上海历年中考数学压轴题复习(试题附答案)解析

合集下载

初中数学中考压轴题及答案详解(上海篇)

初中数学中考压轴题及答案详解(上海篇)

专题训练125.如图9,在Rt△ABC中,∠ACB=90°.半径为1的圆A与边AB相交于点D,与边AC相交于点E,连结DE并延长,与线段BC的延长线交于点P.(1)当∠B=30°时,连结AP,若△AEP与△BDP相似,求CE的长;(2)若CE=2,BD=BC,求∠BPD的正切值;(3)若1tan3BPD∠=,设CE=x,△ABC的周长为y,求y关于x的函数关系式.图9 图10(备用)参考答案:(1)解:∵∠B=30°∠ACB=90°∴∠BAC=60°∵AD=AE ∴∠AED=60°=∠CEP ∴∠EPC=30°∴三角形BDP为等腰三角形∵△AEP与△BDP相似∴∠EAP=∠EPA=∠DBP=∠DPB=30°∴AE=EP=1∴在RT△ECP中,EC=12EP=12(2)过点D作DQ⊥AC于点Q,且设AQ=a,BD=x ∵AE=1,EC=2∴QC=3-a∵∠ACB=90°∴△ADQ与△ABC相似∴AD AQ AB AC=即113ax=+,∴31 ax=+∵在RT△ADQ中2222328111x x DQ AD AQx x+-⎛⎫=-=-=⎪++⎝⎭∵DQ AD BC AB=∴228111x x x x x +-+=+ 解之得x=4,即BC=4 过点C 作CF//DP∴△ADE 与△AFC 相似,∴AE ADAC AF=,即AF=AC ,即DF=EC=2, ∴BF=DF=2∵△BFC 与△BDP 相似 ∴2142BF BC BD BP ===,即:BC=CP=4 ∴tan ∠BPD=2142EC CP ==(3)过D 点作DQ ⊥AC 于点Q ,则△DQE 与△PCE 相似,设AQ=a ,则QE=1-a ∴QE DQEC CP =且1tan 3BPD ∠= ∴()31DQ a =-∵在Rt △ADQ 中,据勾股定理得:222AD AQ DQ =+ 即:()222131a a =+-⎡⎤⎣⎦,解之得41()5a a ==舍去 ∵△ADQ 与△ABC 相似∴445155AD DQ AQ AB BC AC x x====++ ∴5533,44x xAB BC ++==∴三角形ABC 的周长553313344x xy AB BC AC x x ++=++=+++=+ 即:33y x =+,其中x>0专题训练21.如图,在平面直角坐标系中,二次函数26y ax x c =++的图像经过点()4,0A 、()1,0B -,与y 轴交于点C ,点D 在线段OC 上,=OD t ,点E 在第二象限,∠=90ADE ,1=2tan DAE ∠,EF OD ⊥,垂足为F .(1)求这个二次函数的解析式;(2)求线段EF 、OF 的长(用含t 的代数式表示); (3)当∠ECA =∠OAC 时,求t 的值.参考答案:解:(1)二次函数y=ax 2+6x+c 的图象经过点A (4,0)、B (﹣1,0),∴,解得。

上海中考数学压轴题专题21 函数综合(相切)(解析版)

上海中考数学压轴题专题21 函数综合(相切)(解析版)

上海中考数学压轴题专题21 函数综合(相切)教学重难点1.掌握用待定系数法求解函数的解析式;2.培养学生能根据题目中的条件画出大致需要的图形;3.培养学生分析问题、解决问题的综合能力。

【备注】本部分为知识点回顾总结,时间大概为5分钟左右,注意让学生多画图回顾。

函数基础知识点梳理:x函数综合题目考点分析:1.求解函数解析式,以二次函数为主;2.求解相关点的坐标,二次函数中一般考察求对称轴、顶点坐标;3以函数为背景,考察相似、等腰、相切、平行四边形、面积等相关知识点;该类题型综合性很强,需要及时画图观察。

1.(2019静安区二模)已知:如图,梯形ABCD中,AD∥BC,AD=2,AB=BC=CD=6.动点P在射线BA上,以BP为半径的⊙P交边BC于点E(点E与点C不重合),联结PE、PC.设BP= x,PC= y.(1)求证:PE∥DC;(2)求y关于x的函数解析式,并写出定义域;(3)联结PD,当∠PDC=∠B时,以D为圆心半径为R的⊙D与⊙P相交,求R的取值范围.【整体分析】(1)根据梯形的性质得到∠B=∠DCB,根据等腰三角形的性质得到∠B=∠PEB,根据平行线的判定定理即可得到结论;(2)分别过P、A、D作BC的垂线,垂足分别为点H、F、G.推出四边形ADGF是矩形,PH∥AF,求得BF=FG=GC=2,根据勾股定理得到AF===,根据平行线分线段成比例定理得到PH=,13BH x=,求得163CH x=-,根据勾股定理即可得到结论;(3)作EM∥PD交DC于M.推出四边形PDME是平行四边形.得到PE=DM=x,即MC=6-x,根据相似三角形的性质得到PD=EC=1218655-=,根据相切两圆的性质即可得到结论.【满分解答】证明:(1)∵梯形ABCD,AB=CD,∴∠B=∠DCB.∵PB=PE,∴∠B=∠PEB,∴∠DCB=∠PEB,∴PE∥CD.(2)分别过P、A、D作BC的垂线,垂足分别为点H、F、G.∵梯形ABCD中,AD∥BC,AF⊥BC,DG⊥BC,PH⊥BC,∴四边形ADGF是矩形,PH∥AF.∵AD=2,BC=DC=6,∴BF=FG=GC=2.在Rt△ABF中,AF===﹒∵PH∥AF,∴PH BP BHAF AB BF==62x BH==.∴PH=,13 BH x=.∴163 CH x=-.在Rt△PHC中,PC=∴y=(09)y x=<<.(3)作EM∥PD交DC于M.∵PE∥DC,∴四边形PDME是平行四边形.∴PE=DM=x ,即 MC=6-x . PD=ME ,∠PDC=∠EMC , 又∵∠PDC=∠B ,∠B=∠DCB , ∴∠DCB =∠EMC =∠PBE =∠PEB . ∴△PBE ∽△ECM .∴PB BE EC MC =,即232663xx x x =--.整理方程,解得:185x =. 即BE 125=.∴PD=EC=1218655-=. 当两圆外切时,PD=P r R +,即0R =(舍去); 当两圆内切时,PD=P r R -,即10R =(舍去),2365R =; 即两圆相交时,3605R <<. 【点睛】此题考查圆的综合题,梯形的性质,平行四边形的性质,勾股定理,相似三角形的判定和性质,正确的作出辅助线是解题的关键.2.(2018徐汇区二模)如图,在中,,,点是边上一动点(不与点重合),以长为半径的与边的另一个交点为,过点作于点.当与边相切时,求的半径;联结交于点,设的长为,的长为,求关于的函数解析式,并直接写出的取值范围; 在的条件下,当以长为直径的与相交于边上的点时,求相交所得的公共弦的长.【整体分析】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=,则sinC=,sinC= ==,即可求解;(2)PD∥BE,则=,即:,即可求解;(3)证明四边形PDBE为平行四边形,则AG=GP=BD,即:AB=DB+AD=AG+AD=4,即可求解.【满分解答】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=,则sinC=,sinC===,解得:R=;(2)在△ABC中,AC=BC=10,cosC=,设AP=PD=x,∠A=∠ABC=β,过点B作BH⊥AC,则BH=ACsinC=8,同理可得:CH=6,HA=4,AB=4,则:tan∠CAB=2BP==,DA=x,则BD=4-x,如下图所示,PA=PD,∴∠PAD=∠CAB=∠CBA=β,tanβ=2,则cosβ=,sinβ=,EB=BDcosβ=(4-x)×=4-x,∴PD∥BE,∴=,即:,整理得:y=;(3)以EP为直径作圆Q如下图所示,两个圆交于点G,则PG=PQ,即两个圆的半径相等,则两圆另外一个交点为D,GD为相交所得的公共弦,∵点Q时弧GD的中点,∴DG⊥EP,∵AG是圆P的直径,∴∠GDA=90°,∴EP ∥BD ,由(2)知,PD ∥BC ,∴四边形PDBE 为平行四边形, ∴AG=EP=BD , ∴AB=DB+AD=AG+AD=4,设圆的半径为r ,在△ADG 中, AD=2rcosβ=,DG=,AG=2r ,+2r=4,解得:2r=,则:DG==10-2,相交所得的公共弦的长为10-2.【点睛】本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关lyxOC A B2.其它条件:直线l 过点()2,0A -,⊙B 和直线l 相切。

2021年上海市中考数学考点必杀500题专练12(几何压轴题)(30题)(解析版)

2021年上海市中考数学考点必杀500题专练12(几何压轴题)(30题)(解析版)

