠BOF=8×=4cm,∴OG=BD﹣BF﹣OE=(175+15)﹣4﹣9=177cm,答:旋转头的固定点O与地面的距离应为177cm.21.解:(1)以M(﹣3,﹣1)为圆心,为半径的圆的方程为(x+3)2+(y+1)2=3,故答案为:(x+3)2+(y+1)2=3;(2)①∵OE是⊙B切线,∴∠BOE=90°,∵CB=OB,BD⊥CO,∴∠CBE=∠OBE,又∵BC=BO,BE=BE,∴△CBE≌△OBE(SAS),∴∠BCE=∠BOE=90°,∴BC⊥CE,又∵BC是半径,∴EC是⊙B的切线;②如图,连接CQ,QO,∵点B(﹣3,0),∴OB=3,∵∠AOC+∠DOE=90°,∠DOE+∠DEO=90°,∴∠AOC=∠BEO,∵sin∠AOC=.∴sin∠BEO==,∴BE=5,∴OE===4,∴点E(0,4),∵QB=QC=QE=QO,∴点Q是BE的中点,∵点B(﹣3,0),点E(0,4),∴点Q(﹣,2),∴以Q为圆心,以QB为半径的⊙Q的方程为(x+)2+(y﹣2)2=9.22.解:(1)设该水果每次降价的百分率为x,10(1﹣x)2=8.1,解得,x1=0.1,x2=1.9(舍去),答:该水果每次降价的百分率是10%;(2)由题意可得,y=(8.1﹣4.1)×(120﹣x)﹣(3x2﹣64x+400)=﹣3x2+60x+80=﹣3(x﹣10)2+380,∵1≤x<10,∴当x=9时,y取得最大值,此时y=377,由上可得,y与x(1≤x<10)之间的函数解析式是y=﹣3x2+60x+80,第9天时销售利润最大,最大利润是377元.23解:(1)①如图,△AB′C′即为所求.②由作图可知,△ABB′是等腰直角三角形,∴∠AB′B=45°,故答案为45.(2)如图2中,过点E作EH⊥CD交CD的延长线于H.∵∠C=∠BAE=∠H=90°,∴∠B+∠CAB=90°,∠CAB+∠EAH=90°,∴∠B=∠EAH,∵AB=AE,∴△ABC≌△EAH(AAS),∴BC=AH,EH=AC,∵BC=CD,∴CD=AH,∴DH=AC=EH,∴∠EDH=45°,∴∠ADE=135°.(3)如图③中,∵AE⊥BC,BE=EC,∴AB=AC,将△ABD绕点A逆时针旋转得到△ACG,连接DG.则BD=CG,∵∠BAD=∠CAG,∴∠BAC=∠DAG,∵AB=AC,AD=AG,∴∠ABC=∠ACB=∠ADG=∠AGD,∴△ABC∽△ADG,∵AD=kAB,∴DG=kBC=2k,∵∠BAE+∠ABC=90°,∠BAE=∠ADC,∴∠ADG+∠ADC=90°,∴∠GDC=90°,∴CG==.∴BD=CG=.24.解:(1)∵抛物线y=x2+bx+c交x轴于点A(1,0),与y轴交于点C(0,﹣3), ∴,解得:,∴抛物线解析式为:y=x2+2x﹣3;(2)∵抛物线y=x2+2x﹣3与x轴于A,B两点,∴点B(﹣3,0),∵点B(﹣3,0),点C(0,﹣3),∴OB=OC=3,∴∠OBC=∠OCB=45°,如图1,当点D在点C上方时,∵∠DBC=15°,∴∠OBD=30°,∴tan∠DBO==,∴OD=×3=,∴CD=3﹣;若点D在点C下方时,∵∠DBC=15°,∴∠OBD=60°,∴tan∠DBO==,∴OD=3,∴DC=3﹣3,综上所述:线段CD的长度为3﹣或3﹣3;(3)如图2,在BO上截取OE=OA,连接CE,过点E作EF⊥AC,∵点A(1,0),点C(0,﹣3),∴OA=1,OC=3,∴AC===,∵OE=OA,∠COE=∠COA=90°,OC=OC,∴△OCE≌△OCA(SAS),∴∠ACO=∠ECO,CE=AC=,∴∠ECA=2∠ACO,∵∠PAB=2∠ACO,∴∠PAB=∠ECA,∵S△AEC=AE×OC=AC×EF,∴EF==,∴CF===,∴tan∠ECA==,如图2,当点P在AB的下方时,设AO与y轴交于点N, ∵∠PAB=∠ECA,∴tan∠ECA=tan∠PAB==,∴ON=,∴点N(0,),又∵点A(1,0),∴直线AP解析式为:y=x﹣,联立方程组得:,解得:或,∴点P坐标为:(﹣,﹣),当点P在AB的上方时,同理可求直线AP解析式为:y=﹣x+, 联立方程组得:,解得:或,∴点P坐标为:(﹣,),综上所述:点P的坐标为(﹣,),(﹣,﹣).。