2021中考考点必杀500题 专练12(几何压轴题)(30道)1.(2021·上海九年级二模)如图,在矩形ABCD 中,4AB =,8BC =,点P 在边BC 上(点P 与端点B 、C 不重合),以P 为圆心,PB 为半径作圆,圆P 与射线BD 的另一个交点为点E ,直线CE 与射线AD 交于点G .点M 为线段BE 的中点,联结PM .设,==BP x BM y .(1)求y 关于x 的函数解析式,并写出该函数的定义域; (2)联结AP ,当//AP CE 时,求x 的值;(3)如果射线EC 与圆P 的另一个公共点为点F ,当CPF 为直角三角形时,求CPF 的面积.【答案】(1)582⎛⎫=≤< ⎪⎝⎭y x x ;(2)4;(3)6 【分析】(1)勾股定理求出BD 长,利用三角函数求解析式,根据点P 和点G 的位置确定该函数的定义域; (2) 设4=EH k ,则8,8,==-=BH k PH k x PE x ,根据勾股定理列方程即可;(3)根据哪个角是直角分类讨论,利用勾股定理或相似三角形的性质列方程,求出直角边长即可. 【详解】解:(1)由勾股定理,BD == ∵点M 为线段BE 的中点, ∵PM ∵BE ,Rt BMP 中,cos=∠=BM CBD BP ,解得5y x =, 点P 与端点C 不重合,所以8x <,当直线CE 恰好经过A 点时,BE=12BD=BM =52x =,该函数的定义域为:582x ≤<.(2)过点E 作EH BC ⊥于点H ,若CE //AP ,可知=AB EHBP HC设4=EH k ,则8,8,==-=BH k PH k x PE x由勾股定理,可得222(4)(8)=+-x k k x ,解得5x k =所以44588=-k k k ,解得=k (负根舍去)所以54===-BP x k(3)①若90PFC ∠=︒,由垂径定理,可知E 、F 重合,不符合题意; ②90PCF ∠=︒时,此时E 与D 重合,2224(8)x x =+-,解得5x = 所以13,4,3462====⨯⨯=CPFCP CF CD S③90CPF ∠=︒时,过点E 作EQ BC ⊥,交BC 延长线于点Q43,,,855======-PB PE PF x EQ x PQ x PC x 由//PF EQ ,可得54==CP PF CQ EQ ,所以59=CP PQ 代入数据,53895-=⨯x x ,解得16,6262==⨯⨯=PCFx S 综上,PCF 的面积为6.【点睛】本题考查了解直角三角形、相似三角形、圆的有关性质,解题关键是熟练综合运用所学知识,进行推理计算,注意:分类讨论思想的运用.2.(2021·上海九年级专题练习)定理:一条弧所对的圆周角等于这条弧所对的圆心角的一半.如图1中,12A O ∠=∠. 已知:如图2,AC 是⊙O 的一条弦,点D 在⊙O 上(与A 、C 不重合),联结DC 交射线AO 于点E ,联结OD ,⊙O 的半径为5,3tan 4OAC ∠=. (1)求弦AC 的长.(2)当点E 在线段OA 上时,若DOE ∆与AEC ∆相似,求DCA ∠的正切值. (3)当1OE =时,求点A 与点D 之间的距离(直接写出答案).【答案】(1)8;(2)1tan 3DCA ∠=;(3)当1OE =时,AD 的长是 【分析】(1)如图1,作OH AC ⊥垂足为点H ,OH 过圆心,由垂径定理得:12AH CH AC ==,运用勾股定理和3tan 4OAC ∠=可求解出结果; (2)由相似和一条弧所对的圆周角等于这条弧所对的圆心角的一半可得到DOE A ∠=∠,//OD AC ,通过相似比可求出AE 的长,作EG AC ⊥垂足为G ,得到//GE OH ,再运用相似比求出EG 和CG 的长,即求出最终结果;(3)如图5,当点E 在线段OA 上时,延长AO 交∵O 于M ,通过3tan 4OAC ∠=得到AG 和EG ,再通过勾股定理求出CE 的长,通过MDECAE 求出DE 的长,最后在运用勾股定理运算即可;如图6,当E 在AO 延长线上时,EG AC ⊥,连接DM ,AD ,运用同样的方法可求出第二个结果. 【详解】(1)解:如图3,作OH AC ⊥垂足为点H ,OH 过圆心,由垂径定理得:12AH CH AC ==, ∵在t R OAH ∆中3tan 4OH OAC AH ∠==,设3,4OH x AH x ==, ∵在t R OAH ∆中,可得:222OH AH OA +=,由∵O 的半径为5可得:()()222345x x +=, 解得:1x =±,(1x =-舍去)∵3,4OH AH ==, ∵28AC AH ==.(2)∵DEO AEC ∠=∠,∵当DOE ∆与AEC ∆相似时可得:DOE A ∠=∠或者DOE ACD ∠=∠; 由定理:一条弧所对的圆周角等于这条弧所对的圆心角的一半.可知:12ACD DOE ∠=∠, ∵ACD DOE ∠≠∠∵当DOE ∆与AEC ∆相似时不存在DOE ACD ∠=∠情况. ∵当DOE ∆与AEC ∆相似时,DOE A ∠=∠, ∵//OD AC ,∵OD OEAC AE=; ∵5,8OD OA AC ===,得558AE AE -=,∵4013AE =;) 作EG AC ⊥垂足为G ,可得:90AGE AHO ∠=∠=,∵//GE OH ,∵AE EG AGAO OH AH==即4013534EG AG ==, ∵2413EG =,3213AG =,327281313CG =-=,∵在t R CEG ∆中,24113tan 72313EG DCA CG ∠===.(3)如图5,当点E 在线段OA 上时,延长AO 交∵O 于M , 连接DM ,AD ,EG AC ⊥, OE=1,∴AE=4,ME=6,又3tan 4OAC ∠==EG AG, 同(1)中的计算方法,AG=165,125EG =,∴1624855CG =-=,∴CE ==又DME ECA MDE EAC ∠=∠∠=∠,,MDECAE ∴,MD MEAC CE∴=,∴85MD =,∴MD=AD ∴===如图6,当E 在AO 延长线上时,EG AC ⊥,连接DM ,AD ,3tan 4OAC ∠==EG AG, OE=1,AE=6,ME=4, 同理可得,AG=245,185EG =,2416855CG ∴=-=,5EC ∴==, 同理DMEACE ,ME DMCE AC∴=,85DM,29DM ∴=,29AD ∴===,∴当1OE =时,AD 的长是 【点睛】本题考查圆的综合运用,难度比较大,涉及圆的基本性质,相似三角形,勾股定理,锐角三角函数等知识,需要有较强的数形结合能力,根据条件添加适当的辅助线是和解决本题的关键.3.(2021·上海青浦区·九年级一模)在ABC 中,90C ∠=︒,2AC =,BC =,点D 为边AC 的中点(如图),点P 、Q 分别是射线BC 、BA 上的动点,且BQ BP =,联结PQ 、QD 、DP .(1)求证:PQ AB ⊥;(2)如果点P 在线段BC 上,当PQD △是直角三角形时,求BP 的长;(3)将PQD △沿直线QP 翻折,点D 的对应点为点'D ,如果点'D 位于ABC 内,请直接写出BP 的取值范围.【答案】(1)见解析;(2;(3BP <<【分析】(1)证明∵BPQ∵∵BAC 即可;(2)由∵PQD<90︒,只需要讨论两类情况,当90DPQ ∠=︒时,利用tan3AC B BC ===,求出∵B=30,30DPC ∠=︒,计算tan 30CDCP ︒===,根据BP=BC -CP 求值;当90PDQ ∠=︒时,过Q作QE∵AC 交AC 于E ,则∵QED=∵PDQ=90C ∠=︒,证明∵EQD∵∵CDP ,得到QE EDCD CP=,设BP t =,过点Q 作QF∵BC 于F ,则四边形CEQF 是矩形,求出1344t QE F t t C +===,1CD =,CP t =,1DE CE CD =-=-,代入比例式求出t 的值; (3)只需考虑BP 的极限情况:①当'D 正好在BC 上时,如图3,设BP=m ,由'30DD C B ∠=∠=︒求出'CD =,'DP D P =,列得()'2CP D P CP DP m m +=+=+=计算求值即可;②另外一个极限情况时,如图4,当PQ 经过点D 时,求出PC=tan 60CD =︒BP = 【详解】解:(1)在ABC 中,90C ∠=︒,2AC =,BC =∵4AB ==,∵BC AB ==,∵2BQ BP =,∵BQ BP =, ∵BQ BCBP AB=, ∵QBP CBA ∠=∠,BPQBAC ∴,∵90BQP BCA ∠=∠=︒,PQ AB ∴⊥;(2)90PQD ∠<︒,所以只需要讨论两类情况,当90DPQ ∠=︒时,如图1,在Rt∵ABC中,tan AC B BC ===∵∵B=30,∵9060QPB B ∠=︒-∠=︒,30DPC ∴∠=︒,∵2AC =,点D 为边AC 的中点, ∵CD=1,∵tan 30CDCP ︒===,BP BC CP ∴=-=当90PDQ ∠=︒时,如图2,过Q 作QE∵AC 交AC 于E ,则∵QED=∵PDQ=90C ∠=︒, ∵∵EQD+∵EDQ=∵EDQ+∵CDP=90︒,EQD CDP ∴,QE EDCD CP∴=, 设BP t =,过点Q 作QF∵BC 于F ,则四边形CEQF 是矩形, ∵∵B=30,∵BQP=90︒, ∵PQ=12t , ∵60QPB ∠=︒, ∵cos 6014PF PQ t =⋅︒=,sin 60QF PQ =⋅︒=,∵1344t QE F t t C +===,1CD =,CP t =,14DE CE CD t =-=-,134t -∴=6t ∴=或6t =(舍去),综上,BP(3)只需考虑BP 的极限情况:①当'D 正好在BC 上时,如图3,设BP=m ,'DD PQ ⊥,'30DD C B ∴∠=∠=︒,'CD ∴=30CDP ∠=︒,又'DP D P =,()'2CP D P CP DP m m ∴+=+=+=m ∴=;②另外一个极限情况时,如图4,当PQ 经过点D 时,∵60P ∠=︒,90DCP ∠=︒,CD=1,∵PC=tan 60CD =︒∵BP =综上:33BP <<..【点睛】此题考查相似三角形的判定及性质,锐角三角函数,直角三角形30度角所对的直角边等于斜边的性质,矩形的判定及性质,熟记各定理是解题的关键.4.(2021·上海奉贤区·九年级一模)已知圆O 的直径4AB =,点P 为弧AB 上一点,联结PA PO 、,点C 为劣弧AP 上一点(点C 不与点A 、P 重合),联结BC 交PA PO 、于点D E 、()1如图,当78cos CBO ∠=时,求BC 的长;()2当点C 为劣弧AP 的中点,且EDP ∆与AOP ∆相似时,求ABC ∠的度数;()3当2AD DP =,且BEO ∆为直角三角形时.求四边形AOED 的面积.【答案】(1)72;(2)18°;(3)53 【分析】(1)方法一:作OG BC ⊥,利用垂径定理和余弦即可求得;方法二:连接AC ,根据直径所对的圆周角等于90°可得∵ACB=90°,利用余弦解直角三角形即可;(2)先根据已知条件确定两个相似三角形的对应角,得出P PED PAO OEB ∠=∠=∠=∠,设ABC α∠=,利用等腰三角形等边对等角和弧与圆心角的关系,圆周角定理分别表示∵AOP 和∵OEB ,利用三角形外角的性质即可求得α即ABC ∠;(3)分当90EOB ∠=和当90OEB ∠=时两种情况讨论,画出对应图形,利用相似三角形和解直角三角形的知识求解即可.【详解】解析:方法一:作OG BC ⊥, ∵BC=2BG,7cos 4BG BO CBO =⋅∠=,722BC BG ∴==; 方法二:连接AC ,∵AB 为直径,90ACB ∴∠=7cos 2BC AB CBO ∴=⋅∠=; (2)∵AO=OP ,∵∵PAO=∵P , ∵P P ∠=∠,EDP ∆与AOP ∆相似,,DPE OPA ∴∆∆P PED PAO OEB ∴∠=∠=∠=∠, C 是AP 中点,CO ∴平分AOP ∠,CO BO =,设,ABC α∠=2,4AOC AOP αα∴∠=∠=,18049022PAO OEB αα-∴∠==-=∠, AOP OEB ABC ∴∠=∠+∠,即4902a a a =-+,18a ABC ∴=∠=;()3 I .当90EOB ∠=时,作DH AB ⊥∵DH//OP ,∵∵ADH∵∵APO , ∵23AH DH AD AD AO OP AP AD DP ====+, 23AH AO ∴=, ∵AB=4,∵OA=OB=2,428,,333AH HO BH ∴===, 2,AO OP ==43AH DH ∴==, ∵DH//OP ,∵∵BOE∵∵BHD , 28433EO OB EO DH HB ∴===, 1EO ∴=,AHD AOED HOED S S S ∆∴=+四边形梯形21414251232333⎛⎫⎛⎫=⨯+⨯+⨯= ⎪ ⎪⎝⎭⎝⎭; II .当90OEB ∠=时连接,AC由()1得//AC DP ,∵∵ACD∵∵PED ,∵ACB∵∵OEB ,2AD DP =, ∵2CD AC AD DE PE DP===, 2AC EP ∴=,又,AO BO = ∵=2CB AC AB BE OE BO==, 2,AC EO ∴=2,30AC OP ABC ∴==∠=,60,EOB CAO ∴∠=∠=∵AO=OP ,∵∵PAO=∵APO ,∵PAO+∵APO=∵EOB=60°,∵30CAD AP O O PA ∠=∠==∠,ABC OEB ACD AOED S S S S ∆∆∆∴=--四边形111222AC BC OE BE CD AC =⋅-⋅-⋅ 4,AB =2,AC BC BE ∴===1OE =,CD =111212222AOED S ∴=⨯⨯⨯=四边形综上所述,四边形AOED 的面积为53 【点睛】本题考查圆周角定理、垂径定理、相似三角形的性质和判定,解直角三角形,等腰三角形的性质等.(1)中能借助定理构造直角三角形是解题关键;(2)能借助相似三角形以及圆周角定理表示相关角是解题关键;(3)中注意分类讨论和正确构造图形.5.(2021·上海九年级专题练习)如图,在ABC 中,90ABC ∠=︒,3AB =,4BC =,过点A 作射线//AM BC ,点D 、E 是射线AM 上的两点(点D 不与点A 重合,点E 在点D 右侧),连接BD 、BE 分别交边AC 于点F 、G ,DBE C ∠=∠.(1)当1AD =时,求FB 的长(2)设AD x =,FG y =,求y 关于x 的函数关系式,并写出x 的取值范围;(3)联结DG 并延长交边BC 于点H ,如果DBH △是等腰三角形,请直接写出AD 的长.【答案】(1)FB =(2)()243604520x y x x +=<<+;(3)94AD =或32或78. 【分析】29)(944x x ++ 【详解】(1)在Rt∵ABD 中,AD=1,AB=3,==,∵//AM BC ,∵∵ADF∵∵CBF , ∵F AD CB DF B ==14, ∵BF=4DF ,∵FB =(2)∵∵ADF∵∵CBF , ∵4DF BF AF AD x CF CB ===,,∵BF=4x +,DF=4x+, 在Rt∵ABC 中,AB=3,BC=4,=5, ∵AF=54x x+, ∵AM∵BC ,∵∵CAD=∵C ,∵DBE C ∠=∠,∵∵CAD=∵DBE ,∵∵AFD=∵BFG ,∵∵ADF∵∵BGF , ∵F GBF A DF F =, ∵AF FG BF DF ⋅=⋅,∵FG y =,∵5444x y x x x⋅=+++, ∵()243604520x y x x +=<<+;(3)∵∵ADF∵∵BGF , ∵D GBG A DF F =,∵42054BG x x=++,∵BG = ∵AM∵BC ,∵∵DBE=∵C ,∵DEB=∵CBG ,∵∵BDE∵∵CGB ,∵BE CG BC BD ⋅=⋅,∵4xBE =-,∵GE=BE - ∵AM∵BC ,∵∵DEG∵∵HBG ,∵DE BG BH EG ⋅=⋅, ∵BH=29)(944x x ++, 分三种情况:①当BD=BH 时,29()494x x =++78x =; ②当BD=DH 时,则BH=2AD=2x , ∵29)24(94x x x ++=,解得x=32;③当BH=DH 时,过H 作HP∵BD 于P ,此时BP=12BD =, ∵∵ABD+∵PBH=∵ABD+∵ADB=90︒,∵∵ADB=∵PBH ,∵∵BAD=∵BPH=90︒,∵∵ABD∵∵PHB ,∵BP BD BH AD ⋅=⋅, ∵229)92(449x x x =+++,解得x=94, 综上,线段AD 的长为94或32或78.【点睛】此题考查勾股定理,相似三角形的判定及性质,等腰三角形的性质,分情况讨论问题进行解答,(3)多次证明三角形相似,目的是求出线段BH 的长度,再根据等腰三角形的性质进行解答,如用(2)的思路进行求解BH 的长度,则无法进行求值,只能是通过其他方法求BH ,这是此题的难点.6.(2021·上海)如图,已知在Rt ABC 中,90ACB ∠=︒,4AC BC ==,点D 为边BC 上一动点(与点B 、C 不重合),点E 为边AB 上一点,EDB ADC ∠=∠,过点E 作EF AD ⊥,垂足为点G ,交射线AC 于点F .(1)如果点D 为边BC 的中点,求DAB ∠的正切值;(2)当点F 在边AC 上时,设CD x =,CF y =,求y 关于x 的函数解析式及定义域;(3)联结DF 如果CDF 与AGE 相似,求线段CD 的长.【答案】(1)1tan 3DAB ∠=;(2)()2402y x x =-+<≤;(3)-4、8-3. 【分析】(1))过点D 作DH AB ⊥于H ,在Rt ACB 中,利用勾股定理解得AD 、AB 的长,再结合等积法,解得DH 、AH 的长即可解题;(2)根据相似三角形对应边成比例的性质,表示()444x EH x -=+, 再证明AFE BDE 由AF AE DB BE =即)4444x y x x --=-+得到与x 的关系; (3)根据相似三角形对应边成比例的性质,结合(2)中y 关于x 的函数解析式联立方程组,继而解得x 、y 的值即可解题.【详解】(1)过点D 作DH AB ⊥于H ,在Rt ACB中,AD =AB ∴==142ADB SDB AC ∴=⋅= 12ADB S AB DH =⋅DH ∴=AH == 1tan 3DH DAB AH ∴∠==; (2)过E 作EH∵CB 于H∵EDB ADC ∠=∠,90C EHD ∠=∠=︒ ∵ACD EHD .∵AC EH CD DH = 即44EHx x EH=--. ∵()444x EH x -=+ .∵EH∵CB ,90ACB ∠=︒,4AC BC ==∵)44x EB x -==+ ,AB =∵)44x AE x -=+∵EF AD ⊥,90C ∠=︒ ∵AFG ADC ∠=∠ . ∵EDB ADC ∠=∠ ∵AFG EDB ∠=∠. ∵45FAE B ∠=∠=︒ ∵AFEBDE .∵AF AE DB BE =即)4444x yxx --=-+整理得,()2402y x x =-+<≤; (3)在Rt∵MDB 中,DB=4-x, 所以MD=MB=(4).2x - 在Rt∵ADM 中,AM=AB 一MB=)(4).22x x -=+ 所以tan∵DAB=44DM xAM x-=⋅+ 按照点F 的位置,分两种情况讨论∵CDF 与∵AGE 相似: ①点F 在线段AC 上,此时y=4-2x. 如图,如果∵FDC=∵DAB ,由tan∵FDC=tan∵DAB,得44y x x x-=⋅+ 结合y=4-2x ,整理,得x2+8x+16=0. 解得-4 或--4 (舍去),如果∵CFD=∵DAB ,由tan∵CFD=tan∵DAB ,得4.4x x y x-=+ 结合y=4- -2x,整理,得x 2-16x+16=0.解得8x =-8+②点F 在线段AC 的延长线上,此时y=2x -4如图如果∵FDC=∵DAB,由44y x x x-=+结合y=2x -4,整理,得23160.x -=解得或(舍去) 如果∵CFD=∵DAB, 44x xy x-=+与y=2x -4 整理,得238160.x x -+= 此方程无解.综上,CD 的值为-4、8- 【点睛】本题考查勾股定理、相似三角形的性质,涉及解二元一次方程组等知识,解题关键是根据题意利用相似三角形性质构造方程.7.(2021·上海九年级专题练习)如图,四边形ABCD 中,4AB AD ==,3CB CD ==,90ABC ADC ∠=∠=︒,点M 、N 是边AB 、AD 上的动点,且12MCN BCD ∠=∠,CM 、CN 与对角线BD 分别交于点P 、Q .(1)求sin MCN ∠的值:(2)当DN DC =时,求CNM ∠的度数; (3)试问:在点M 、N 的运动过程中,线段比PQMN的值是否发生变化?如不变,请求出这个值;如变化,请至少给出两个可能的值,并说明点N 相度的位置. 【答案】(1)45;(2)45°;(3)不会发生变化,35. 【分析】(1)连接AC,利用垂直平分线性质,构造Rt∵ABC ,由正弦三角函数即可求得;(2)证明 ∵BCG∵∵DCN ,得到角相等,再由角相等,得∵GMC∵∵NMC ,由DN DC =解答即可; (3)由D 、C 、N 、P 四点共圆,得到∵CPD=∵CND=∵MNC ,再得∵CPQ∵∵CNM ,由此解答即可. 【详解】 解:(1)连接AC∵4AB AD ==,3CB CD == ∵AC 垂直平分BD ∵∵ACB=∵ACD=12∵BCD=∵MCN 在Rt∵ABC 中,AB=4,AC=35==∵sin MCN ∠=sin∵ACB=45AB AC = (2)延长AB 至G 点,使BG=DN ,连接CG , ∵CB=CD ∵CBG=∵CBN=90° ∵∵BCG∵∵DCN∵∵G=∵CND ,CN=CG ,∵BCG=∵DCN∵∵MCN=12∵BCD ∵∵MCB+∵NCD=12∵BCD∵∵GCM=∵GCB+∵GCM=12∵BCD=∵MCN∵CM=CM , ∵G=∵CND, ∵∵GMC∵∵NMC ∵∵G=∵MNC=∵DNC 当DN=NC 时 ∵DNC=∵DCN=45° ∵∵DNC=∵CNM=45°(3)连接NP , ∵∵ADC=∵ADO+∵CDO=90° ∵ADO+∵CDO=90° ∵∵ADO=∵COD=12∵BCD=∵MCN ∵∵NDP=∵NCP∵D 、C 、N 、P 四点共圆, ∵∵NPC+∵NDC=180° ∵∵NDC=90° ∵∵NPC=90° ∵∵CPD=∵CND=∵MNC ∵∵CPQ∵∵CNM ∵PQ CPMN CN= 在Rt∵CPN 中,CPCN =cos∵MCN=cos∵ACB=35∵不会发生变化35PQ MN =【点睛】本题考查了线段垂直平分线的性质,三角形全等性质与判断,三角形相似等知识点,解题的关键是掌握性质与判定.8.(2021·上海九年级专题练习)已知⊙MAN 是锐角,点B 、C 在边AM 上,点D 在边AN 上,⊙EBD =⊙MAN ,且CE ⊙BD ,sin⊙MAN =35, AB =5,AC =9. (1)如图1,当CE 与边AN 相交于点F 时,求证:DF ·CE =BC ·BE ; (2)当点E 在边AN 上时,求AD 的长;(3)当点E 在⊙MAN 外部时,设AD =x ,⊙BCE 的面积为y ,求y 与x 之间的函数解析式,并写出定义域.【答案】(1)证明见解析;(2)AD=4±(3)224825x y x x =-+.定义域为:44x <<. 【分析】(1)根据CE∵BD ,得出∵CEB=∵DBE ,∵DBA=∵BCE 结合题干证明出∵ABD∵∵ECB ,进而得到AD EBAB EC=,再等量代换即可得到DF·CE=BC·BE .(2)过点B 作BH∵AN ,垂足为H .根据条件先证明出∵CEB∵∵CAE ,得到2CE =CB CA ⋅,代入求出CE ,再根据BD ABCE AC=求出BD ,利用三角函数求出BH ,根据勾股定理即可求出AD .(3)过点B 作BH∵AN ,垂足为H .BH=4,AH=3,DH=4x -根据∵ECB∵∵ABD 得到22EBC ADB S BC S BD △△=,代入化简为224825xy x x =-+即可求解. 【详解】解:(1)∵CE∵BD , ∵∵CEB=∵DBE ,∵DBA=∵BCE . ∵∵A=∵DBE , ∵∵A=∵BEC . ∵∵ABD∵∵ECB , ∵AD EBAB EC=. ∵AD DFAB BC=, ∵EB DFEC BC=, ∵DF·CE=BC·BE .(2)过点B 作BH∵AN ,垂足为H .∵CE∵BD , ∵∵CEB=∵EBD=∵A , 又∵∵BCE=∵ECA , ∵∵CEB∵∵CAE , ∵CE CACB CE=, ∵2CE =CB CA ⋅. ∵AB=5,AC=9,∵BC=4,∵24936 CE==⨯,∵CE=6.∵BD AB CE AC=,∵561093AB CEBD==AC⋅⨯=.在Rt∵ABH中,3sin535BH AB A=⋅=⨯=,4.==.AD=4.(3)过点B作BH∵AN,垂足为H.BH=4,AH=3,DH=4x-.2222224)3825BD=DH+BH x x x=-+=-+(.∵∵ECB∵∵ABD,∵22EBCADBS BCS BD△△=.∵1322ABDS AD BH x=⋅△=,∵21638252yx xx=-+,∵224825xyx x=-+.定义域为4433x-<<+.【点睛】此题属于平面几何的综合应用,主要利用三角形相似,找到相似比,根据相似比求值,计算量较大,有一定难度.9.(2021·上海九年级专题练习)四边形ABCD是菱形,⊙B≤90°,点E为边BC上一点,联结AE,过点E作EF⊙AE,EF与边CD交于点F,且EC=3CF.(1)如图1,当⊙B=90°时,求ABES与ECFS的比值;(2)如图2,当点E 是边BC 的中点时,求cos B 的值; (3)如图3,联结AF ,当⊙AFE=⊙B 且CF=2时,求菱形的边长.【答案】(1)94;(2)15;(3)17. 【分析】(1)先证明:,BEA CFE ∽可得:BE ABCF CE=,结合:3,EC CF =可得:3,AB BE =再设,,CF a BE b == 可得3,AB BC b a ==+而3AB b =,建立方程:33,b a b +=可得:3,2b a = 再利用相似三角形的性质可得答案.(2)延长,AE DC 相交于G ,过F 作FHAD ⊥于,H 连接AF ,先证明:,ABE GCE ≌可得:,,AB CG AE GE == 证明:AF FG =, 设,CF a = 再设DH x =, 利用22222,AF AH FH DF DH -==-求解x ,可得cos ,D 从而可得答案;(3)如图,过E 作EG DC ⊥交DC 的延长线于G ,延长CG 至H ,使,CG HG = 证明:6EH EC ==, 设,DF x = ,HG GC y == 证明:,AFE B D ECH H ∠=∠=∠=∠=∠可得:cos ,6EF ycoc AFE H AF ∠==∠=再证明:,FEH AFD ∽利用相似三角形的性质列方程组,解方程组可得答案. 【详解】 解:(1)四边形ABCD 是菱形,90B ∠=︒,∴ 四边形ABCD 是正方形,90B C ∴∠=∠=︒, 90BAE BEA ∴∠+∠=︒,,EF AE ⊥90BEA CEF ∴∠+∠=︒,,BAE CEF ∴∠=∠,BEA CFE ∴∽BE ABCF CE ∴=, ,BE CF AB CE∴= 3,EC CF = 3,AB BE ∴=设,,CF a BE b ==3,CE a ∴=3,AB BC b a ∴==+而33,AB BE b ==33,b a b ∴+=3,2b a ∴=9,2AB a ∴=22992.34ABE CEFaS AB SCE a ⎛⎫ ⎪⎛⎫∴===⎪ ⎪⎝⎭ ⎪⎝⎭(2)延长,AE DC 相交于G ,过F 作FHAD ⊥于,H 连接AF ,菱形ABCD ,//,AB CD ∴,BAE G ∴∠=∠ E 为BC 的中点,,BE CE ∴=,AEB CEG ∠=∠()ABE GCE AAS ∴≌,,,AB CG AE GE ∴==,AE EF ⊥,AF FG ∴=设,CF a = 则3,CE BE a == 6AB BC DC CG AD a =====,75,FG AF a DF a ∴===,设,DH x =22222,AF AH FH DF DH ∴-==-()()()2222765,a a x a x ∴--=- ,x a ∴=,DH a ∴=1cos ,55DH a D DF a ∴=== 由菱形ABCD 可得:,B D ∠=∠1cos .5B ∴= (3)如图,过E 作EG DC ⊥交DC 的延长线于G ,延长CG 至H ,使,CG HG =,,EC EH H ECH ∴=∠=∠23,CF CE CF ==,6CE EH ∴==,设,DF x = ,HG GC y ==则2,DC AD x ==+,6HG y coc H EH ∴∠== 菱形ABCD ,,//,B D AB CD ∴∠=∠,B ECH ∴∠=∠,AFE B ∠=∠,AFE B D ECH H ∴∠=∠=∠=∠=∠cos ,6EF y coc AFE H AF ∴∠==∠= ,AFH AFE EFH D DAF ∠=∠+∠=∠+∠,EFH DAF ∴∠=∠,FEH AFD ∴∽,EH HF EF DF ADAF ∴== 622,26y y x x +∴==+ 361012xy xy y =⎧∴⎨=+⎩, 解得:15,2.4x y =⎧⎨=⎩经检验:152.4x y =⎧⎨=⎩是原方程组的解,217,CD x ∴=+=即菱形ABCD 的边长为:17.【点睛】本题考查的是三角形全等的判定与性质,线段垂直平分线的性质,勾股定理的应用,菱形,正方形的性质,相似三角形的判定与性质,解直角三角形,解分式方程组,掌握以上知识是解题的关键.10.(2021·上海九年级专题练习)如图,Rt ABC 中,90ACB ∠=︒,6AC =,8BC =,点D 为斜边AB 的中点,ED AB ⊥,交边BC 于点E ,点P 为射线AC 上的动点,点Q 为边BC 上的动点,且运动过程中始终保持PD QD ⊥.(1)求证:ADP EDQ △△;(2)设AP x =,BQ y =,求y 关于x 的函数解析式,并写出该函数的定义域;(3)连接PQ ,交线段ED 于点F ,当PDF 为等腰三角形时,求线段AP 的长.【答案】(1)证明见解析;(2)253250443y x x ⎛⎫=-≤≤ ⎪⎝⎭;(3)256或53 【分析】(1)根据ED AB ⊥,PD QD ⊥得A DEQ ∠=∠,ADP EDQ ∠=∠,即可得ADP EDQ △△. (2)先根据相似三角形的性质、中点性质以及锐角三角函数的概念得出tan EQ ED ED B AP AD BD===,求出34EQ x =,再根据BQ BE EQ =-,列出函数关系式,化简即可. (3)先证PDF BDQ △△,再分3种情况讨论,分别求出AP 的长.【详解】解:(1) PD QD ⊥,ED AB ⊥∵A DEQ ∠=∠,ADP EDQ ∠=∠,∵ADP EDQ △△. (2)ADP EDQ △△, ∵EQ ED AP AD= 又点D 为斜边AB 的中点, ∵AD BD = ,EQ ED ED AP AD BD== 又ED AB ⊥在Rt BDE 中tan =ED ED EQ B BD AD AP ==, 又6tan =8AC BC DE B BD ==,由勾股定理得:BC =10 D 为AB 中点,∵BD =5, DE =154,由勾股定理得:BE =254 AP x =, 可得34EQ x =, BQ BE EQ =-,253250443y x x ⎛⎫=-≤≤ ⎪⎝⎭. (3)tan tan DQ ED ED FPD B DP AD BD∠====, ∵FPD B ∠=∠, 又∵PDF BDQ ∠=∠,∵PDF BDQ △△, ∵PDF 为等腰三角形时,BDQ △亦为等腰三角形.若DQ BQ =,12cos BD B BQ=,542253544x =-, 解得256x . 若BD BQ =,253544x -=, 解得53x =. ③若DQ BD =,2180B DQB BDQ B BDQ ︒∠+∠+∠=∠+∠<,此种情况舍去.【点睛】本题主要考查了相似三角形的判定和性质,等腰三角形的性质和判定,三角函数,正确和熟练应用相似三角形的性质得到各线段之间的数量关系是解决本题的关键.11.(2021·上海嘉定区·九年级一模)如图,在矩形ABCD 中,6AB =,8AD =,点E 在CD 边上,1tan 2EAD ∠=.点F 是线段AE 上一点,连接BF ,CF .(1)如果3tan 4CBF ∠=,求线段AF 的长; (2)如果12CF BC =. ①求证:CFE DAE ∠=∠;②求线段EF 的长.【答案】(1)5;(2)①证明见解析; 【分析】(1)如图:作FG AB ⊥,设AG k =、FG=2k,然后用k 表示出BG ,在根据AG+BG=AB 求出K 即可完成解答;(2)①作CG EF ⊥,先用矩形的性质和解三角形的相关知识求得EG 、CG 、FG ,最后说明1tan tan 2CFE DAE ∠==∠即可证明; ②直接运用线段的和差计算即可.【详解】解:(1)如图:作FG AB ⊥,设AG k =, ∵1tan 2EAD ∠=∵1tan 2AG GFA FG ∠==,即22FG AG k ==, ∵3tan 4CBF ∠= ∵4tan 3ABF ∠=, ∵43FG BG =,即3342BG FG k == ∵AG+BG=AB∵362k k+=.∵125k=,∵AF====(2)作CG EF⊥,①∵矩形ABCD∵BC=AD=8,CD=AB=6∵12CF BC==4∵1 tan2DEEADAD∠==∵182DE=即DE=4, tan2FED∠=∵CE=CD-DE=6-4=2,∵∵CEG=∵DEA∵tan∵CEG=tan∵DEA=2∵tan∵CEG=2=CG EG设EG=m,则CG=2mCE=,2=,解得∵EG=CG=∵FG===∵1tan tan2CFE DAE∠==∠∵CFE DAE ∠=∠;②EF FG EG =-==. 【点睛】 本题属于三角函数的综合题,主要考查了解三角形、正切以及勾股定理等内容,灵活运用三角函数解直角三角形成为解答本题的关键.12.(2021·上海闵行区·九年级一模)如图,在矩形ABCD 中,2AB =,1AD =,点E 在边AB 上(点E 与端点A 、B 不重合),联结DE ,过点D 作DF DE ⊥,交BC 的延长线于点F ,连接EF ,与对角线AC 、边CD 分别交于点G 、H .设AE x =,DH y =.(1)求证:ADE CDF ∽△△,并求EFD ∠的正切值;(2)求y 关于x 的函数解析式,并写出该函数的定义域;(3)连接BG ,当BGE △与DEH △相似时,求x 的值.【答案】(1)证明见解析;12;(2)222(02)21x y x x +=<<+;(3)x =x =【分析】 (1)根据垂直关系得到ADE CDF ∠=∠,根据AA 即可证明ADE CDF ∽△△,得到12DE AD DF CD ==,再根据正切的定义即可求解tan EFD ∠;(2)先证明FCH FBE △∽△,得到FC CH FB BE =,代入得到22212x y x x-=+-,故可求解;(3)根据题意分BEG DHE △∽△和EGB HDE △∽△,分别列出比例式求出x 的值即可求解.【详解】解:(1)∵90ADE CDE ︒∠+∠=,90CDF CDE ︒∠+∠=∵ADE CDF ∠=∠在Rt EAD 和Rt FCD 中90ADE CDF EAD FCD ∠=∠⎧⎨∠=∠=︒⎩90EAD FCD ︒∠=∠=∵FAD FCD △∽△∵2AB DC ==,1AD =, ∵12DE AD DF CD == ∵1tan 2DE EFD DF ∠== (2)由(1)可知ADE CDF ∽△△ ∵12EA DE AD FC DF CD === ∵22FC EA x ==∵AB //CD∵FCH FBE △∽△, ∵FC CH FB BE= ∵22212x y x x -=+- ∵222(02)21x y x x +=<<+, (3)∵AE x =,DH y =,过点E 作EM∵CD 于M 点,∵四边形AEMD 为矩形∵MH=DH -DM=DH -AE=y -x ,∵2BE x =-,DE =EH =∵AB //CD∵AEG CHG △∽△ ∵EG AE HG CH= ∵EG AE EH AE CH=+ ∵AE EG EH AE CH =⋅+ ∵BEG DHE ∠=∠, 若BEG DHE △∽△, ∵BE EG DH HE= ∵BE AE DH AE CH =+ 即22x x y x y-=+- 化简得2240x y +-= ∵22221x y x +=+ ∵222212240x x x +⨯-++= 化简得22508x x +=-解得x =x =若EGB HDE △∽△ ∵BE EG EH HD= ∵2AE BE HD HE AE CH⋅=⋅+ 即2(2)1()2x x y y x x y ⎡⎤-=⋅+-⎣⎦+- ∵22221x y x +=+代入化简得22637200x x ++= ∵=372-4×26×20=-711<0,综上,x =x =BGE △与DEH △相似.【点睛】本题考查了矩形的性质、函数关系式、正切的定义、相似三角形的判定和性质等知识点,解题的关键是灵活运用所学知识解决问题,用分类讨论的思想思考问题,属于中考压轴题.13.(2021·上海九年级专题练习)如图,已知在等腰ABC 中,AB AC ==,tan 2ABC ∠=,BF AC ⊥,垂足为F ,点D 是边AB 上一点(不与A ,B 重合)(1)求边BC 的长;(2)如图2,延长DF 交BC 的延长线于点G ,如果CG 4=,求线段AD 的长;(3)过点D 作DE BC ⊥,垂足为E ,DE 交BF 于点Q ,连接DF ,如果DQF △和ABC 相似,求线段BD 的长.【答案】(1)10;(2(3.(1)如图作AH BC ⊥交BC 于点H ,设BH =x ,根据正切可求出AH =2x ,再根据勾股定理解出x 即可. (2)作//DE BC 交AC 于点E ,利用三角形面积公式可求出BF 的长,再利用勾股定理可求出CF ,从而得到AF .再利用ADE ABC 和DEF GCF 结合边的等量关系得到两个关于未知边的方程组,解出方程组即可.(3)根据题意可证明C DQF ∠=∠,所以分两种情况讨论①当DQ=DF 时,如图,作DP BF ⊥交BF 于点P ,BE x =,再反复利用正切函数结合勾股定理求出x 的值,最后再利用正切函数即可求出BD 的长②当DF=QF 时,如图,作FO DQ ⊥ 交DQ 于点O ,同理设BE x =,解出x 的值,最后再利用正切函数即可求出BD 的长.【详解】(1)如图作AH BC ⊥交BC 于点H ,设BH =x , 根据题意,tan 2AH ABC BH∠==, ∵AH =2x ,在Rt ABH 中,222AB AH BH =+,∵222(2)x x =+解得x =5.∵BH = 5.又∵ABC 是等腰三角形,即H 点为BC 中点,∵BC =2BH =10.(2)根据题意可知1122ABC S AH BC BF AC =⨯⨯=⨯⨯,即1010BF ⨯=⨯∵BF=∵CF===,AF AC CF=-==.作//DE BC交AC于点E,∵ADE ABC,得到:DE AEBC AC=,即10DE=.DEF GCF,得到:DE EFCG CF=.又∵EF AF AE AE=-=∵4DE=由104DEDE⎧=⎪⎪⎨⎪=⎪⎩,解得3DE=,AE=.∵//DE BC,ABC是等腰三角形,∵ADE也是等腰三角形,∵AD AE==(3)∵90BQE QBE∠+∠=︒,90C QBE∠+∠=︒,∵BQE C∠=∠,又∵BQE DQF ∠=∠,∵C DQF ∠=∠当DQ=DF 时,如图,作DP BF ⊥交BF 于点P ,设BE x =,∵tan tan tan tan 2ABC C BQE DQP ∠=∠=∠=∠=, ∵2x QE =,∵2BQ x ===,∵QF BF BQ =-=,∵124QP PF QF x ===, ∵tan 2DQP ∠=,∵5104DQ x ==-, ∵531010424x DE DQ QE x x =+=-+=-, ∵tan 2DE ABC BE ∠==,即31042x x-=, 解得x =4011,经检验是原方程的解,即4011BE =.∵11BD ==.当DF=QF 时,如图,作FO DQ ⊥ 交DQ 于点O ,设BE x =, 同理2x QE =,2BQ x =,2QF x =, ∵ tan tan 2OQF BQE ∠=∠=,∵142OQ x ==-, ∵28DQ OQ x ==-, ∵8822x x DE DQ QE x =+=-+=+, 同理∵tan 2DE ABC BE ∠==,即822x x+=, 解得165x =,经检验是原方程的解,165BE =.∵BD == .【点睛】本题考查勾股定理,等腰三角形的性质,相似三角形的判定和性质,正切函数,边的等量关系等知识,作出每一个问的辅助线是解答本题的关键,综合性较强,较难.需特别注意最后问的分情况讨论. 14.(2020·上海九年级二模)如图,在O 中,半径O 长为1,弦//BC OA ,射线BO ,射线CA 交于点D ,以点D 为圆心,CD 为半径的D 交BC 延长线于点E .(1)若85BC =,求O 与D 公共弦的长;(2)当ODA 为等腰三角形时,求BC 的长;(3)设BC x =,CE y =,求y 关于x 的函数关系式,并写出定义域.【答案】(1)4825CM =;(2)BC =(3)22(12)1x x y x x -=<<-. 【分析】(1)设CM 是两圆的公共弦,CM 交BD 于N ,交OA 于K ,BD 交O 于G ,连接OC 、CG 交OA 于H ,由题意易得OA CG ⊥,CH HG =,进而可证KON KCH ∠=∠,1425OH BC ==,最后根据勾股定理及相似三角形的性质可求解;(2)当OAD △是等腰三角形时,观察图形可知,只有OA AD =,则有AOD ADO COA ∠=∠=∠,设AC x =,则有2OC CA CD =⋅,进而求出x ,最后求解即可;(3)作DN CE ⊥于N ,根据题意可证AOC CDE B ∠=∠=∠,进而有BE BD =,则可得BG BC GD CN =,最后进行求解即可.【详解】解:(1)如图1中,设CM 是两圆的公共弦,CM 交BD 于N ,交OA 于K ,BD 交O 于G ,连接OC 、CG 交OA 于H ,∵BG 是直径,∵90BCG ∠=︒,∵//BC OA ,∵90OHG BCG ︒∠=∠=,∵OA CG ⊥,∵CH HG =,∵CM BD ⊥,∵90ONK CHK ︒∠=∠=,∵OKN CKH ∠=∠,∵KON KCH ∠=∠,∵OG OB =,CH HG =, ∵1425OH BC ==, ∵1OC =,∵35CH HG ===, ∵OGH CGN ∠=∠,GCN GOH ∠=∠,∵GCN GOH ∽△△, ∵CN CG OH OG=, ∵65415CN =, ∵2425CN =, ∵48225CM CN ==.(2)如图2中,当OAD △是等腰三角形时,观察图形可知,只有OA AD =,∵AOD ADO COA ∠=∠=∠,∵OCA OCD ∠=∠,∵OCA DCO ∽△△,设AC x =,则有2OC CA CD =⋅,∵1(1)x x =+,∵12x -=或12--(舍弃),∵CD CA AD =+ ∵//OA BC ,∵AOD B ODA ∠=∠=∠,∵BC CD ==;(3)如图3中,作DN CE ⊥于N ,∵DC DE =,∵DCE E ∠=∠,∵//BC OA ,∵OAC DCE OCA ∠=∠=∠,∵AOC CDE B ∠=∠=∠,∵E BDE ∠=∠,∵BE BD =,∵CG BE ⊥,DN BE ⊥,∵//CG DN , ∵BG BC GD CN=, ∵22x y DG =, ∵y DG x=, ∵BD BE =, ∵2y x y x+=+, ∵22(12)1x x y x x -=<<-. 【点睛】本题主要考查圆的综合运用及相似三角形的判定与性质,熟练掌握圆的基本性质及相似三角形的性质与判定是解题的关键.15.(2020·上海浦东新区·九年级三模)已知:如图,在Rt⊙ABC 中,⊙ACB =90°,BC =3,AC =4.D 是边AB 的中点,点E 为边AC 上的一个动点(与点A 、C 不重合),过点E 作EF ⊙AB ,交边BC 于点F .联结DE 、DF ,设CE =x .(1)当x =1时,求⊙DEF 的面积;(2)如果点D 关于EF 的对称点为D’,点D’ 恰好落在边AC 上时,求x 的值;(3)以点A 为圆心,AE 长为半径的圆与以点F 为圆心,EF 长为半径的圆相交,另一个交点H 恰好落在线段DE 上,求x 的值.【答案】(1)9;8DEF S ∆=(2)39;16x = (3)64.41x = 【分析】(1)过点E 作EM AB ⊥,由EF∵AB 得EM 为∵DEF 边EF 上的高,通过计算求出EF 、EM 即可求出∵DEF 面积;(2)过点E 作EN AB ⊥,垂足为点N ,设DD '与EF 相交于点Q ,根据对称性知DD EF '⊥,12QD DD '=,分别在Rt∵AD D’和Rt∵AEN 中解直角三角形即可解得x 值; (3)AF 与DE 相交于点G ,在Rt∵CEF 中,用x 表示出AF ,利用EF∵AB 得AG AD FG EF =,用x 表示出AG ,再用两圆相交的性质知AF∵DE ,进而证得AGE ACF ~即AG AE AC AF =,代入数值即可得关于x 的方程,解之即可解得x 值.【详解】解:(1)如图1,过点E 作EM AB ⊥,垂足为点M .在Rt ACB 中,90ACB ∠=,3BC =,4AC =,5AB ∴=,3sin 5A ∠=. 1CE =,4AC =,3AE ∴=.在Rt AME 中,90AME ∠=,3sin 5A ∠=,3AE =,95EM ∴=. //EF AB ,CE EF CA AB ∴=. 又1CE =,54EF ∴=. EF 11599M 22458D S EF E ∴=⋅=⨯⨯=.。

上海十年中考数学压轴题及答案解析

上海十年中考数学压轴题及答案解析

上海十年中考数学压轴题解析2001年上海市数学中考27.已知在梯形ABCD 中,AD ∥BC ,AD <BC ,且AD =5,AB =DC =2. (1)如图8,P 为AD 上的一点,满足∠BPC =∠A .图8①求证;△ABP ∽△DPC ②求AP 的长.(2)如果点P 在AD 边上移动(点P 与点A 、D 不重合),且满足∠BPE =∠A ,PE 交直线BC 于点E ,同时交直线DC 于点Q ,那么①当点Q 在线段DC 的延长线上时,设AP =x ,CQ =y ,求y 关于x 的函数解析式,并写出函数的定义域; ②当CE =1时,写出AP 的长(不必写出解题过程).27.(1)①证明:∵∠ABP =180°-∠A -∠APB ,∠DPC =180°-∠BPC -∠APB ,∠BPC =∠A ,∴∠ABP =∠DPC .∵在梯形ABCD 中,AD ∥BC ,AB =CD ,∴∠A =∠D .∴△ABP ∽△DPC .②解:设AP =x ,则DP =5-x ,由△ABP ∽△DPC ,得DCPD AP AB =,即252xx -=,解得x 1=1,x 2=4,则AP 的长为1或4.(2)①解:类似(1)①,易得△ABP ∽△DPQ ,∴DQ AP PD AB =.即y xx +=-252,得225212-+-=x x y ,1<x <4. ②AP =2或AP =3-5.(题27是一道涉及动量与变量的考题,其中(1)可看作(2)的特例,故(2)的推断与证明均可借鉴(1)的思路.这是一种从模仿到创造的过程,模仿即借鉴、套用,创造即灵活变化,这是中学生学数学应具备的一种基本素质,世上的万事万物总有着千丝万缕的联系,也有着质的区别,模仿的关键是发现联系,创造的关键是发现区别,并找到应付新问题的途径.)上海市2002年中等学校高中阶段招生文化考试27.操作:将一把三角尺放在边长为1的正方形ABCD 上,并使它的直角顶点P 在对角线AC 上滑动,直角的一边始终经过点B ,另一边与射线DC 相交于点Q .图1 图2 图3探究:设A 、P 两点间的距离为x .(1)当点Q 在边CD 上时,线段PQ 与线段PB 之间有怎样的大小关系?试证明你观察得到结论;(2)当点Q 在边CD 上时,设四边形PBCQ 的面积为y ,求y 与x 之间的函数解析式,并写出函数的定义域; (3)当点P 在线段AC 上滑动时,△PCQ 是否可能成为等腰三角形?如果可能,指出所有能使△PCQ 成为等腰三角形的点Q 的位置,并求出相应的x 的值;如果不可能,试说明理由. 五、(本大题只有1题,满分12分,(1)、(2)、(3)题均为4分) 27.图1 图2 图3(1)解:PQ =PB ……………………(1分)证明如下:过点P 作MN ∥BC ,分别交AB 于点M ,交CD 于点N ,那么四边形AMND 和四边形BCNM 都是矩形,△AMP 和△CNP 都是等腰直角三角形(如图1).∴ NP =NC =MB . ……………………(1分) ∵ ∠BPQ =90°,∴ ∠QPN +∠BPM =90°.而∠BPM +∠PBM =90°,∴ ∠QPN =∠PBM . ……………………(1分) 又∵ ∠QNP =∠PMB =90°,∴ △QNP ≌△PMB . ……………………(1分) ∴ PQ =PB . (2)解法一由(1)△QNP ≌△PMB .得NQ =MP . ∵ AP =x ,∴ AM =MP =NQ =DN =x 22,BM =PN =CN =1-x 22, ∴ CQ =CD -DQ =1-2·x 22=1-x 2.得S △PBC =21BC ·BM =21×1×(1-x 22)=21-42x . ………………(1分) S △PCQ =21CQ ·PN =21×(1-x 2)(1-x 22)=21-x 423+21x 2 (1分) S 四边形PBCQ =S △PBC +S △PCQ =21x 2-x 2+1. 即 y =21x 2-x 2+1(0≤x <22). ……………………(1分,1分)解法二作PT ⊥BC ,T 为垂足(如图2),那么四边形PTCN 为正方形. ∴ PT =CB =PN .又∠PNQ =∠PTB =90°,PB =PQ ,∴△PBT ≌△PQN .S 四边形PBCQ =S △四边形PBT +S 四边形PTCQ =S 四边形PTCQ +S △PQN =S 正方形PTCN …(2分)=CN 2=(1-x 22)2=21x 2-x 2+1∴ y =21x 2-x 2+1(0≤x <22). ……………………(1分)(3)△PCQ 可能成为等腰三角形①当点P 与点A 重合,点Q 与点D 重合,这时PQ =QC ,△PCQ 是等腰三角形, 此时x =0 ……………………(1分) ②当点Q 在边DC 的延长线上,且CP =CQ 时,△PCQ 是等腰三角形(如图3) ……………………(1分) 解法一 此时,QN =PM =x 22,CP =2-x ,CN =22CP =1-x 22. ∴CQ =QN -CN =x 22-(1-x 22)=x 2-1. 当2-x =x 2-1时,得x =1. ……………………(1分) 解法二 此时∠CPQ =21∠PCN =22.5°,∠APB =90°-22.5°=67.5°, ∠ABP =180°-(45°+67.5°)=67.5°,得∠APB =∠ABP ,∴ AP =AB =1,∴ x =1. ……………………(1分)上海市2003年初中毕业高中招生统一考试27.如图,在正方形ABCD中,AB=1,弧AC是点B为圆心,AB长为半径的圆的一段弧。

上海市中考数学压轴题总复习(附答案解析)

上海市中考数学压轴题总复习(附答案解析)

2021年上海市中考数学压轴题总复习
中考数学压轴题是想获得高分甚至满分必须攻破的考题,得分率低,需要引起重视。

从近10年中考压轴题分析可得中考压轴题主要考查知识点为二次函数,圆,多边形,相似,锐角三角形等。

预计2021年中考数学压轴题依然主要考查这些知识点。

1.如图1,在平而直角坐标系中,直线/:y =勃+m与x轴、y轴分别交于点.4和点
(2)点。

在抛物线上,且点。

的横坐标为f(0Vf<4). 轴交直线/于点£点产在直线/上,且四边形。

FEG为矩形(如图2).若矩形。

尸EG的周长为p,求°与,的函数关系式以及R的最大值:
(3)M是平面内一点,将A4O8绕点M沿逆时针方向旋转90°后,得到△川。

山1,点
A.。

、B的对应点分别是点由、。

1、51.若入41。

1历的两个顶点恰好落在抛物线上,请直
接写出点出的横坐标.
2.已知,抛物线y=aF+Gr+6 (。

#0)与直线y=2rb〃有一个公共点Af (1, 0),且a〈b.
(1)求6与。

的关系式和抛物线的顶点。

坐标(用。

的代数式表示):
(2)直线与抛物线的另外一个交点记为N,求AOMV的面积与。

的关系式:
(3)々=-1时,直线y=-2x与抛物线在第二象限交于点G,点G、H关于原点对称,
现将线段GH沿y轴向上平移,个单位(r>0),若线段GH与抛物线有两个不同的公共点,试求,的取值范围.。

冲刺2022年上海中考数学压轴题第7讲 相似三角形的存在性 解法分析与经典变式(解析版)

冲刺2022年上海中考数学压轴题第7讲 相似三角形的存在性 解法分析与经典变式(解析版)

第7讲相似三角形的存在性在很多与相似三角形相关的压轴题中,其中常见的一种题型就是相似三角形的存在性讨论。

对于相似三角形的存在性问题,一般来说,会有一组等角,然后从边或从角的角度进行分类讨论:通常,我们还可以借助基本图形分析法,找到边与角的数量关系,从而完成上述问题的讨论。

例1.(2022金山一模25题).已知:如图 11,AD⊥直线MN,垂足为D,AD=8,点B 是射线DM 上的一个动点,∠BAC=90°,边AC 交射线DN 于点C,∠ABC 的平分线分别与AD、AC 相交于点E、F.(1)求证:△ABE∽△CBF;(2)如果AE=x,FC=y,求y 关于x 的函数关系式;(3)联结DF,如果以点D、E、F 为顶点的三角形与△BCF 相似,求AE 的长.2022金山一模25题的图形背景是母子型+角平分线,解题路径围绕着相似三角形的性质定理、判定定理以及射影定理展开。

题型主要围绕证明三角相似,函数关系的建立以及相似三角形的存在性讨论。

本题的关键是根据三角形的相似或角平分线的性质标出图形中的等角,然后再根据角的等量关系确定线段间的数量关系。

解法分析:本题的第一问是相似三角形的判定。

利用角平分线和平行线得到等角,继而再射影定理模型中的等角关系,利用A.A判定相似即可。

解法分析:本题的第二问是函数关系的确立。

利用第一问中相似三角形对应线段成比例以及等角的三角比相等可以顺利地建立函数关系。

解法分析:本题的第三问是相似三角形的存在性讨论。

由第一问中角的数量关系可得∠BFC=∠DEF ,因此由角进行分类讨论。

在分类讨论的过程中,善于运用斜X 型和射影定理模型即可快速得到结论,对于不存在的情况要能够排除。

解:(1)∵AD ⊥直线MN ,∠BAC =90°,∴∠BAD +∠ABD = 90°, ∠BCF +∠ABD = 90°,∴∠BAD =∠BCF ……………………………………………………………………………(1分)∵BF 平分∠ABC ,∴∠ABE =∠CBF ………………………………………………………(1分) ∴△ABE ∽△CBF . …………………………………………………………………………(1分)(2)作FH ⊥BC 垂足为点H .∵△ABE ∽△CBF ,∴∠AEB =∠CFB ,∵∠AEB+∠AEF =180°,∠CFB+∠CFE =180°∴∠AEF =∠CFE ,∴AE =AF=x ;…………………………………………………………(1分) ∵BF 平分∠ABC ,FH ⊥BC ,∠BAC =90°,∴AF=FH=x .∵FH ⊥BC ,AD ⊥直线MN ,∴FH∥AD ,∴FH FC AD AC=,即8x y y x =+,…………(2分) 解得:28x y x=-(48x <<)……………………………………………………………(2分)(3)设AE=x ,由△ABE ∽△CBF ,如果以点D 、E 、F 为顶点的三角形与△BCF 相似,即以点D 、E 、F 为顶点的三角形与△ABE 相似.∵∠AEB =∠DEF ,如果∠BAE =∠FDE ,得DF∥AB ,∴∠ABE =∠DFE ,∵∠ABE =∠DBE , ∴∠DBE =∠DFE ,∴BD=DF , ………………………………………(1分) 由DF∥AB ,得∠DFC=∠BAC =90°,∴∠DFC=∠ABD =90°,又∠BAD =∠BCF ,∴△ABD ≌△CDF ,…………………………………………………(1分)CF=AD=8,即2=88x x-,解得:4x =-±(舍去负值),∴4AE x ==-+…………………………(1分)如果∠BAE =∠DFE ,得AE BE EF DE=,∵∠ABF =∠BED ,∴△AEF ∽△BED ,∴∠AFE =∠BDE , 因为∠AFE 是锐角,∠BDE 是直角,所以这种情况不成立。

决胜2021年中考数学压轴题全揭秘精品(上海专版) 专题01 创新题型(教师版含解析)

决胜2021年中考数学压轴题全揭秘精品(上海专版) 专题01 创新题型(教师版含解析)

专题01创新题型模块一:定义应用例1.定义[x ]为不超过x 的最大整数,如[3.6] = 3,[ 3.6-] = 4-.对于任意实数x ,下列式子错误的是( ) A .[x ] = x (x 为整数)B .0[]1x x ≤-<C .[][][]x y x y +≤+D .[][]n x n x +=+(n 为整数)【难度】★★ 【答案】C .【解析】由反例[][3.8 2.7] 6.56+==,[3.8][2.7]325+=+=可知C 错误. 【总结】本题考查取整函数[x ]的定义及应用.例 2.在平面直角坐标系xOy 中,对于点P (x ,y )和Q (x ,'y ),给出如下定义:若()()0'0y x y y x ⎧≥⎪=⎨-<⎪⎩,则称点Q 为点P 的“可控变点”.如果点(1-,2-)为点M 的可控变点,则点M 的坐标为___________. 【难度】★★ 【答案】(-1,2)【解析】由题意得,当0<x 时,'=-y y ,且x 不变,所以当1x =-,时'2=y , 即点M 坐标为(1-,2).【总结】把握好“可控变点”的定义,找出'y 与y 两者之间存在的关系.例3.定义一种新运算:2x y x y x +*=,如2212122+⨯*==,则()()421**-=______. 【难度】★★ 【答案】0.【解析】先计算()4224224+⨯*==,再计算()()2122102+-⨯*-==. 【总结】根据运算法则进行运算,注意运算顺序.例4.已知1m x =+,2n x =-+,若规定()()11m n m n y m n m n ⎧+-≥⎪=⎨-+<⎪⎩,则y 的最小值为( )A .0B .1C .1-D .2【难度】★★ 【答案】B .【解析】把1m x =+,2n x =-+代入,得到1221222⎧⎛⎫≥ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+< ⎪⎪⎝⎭⎩x x y x x ,当12≥x 时,1≥y ;当12<x 时,1>y .所以y 的最小值是1,故选B . 【总结】考查分段函数求最值的问题.例5.定义运算“*”:规定x y ax by *=+(其中a 、 b 为常数),若113*=,()111*-=,12*=______.【难度】★★ 【答案】4.【解析】把113*=,()111*-=代入运算法则,得31+=⎧⎨-=⎩a b a b ,解得:21=⎧⎨=⎩a b ,所以12*=2×1+1×2=4.【总结】根据新运算,求出a 、b 的值是解答本题的关键.例 6.对于实数m 、n ,定义一种运算“*”为:m n mn n *=+.如果关于x 的方程()14x a x **=-有两个相等的实数根,那么满足条件的实数a 的值是______.【难度】★★ 【答案】0.【解析】根据运算法则,()*=+a x ax x ,()()*+=+++x ax x x ax x ax x , 整理得()()211104++++=a x a x ,此方程有两个相等的实数根, 则()()210110+≠⎧⎪⎨=+-+=⎪⎩a a a ,解得:1201a a ==-,(舍),所以a=0. 【总结】由运算法则整理得一元二次方程的一般形式,再结合一元二次方程根的判别式进行 求解,注意二次项系数不能为零.例7.(2020黄浦区一模)定义:我们知道,四边形的一条对角线把这个四边形分成两个三角形,如果这两个三角形相似但不全等,我们就把这条对角线叫做这个四边形的相似对角线,在四边形ABCD 中,对角线BD 是它的相似对角线,∠ABC =70°,BD 平分∠ABC ,那么∠ADC =____________度 【答案】145【分析】先画出示意图,由相似三角形的判定可知,在△ABD 和△DBC 中,已知∠ABD=∠CBD ,所以需另一组对应角相等,若∠A=∠C ,则△ABD 与△DBC 全等不符合题意,所以必定有∠A=∠BDC,再根据四边形的内角和为360°列式求解. 【详解】解:根据题意画出示意图,已知∠ABD=∠CBD , △ABD 与△DBC 相似,但不全等, ∴∠A=∠BDC ,∠ADB=∠C.又∠A+∠ABC+∠C+∠ADC=360°, ∴2∠ADB+2∠BDC+∠ABC=360°, ∴∠ADB+∠BDC=145°, 即∠ADC=145°.【点睛】对于新定义问题,读懂题意是关键.例8.(2020杨浦区一模).在方格纸中,每个小格的顶点叫做格点,以格点连线为边的三角形叫做格点三角形.如图,请在边长为1个单位的2×3的方格纸中,找出一个格点三角形DEF .如果△DEF 与△ABC 相似(相似比不为1),那么△DEF 的面积为______.【答案】1;【分析】根据小正方形的边长,分别求出ABC 和DEF 三边的长,然后判断它们是否对应成比例,再用三角形面积公式求解即可. 【详解】如图,∵1AB BC ==,,AC∴:?:?AB BC AC =∵DE =2EF =,DF =∴::DE EF DF ==∴:?:?::AB BC AC DE EF DF = ∴~ABC DEF ∴12112DEFS=⨯⨯= 故答案为:1【点睛】本题考查了在网格中画与已知三角形相似的三角形、三角形全等的判定以及三角形面积公式,熟练掌握三角形全等的判定是解题的关键.例9.我们把两个三角形的外心之间的距离叫做外心距.如图,在Rt ABC ∆和Rt ACD ∆中,90ACB ACD ∠=∠=︒,点D 在边BC 的延长线上,如果BC = DC = 3,那么ABC ∆和ACD ∆的外心距是______.【难度】★★ 【答案】3.【解析】直角三角形的外心为斜边的中点,所以ABC ∆和ACD ∆ 的外心分别为AB 和AD 的中点,这两个三角形的外心距 即∆ABD 的中位线,长度是132=BD .【总结】本题考查的知识点有直角三角形的外心、三角形的中位线.例10.定义[a ,b ,c ]为函数2y ax bx c =++的“特征数”.如:函数232y x x =+-的“特征数”是[1,3,2-],函数4y x =-+的“特征数”是[0,1-,4].如果将“特征数”是[2,0,4]的函数图像向下平移3个单位,得到一个新函数图像,那么这个新函数的解析式是__________________. 【难度】★★ 【答案】221=+y x .【解析】由题意得“特征数”是[2,0,4]的函数解析式为224=+y x ,向下平移3个单位可 得新函数的解析式为:221=+y x .【总结】特征数[a ,b ,c ]即为二次函数的三个系数,已知特征数则可求得二次函数的解析 式,再根据抛物线的平移法则“上加下减、左加右减”进行解题.例11.在平面直角坐标系xOy 中,C 的半径为r ,点P 是与圆心C 不重合的点,给出如下定义:若点'P 为射线CP 上一点,满足2'CP CP r =,则称点'P 为点P 关于C 的反演点.如图为点P 及其关于C 的反演点'P 的示意图.请写出点M (12,0)关于以原点O 为圆心,以1为半径的O 的反演点'M 的坐标 .AB D【难度】★★★【答案】(2,0).【解析】由反演点的定义可得2'=OM OM r ,即21'12=OM ,解得:'2=OM ,又点'M 在x 轴上, 所以点'M 的坐标为(2,0).【总结】掌握“反演点”的定义中,两点之间存在的关系.例12.如图1,对于平面上不大于90°的MON ∠,我们给出如下定义:如果点P 在MON ∠的内部,作PE OM ⊥,PF ON ⊥,垂足分别为点E 、F ,那么称PE + PF 的值为点P 相对于MON ∠的“点角距离”,记为d (P ,MON ∠).如图2,在平面直角坐标系xOy 中,点P 在第一象限内,且点P 的横坐标比纵坐标大1,对于xOy ∠,满足d (P ,xOy ∠)= 5,点P 的坐标是__________.【难度】★★★ 【答案】(3,2).x yP' CPO ENF OPM 图1yx-11-11O图2【解析】过点P 分别作PA ⊥x 轴,PB ⊥y 轴, ∵点P 在第一象限内且横坐标比纵坐标大1, ∴设PA =a ,则PB =a +1, ∵d (P ,xOy ∠)= 5,可得:PA +PB =5,即a +a +1=5,解得:a =2, 所以点P 的坐标为(3,2).【总结】本次考查“点角距离”的定义,利用定义求解相关点的坐标.模块二:阅读理解例1.一组数1,1,2,x ,5,y ,…,满足“从第三个数起,每个数都等于它前面的两个数之和”,那么这组数中y 表示的数为______. 【难度】★ 【答案】8.【解析】由题得,x =1+2=3,y =3+5=8. 【总结】本题难度不大,运算也比较简单.例2.四个数a 、b 、c 、d 排列成a b c d,我们称之为二阶行列式.规定它的运算法则为:a b ad bc c d=-.若331233x x x x +-=-+,则x =______.【难度】★★ 【答案】1.【解析】由运算法则得()()22333333+-=+---+x x x x x x ,整理得:1212=x ,解得:x =1.【总结】由运算法则整理,再解关于x 的方程即可.例3.对于两个不相等的实数a 、b ,我们规定符号{max a ,}b 表示a 、b 中的较大值,如:{max 2,}44=,按照这个规定,方程{max x ,}21x x x+-=的解为( )A .1B .2-C .11D .11-【难度】★★ 【答案】D .【解析】当x >0时,{}max x x x -=,,解方程21+=x x x,得:1=±x所以1=+x 当x <0时,{}max x x x -=-,,解方程21x x x+-=,得:121==-x x ,所以1=-x ;综上,1=x 1-,故选D .【总结】本题注意分类讨论,根据定义进行取值,再解关于x 的方程.例4.我们把三角形中最大内角与最小内角的度数差称为该三角形的“内角正度值”.如果等腰三角形的腰长为2,“内角正度值”为45°,那么该三角形的面积等于______. 【难度】★★ 【答案】1或2.45x +,45,则180x =,解得:45x =,此三角形为等腰直角三角形, ∴此三角形的面积=12当顶角为x 时,则4545180x x x ++++=,解得:30x =. 如图,2==AB AC ,30A ∠=,作CD ⊥AB ,在Rt ADC ,∵30A ∠=,∴112==CD AC , 211⨯=.综上所述,该三角形的面积等于1或2.【总结】本题注意分类讨论.根据“内角正度值”的定义求出三角形各内角的度数,再进行 面积的求解.例 5.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“有趣三D CBA角形”,这条中线称为“有趣中线”.已知Rt ABC ∆,90C ∠=︒,较短的一条直角边边长为1,如果Rt ABC ∆是“有趣三角形”,那么这个三角形“有趣中线”长等于 . 【难度】★★【解析】“有趣中线”有三种情况:若“有趣中线”为斜边AB 上的中线,直角三角形的斜边中点到三顶点距离相等,不合 题意;若“有趣中线”为BC 边上的中线,根据斜边大于直角边,矛盾,不成立;若“有趣中线”为另一直角边AC 上的中线, 如图所示,BC =1,设2BD x =,则CD x =. 在Rt BCD 中,勾股定理得1+()222=x x , 解得:xBD =2x. 【总结】本题考查“有趣中线”的定义,注意分类讨论.例6.如果一个平行四边形一个内角的平分线分它的一边为1 : 2的两部分,那么称这样的平行四边形为“协调平行四边形”,称该边为“协调边”.当“协调边”为3时,它的周长为______. 【难度】★★ 【答案】8或10.【解析】由题意可知,存在两种情况:(1)一组邻边长分别为3和1,周长=8; (2)一组邻边长分别为3和2,周长=10.【总结】本题考查“协调平行四边形”的定义及平行四边形的性质.例7.设正n 边形的半径为R ,边心距为r ,如果我们将Rr的值称为正n 边形的“接近度”,那么正六边形的“接近度”是______(结果保留根号).DCBA【难度】★★【解析】设正六边形的边长为a ,则半径为R=a ,边心距为,所以R r. 【总结】本题考查“接近度”的定义及正六边形的性质.例8.将关于x 的一元二次方程20x px q ++=变形为2x px q =--,就可将2x 表示为关于x 的一次多项式,从而达到“降次”的目的,我们称这样的方法为“降次法”.已知210x x --=,可用“降次法”求得431x x --的值是____________. 【难度】★★ 【答案】1.【解析】由210x x --=,得21=+x x ,代入431x x --=()221311+--=-=x x x x . 【总结】本题运用“降次”及“整体代入”的思想进行解题.例9.在平面直角坐标系中,我们把半径相等且外切、连心线与直线y = x 平行的两个圆,称之为“孪生圆”;已知圆A 的圆心为(2-,3)A 的所有“孪生圆”的圆心坐标为_________. 【难度】★★【答案】(0,5)或(-4,1).【解析】由题意得,连心线所在直线为5=+y x ,因为两圆外切,设另一圆心为圆B ,所以圆心距=AB ,设(),5+B x x ,所以AB 解得:10=x ,24=-x ,所以圆心B 的坐标为(0,5)或(-4,1).【总结】本题考查了“孪生圆”的定义、一次函数的图像以及圆与圆的位置关系.例10.当两个圆有两个公共点,且其中一个圆的圆心在另一圆的圆内时,我们称此两圆的位置关系为“内相交”.如果1O 、2O 半径分别3和1,且两圆“内相交”,那么两圆的圆心距d 的取值范围是___________. 【难度】★★ 【答案】23<<d .【解析】两个圆有两个公共点即两圆相交,可得24<<d ,当小圆的圆心恰好在大圆上时,3=d ,所以内相交的圆心距d 取值范围是23<<d .【总结】本题考查圆与圆的位置关系及“内相交”的定义.模块三:规律探究例1.观察下列各数:1,43,97,1615,…,按你发现的规律计算这列数的第6个数为( )A .2531B .3635C .47D .6263【难度】★★ 【答案】C .【解析】根据题意,可知规律为221n n -,故第6个数为:3663,化简为47,故选C .【总结】本题考查针对给定的一列数字找规律.例2.按一定规律排列的一列数:12,22,32,52,82,132,….若x 、y 、z 表示这列数中的连续三个数,猜测x 、y 、z 满足的解析式是____________. 【难度】★★ 【答案】=xy z .【解析】由给出的这一列数字,可得出规律:从第三个数字开始,每个数等于它两个数的乘积,所以=xy z .【总结】本题考查针对给定的一列数字找规律.例3.在平面直角坐标系中,有三个点A (1,1-)、B (1-,1-)、C (0,1),点P (0,2)关于点A 的对称点为1P ,1P 关于点B 的对称点为2P ,2P 关于点C 的对称点为3P ,按此规律,继续以点A 、B 、C 为对称中心重复前面的操作,依次得到点4P ,5P ,6P ,…,则点2017P 的坐标为( ) A .(0,0) B .(0,2)C .(2,4-)D .(4-,2)【难度】★★ 【答案】C .【解析】由题意得1P (2,-4)、2P (-4,2)、3P (4,0)、4P (-2,-2)、5P (0,0),6P (0,2),每6个数形成一个周期,2017÷6=336……1,所以2017P 的坐 标和1P 的坐标相同,故选C .【总结】本题考查了点的对称问题及周期问题的处理.例4.如图,正方形ABCD 的边长为2,其面积标记为1S ,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为2S ,…,按照此规律继续下去,则2017S 的值为_____________.【难度】★★★【答案】20141()2.【解析】由题意得1S =2×2=4=22,2S 12=,3S =111⨯==20,…… 由以上规律,可知2017S =2-201420141()2=.【总结】本题考查了找规律在几何图形中的应用.1.(2020松江二模)如果一个三角形中有一个内角的度数是另外两个内角度数差的2倍,我们就称这个三角形为“奇巧三角形”.已知一个直角三角形是“奇巧三角形”,那么该三角形的最小内角等于 度.【分析】设直角三角形的最小内角为x ,另一个内角为y ,根据三角形的内角和列方程组即可得到结论.【解答】解:设直角三角形的最小内角为x ,另一个内角为y , 由题意得,,解得:,答:该三角形的最小内角等于22.5°, 故答案为:22.5.2.(2020静安二模)如果一条直线把一个四边形分成两部分,这两部分图形的周长相等,那么这条直线称为这个四边形的“等分周长线”.在直角梯形ABCD中,AB∥CD,∠A=90°,DC=AD,∠B是锐角,cot B=,AB=17.如果点E在梯形的边上,CE是梯形ABCD的“等分周长线”,那么△BCE的周长为.【分析】作CH⊥AB于H,设BH=5a,证明四边形ADCH为矩形,得到AD=CH=12a,根据题意求出a,根据勾股定理求出BC,根据“等分周长线”计算,得到答案.【解答】解:作CH⊥AB于H,设BH=5a,∵cot B=,∴=,∴CH=12a,∵AB∥CD,∴∠D=∠A=90°,又CH⊥AB,∴四边形ADCH为矩形,∴AD=CH=12a,CD=AH,∵DC=AD,∴AH=CD=12a,由题意得,12a+5a=17,解得,a=1,∴AD=CD=AH=12,BH=5,在Rt△CHB中,BC==13,∴四边形ABCD的周长=12+12+17+13=54,∵CE是梯形ABCD的“等分周长线”,∴点E在AB上,∴AE=17+13﹣27=3,∴EH=12﹣3=9,由勾股定理得,EC==15,∴△BCE 的周长=14+13+15=42, 故答案为:42.3.(2020嘉定二模)定义:如果三角形的两个内角∠α与∠β满足∠α=2∠β,那么,我们将这样的三角形称为“倍角三角形”,如果一个等腰三角形是“倍角三角形”,那么这个【考查内容】新定义题型,黄金三角形 【评析】中等为底角时,用内角和公式求得∠β= 36,此时为黄金三角形,腰长与底边用内角和公式求得∠β= 45,此时为等腰直角三角 【答案】22或215+4.(2020长宁二模)如果一个四边形有且只有三个顶点在圆上,那么称这个四边形是该圆的“联络四边形”,已知圆的半径长为5,这个圆的一个联络四边形是边长为2的菱形,那么这个菱形不在圆上的顶点与圆心的距离是 .【分析】先根据题意画出图形,连接BD 、OD ,设AM =x ,根据AD 2﹣AM 2=OD 2﹣OM 2,列出方程,求出x ,再根据OC =OA ﹣AM ﹣CM 计算即可. 【解答】解:根据题意画图如下:连接BD ,与AC 交与点M , ∵四边形ABCD 是菱形, ∴∠AMD =∠DMC =90°,∠ACD =∠ACB ,CD =CD ,AM =CM , ∴DM 2=AD 2﹣AM 2,设AM=x,则DM2=(2)2﹣x2,连接OD、OB,在△OCD和△OCB中,,∴△OCD≌OCB(SSS),∴∠OCD=∠OCB,∴∠ACD+∠OCD=∠ACB+∠OCB=180°,∴OC与AC在一条直线上,∴△OMD是一个直角三角形,OM=OA﹣AM=5﹣x,∴DM2=OD2﹣OM2,=52﹣(5﹣x)2,∴(2)2﹣x2=52﹣(5﹣x)2,x=2,∴AM=CM=2,∴OC=OA﹣AM﹣CM=5﹣2﹣2=1.故答案为:1.5.(2020青浦二模)小明学习完《相似三角形》一章后,发现了一个有趣的结论:在两个不相似的直角三角形中,分别存在经过直角顶点的一条直线,把直角三角形分成两个小三角形后,如果第一个直角三角形分割出来的一个小三角形与第二个直角三角形分割出来的一个小三角形相似,那么分割出来的另外两个小三角形也相似.他把这样的两条直线称为这两个直角三角形的相似分割线.如图1、图2,直线CG、DH分别是两个不相似的Rt△ABC和Rt△DEF的相似分割线,CG、DH 分别与斜边AB、EF交于点G、H,如果△BCG与△DFH相似,AC=3,AB=5,DE=4,DF=8,那么AG=.【分析】先由勾股定理得出BC的值,再由△BCG∽△DFH列出比例式,设AG=x,用含x 的式子表示出DH;按照相似分割线可知,△AGC∽DHE,但要先得出两个相似三角形的边或角是如何对应的,再根据相似三角形的性质列出比例式,解得x值即可.解:∵Rt△ABC,AC=3,AB=5,∴由勾股定理得:BC=4,∵△BCG∽△DFH,∴=,已知DF=8,设AG=x,则BG=5﹣x,∴=,∴DH=10﹣2x,∵△BCG∽△DFH,∴∠B=∠FDH,∠BGC=∠CHF,∴∠AGC=∠DHE,∵∠A+∠B=90°,∠EDH+∠FDH=90°,∴∠A=∠EDH,∴△AGC∽DHE,∴=,又DE=4,∴=,解得:x=3,经检验,x=3是原方程的解,且符合题意.∴AG=3.故答案为:3.6.(2020杨浦二模) 定义:对于函数y =f (x ),如果当a ≤x ≤b 时,m ≤y ≤n ,且满足n ﹣m =k (b ﹣a )(k 是常数),那么称此函数为“k 级函数”.如:正比例函数y =﹣3x ,当1≤x ≤3时,﹣9≤y ≤﹣3,则﹣3﹣(﹣9)=k (3﹣1),求得k =3,所以函数y =﹣3x 为“3级函数”.如果一次函数y =2x ﹣1(1≤x ≤5)为“k 级函数”,那么k 的值是 . 【分析】根据一次函数y =2x ﹣1(1≤x ≤5)为“k 级函数”解答即可. 【解答】解:因为一次函数y =2x ﹣1(1≤x ≤5)为“k 级函数”, 可得:k =2, 故答案为:2.7.定义:如果二次函数2111y a x b x c =++(10a ≠,1a 、1b 、1c 是常数)与2222y a x b x c =++(20a ≠,2a 、2b 、2c 是常数)满足120a a +=,12b b =,120c c +=,那么称这两个函数互为“旋转函数”.若函数2423y x mx =-+-与22y x nx n =-+互为“旋转函数”,则()2017m n +=________. 【难度】★★ 【答案】-1.【解析】由“旋转函数”的定义得42320⎧=-⎪⎨⎪-+=⎩m nn ,解得:32=-⎧⎨=⎩m n ,所以()2017m n +=(-1)2017=-1.【总结】本题考查“旋转函数”的定义.8.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”.在Rt ABC ∆中,90C ∠=︒,若Rt ABC ∆是“好玩三角形”,则tan A =_______. 【难度】★★【解析】由于直角三角形斜边上的中线等于斜边的一半,因此斜边上的中线不满足; 故只能是直角边上的中线等于此直角边的长, 如图所示,设BD =2x ,CD =x ,则=BC ,在Rt ABC 中,AC =2x,=BC . 当∠A为较小锐角时,tan A =当∠A为较大锐角时,tan A =. 【总结】本题考查“好玩三角形”的定义,注意分类讨论.9.我们把四边形两条对角线中点的连线段称为“奇异中位线”.现有两个全等三角形,边长分别为3cm 、4cm 、5cm .将这两个三角形相等的边重合拼成凸四边形,如果凸四边形的“奇异中位线”的长不为0,那么“奇异中位线”的长是______cm . 【难度】★★【答案】710.【解析】如图,将两个全等的直角ABC 与DEF 的斜边AC 与DF 重合,拼成凸四边形ABCE ,AC 与BE 交于点O ,M 为AC 的中点.∵△ABC ≌△DEF ,易证AO ⊥BE .在Rt AOB 中,AO =AB •cos ∠BAO =95,因为1522==AM AC ,所以5972510=-=-=OM AM OA . 即奇异中位线的长是710. 【总结】本题考查了“奇异中位线”的定义,注意根据题目要求画出合适的图形.10.如果一个二次函数的二次项系数为1,那么这个函数可以表示为2y x px q =++,我们将[p ,q ]称为这个函数的特征数.例如二次函数242y x x =-+的特征数是[4-,2].请根据以上的信息探究下面的问题:如果一个二次函数的特征数是[2,3],将这个函数的图像先DCBA向左平移2个单位,再向下平移3个单位,那么此时得到的图像所对应的函数的特征数为______. 【难度】★★ 【答案】[6,8].【解析】特征数是[2,3]的二次函数为223=++y x x ,即2(1)2=++y x ,将其向左平移2个单位,再向下平移3个单位后得到的二次函数为2(3)1=+-y x ,即268=++y x x , 所以特征数为[6,8].【总结】本题考查了“特征数”的定义及二次函数图像的平移.11.如图1,点P 是以r 为半径的圆O 外一点,点'P 在线段OP 上,若满足2'OP OP r =,则称点'P 是点P 关于圆O 的反演点.如图2,在Rt ABO ∆中,90B ∠=︒,AB = 2,BO = 4,圆O 的半径为2,如果点'A 、'B 分别是点A 、B 关于圆O 的反演点,那么''A B 的长是______.【难度】★★★【答案】5.【解析】由反演点的定义,可知:2'=OA OA r ,2'=OB OB r ,则'=OA OA 'OB OB ,即''=OA OB OB OA ,又∠=∠O O ,可证''OA B ∽OBA , ∴'''=OB A B OA AB ,即225''=A B ,解得:''A B =5. 【总结】本题考查了“反演点”的定义,以及相似三角形的判定与性质.12.正方形111A B C O ,2221A B C C ,3332A B C C ,…,按如图所示的方式放置.点1A ,2A ,3A ,…和点1C ,2C ,3C ,…,分别在直线y kx b =+(0k >)和x 轴上,已知点1B (1,1),2B (3,2),OPP'BOA图1 图2则点6B 的坐标是__________,点n B 的坐标是__________.【难度】★★★【答案】(63,32),1(212)nn--,.【解析】由1A (0,1)、2A (1,2), 可求得直线解析式为1=+y x . 可求得3A (3,4)、3B (7,4),4A (7,8)、 4B (15,8),5A (15,16)、5B (31,16), 6A (31,32)、6B (63,32), ……,按照此规律可得n B 1(212)n n --,. 【总结】本题考查了一次函数与几何图形背景下找出点坐标的规律.13.对于平面直角坐标系 xOy 中的点P (a ,b ),若点'P 的坐标为(ba k+,ka b +)(其中k 为常数,且0k ≠),则称点'P 为点P 的“k 属派生点”.例如:P (1,4)的“2属派生点”为'P (412+,214⨯+),即'P (3,6).若点P 的“k 属派生点”'P 的坐标为(3,3),请写出一个符合条件的点P 的坐标:____________. 【难度】★★★ 【答案】(2,1).【解析】由题意得33⎧+⎪=⎨⎪+=⎩b a k ka b ,整理得:33+=⎧⎨+=⎩ka b k ka b ,所以1=k , 只要满足3+=a b 即可,可取点P (2,1).x yO【总结】本题考查了“派生点”的定义,关键是求出k 的值,答案不唯一.14.如图,正方形ABCD 的边长为1,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH ,…,如此下去,第n 个正方形的边长为__________.【难度】★★★ 【答案】12-n . 【解析】第一个正方形的边长为1,第二个正方形的边长为2,第三个正方形的边长为2,依次规律,第n 个正方形的边长为12-n . 【总结】本题考查了几何图形背景下线段长度上存在的规律.A BC D E FGH。

上海中考数学压轴题汇总—25题(2012-2021)-真题

上海中考数学压轴题汇总—25题(2012-2021)-真题

2012-2021年上海中考数学真题解答题第25题201225.(本题满分14分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分6分)如图,在半径为2的扇形AOB 中,∠=90AOB,点C 是弧AB 上的一个动点(不与点A 、B 重合)OD ⊥BC ,OE ⊥AC ,垂足分别为D 、E .(1)当=1BC 时,求线段OD 的长;(2)在△DOE 中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;(3)设=BD x ,△DOE 的面积为y ,求y 关于x 的函数关系式,并写出它的定义域.公众号:奥孚升学孚升学公众号:奥孚:奥孚升学众号公众号:奥孚升公众号:奥孚升学孚升学公众号:奥孚升学众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升公众号:奥孚升学公众号:奥孚升学公众号公众号:201325.在矩形ABCD 中,点P 是边AD 上的动点,联结BP ,线段BP 的垂直平分线交边BC 于点Q ,垂足为点M ,联结QP (如图10).已知13AD =,5AB =,设AP x BQ y ==,.(1)求y 关于x 的函数解析式,并写出x 的取值范围;(2)当以AP 长为半径的⊙P 和以QC 长为半径的⊙Q 外切时,求x 的值;(3)点E 在边CD 上,过点E 作直线QP 的垂线,垂足为F ,如果4EF EC ==,求x的值.公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升孚升学公众号:奥孚升公众公众号:奥孚升学号:奥孚升学公众号:奥孚公众号:奥孚升公众号:奥孚升学图10备用图公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥公众号:奥孚升公众号:奥孚升学公众号公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥公众号:奥孚升公众号:奥孚升学公众号201425.如图,已知在平行四边形ABCD 中,AB=5,BC=8,cosB=45,点P 是边BC 上的动点,以CP 为半径的圆C 与边AD 交于点EF(点F 在点E 的右侧),射线CE 与射线BA 交于点G.(1)当圆C 经过点A 时,求CP 的长;(2)联结AP ,当AP//CG 时,求弦EF 的长;(3)当AGE 是等腰三角形时,求圆C 的半径长.201525.已知,如图,AB 是半圆O 的直径,弦//CD AB ,动点,P Q 分别在线段,OC CD 上,且,DQ OP AP =的延长线与射线OQ 相交于点E ,与弦CD 相交于点F (点F 与点C ,D不重合),420,cos 5AB AOC =∠=设OP x =,CPF 的面积为y .(1)求证:AP OQ =;(2)求y 关于x 的函数关系式,并写出它的定义域;(3)当OPE 是直角三角形时,求线段OP的长.公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学孚升学公众号:奥孚升学公众公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升公众号:奥孚升学公众号:奥孚公众号201625.如图所示,梯形ABCD 中,AB ∥DC ,90B ∠=︒,15AD =,16AB =,12BC =,点E 是边AB 上的动点,点F 是射线CD 上一点,射线ED 和射线AF 交于点G ,且AGE DAB ∠=∠;(1)求线段CD 的长;(2)如果AEG ∆是以EG 为腰的等腰三角形,求线段AE 的长;(3)如果点F 在边CD 上(不与点C 、D 重合),设AE x =,DF y =,求y 关于x 的函数解析式,并写出x 的取值范围;公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公公众学公众公众号:奥孚升学公众号:奥孚升学学奥孚升学公众号:奥孚升学公众号:奥孚升公众号:奥孚升学公众号孚公众号201725.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)如图9,已知O e 的半径长为1,AB 、AC 是O e 的两条弦,且AB AC ,BO 的延长线交AC 于点D ,联结OA 、OC.公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升:奥孚升学公众号:奥孚升学公众号:奥公众号:奥孚升学公众号公众公众号:奥孚升学公众号:奥孚升学升学公众号公众号:(1)求证:OAD ABD V :V ;(2)当OCD V 是直角三角形时,求B 、C 两点的距离;(3)记AOB V 、AOD V 、COD V 的面积分别为1S 、2S 、3S ,如果2S 是1S 和3S 的比例中项,求OD 的长.公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升公众号:奥孚升学公众号:奥孚升学公众号公众号:孚升学孚升学奥孚升学公众号:奥孚升学孚公众号:奥孚升学公众号:奥孚升学公众号:奥公众号:奥孚升学公众号孚升学公众:奥孚升学公众号公众号:奥孚升201825.(14分)已知⊙O 的直径AB=2,弦AC 与弦BD 交于点E .且OD ⊥AC ,垂足为点F .(1)如图1,如果AC=BD ,求弦AC 的长;(2)如图2,如果E 为弦BD 的中点,求∠ABD 的余切值;(3)联结BC 、CD 、DA ,如果BC 是⊙O 的内接正n 边形的一边,CD 是⊙O 的内接正(n +4)边形的一边,求△ACD的面积.公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升公众公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升公众号:奥孚升学公众号公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥公众号:奥孚升公众号:奥孚升学公众号公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥公众号:奥孚升公众号:奥孚升学公众号201925.(14分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分6分)如图10,AD 、BD 分别是A4BC 的内角∠BAC 、∠4BC 的平分线,过点A 作AE 上AD ,交BD 的延长线于点E.(1)求证:∠E =21∠C ;(2)如图11,如果AE =AB ,且BD :DE =2:3,求cos ∠ABC 的值;(3)如果∠ABC 是锐角,且△ABC 与△ADE 相似,求∠ABC 的度数,并直接写出ABCADES S △△的值.孚升学公众号:奥孚升公众号:奥孚升学孚升学众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升公众号:奥孚升学公众号:奥孚升学公众号公众号:202025.如图,△ABC 中,AB =AC ,⊙O 是△ABC 的外接圆,BO 的延长交边AC 于点D .(1)求证:∠BAC =2∠ABD ;(2)当△BCD 是等腰三角形时,求∠BCD 的大小;(3)当AD =2,CD =3时,求边BC的长.公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号公众号:公众公众号:奥孚升学公众号:奥孚升学公:奥孚升学公众号:奥孚升公众号:孚升学孚升学公众公众公众号:奥孚升学号:奥孚升公众号:奥孚升学202125.如图,在梯形ABCD 中,//,90,,AD BC ABC AD CD O ∠=︒=是对角线AC 的中点,联结BO 并延长交边CD 或边AD 于E .(1)当点E 在边CD 上时,①求证:DAC OBC ∽;②若BE CD ⊥,求ADBC的值;(2)若2,3DE OE ==,求CD 的长.公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升公众号:奥孚升学公众号:奥孚升学公众号公众号:学孚升号:奥孚升学公众号:奥孚升学:公众号:奥孚升学公众号:公众号:奥孚孚升学公公众号公众奥孚升学学号:奥孚升孚升学公众号公众号:。

上海中考数学压轴题汇总—24题(2012-2021)-真题

上海中考数学压轴题汇总—24题(2012-2021)-真题

2012-2021年上海中考数学真题解答题第24题201224.(本题满分12分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分4分)如图,在平面直角坐标系中,二次函数26y ax x c =++的图像经过点()4,0A 、()1,0B -,与y 轴交于点C ,点D 在线段OC 上,=OD t ,点E 在第二象限,∠=90ADE,1=2tan DAE ∠,EF OD ⊥,垂足为F .(1)求这个二次函数的解析式;(2)求线段EF 、OF 的长(用含t 的代数式表示);(3)当∠ECA =∠OAC 时,求t的值.公众号:奥孚升学公众号:奥孚:奥孚升学公众号:奥孚升学孚升学众号:奥孚升学众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升公众号:奥孚升学公众号:奥孚升学公众号公众号:201324.如图9,在平面直角坐标系xoy 中,顶点为M 的抛物线2(0y ax bx a =+>)经过点A和x 轴正半轴上的点B ,AO OB ==2,0120AOB ∠=.(1)求这条抛物线的表达式;(2)联结OM ,求AOM ∠的大小;公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学:奥孚升学公众号:奥孚升学公众号:奥孚升公众号:孚升学公众号:奥奥孚升学公众公众奥孚升学公众号:奥孚公众号:奥孚升升学公众号公众号:(3)如果点C 在x 轴上,且△ABC 与△AOM 相似,求点C 的坐标.图9公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升公众号:奥孚升学公众号:奥孚升学公众号公众号:201424.在平面直角坐标系中(如图),已知抛物线223y x bx c =++与x 轴交于点A (-1,0)和点B ,与y 轴相较于点C (0,-2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E 为该抛物线的对称轴与x 轴的交点,点F 在对称轴上,四边形ACEF 为梯形,求点F 的坐标;(3)点D 为该抛物线的顶点,设点(),0P t ,且3t >,如果BDP 和CDP 的面积相等,求t 的值.公众号:奥孚升学孚升学公众号:奥公众号:奥孚升:奥孚升学公众号学公众号:奥孚升学公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升公众号:奥孚升学公众号:奥孚升学公众号公众号:201524.已知在平面直角坐标系xOy 中(如图),抛物线24y ax =-与x 轴的负半轴(XRS )相交于点A ,与y 轴相交于点B ,AB=P 在抛物线上,线段AP 与y 轴的正半轴交于点C ,线段BP 与x 轴相交于点D ,设点P 的横坐标为m .(1)求这条抛物线的解析式;(2)用含m 的代数式表示线段CO 的长;(3)当3tan 2ODC ∠=时,求PAD ∠的正弦值.201624.如图,抛物线25y ax bx =+-(0a ≠)经过点(4,5)A -,与x 轴的负半轴交于点B ,与y 轴交于点C ,且5OC OB =,抛物线的顶点为D ;(1)求这条抛物线的表达式;(2)联结AB 、BC 、CD 、DA ,求四边形ABCD 的面积;(3)如果点E 在y 轴的正半轴上,且BEO ABC ∠=∠,求点E的坐标;公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号孚升学公众号:奥孚升学公众号:奥孚升学号:奥孚升学奥孚升学公众号:奥孚升学公众公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升公众号:奥孚升学公众号:奥孚升学公众号公众号:201724.(本题满分12分,每小题满分各4分)已知在平面直角坐标系xOy 中(如图8),已知抛物线2y x bx c =-++经过点()2,2A ,对称轴是直线1x =,顶点为B .(1)求这条抛物线的表达式和点B的坐标;公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号公众号:奥孚升学公众号:奥孚升学公公众号公众:奥孚升学公众号:奥孚升升学公众号公众号:(2)点M 在对称轴上,且位于顶点上方,设它的纵坐标为m ,联结AM ,用含m 的代数式表示AMB ∠的余切值;(3)将该抛物线向上或向下平移,使得新抛物线的顶点C 在x 轴上.原抛物线上一点P 平移后的对应点为点Q ,如果OP OQ =,求点Q 的坐标.行计算、画(作)图行计算、画(作)图计合理、有效的运算途径程,合理解释推理演绎的正确性算、画(作)图公众号升学公众号:奥孚升学:奥孚升学公众号:奥孚升学孚升学孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升公众号:奥孚升学公众号:奥孚升学公众号公众号:201824.(12分)在平面直角坐标系xOy 中(如图).已知抛物线y=﹣x 2+bx +c 经过点A (﹣1,0)和点B (0,),顶点为C ,点D 在其对称轴上且位于点C 下方,将线段DC 绕点D 按顺时针方向旋转90°,点C 落在抛物线上的点P 处.(1)求这条抛物线的表达式;(2)求线段CD 的长;(3)将抛物线平移,使其顶点C 移到原点O 的位置,这时点P 落在点E 的位置,公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号奥孚升学公众号:奥孚升学公众号:奥孚升学公公众号:奥孚升学公众号:奥孚升学公众公众孚升学学:奥孚升孚升学公众号众号:如果点M 在y 轴上,且以O 、D 、E 、M 为顶点的四边形面积为8,求点M 的坐标.公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升公众号:奥孚升学公众号:奥孚升学公众号公众号:公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升公众号:奥孚升学公众号:奥孚升学公众号公众号:201924.(12分,第(1)小题满分4分,第(2)①小题满分3分,第(2)②小题满分5分)在平面直角坐标系xOy 中(如图9),已知抛物线y =x 2-2x ,其顶点为A.(1)写出这条抛物线的开口方向、顶点A 的坐标,并说明它的变化情况;(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”①试求抛物线y =x 2-2x 的“不动点”的坐标;②平移抛物线y =x 2-2x ,使所得新抛物线的顶点B 是该抛物线的“不动点”,其对称轴与x 轴交于点C ,且四边形QABC 是梯形,求新抛物线的表达式.公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升公众号:奥孚升学公众号:奥孚升学公众号公众号:202024.在平面直角坐标系xOy 中,直线y =﹣12x +5与x 轴、y 轴分别交于点A 、B (如图).抛物线y =ax 2+bx (a ≠0)经过点A .(1)求线段AB 的长;(2)如果抛物线y =ax 2+bx 经过线段AB 上的另一点C ,且BC(3)如果抛物线y =ax 2+bx 的顶点D 位于△AOB 内,求a的取值范围.公众号:奥孚升学公众号:奥孚升:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学:奥孚升学众号:奥孚升学公众号:奥孚升学公众公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升公众号:奥孚升学公众号:奥孚升学公众号公众号:202124.已知抛物线2(0)y ax c a =+≠过点(3,0),(1,4)P Q.公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学:奥孚升学公众号:奥孚升学公众号:奥孚升学公公众号:孚升学公众号:奥孚公众公众众号:奥孚升学公众号:奥孚升升学(1)求抛物线的解析式;(2)点A 在直线PQ 上且在第一象限内,过A 作AB x 轴于B ,以AB 为斜边在其左侧作等腰直角ABC .①若A 与Q 重合,求C 到抛物线对称轴的距离;②若C 落在抛物线上,求C的坐标.学公众号:奥孚升学公众号:奥孚升学孚升学升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥公众号:奥孚升公众号:奥孚升学公众号公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥公众号:奥孚升公众号:奥孚升学公众号公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升公众号:奥孚孚升学公众号:奥孚升学公众号:公众号公众公众号:奥孚升学:奥孚升学公众号:奥孚升公众号:奥孚升学。

上海历年中考数学压轴题复习

上海历年中考数学压轴题复习

上海历年中考数学压轴题复习2001年上海市数学中考27.已知在梯形ABCD 中,AD ∥BC ,AD <BC ,且AD =5,AB =DC =2.(1)如图8,P 为AD 上的一点,满足∠BPC =∠A .图8①求证;△ABP ∽△DPC②求AP 的长.(2)如果点P 在AD 边上移动(点P 与点A 、D 不重合),且满足∠BPE =∠A ,PE 交直线BC 于点E ,同时交直线DC 于点Q ,那么①当点Q 在线段DC 的延长线上时,设AP =x ,CQ =y ,求y 关于x 的函数解析式,并写出函数的定义域;②当CE =1时,写出AP 的长(不必写出解题过程).27.(1)①证明:∵ ∠ABP =180°-∠A -∠APB ,∠DPC =180°-∠BPC -∠APB ,∠BPC =∠A ,∴ ∠ABP =∠DPC .∵ 在梯形ABCD 中,AD ∥BC ,AB =CD ,∴ ∠A =∠D .∴ △ABP ∽△DPC . ②解:设AP =x ,则DP =5-x ,由△ABP ∽△DPC ,得DCPD AP AB =,即252x x -=,解得x 1=1,x 2=4,则AP 的长为1或4.(2)①解:类似(1)①,易得△ABP ∽△DPQ ,∴ DQ AP PD AB =.即y x x +=-252,得225212-+-=x x y ,1<x <4. ②AP =2或AP =3-5.(题27是一道涉及动量与变量的考题,其中(1)可看作(2)的特例,故(2)的推断与证明均可借鉴(1)的思路.这是一种从模仿到创造的过程,模仿即借鉴、套用,创造即灵活变化,这是中学生学数学应具备的一种基本素质,世上的万事万物总有着千丝万缕的联系,也有着质的区别,模仿的关键是发现联系,创造的关键是发现区别,并找到应付新问题的途径.)上海市2002年中等学校高中阶段招生文化考试27.操作:将一把三角尺放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于点Q.图5图6图7探究:设A、P两点间的距离为x.(1)当点Q在边CD上时,线段PQ与线段PB之间有怎样的大小关系试证明你观察得到结论;(2)当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数解析式,并写出函数的定义域;(3)当点P在线段AC上滑动时,△PCQ是否可能成为等腰三角形如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置,并求出相应的x的值;如果不可能,试说明理由.(图5、图6、图7的形状大小相同,图5供操作、实验用,图6和图7备用)五、(本大题只有1题,满分12分,(1)、(2)、(3)题均为4分)27.图1 图2 图3(1)解:PQ =PB ……………………(1分) 证明如下:过点P 作MN ∥BC ,分别交AB 于点M ,交CD 于点N ,那么四边形AMND 和四边形BCNM 都是矩形,△AMP 和△CNP 都是等腰直角三角形(如图1).∴ NP =NC =MB . ……………………(1分) ∵ ∠BPQ =90°,∴ ∠QPN +∠BPM =90°.而∠BPM +∠PBM =90°,∴ ∠QPN =∠PBM . ……………………(1分) 又∵ ∠QNP =∠PMB =90°,∴ △QNP ≌△PMB . ……………………(1分) ∴ PQ =PB .(2)解法一由(1)△QNP ≌△PMB .得NQ =MP .∵ AP =x ,∴ AM =MP =NQ =DN =x 22,BM =PN =CN =1-x 22, ∴ CQ =CD -DQ =1-2·x 22=1-x 2. 得S △PBC =21BC ·BM =21×1×(1-x 22)=21-42x . ………………(1分) S △PCQ =21CQ ·PN =21×(1-x 2)(1-x 22)=21-x 423+21x 2 (1分) S 四边形PBCQ =S △PBC +S △PCQ =21x 2-x 2+1. 即 y =21x 2-x 2+1(0≤x <22). ……………………(1分,1分) 解法二作PT ⊥BC ,T 为垂足(如图2),那么四边形PTCN 为正方形.∴ PT =CB =PN .又∠PNQ =∠PTB =90°,PB =PQ ,∴△PBT ≌△PQN .S 四边形PBCQ =S △四边形PBT +S 四边形PTCQ =S 四边形PTCQ +S △PQN =S 正方形PTCN…(2分)=CN 2=(1-x 22)2=21x 2-x 2+1∴ y =21x 2-x 2+1(0≤x <22). ……………………(1分)(3)△PCQ 可能成为等腰三角形①当点P 与点A 重合,点Q 与点D 重合,这时PQ =QC ,△PCQ 是等腰三角形,此时x =0 ……………………(1分) ②当点Q 在边DC 的延长线上,且CP =CQ 时,△PCQ 是等腰三角形(如图3)……………………(1分) 解法一 此时,QN =PM =x 22,CP =2-x ,CN =22CP =1-x 22. ∴ CQ =QN -CN =x 22-(1-x 22)=x 2-1. 当2-x =x 2-1时,得x =1. ……………………(1分) 解法二 此时∠CPQ =21∠PCN =°,∠APB =90°-°=°, ∠ABP =180°-(45°+°)=°,得∠APB =∠ABP ,∴ AP =AB =1,∴ x =1. ……………………(1分)上海市2003年初中毕业高中招生统一考试27.如图,在正方形ABCD 中,AB =1,弧AC 是点B 为圆心,AB 长为半径的圆的一段弧。

上海名师马学斌中考数学压轴题

上海名师马学斌中考数学压轴题

上海名师马学斌中考数学压轴题数学是中学生中考的一门重要科目,也是让很多学生头疼的科目之一。

为了帮助学生更好地备考数学,上海名师马学斌特别准备了一道中考数学压轴题。

本文将为大家详细解析这道题目,并提供解题思路和方法。

题目:已知函数f(x) = 2x^2 - 3x + 1,g(x) = x + 2,h(x) = f(g(x)),求h(3)的值。

解析:首先,我们需要明确题目中给出的函数f(x)、g(x)和h(x)的定义。

函数f(x) = 2x^2 - 3x + 1是一个二次函数,g(x) = x + 2是一个一次函数。

而h(x) = f(g(x))表示将g(x)的结果代入f(x)中,即先计算g(x),再将结果代入f(x)中进行计算。

接下来,我们需要求解h(3)的值。

根据h(x)的定义,我们可以得到h(x) = f(g(x)) = f(x + 2)。

将x + 2代入f(x)中,得到h(x) = 2(x + 2)^2 -3(x + 2) + 1。

将x = 3代入h(x)的表达式中,即可求得h(3)的值。

计算过程如下:h(3) = 2(3 + 2)^2 - 3(3 + 2) + 1= 2(5)^2 - 3(5) + 1= 2(25) - 15 + 1= 50 - 15 + 1= 36因此,h(3)的值为36。

解题思路:解决这道题目的关键在于理解函数的定义和运算规则。

首先,我们要明确每个函数的定义,并根据定义进行计算。

其次,我们要注意函数的运算顺序,先计算g(x),再将结果代入f(x)中进行计算。

最后,根据题目要求,将特定的值代入h(x)的表达式中,求得最终的结果。

解题方法:解决这道题目可以采用代入法和运算法两种方法。

代入法是将给定的值代入函数的表达式中进行计算,而运算法是根据函数的定义和运算规则进行逐步计算。

在本题中,我们采用了运算法的方法。

首先,我们根据h(x)的定义,将g(x)的表达式代入f(x)中,得到h(x) = f(g(x)) = f(x + 2)。

决胜2021年上海中考数学压轴题全揭秘精解专题25 上海中考预测卷(2)

决胜2021年上海中考数学压轴题全揭秘精解专题25 上海中考预测卷(2)

绝密★启用前上海市2021年初中毕业统一学业考试数学预测试题二考生注意: 1.本试卷共25题。

2.试卷满分150分,考试时间100分钟。

3.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效。

4.除第一、二大题外,其余各题如无特殊说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤。

一.选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确的代号并填涂在答题纸的相应位置上】1.方程230x -+=根的情况( ) A. 有两个不相等的实数根 B. 有一个实数根; C. 无实数根D. 有两个相等的实数根2.若m n >,下列不等式不一定成立的是( ) A .33m n +>+B .33m n -<-C .33m n> D .22m n >3.在平面直角坐标系中,反比例函数(0)ky k x=≠图像在每个象限内,y 随着x 的增大而增大,那么它的图像的两个分支分别在( ) A. 第一、三象限 B. 第二、四象限 C. 第一、二象限D. 第三、四象限4.学校举行图书节义卖活动,将所售款项捐给其他贫困学生.在这次义卖活动中,某班级售书情况如表:下列说法正确的是( )A .该班级所售图书的总收入是226元B.在该班级所售图书价格组成的一组数据中,中位数是4C.在该班级所售图书价格组成的一组数据中,众数是15D.在该班级所售图书价格组成的一组数据中,方差是25.顺次联结四边形ABCD各边中点所形成的四边形是矩形,那么四边形ABCD是()A. 平行四边形B. 矩形C. 菱形D. 等腰梯形6.已知,在△ABC中,∠A=30°,∠B=135°,CD⊥AB,且CD=1.若以点A为圆心,√3为半径作⊙A,以点B为圆心,1为半径作⊙B,则⊙A与⊙B的位置关系是()A.内切B.外切C.相交D.外离二.填空题(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】7.若2a b=+,则代数式222a ab b-+的值为.8.化简:113a a-=______.9.若一个数的平方等于5,则这个数等于.10.0=的解是_____________.11.晓芳抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为.12.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意可列方程组为.13.在一张边长为4cm的正方形纸上做扎针随机试验,纸上有一个半径为1cm的圆形阴影区域,则针头扎在阴影区域内的概率为__________;14.董永社区在创建全国卫生城市的活动中,随机检查了本社区部分住户五月份某周内“垃圾分类”的实施情况,将他们绘制了两幅不完整的统计图(A.小于5天;.5B天;.6C天;.7D天),则扇形统计图B部分所对应的圆心角的度数是.15.已知在梯形ABCD中,AD∥BC,∠ABC = 90°,对角线AC、BD相交于点O,且AC⊥BD,如果AD︰BC = 2︰3,那么DB︰AC =______.16.如图,在ABC中,90C∠=︒,30A∠=︒,BD是ABC∠的平分线,如果AC x=,那么CD =(用x表示).17.如图,在ABC∆中,30B∠=︒,2AC=,3cos5C=.则AB边的长为.18.在矩形ABCD中,AB=6,BC=8,点O在对角线AC上,圆O的半径为2,如果圆O与矩形ABCD的各边都没有公共点,那么线段AO长的取值范围是____.三.解答题(共7小题,满分78分)19.(本题满分10分)计算:1327﹣(12)﹣2+|3.20.(本题满分10分)解不等式组:1076713x xxx>+⎧⎪+⎨-<⎪⎩21.(本题满分10分)在平面直角坐标系xoy 中(如图),已知一次函数的图像平行于直线12y x =,且经过点A (2,3),与x 轴交于点B . (1)求这个一次函数的解析式;(2)设点C 在y 轴上,当AC =BC 时,求点C 的坐标.22.(本题满分10分)两栋居民楼之间的距离30CD m =,楼AC 和BD 均为10层,每层楼高为3m .上午某时刻,太阳光线GB 与水平面的夹角为30︒,此刻楼BD 的影子会遮挡到楼AC 的第几层?(参考数1.7≈ 1.4)≈23.已知:如图,AB 、AC 是⊙O 的两条弦,且AB =AC ,D 是AO 延长线上一点,联结BD 并延长交⊙O 于点E ,联结CD 并延长交⊙O 于点F. (1)求证:BD =CD :(2)如果AB 2=AO·AD ,求证:四边形ABDC 是菱形.24.如图6,在平面直角坐标系xOy 中,抛物线()2230y ax ax a a =--<与x 轴交于A B、两点(点A 在点B 的左侧),经过点A 的直线:l y kx b =+与y 轴负半轴交于点C ,与抛物线的另一个交点为D ,且4CD AC =.(1)直接写出点A 的坐标,并求直线l 的函数表达式(其中k b 、用含a 的式子表示) (2)点E 是直线l 上方的抛物线上的动点,若ACE ∆的面积的最大值为54,求a 的值; (3)设P 是抛物线的对称轴上的一点,点Q 在抛物线上,当以点A D P Q 、、、为顶点的四边形为矩形时,请直接写出点P 的坐标.25.已知:如图,在菱形ABCD 中,2AC =,60B ∠=︒.点E 为边BC 上的一个动点(与点B 、C 不重合),60EAF ∠=︒,AF 与边CD 相交于点F ,联结EF 交对角线AC 于点G .设CE x =,EG y =.(1)求证:AEF 是等边三角形;(2)求y 关于x 的函数解析式,并写出x 的取值范围;(3)点O 是线段AC 的中点,联结EO ,当EG EO 时,求x 的值.绝密★启用前上海市2021年初中毕业统一学业考试数学预测试题二考生注意: 1.本试卷共25题。

2019-2020年上海市中考数学各地区模拟试题分类:圆压轴题专项(含解析)

2019-2020年上海市中考数学各地区模拟试题分类:圆压轴题专项(含解析)

2019-2020年上海市中考数学各地区模拟试题分类:圆压轴题专项1.(2020•长宁区二模)已知AB是⊙O的一条弦,点C在⊙O上,联结CO并延长,交弦AB于点D,且CD=CB.(1)如图1,如果BO平分∠ABC,求证:=;(2)如图2,如果AO⊥OB,求AD:DB的值;(3)延长线段AO交弦BC于点E,如果△EOB是等腰三角形,且⊙O的半径长等于2,求弦BC的长.2.(2020•浦东新区二模)已知:如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=16,点O为斜边AB的中点,以O为圆心,5为半径的圆与BC相交于E、F两点,联结OE、OC.(1)求EF的长;(2)求∠COE的正弦值.3.(2020•崇明区二模)如图已知⊙O经过A、B两点,AB=6,C是的中点,联结OC 交弦AB与点D,CD=1.(1)求圆⊙O的半径;(2)过点B、点O分别作点AO、AB的平行线,交于点G,E是⊙O上一点,联结EG 交⊙O于点F,当EF=AB,求sin∠OGE的值.4.(2020•宝山区二模)已知:如图,⊙O与⊙P相切于点A,如果过点A的直线BC交⊙O 于点B,交⊙P于点C,OD⊥AB于点D,PE⊥AC于点E.求:(1)求的值;(2)如果⊙O和⊙P的半径比为3:5,求的值.5.(2020•闵行区一模)在圆O中,弦AB与CD相交于点E,且弧AC与弧BD相等.点D 在劣弧AB上,联结CO并延长交线段AB于点F,联结OA、OB.当OA=,且tan∠OAB =.(1)求弦CD的长;(2)如果△AOF是直角三角形,求线段EF的长;(3)如果S△CEF =4S△BOF,求线段AF的长.6.(2020•宝山区一模)如图,直线l:y=x,点A1坐标为(1,0),过点A1作x轴的垂线交直线l于点B1,以原点O为圆心,OB1为半径画弧交x轴于点A2;再过点A2作x 的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按此做法进行下去.求:(1)点B1的坐标和∠A1OB1的度数;(2)弦A4B3的弦心距的长度.7.(2020•闵行区一模)如图,梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=4,tan B=3.以AB为直径作⊙O,交边DC于E、F两点.(1)求证:DE=CF;(2)求:直径AB的长.8.(2020•都江堰市模拟)如图,已知Rt△ABC中,∠ACB=90°,AC=,BC=16.点O在边BC上,以O为圆心,OB为半径的弧经过点A.P是弧AB上的一个动点.(1)求半径OB的长;(2)如果点P是弧AB的中点,联结PC,求∠PCB的正切值;(3)如果BA平分∠PBC,延长BP、CA交于点D,求线段DP的长.9.(2020•亳州模拟)如图,⊙O1和⊙O2相交于A、B两点,O1O2与AB交于点C,O2A 的延长线交⊙O1于点D,点E为AD的中点,AE=AC,联结OE.(1)求证:O1E=O1C;(2)如果O1O2=10,O1E=6,求⊙O2的半径长.10.(2019•杨浦区三模)△ABC中,∠ACB=90°,tan B=,AB=5,点O为边AB上一动点,以O为圆心,OB为半径的圆交射线BC于点E,以A为圆心,OB为半径的圆交射线AC于点G.(1)如图1,当点E、G分别在边BC、AC上,且CE=CG时,请判断圆A与圆O的位置关系,并证明你的结论;(2)当圆O与圆A存在公共弦MN时(如图2),设OB=x,MN=y,求y关于x的函数解析式,并写出定义域;(3)设圆A与边AB的交点为F,联结OE、EF,当△OEF为以OE为腰的等腰三角形时,求圆O的半径长.11.(2019•青浦区二模)已知:在Rt△ABC中,∠ACB=90°,AC=1,D是AB的中点,以CD为直径的⊙Q分别交BC、BA于点F、E,点E位于点D下方,连接EF交CD于点G.(1)如图1,如果BC=2,求DE的长;(2)如图2,设BC=x,=y,求y关于x的函数关系式及其定义域;(3)如图3,连接CE,如果CG=CE,求BC的长.12.(2019•浦东新区二模)已知AB是圆O的一条弦,P是圆O上一点,过点O作MN⊥AP,垂足为点M,并交射线AB于点N,圆O的半径为5,AB=8.(1)当P是优弧的中点时(如图),求弦AP的长;(2)当点N与点B重合时,试判断:以圆O为圆心,为半径的圆与直线AP的位置关系,并说明理由;(3)当∠BNO=∠BON,且圆N与圆O相切时,求圆N半径的长.13.(2019•静安区二模)已知:如图8,梯形ABCD中,AD∥BC,AD=2,AB=BC=CD =6.动点P在射线BA上,以BP为半径的⊙P交边BC于点E(点E与点C不重合),联结PE、PC.设BP=x,PC=y.(1)求证:PE∥DC;(2)求y关于x的函数解析式,并写出定义域;(3)联结PD,当∠PDC=∠B时,以D为圆心半径为R的⊙D与⊙P相交,求R的取值范围.14.(2019•普陀区二模)如图1,在Rt△ABC中,∠ACB=90°,AB=5,cos∠BAC=,点O是边AC上一个动点(不与A、C重合),以点O为圆心,AO为半径作⊙O,⊙O 与射线AB交于点D,以点C为圆心,CD为半径作⊙C,设OA=x.(1)如图2,当点D与点B重合时,求x的值;(2)当点D在线段AB上,如果⊙C与AB的另一个交点E在线段AD上时,设AE=y,试求y与x之间的函数解析式,并写出x的取值范围;(3)在点O的运动过程中,如果⊙C与线段AB只有一个公共点,请直接写出x的取值范围.15.(2019•嘉定区二模)在圆O中,AB是圆O的直径,AB=10,点C是圆O上一点(与点A、B不重合),点M是弦BC的中点.(1)如图1,如果AM交OC于点E,求OE:CE的值;(2)如图2,如果AM⊥OC于点E,求sin∠ABC的值;(3)如图3,如果AB:BC=5:4,点D为弦BC上一动点,过点D作DF⊥OC,交半径OC于点H,与射线BO交于圆内点F.探究一:如果设BD=x,FO=y,求y关于x 的函数解析式及其定义域;探究二:如果以点O为圆心,OF为半径的圆经过点D,直接写出此时BD的长度;请你完成上述两个探究.16.(2019•虹口区二模)如图,AD∥BC,∠ABC=90°,AD=3,AB=4,点P为射线BC 上一动点,以P为圆心,BP长为半径作⊙P,交射线BC于点Q,联结BD、AQ相交于点G,⊙P与线段BD、AQ分别相交于点E、F.(1)如果BE=FQ,求⊙P的半径;(2)设BP=x,FQ=y,求y关于x的函数关系式,并写出x的取值范围;(3)联结PE、PF,如果四边形EGFP是梯形,求BE的长.17.(2019•长宁区二模)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点P在边AC上(点P与点A不重合),以点P为圆心,PA为半径作⊙P交边AB于另一点D,ED⊥DP,交边BC于点E.(1)求证:BE=DE;(2)若BE=x,AD=y,求y关于x的函数关系式并写出定义域;(3)延长ED交CA的延长线于点F,联结BP,若△BDP与△DAF相似,求线段AD的长.18.(2019•宝山区二模)如图已知:AB是圆O的直径,AB=10,点C为圆O上异于点A、B的一点,点M为弦BC的中点.(1)如果AM交OC于点E,求OE:CE的值;(2)如果AM⊥OC于点E,求∠ABC的正弦值;(3)如果AB:BC=5:4,D为BC上一动点,过D作DF⊥OC,交OC于点H,与射线BO交于圆内点F,请完成下列探究.探究一:设BD=x,FO=y,求y关于x的函数解析式及其定义域.探究二:如果点D在以O为圆心,OF为半径的圆上,写出此时BD的长度.19.(2019•徐汇区二模)如图,△ABC中,AC=BC=10,cos C=,点P是AC边上一动点(不与点A、C重合),以PA长为半径的⊙P与边AB的另一个交点为D,过点D作DE⊥CB于点E.(1)当⊙P与边BC相切时,求⊙P的半径.(2)连接BP交DE于点F,设AP的长为x,PF的长为y,求y关于x的函数解析式,并直接写出x的取值范围.(3)在(2)的条件下,当以PE长为直径的⊙Q与⊙P相交于AC边上的点G时,求相交所得的公共弦的长20.(2019•金山区二模)如图,在Rt△ABC中,∠C=90°,AC=16cm,AB=20cm,动点D由点C向点A以每秒1cm速度在边AC上运动,动点E由点C向点B以每秒cm速度在边BC上运动,若点D,点E从点C同时出发,运动t秒(t>0),联结DE.(1)求证:△DCE∽△BCA.(2)设经过点D、C、E三点的圆为⊙P.①当⊙P与边AB相切时,求t的值.②在点D、点E运动过程中,若⊙P与边AB交于点F、G(点F在点G左侧),联结CP并延长CP交边AB于点M,当△PFM与△CDE相似时,求t的值.参考答案一.解答1.(1)证明:如图1中,∵BO平分∠ABC,∴∠ABO=∠CBO,∵OB=OA=OC,∴∠A=∠ABO,∠C=∠OBC,∴∠A=∠C,∵OB=OB,∴△OBA≌△OBC(AAS),∴AB=BC,∴=.(2)解:如图2中,作DM⊥OB于M,DN⊥OA于N,设OM=a.∵OA⊥OB,∴∠MON=∠DMO=∠DNO=90°,∴四边形DMON是矩形,∴DN=OM=a,∵OA=OB,∠AOB=90°,∴∠A=∠ABO=45°,∵OC=OB,CD=CB,∴∠C=∠OBC,∠CDB=∠CBD,∵∠C+∠CDB+∠CBD=180°,∴3∠C+90°=180°,∴∠C=30°,∴∠CDB=∠CBD=75°,∵∠DMB=90°,∴∠MDB=∠DBM=45°,∴DM=BM,∠ODM=30°,∴DM=OM=a,DN=DM=a,AD=DN=a,∴==.(3)解:如图3﹣1中,当BO=BE时,∵CD=CB,∴∠CDB=∠CBD,∴∠A+∠AOD=∠OBA+∠OBC,∵∠A=∠ABO,∴∠AOD=∠OBC=∠C,∵AOD=∠COE,∴∠C=∠COE=∠CBO,∵∠C=∠C,∴△OCE∽△BCO,∴=,∴=,∴EC2+2EC﹣4=0,解得EC=﹣1+或﹣1﹣(舍弃),∴BC=+1.如图3﹣2中,当EO=EB时,同法可证△OEB是等腰直角三角形,∴EO=EB=EC=OB=,∴BC=2,∵∠OEB=∠C+∠COE>∠OBE,∴OE≠OB,综上所述,BC的值为+1或2.2.解:(1)作OM⊥EF于M,如图,则EM=FM,∵∠ACB=90°,∴OM⊥BC,∴OM=AC=×8=4,在Rt△OEM中,EM==3,∴EF=2EM=6;(2)CM=BC=8,∴CE=8﹣3=5,∴CE=OE,∴∠OEC=∠OCE,在Rt△OCM中,OC==4,∴sin∠OCM===,∴∠COE的正弦值为.3.解:(1)∵AB=6,C是的中点,CD=1,∴OC⊥AB且OC平分AB,∴AD=3,∠ODA=90°,设OA=r,则OD=r﹣1,∴r2=32+(r﹣1)2,解得,r=5,即圆⊙O的半径为5;(2)作OH⊥EF于点H,∵AB=EF,OD=r﹣1=4,∴OH=OD=4,∠OHG=90°,∵OA∥BG,OG∥AB,∴四边形OABG是平行四边形,∴OG=AB,∵AB=6,∴OG=6,∴sin∠OGH===,即sin∠OGE=.4.解:(1)∵OD⊥AB,PE⊥AC,OD过O,PE过P,∴AD=AB,AE=AC,∴;(2)连接OP,OP必过切点A,连接OB、CP,∵OB=OA,PA=PC,∴∠OBA=∠OAB=∠PAC=∠PCA,即∠OBA=∠PCA,∠BAO=∠PAC,∴△OOA∽△CPA,∴=,∵⊙O和⊙P的半径比为3:5,即=,∴=.5.解:(1)如图,过点O作OH⊥AB于点H,∵tan∠OAB==,∴设OH=a,AH=2a,∵AO2=OH2+AH2=5,∴a=1,∴OH=1,AH=2,∵OH⊥AB,∴AB=2AH=4,∵弧AC=弧BD∴=,∴AB=CD=4;(2)∵OA=OB,∴∠OAF=∠OBA,∴∠OAF=∠ECF,①当∠AFO=90°时,∵OA=,tan∠OBA=,∴OC=OA=,OF=1,AB=4,∴EF=CF•tan∠ECF=CF•tan∠OBA=;②当∠AOF=90°时,∵OA=OB,∴∠OAF=∠OBA,∴tan∠OAF=tan∠OBA=,∵OA=,∴OF=OA•tan∠OAF=,∴AF=,∵∠OAF=∠OBA=∠ECF,∠OFA=∠EFC,∴△OFA∽△EFC,∴==,∴EF=OF=,即:EF=或;(3)如图,连接OE ,∵∠ECB =∠EBC ,∴CE =EB ,∵OE =OE ,OB =OC ,∴△OEC ≌△OEB ,∴S △OEC =S △OEB ,∵S △CEF =4S △BOF ,∴S △CEO +S △EOF =4(S △BOE ﹣S △EOF ), ∴=, ∴=,∴FO =CO =,∴OH ==1,∴HF ==,∴AF =AH +HF =2+.6.解:(1)∵直线的解析式y =x ,∴tan ∠A 1OB 1==, ∴∠A 1OB 1=60°,OA 1=1,∴A 1B 1=,OA 2=OB 1=2, ∴B 1(1,).(2)连接A 4B 3,作OH ⊥A 4B 3于H .由题意OA1=1,OA2=2,OA3=4,OA4=8,∵OA4=OB3,OH⊥A4B3,∴∠A4OH=∠A4OB3=30°,∴OH=OA4•cos30°=8×=4.7.(1)证明:过点O作OH⊥DC,垂足为H.∵AD∥BC,∠ADC=90°,OH⊥DC,∴∠BCN=∠OHC=∠ADC=90°.∴AD∥OH∥BC.又∵OA=OB.∴DH=HC.∵OH⊥DC,OH过圆心,∴EH=HF,∴DH﹣EH=HC﹣HF.即:DE=CF.(2)解:过点A作AG⊥BC,垂足为点G,∠AGB=90°,∵∠AGB=∠BCN=90°,∴AG∥DC.∵AD∥BC,∴AD=CG.∵AD=2,BC=4,∴BG=BC﹣CG=2.在Rt△AGB中,∵tan B=3,∴AG=BG•tan B=2×3=6.在Rt△AGB中,AB2=AG2+BG2∴AB=.8.解:(1)∵Rt△ABC中,∠ACB=90°,AC=,BC=16,∴AB==12,如图1,过O作OH⊥AB于H,则BH=AB=6,∵∠BHO=∠ACB=90°,∠B=∠B,∴△BHO∽△BCA,∴,∴=,∴OB=9;(2)如图2,连接OP交AB于H,过P作PE⊥BC于E,∵点P是弧AB的中点,∴OP⊥AB,AH=BH=AB=6,在Rt△BHO中,OH===3,在△POE与△BOH中,,∴△POE≌△BOH(AAS),∴PE=HB=6,OE=OH=3,∴CE=BC﹣OB+OE=10,∴∠PCB的正切值==;(3)如图3,过A作AE⊥BD于E,连接CP,∵BA平分∠PBC,AC⊥BC,∴AE=AC=4,∵∠AED=∠ACB=90°,∠D=∠D,∴△ADE∽△BDC,∴=,设DE=x,∴=,∴AD=,在Rt△ACB与Rt△AEB中,,∴Rt△ACB≌Rt△AEB(HL),∴BE=BC=16,∵CD2+BC2=BD2,∴(4+)2+162=(16+x)2,解得:x=,∴AD=,BD=16+=,∴CD=,∴OB=9,过O作OF⊥PB交PB于F,则△OBF∽△DBC,∴,∴=,∴BF=7,∴PB=2BF=14,∴PD=BD﹣BP=.9.(1)证明:连接O1A,∵点E为AD的中点,∴O1E⊥AD,∵⊙O1和⊙O2相交于A、B两点,O1O2与AB交于点C,∴O1C⊥AB,在Rt△O1EA和Rt△O1CA中,,∴Rt△O1EA≌Rt△O1CA(HL)∴O1E=O1C;(2)解:设⊙O2的半径长为r,∵O1E=O1C=6,∴O2C=10﹣6=4,在Rt△O1EO2中,O2E==8,则AC=AE=8﹣r,在Rt△ACO2中,O2A2=AC2+O2C2,即r2=(8﹣r)2+42,解得,r=5,即⊙O2的半径长为5.10.解:(1)圆A与圆O外切,理由如下:∵∠ACB=90°,tan B=,AB=5,∴AC=3,BC=4,作OP⊥BE于P,如图1所示:则PB=PE,OP∥AC,∴=,设PB=PE=x,则CG=CE=4﹣2x,∴OB==x,AG=AC﹣CG=2x﹣1,∵AG=OB,∴2x﹣1=x,解得:x=,∴OB═,∴OA=AB﹣OB=5﹣==2OB,∴圆A与圆O外切;(2)连接OM,如图2所示:∵圆O与圆A存在公共弦MN,∴OA与MN垂直平分,∴∠ODM=90°,DM=MN=y,AD=OD=(5﹣x),由勾股定理得:DM2=OM2﹣OD2,即(y)2=x2﹣()2,整理得:y2=3x2+10x﹣25,∴y=(<x<5);(3)分三种情况:①当圆O与圆A外切,OE=OF时,圆O与圆A外切,圆O的半径长OB=;②当OE=FE时,圆O与圆A相交,如图3所示:作EH⊥OF于H,则OF=OH=﹣OB,∵∠B=∠B,∠EHB=90°=∠C,∴△BEH∽△BAC,∴=,∴EH==,在Rt△OEH中,由勾股定理得:()2+(﹣OB)2=OE2=OB2,解得:OB=;③当O与A重合时,OE=OF,F与B重合,OE=AB=5;综上所述,当△OEF为以OE为腰的等腰三角形时,圆O的半径长为或或5.11.解:(1)如图1中,连接CE.在Rt△ACB中,∵∠ACB=90°,AC=1,BC=2,∴AB==,∵CD是⊙Q的直径,∴∠CED=90°,∴CE⊥AB,∵BD=AD,∴CD=AB=,∵•AB•CE=•BC•AC,∴CE=,在Rt△CDE中,DE===.(2)如图2中,连接CE,设AC交⊙Q于K,连接FK,DF,DK.∵∠FCK=90°,∴FK是⊙Q的直径,∴直线FK经过点Q,∵CD是⊙Q的直径,∴∠CFD=∠CKD=90°,∴DF⊥BC,DK⊥AC,∵DC=DB=DA,∴BF=CF,CK=AK,∴FK∥AB,∴=,∵BC=x,AC=1,∴AB=,∴DC=DB=DA=,∵△ACE∽△ABC,∴可得AE=,∴DE=AD﹣AE=﹣,∴=,∴=,∴y=(x>1).(3)如图3中,连接FK.∵CE=CG,∴∠CEG=∠CGE,∵∠FKC=∠CEG,∵FK∥AB,∴∠FKC=∠A,∵DC=DA,∴∠A=∠DCA,∴∠A=∠DCA=∠CEG=∠CGE,∴∠CDA=∠ECG,∴EC=DE,由(2)可知:=﹣,整理得:x2﹣2x﹣1=0,∴x=1+或1﹣(舍弃),∴BC=1+.12.解:(1)连接PO并延长交弦AB于点H,如图1所示:∵P是优弧的中点,PH经过圆心O,∴PH⊥AB,AH=BH,在△AOH中,∠AHO=90°,AH=AB=4,AO=5,∴OH===3,在△APH中,∠AHP=90°,PH=OP+OH=5+3=8,∴AP===4;(2)当点N与点B重合时,以点O为圆心,为半径的圆与直线AP相交;理由如下:作OG⊥AB于G,如图2所示:∵∠OBG=∠ABM,∠OGB=∠AMB,∴△OBG∽△ABM,∴=,即=,解得:BM=,∴OM=﹣5=,∵<,∴当点N与点B重合时,以点O为圆心,为半径的圆与直线AP相交;(3)①当点N在线段AB延长线上时,当圆N与圆O相外切时,作OD⊥AB于D,如图3所示:∵OA=OB=5,∴AD=DB=AB=4,∴OD===3,∵∠BNO=∠BON,∴BN=OB=5,∴DN=DB+BN=9,在Rt△ODN中,由勾股定理得:ON===3,∵圆N与圆O相切,∴圆N半径=ON﹣5=3﹣5;当圆N与圆O相内切时,圆N半径=ON+5=3+5;②当点N在线段AB上时,此时点P在弦AB的下方,点N在圆O内部,如图4所示:作OE⊥AB于E,则AE=BE=4,OE==3,∵∠BNO=∠BON,∴BN=OB=5,∴EN=BN=BE=1,在Rt△OEN中,由勾股定理得:ON===,∴圆N半径为5﹣或5+;综上所述,当∠BNO=∠BON,且圆N与圆O相切时,圆N半径的长为3﹣5或3+5或5﹣或5+.13.(1)∵证明:梯形ABCD,AB=CD,∴∠B=∠DCB,∵PB=PE,∴∠B=∠PEB,∴∠DCB=∠PEB,∴PE∥CD;(2)解:分别过P、A、D作BC的垂线,垂足分别为点H、F、G.∵梯形ABCD中,AD∥BC,AF⊥BC,DG⊥BC,PH⊥BC,∴四边形ADGF是矩形,PH∥AF,∵AD=2,BC=DC=6,∴BF=FG=GC=2,在Rt△ABF中,AF===4,∵PH∥AF,∴==,即==,∴PH=x,BH=x,∴CH=6﹣x,在Rt△PHC中,PC=,∴y=,即y=(0<x<9);(3)解:作EM∥PD交DC于M.∵PE∥DC,∴四边形PDME是平行四边形.∴PE=DM=x,即MC=6﹣x,∴PD=ME,∠PDC=∠EMC,又∵∠PDC=∠B,∠B=∠DCB,∴∠DCB=∠EMC=∠PBE=∠PEB.∴△PBE∽△ECM,∴=,即=,解得:x=,即BE=,∴PD=EC=6﹣=,当两圆外切时,PD=r P+R,即R=0(舍去);当两圆内切时,PD=r P﹣R,即R1=0(舍去),R2=;即两圆相交时,0<R<.14.解:(1)如图1中,在Rt△ABC中,∵∠ACB=90°,AB=5,cos∠BAC=,∴AC=4,BC===3,∵OA=OB=x,∴OC=4﹣x,在Rt△BOC中,∵OB2=BC2+OC2,∴x2=32+(4﹣x)2,∴x=(2)如图2中,作CH⊥AB于H,OG⊥AB于G,EK⊥AC于K,连接CE.∵•AB•CH=•BC•AC,∴CH=,AH=,∵OD=OA=x,OG⊥AD,∴AG=DG=OA•cos A=x,∴AD=x,DH=x﹣,∴CD2=()2+(x﹣)2,∵AK=AE•cos A=y,EK=y,∴CE2=(4﹣y)2+(y)2,∵CD=CE,∴()2+(x﹣)2=(4﹣y)2+(y)2,∴x2﹣x=y2﹣y,∴(y﹣)2=(x﹣2)2,∵y<,x>2,∴﹣y=x﹣,∴y=﹣x+(2<x≤).(3)①如图3﹣1中,当⊙C经过点B时,易知:BH=DH=,∴BD=,∴AD=5﹣=,∴x=,∴x=,观察图象可知:当0<x<时,⊙C与线段AB只有一个公共点.②如图3﹣2中,当⊙C与AB相切时,CD⊥AB,易知OA=2,此时x=2,③如图3﹣3中,当<x<4时,⊙C与线段AB只有一个公共点.综上所述,当0<x<或x=2或<x<4时,⊙C与线段AB只有一个公共点.15.解:(1)过点O作ON∥BC交AM于点N,如图1∴,,∵∴∵点M是弦BC的中点∴BM=MC∴,∴OE:CE=1:2;(2)联结OM,如图2∵点M是弦BC的中点,OM经过圆心O ∴OM⊥BC,∠OMC=90°,∵AM⊥OC,∴∠MEO=90°∴∠OMC=∠MEO=90°,又∵∠MOC=∠EOM∴△MOC∽△EOM;∴,∵OE:CE=1:2∴,∵OB=OC∴∠ABC=∠OCM在直角△MOC中,∴;(3)探究一:如图3,过点D作DL⊥DF交BO于点L,取BC中点M,连接OM∵DF⊥OC,∴DL∥OC,∴∠LDB=∠C=∠B∴BL=DL,∵AB=10,AB:BC=5:4,∴BC=8,OC=5,∵BM=CM=4,∴cos∠OCM=∵DL∥OC,∴设BD=x,则CD=8﹣x,∴BL=DL=x,CH=(8﹣x),OH=OC﹣CH=5﹣(8﹣x),∵OH∥DL,∴,∴=;∴y关于x的函数解析式是定义域是,探究二:∵以O为圆心,OF为半径的圆经过D,∴OF=OD,∵DF⊥OC,∴OC垂直平分DF,FO=OL,∴y=5﹣x,∴,解得:x=,∴BD=.16.解:(1)∵BE=FQ,∴∠BPE=∠FPQ,∵PE=PB,∴∠EBP=(180°﹣∠EPB),同理∠FQP=(180°﹣∠FPQ),∴∠EBP=∠FQP,∵AD∥BC,∴∠ADB=∠EBP,∴∠FQP=∠ADB,∴tan∠FQP=tan∠ADB=,设⊙P的半径为r,则tan∠FQP==,∴=,解得:r=,∴⊙P的半径为;(2)过点P作PM⊥FQ,垂足为点M,如图1所示:在Rt△ABQ中,cos∠AQB====,在Rt△PQM中,QM=PQ cos∠AQB=,∵PM⊥FQ,PF=PQ,∴FQ=2QM=,∴,当圆与D点相交时,x最大,作DH⊥BC于H,如图2所示:则PD=PB=x,DH=AB=4,BH=AD=3,则PH=BP﹣BH=x﹣3,在Rt△PDH中,由勾股定理得:42+(x﹣3)2=x2,解得:x=,∴x的取值范围为:;(3)设BP=x,分两种情况:①EP∥AQ时,∴∠BEP=∠BGQ,∵PB=PE,∴∠PBE=∠BEP,∴∠BGQ=∠PBE,∴QG=QB=2x,同理:AG=AD=3,在Rt△ABQ中,由勾股定理得:42+(2x)2=(3+2x)2,解得:x=,∴QG=QB=2x=,∵EP∥AQ,PB=PQ,∴BE=EG,∵AD∥BC,∴=,即=,解得:BG=,∴BE=BG=;②PF∥BD时,同①得:BG=BQ=2x,DG=AD=3,在Rt△ABD中,由勾股定理得:42+32=(3+2x)2,解得:x=1或x=﹣4(舍去),∴BQ=2,∴BP=1,作PN⊥BG于N,则BE=2BN,如图3所示:∵AD∥BC,∴∠PBN=∠ADB,∴cos∠PBN=cos∠ADB=,即=,∴BN=,∴BE=2BN=;综上所述,或.17.(1)证明:∵ED⊥DP,∴∠EDP=90°.∴∠BDE+∠PDA=90°.又∵∠ACB=90°,∴∠B+∠PAD=90°.∵PD=PA,∴∠PDA=∠PAD.∴∠BDE=∠B.∴BE=DE.(2)∵AD=y,BD=BA﹣AD=5﹣y.过点E作EH⊥BD垂足为点H,由(1)知BE=DE,∴.在Rt△EHB中,∠EHB=90°,∴.在Rt△ABC中,∠ACB=90°,AC=3,BC=4.∴AB=5.∴.∴,∴.(3)设PD=a,则,在等腰△PDA中,,易得在Rt△PDF中,∠PDF=90°,.∴,.若△BDP∽△DAF又∠BDP=∠DAF①当∠DBP=∠ADF时,即,解得a=3,此时.②当∠DBP=∠F时,即,解得,此时.综上所述,若△BDP与△DAF相似,线段AD的长为或.18.解:(1)如图1,过点O作ON∥BC交AM于点N,∵点O是AB的中点,∴点N是AM的中点,∴ON=BM,∵点M为弦BC的中点,∴BM=CM,∴ON=CM,∵ON∥BC,∴=;(2)如图1,连接OM,∵点M为弦BC的中点,∴OM⊥BC,∵AM⊥OC于点E,∴∴∠OME+∠CME=∠CME+∠C=90°,∴∠OME=∠MCE,∴△OME∽△MCE,∴ME2=OE•CE,设OE=x,则CE=2x,ME=x,在Rt△MCE中,CM==x,∴sin∠ECM===∴sin∠ABC=;(3)探究一:如图2,过点D作DL⊥DF交BO于点L,∵DF⊥OC,∴DL∥OC,∴∠LDB=∠C=∠B,∴BL=DL,∵AB=10,AB:BC=5:4,设BD=x,则CD=8﹣x,BL=DL=x,CH=,OH=OC﹣CH=5﹣(8﹣x),∵OH∥DL,∴=,∴,∴y=(其中);探究二:∵以O为圆心,OF为半径的圆经过D,∴OF=OD,∵DF⊥OC,∴OC垂直平分DF,FO=OL,∴y=5﹣x,∴,解得:x=,∴BD=.19.解:(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cos C=,则sin C=,sin C===,解得:R=;(2)在△ABC中,AC=BC=10,cos C=,设AP=PD=x,∠A=∠ABC=β,过点B作BH⊥AC,则BH=BC sin C=8,同理可得:CH=6,HA=4,AB=4,则:tan∠CAB=2BP==,DA=x,则BD=4﹣x,如下图所示,PA=PD,∴∠PAD=∠CAB=∠CBA=β,PD∥BE,tanβ=2,则cosβ=,sinβ=,EB=BD cosβ=(4﹣x)×=4﹣x,∴PD∥BE,∴,即:=,整理得:y=(0<x<10);(3)以EP为直径作圆Q如下图所示,点D在圆P上,EP是圆Q的直径,则点D也在圆Q上,故GD为相交所得的公共弦,设∠DCP=∠PDC=∠α,GD是公共弦,则GD⊥PE,则∠PED=∠BDE,∵∠EDP=90°,∴∠PDE+∠EPD=90°=∠EPD+∠GDP,故∠PED=∠EDP=∠α,由(2)知tan∠BAC=tanβ=2,故tan,则cosα=,则AD=AG=x,在Rt△EPD中,ED=2PD=2x,在Rt△BED中,ED=2x,则EB=ED=x,则EC=CB﹣BE=10﹣x,在Rt△CGE中,CG=AC﹣AG=10﹣2x,cos∠C===,解得:x=;GD=2PD cosα=2x cosα=2××=.20.(1)证明:由题意得:CD=t,CE=t,由勾股定理得,BC==12,=,==,∴=,又∠C=∠C,∴△DCE∽△BCA;(2)①连结CP并延长CP交AB于点H,∵∠ACB=90°,∴DE是⊙P的直径,即P为DE中点,∴CP=DP=PE=DE,∴∠PCE=∠PEC,∵△DCE∽△BCA,∴∠CDE=∠B,∵∠CDE+∠CED=90°,∴∠B+∠HCB=90°,即CH⊥AB,∵⊙P与边AB相切,∴点H为切点,CH为⊙P的直径,∵sin A==,∴=,解得,CH=,∴DE=,sin A=sin∠CED==,即=,解得,CD=,∴t=;②由题意得,0<t≤12,即0<t≤9,∵CD=t,CE=t,∴DE==t,由①得,CM=,CP=DE=t,CM⊥AB,∴PM=﹣t,PF=CP=t,∠PMF=90°,当△FMP∽△DCE时,=,即=,解得,t=;当△PMF∽△DCE时,=,即=,解得,t=;∴综上所述:当△PFM与△CDE相似时.t=或t=.。

2022年上海市15区中考数学一模考点分类汇编专题11 几何综合(解答25题压轴题)-(解析版)

2022年上海市15区中考数学一模考点分类汇编专题11  几何综合(解答25题压轴题)-(解析版)

2022年上海市15区中考数学一模考点分类汇编专题11 几何综合一.解答题(共15小题)1.(普陀区)如图,在△ABC中,边BC上的高AD=2,tan B=2,直线l平行于BC,分别交线段AB,AC,AD于点E、F、G,直线l与直线BC之间的距离为m.(1)当EF=CD=3时,求m的值;(2)将△AEF沿着EF翻折,点A落在两平行直线l与BC之间的点P处,延长EP交线段CD于点Q.①当点P恰好为△ABC的重心时,求此时CQ的长;②联结BP,在∠CBP>∠BAD的条件下,如果△BPQ与△AEF相似,试用m的代数式表示线段CD的长.【分析】(1)根据=tan B=2,可得:BD=1,再由EF=CD=3,DG=m,可得:BC=4,AG =2﹣m,利用EF∥BC,可得=,建立方程求解即可;(2)①由翻折可得:BD=CD=1,AP=2PD,即PD=AD=,AP=AD=,进而得出:AG =,推出DP=GP,再由EF∥BC,可得出EG=,利用ASA证明△PQD≌△PEG,即可求得答案;②分两种情况:Ⅰ.当△BPQ∽△FAE时,由△FAE∽△CAB,推出△BPQ∽△CAB,建立方程求解即可;Ⅱ.当△BPQ∽△AFE时,由△AFE∽△ACB,推出△BPQ∽△ACB,建立方程求解即可.【解答】解:(1)如图1,在△ABC中,边BC上的高AD=2,tan B=2,∴=tan B=2,∴BD=1,∵EF=CD=3,DG=m,∴BC=BD+CD=4,AG=AD﹣DG=2﹣m,∵EF∥BC,∴=,即=,解得:m=,∴m的值为;(2)①如图2,∵将△AEF沿着EF翻折,点A落在△ABC的重心点P处,∴BD=CD=1,AP=2PD,即PD=AD=,AP=AD=,∴AG=GP=AP=,∴DP=GP,∵EF∥BC,∴∠PGE=∠PDQ=90°,△AEG∽△ABD,∴=,即=,∴EG=,在△PQD和△PEG中,,∴△PQD≌△PEG(ASA),∴DQ=EG=,∴CQ=CD﹣DQ=1﹣=,∴此时CQ的长为;②在Rt△ABD中,AB==,∵将△AEF沿着EF翻折,点A落在两平行直线l与BC之间的点P处,∴∠PBQ<∠ABD,∵EF∥BC,∴∠AEF=∠ABD,∴∠PBQ<∠AEF,∵∠CBP>∠BAD,∴∠BAD<∠PBQ<∠AEF,∵GP=AG=2﹣m,DG=m,∴DP=DG﹣GP=m﹣(2﹣m)=2m﹣2,∴m>1,∴1<m<2,∵∠AEF=∠ABD,∴=tan∠AEF=tan∠ABD=2,∴=2,∴EG=,∵EF∥BC,∴△PEG∽△PQD,∴=,即=,∴DQ=m﹣1,∴BQ=BD+DQ=m,∵∠AEF=∠PEG=∠BQP,∠PBQ<∠AEF,∴△BPQ与△AEF相似,则△BPQ∽△FAE或△BPQ∽△AFE,Ⅰ.当△BPQ∽△FAE时,∵△FAE∽△CAB,∴△BPQ∽△CAB,∴=,即=,∴BC=,∴CD=BC﹣BD=﹣1=;Ⅱ.当△BPQ∽△AFE时,∵△AFE∽△ACB,∴△BPQ∽△ACB,∴=,即=,∴BC=,∴CD=BC﹣BD=﹣1=,综上,线段CD的长为或.【点评】本题考查了全等三角形判定和性质,相似三角形的判定和性质,勾股定理,三角函数,翻转变换的性质等,熟练掌握全等三角形判定和性质、相似三角形的判定和性质等相关知识,运用分类讨论思想和方程思想思考解决问题是解题关键.2.(嘉定区)在平行四边形ABCD中,对角线AC与边CD垂直,,四边形ABCD的周长是16,点E是在AD延长线上的一点,点F是在射线AB上的一点,∠CED=∠CDF.(1)如图1,如果点F与点B重合,求∠AFD的余切值;(2)如图2,点F在边AB上的一点.设AE=x,BF=y,求y关于x的函数关系式并写出它的定义域;(3)如果BF:FA=1:2,求△CDE的面积.【分析】(1)设AB=3k,则AC=4k,由勾股定理求出BC==5k,由四边形ABCD 的周长求出k=1,求出AM的长,则可得出答案;(2)证明△CDE∽△DAF,由相似三角形的性质得出,得出AD=BC=5,DE=x﹣5,DC =AB=3,AF=3﹣y,由比例线段可得出答案;(3)分两种情况:①当点F在边AB上,②当点F在AB的延长线上,求出AF的长,由相似三角形的性质及三角形面积公式可得出答案.【解答】解:(1)如果点F与点B重合,设DF与AC交于点M,∵AC⊥CD,∴∠DCA=90°,∵四边形ABCD是平行四边形,∴CD∥AB,∴∠CAB=∠DCA=90°,在Rt△CAB中,设AB=3k,∵,∴AC=4k,∴BC==5k,∵四边形ABCD的周长是16,∴2(AB+BC)=16,即 2(3k+5k)=16,∴k=1,∴AB=3,BC=5,AC=4,∵四边形ABCD是平行四边形,∴AM=CM=AC=2,∴cot∠AFD=;(2)解:∵CD∥AB,∴∠EDC=∠FAD,∠CDF=∠AFD,∵∠CED=∠CDF,∴∠CED=∠AFD,∴△CDE∽△DAF,∴,由题意,得AD=BC=5,DE=x﹣5,DC=AB=3,AF=3﹣y,∴,∴y=﹣,定义域是:5<x≤.(3)解:点F在射线AB上都能得到:△CDE∽△DAF,∴,①当点F在边AB上,∵BF:FA=1:2,AB=3,∴AF=2,由题意,得S△DAF=AF•AC,∵AC=4,∴S△DAF=×2×4=4,∴,∴S△CDE=,②当点F在AB的延长线上,∵BF:FA=1:2,AB=3,∴AF=6,由题意,得S△DAF=AF•AC,∴S△DAF=AF•AC=12,∴,∴S△CDE=.综上所述,△CDE的面积是或.【点评】本题是四边形综合题,考查了平行四边形的性质,勾股定理,相似三角形的判定和性质等知识,解题的关键是熟练掌握相似三角形的判定与性质.3.(金山区)已知:如图,AD⊥直线MN,垂足为D,AD=8,点B是射线DM上的一个动点,∠BAC =90°,边AC交射线DN于点C,∠ABC的平分线分别与AD、AC相交于点E、F.(1)求证:△ABE∽△CBF;(2)如果AE=x,FC=y,求y关于x的函数关系式;(3)联结DF,如果以点D、E、F为顶点的三角形与△BCF相似,求AE的长.【分析】(1)根据同角的余角相等得到∠BAD=∠BCF,根据角平分线的定义得到∠ABE=∠CBF,根据相似三角形的判定定理证明△ABE∽△CBF;(2)作FH⊥BC于点H,根据相似三角形的性质、补角的概念得到∠AEF=∠CFE,得到AE=AF =x,根据平行线分线段成比例定理列出比例式,代入计算即可;(3)分∠BAE=∠FDE、∠BAE=∠DFE两种情况,根据相似三角形的性质计算即可.【解答】(1)证明:∵AD⊥直线MN,∠BAC=90°,∴∠BAD+∠ABD=90°,∠BCF+∠ABD=90°,∴∠BAD=∠BCF,∵BF平分∠ABC,∴∠ABE=∠CBF,∴△ABE∽△CBF;(2)解:作FH⊥BC,垂足为点H.∵△ABE∽△CBF,∴∠AEB=∠CFB,∵∠AEB+∠AEF=180°,∠CFB+∠CFE=180°,∴∠AEF=∠CFE,∴AE=AF=x,∵BF平分∠ABC,FH⊥BC,∠BAC=90°,∴AF=FH=x.∵FH⊥BC,AD⊥直线MN,∴FH∥AD,∴=,即=,解得:y=(4<x<8);(3)解:设AE=x,∵△ABE∽△CBF,∴如果以点D、E、F为顶点的三角形与△BCF相似时,以点D、E、F为顶点的三角形与△ABE相似.∵∠AEB=∠DEF,∴∠BAE=∠FDE或∠BAE=∠DFE,当∠BAE=∠FDE时,DF∥AB,∴∠ABE=∠DFE,∵∠ABE=∠DBE,∴∠DBE=∠DFE,∴BD=DF,∵DF∥AB,∴∠DFC=∠BAC=90°,∴∠DFC=∠ABD=90°,∵∠BAD=∠BCF,∴△ABD≌△CDF(AAS),∴CF=AD=8,即=8,解得:x1=﹣4+4,x2=﹣4﹣4(舍去),∴AE=﹣4+4;当∠BAE=∠DFE,=时,∵∠ABF=∠BED,∴△AEF∽△BED,∴∠AFE=∠BDE,因为∠AFE是锐角,∠BDE是直角,所以这种情况不成立,综上所述,如果以点D、E、F为顶点的三角形与△BCF相似,AE的长为﹣4+4.【点评】本题考查的是相似三角形的判定和性质、全等三角形的判定和性质、函数解析式的确定,掌握相似三角形的判定定理和性质定理是解题的关键.4.(静安区)如图1,四边形ABCD中,∠BAD的平分线AE交边BC于点E,已知AB=9,AE=6,AE2=AB•AD,且DC∥AE.(1)求证:DE2=AE•DC;(2)如果BE=9,求四边形ABCD的面积;(3)如图2,延长AD、BC交于点F,设BE=x,EF=y,求y关于x的函数解析式,并写出定义域.【分析】(1)先证明△ABE∽△AED,可得∠AEB=∠ADE,再由平行线性质可推出∠ADE=∠DCE,进而证得△ADE∽△ECD,根据相似三角形性质可证得结论;(2)如图2,过点B作BG⊥AE,运用等腰三角形性质可得G为AE的中点,进而可证得△ADE≌△ECD(SAS),再求得S△ABE=×AE×BG=18,根据△ABE∽△AED且相似比为3:2,可求得S△AED=S△CDE=8,由S四边形ABCD=S△ABE+S△AED+S△CDE可求得答案;(3)由△ABE∽△AED,可求得:DE=x,进而得出DC=x2,再利用△ADE∽△ECD,可得:CE=x,再利用DC∥AE,可得△AEF∽△DCF,进而求得:CF=EF,再结合题意得出答案.【解答】(1)证明:如图1,∵AE平分∠BAD,∴∠BAE=∠DAE,∵AE2=AB•AD,∴=,∴△ABE∽△AED,∴∠AEB=∠ADE,∵DC∥AE,∴∠AEB=∠DCE,∠AED=∠CDE,∴∠ADE=∠DCE,∴△ADE∽△ECD,∴=,∴DE2=AE•DC;(2)解:如图2,过点B作BG⊥AE,∵BE=9=AB,∴△ABE是等腰三角形,∴G为AE的中点,由(1)可得△ADE、△ECD也是等腰三角形,∵AE2=AB•AD,AB=BE=9,AE=6,∴AD=4,DE=6,CE=4,AG=3,∴△ADE≌△ECD(SAS),在Rt△ABG中,BG===6,∴S△ABE=×AE×BG=×6×6=18,∵△ABE∽△AED且相似比为3:2,∴S△ABE:S△AED=9:4,∴S△AED=S△CDE=8,∴S四边形ABCD=S△ABE+S△AED+S△CDE=18+8+8=34;(3)解:如图3,由(1)知:△ABE∽△AED,∴=,∵BE=x,AB=9,AE=6,AE2=AB•AD,AD=4,∴=,∴DE=x,由(1)知:DE2=AE•DC,∴DC=x2,∵△ADE∽△ECD,∴==,∴CE=x,∵DC∥AE,∴△AEF∽△DCF,∴==,∴CF=EF,∴===,∴y=EF=CE=×x=,∵即,∴3<x<9,∴y关于x的函数解析式为y=,定义域为3<x<9.【点评】本题是相似三角形综合题,考查了角平分线定义,平行线的性质,勾股定理,相似三角形的判定和性质,等腰三角形的性质,三角形面积等知识,熟练掌握相似三角形的判定和性质是解题关键.5.(杨浦区)如图,已知在Rt△ABC中,∠ACB=90°,AC=BC=5,点D为射线AB上一动点,且BD<AD,点B关于直线CD的对称点为点E,射线AE与射线CD交于点F.(1)当点D在边AB上时,①求证:∠AFC=45°;②延长AF与边CB的延长线相交于点G,如果△EBG与△BDC相似,求线段BD的长;(2)联结CE、BE,如果S△ACE=12,求S△ABE的值.【分析】(1)①如图1,连接CE,根据轴对称的性质可得:EC=BC,∠ECF=∠BCF,设∠ECF =∠BCF=α,则∠BCE=2α,∠ACE=90°﹣2α,再利用等腰三角形性质即可证得结论;②如图2,连接BE,CE,由△EBG∽△BDC,可得出∠G=∠BCD=22.5°,过点D作DH⊥AB交BC于点H,则△BDH是等腰直角三角形,推出CH=DH=BD,再根据CH+BH=BC=5,建立方程求解即可;(2)分两种情况:Ⅰ.当点D在AB上时,如图3,过点C作CM⊥AE于点M,连接BF,利用勾股定理、三角形面积建立方程求解即可;Ⅱ.当点D在AB的延长线上时,如图4,过点C作CM⊥AE于点M,连接BF,利用勾股定理、三角形面积建立方程求解即可.【解答】解:(1)①证明:如图1,连接CE,∵点B关于直线CD的对称点为点E,∴EC=BC,∠ECF=∠BCF,设∠ECF=∠BCF=α,则∠BCE=2α,∴∠ACE=90°﹣2α,∵AC=BC,∴AC=EC,∴∠AEC=∠EAC=[180°﹣(90°﹣2α)]=45°+α,∵∠AEC=∠AFC+∠ECF=∠AFC+α,∴∠AFC=45°;②如图2,连接BE,CE,∵B、E关于直线CF对称,∴CF垂直平分BE,由(1)知:∠AFC=45°,∴∠BEF=45°,∵△EBG与△BDC相似,∠BEG=∠DBC=45°,∵∠EBG与∠BDC均为钝角,∴△EBG∽△BDC,∴∠G=∠BCD=∠BAG,∵∠G+∠BAG=∠ABC=45°,∴∠G=∠BCD=22.5°,过点D作DH⊥AB交BC于点H,则△BDH是等腰直角三角形,∴DH=BD,BH=BD,∠BHD=45°,∵∠CDH=∠BHD﹣∠BCD=45°﹣22.5°=22.5°=∠BCD,∴CH=DH=BD,∵CH+BH=BC=5,∴BD+BD=5,∴BD==5﹣5,∴线段BD的长为5﹣5;(2)Ⅰ.当点D在AB上时,如图3,过点C作CM⊥AE于点M,连接BF,∵AC=EC=BC=5,∴AM=EM=AE,∴①AM2+CM2=AC2=25,∵S△ACE=AE•CM=12,∴②AM•CM=12,①+②×2,得:(AM+CM)2=49③,①﹣②×2,得:(AM﹣CM)2=49③,∵CM>AM>0,∴AM=3,CM=4,∴AE=6,由(1)知:∠AFC=45°,BE⊥CF,∴∠BEF=45°,∵∠AFC=∠ABC=45°,∴A、C、B、F四点共圆,∴∠AFB+∠ACB=180°,∴∠AFB=90°,∴△BEF是等腰直角三角形,∴EF=BF,设EF=BF=x,则AE=x+6,在Rt△ABF中,AF2+BF2=AB2,∴(x+6)2+x2=50,解得:x=1或x=﹣7(舍去),∴BF=1,∴S△ABE=AE•BF=×6×1=3;Ⅱ.当点D在AB的延长线上时,如图4,过点C作CM⊥AE于点M,连接BF,由(1)知:∠AFC=45°,CF垂直平分BE,∴∠BEF=45°,BF=EF,∴∠EBF=∠BEF=45°,∴∠BFE=90°,∵AC=EC=BC=5,∴AM=EM=AE,与Ⅰ同理可得:AM=EM=4,CM=3,AE=8,设BF=EF=y,则AF=8﹣y,在Rt△ABF中,AF2+BF2=AB2,∴(8﹣x)2+x2=50,解得:x=1或x=7(舍去),∴BF=1,∴S△ABE=AE•BF=×8×1=4;综上,S△ABE的值为3或4.【点评】本题考查了三角形面积,等腰直角三角形性质和判定,相似三角形的判定和性质,轴对称变换的性质,勾股定理等,解题关键是添加辅助线构造直角三角形,运用分类讨论思想和方程思想解决问题.6.(浦东新区)在△ABC中,∠ABC=90°,AB=4,BC=3,点O是边AC上的一个动点,过O作OD ⊥AB,D为垂足,在线段AC上取OE=OD,联结ED,作EP⊥ED,交射线AB于点P,交射线CB于点F.(1)如图1所示,求证:△ADE∽△AEP;(2)设OA=x,AP=y,求y关于x的函数解析式,并写出定义域;(3)当BF=1时,求线段AP的长.【分析】(1)利用等腰三角形的性质可证∠ADE=∠AEP,且∠A=∠A,可证结论成立;(2)由OD∥BC,得,可知AD=,DO=EO=,由(1)知△ADE∽△AEP,得AE2=AD•AP,有(x+)2=,变形即可得出答案;(3)当点P在线段AB上时,由△PBF∽△PED,得,由△ADE∽△AEP,得,则,代入解方程即可;当点P在AB的延长线上时,首先通过导角得出∠CEF=∠CFE,得EC=FC=2,过点E作EG⊥CF于点G,由相似得,则EG=,CG=,再利用EG∥BP,得,从而解决问题.【解答】(1)证明:∵OE=OD,∴∠ODE=∠OED,∵OD⊥AB,EP⊥ED,∴∠ADO=∠PED,∴∠ADO+∠ODE=∠PED+∠OED,∴∠ADE=∠AEP,∵∠A=∠A,∴△ADE∽△AEP;(2)解:∵OD⊥AP,BC⊥AB,∴OD∥BC,∴,∴AD=,DO=EO=,由(1)知△ADE∽△AEP,∴∴AE2=AD•AP,∴(x+)2=,∴y=;(3)解:①当点P在线段AB上时,如图1,BP=4﹣y=4﹣,∵△PBF∽△PED,∴,∴△ADE∽△AEP,∴,∴,∴,∴x=,∴AP=2,②当点P在AB的延长线上时,如图2,∵∠CFE=∠PFB=∠PDE,∠CEF+∠DEO=∠PDE+∠EDO,∴∠CEF=∠CFE,∴EC=FC=2,过点E作EG⊥CF于点G,∴,∴EG=,CG=,∴EG∥BP,∴,∴PB=2,∴AP=2+4=6,综上所述,AP=2或6.【点评】本题是相似形综合题,主要考查了相似三角形的判定与性质,等腰三角形的性质,平行线分线段成比例等知识,运用分类讨论思想是正确解题的关键.7.(奉贤区)如图1,已知锐角△ABC的高AD、BE相交于点F,延长AD至G,使DG=FD,联结BG,CG.(1)求证:BD•AC=AD•BG;(2)如果BC=10,设tan∠ABC=m.①如图2,当∠ABG=90°时,用含m的代数式表示△BFG的面积;②当AB=8,且四边形BGCE是梯形时,求m的值.【分析】(1)利用同角的余角相等可证∠BGF=∠ACD,且∠BDG=∠ADC=90°,则△BDG∽△ADC,可证明结论;(2)①通过导角可利用ASA证△ADB≌△ADC,得BD=CD=BC=5,再通过tan∠BGD=m,可得GD=,则GF=2GD=,代入三角形的面积公式即可;②分两种情形,当BG∥AC或BE∥CG,分别通过导角发现数量关系,从而解决问题.【解答】(1)证明:∵△ABC的高AD、BE相交于点F,∴∠AEB=∠ADC=90°,又∵∠EAF=∠DAC,∴∠AFE=∠ACD,∵∠BFD=∠AFE,∴∠BFD=∠ACD,∵BD⊥FG,DF=DG,∴BD垂直平分GF,∴BG=BF,∴∠BGF=∠BFG,∴∠BGF=∠ACD,又∵∠BDG=∠ADC=90°,∴△BDG∽△ADC,∴,∴BD•AC=AD•BG;(2)解:①∵∠ABG=90°,∴∠ABD+∠GBC=90°,∵∠GBD+∠BGD=90°,∴∠ABD=∠BGD,同理∠GBD=∠BAD,由(1)知△BDG∽△ADC,∴∠GBD=∠DAC,∴∠BAD=∠CAD,又∵AD=AD,∠ADB=∠ADC,∴△ADB≌△ADC(ASA),∴BD=CD=BC=5,∵tan∠ABC=m.∴tan∠BGD=m,∴GD=,∴GF=2GD=,∴S△BFG=×FG×BD==;②当BG∥AC时,∴∠ACB=∠GBC,∵∠GBC=∠CAD,∴∠ACB=∠CAD=45°,设CD=AD=x,则BD=10﹣x,由勾股定理得,x2+(10﹣x)2=82,解得x=5±,当x=5+时,BD=10﹣x=5﹣,此时m=,当x=5﹣时,BD=10﹣x=5+,此时m=;当BE∥CG时,∴∠EBC=∠BCG,则∠CBG=∠BCG,∴BG=CG,∴BD=CD=5,由勾股定理得AD=,∴m=,综上,m=或或.【点评】本题是相似形综合题,主要考查了相似三角形的判定与性质,全等三角形的判定与性质,平行线的性质,三角函数等知识,综合性较强,熟练掌握角之间的转化发现解题思想是关键.8.(松江区)如图,已知△ABC中,∠ACB=90°,AB=6,BC=4,D是边AB上一点(与点A、B不重合),DE平分∠CDB,交边BC于点E,EF⊥CD,垂足为点F.(1)当DE⊥BC时,求DE的长;(2)当△CEF与△ABC相似时,求∠CDE的正切值;(3)如果△BDE的面积是△DEF面积的2倍,求这时AD的长.【分析】(1)证明△DCE≌△DBE(ASA),可得CE=BE=2,根据=tan∠B=,即可求得答案;(2)分两种情况:①当△CEF∽△ABC时,可证得∠CDB=90°,再根据DE平分∠CDB,可得∠CDE=45°,再由特殊角的三角函数值即可求得答案;②当△CEF∽△BAC时,则∠ECF=∠ABC,得出DC=DB,再由DE平分∠CDB,可得DE⊥BC,推出∠CDE=∠BAC,利用三角函数定义即可求得答案;(3)如图,过点E作EG⊥AB于点G,根据角平分线性质可得出EF=EG,推出DF=DG,再由△BDE的面积是△DEF面积的2倍,可得出BD=2DF,进而推出DE=BE,设BE=x,则DE=x,CE=BC﹣BE=4﹣x,BG=BE•cos B=x,BD=2BG=x,DG=DF=BG=x,AD=AB﹣BD=6﹣x,根据△CDE∽CBD,得出==,建立方程求解即可.【解答】解:(1)在Rt△ABC中,∠ACB=90°,AB=6,BC=4,∴AC===2,∵DE平分∠CDB,∴∠CDE=∠BDE,∵DE⊥BC,∴∠DEC=∠DEB=90°,在△DCE和△DBE中,,∴△DCE≌△DBE(ASA),∴CE=BE,∵CE+BE=BC=4,∴CE=BE=2,∵=tan∠B=,∴=,∴DE=;(2)∵EF⊥CD,∴∠CFE=90°=∠ACB,∵△CEF与△ABC相似,∴△CEF∽△ABC或△CEF∽△BAC,①当△CEF∽△ABC时,则∠ECF=∠BAC,∵∠ACB=90°,∴∠BAC+∠ABC=90°,∴∠ECF+∠ABC=90°,∴∠CDB=90°,∵DE平分∠CDB,∴∠CDE=∠CDB=×90°=45°,∴tan∠CDE=tan45°=1;②当△CEF∽△BAC时,则∠ECF=∠ABC,∴DC=DB,∵DE平分∠CDB,∴DE⊥BC,∴∠CDE+∠ECF=90°,∵∠BAC+∠ABC=90°,∴∠CDE=∠BAC,∴tan∠CDE=tan∠BAC===,综上所述,∠CDE的正切值为1或;(3)如图,过点E作EG⊥AB于点G,∵DE平分∠CDB,EF⊥CD,EG⊥AB,∴EF=EG,∵DE=DE,∴Rt△DEF≌Rt△DEG(HL),∴DF=DG,∵△BDE的面积是△DEF面积的2倍,∴BD=2DF,∴DG=BG,∵EG⊥BD,∴DE=BE,设BE=x,则DE=x,CE=BC﹣BE=4﹣x,BG=BE•cos B=x,∴BD=2BG=x,DG=DF=BG=x,∴AD=AB﹣BD=6﹣x,∵DE平分∠CDB,∴∠CDE=∠BDE,∵DE=BE,∴∠BDE=∠B,∴∠CDE=∠B,∵∠DCE=∠BCD,∴△CDE∽CBD,∴==,即==,解得:CD=3,x=,∴AD=6﹣x=6﹣×=,故这时AD的长为.【点评】本题是几何综合题,考查了直角三角形性质,勾股定理,全等三角形判定和性质,相似三角形的判定和性质,角平分线性质,三角形面积,三角函数等知识,解题关键是熟练掌握相似三角形的判定和性质等相关知识,运用分类讨论思想和方程思想解决问题.9.(青浦区)在四边形ABCD中,AD∥BC,AB=,AD=2,DC=,tan∠ABC=2(如图).点E是射线AD上一点,点F是边BC上一点,联结BE、EF,且∠BEF=∠DCB.(1)求线段BC的长;(2)当FB=FE时,求线段BF的长;(3)当点E在线段AD的延长线上时,设DE=x,BF=y,求y关于x的函数解析式,并写出x的取值范围.【分析】(1)如图1,过点A、D分别作AH⊥BC、DG⊥BC,垂足分别为点H、点G.根据矩形的性质得到AD=HG=2,AH=DG,解直角三角形即可得到结论;(2)如图1,过点E作EM⊥BC,垂足为点M,根据矩形的性质得到EM=AH=2,解直角三角形即可得到结论;(3)如图2,过点E作EN∥DC,交BC的延长线于点N.根据平行四边形的性质得到DE=CN,∠DCB=∠ENB,根据相似三角形的性质得到BE2=BF•BN,过点E作EQ⊥BC,垂足为点Q,根据矩形的性质得到EQ=DG=2,根据勾股定理即可得到结论.【解答】解:(1)如图1,过点A、D分别作AH⊥BC、DG⊥BC,垂足分别为点H、点G.∴AH∥DG,∵AD∥BC,∴四边形AHGD是矩形,∴AD=HG=2,AH=DG,在Rt△ABH中,tan∠ABC=2,AB=,∴=2,∴AH=2BH,∵AH2+BH2=AB2,∴(2BH)2+BH2=()2,∴BH=1,∴AH=2,∴DG=2,在Rt△DGC中,DC=,∴CG===4,∴BC=BH+HG+GC=1+2+4=7;(2)如图1,过点E作EM⊥BC,垂足为点M,∴AH∥EM,∵AD∥BC,∴四边形AHME是矩形,∴EM=AH=2,在Rt△DGC中,DG=2,CG=4,∴tan∠DCB==,∵FB=FE,∴∠FEB=∠FBE.∵∠FEB=∠DCB,∴∠FBE=∠DCB,∴tan∠FBE=.∴=,∴BM=4,在Rt△EFM中,FM2+EM2=FE2,∴(4﹣FB)2+22=FB2,∴BF=;(3)如图2,过点E作EN∥DC,交BC的延长线于点N.∵DE∥CN,∴四边形DCNE是平行四边形,∴DE=CN,∠DCB=∠ENB,∵∠FEB=∠DCB,∴∠FEB=∠ENB,又∵∠EBF=∠NBE,∴△BEF∽△BNE,∴=,∴BE2=BF•BN,过点E作EQ⊥BC,垂足为点Q,则四边形DGQE是矩形,∴EQ=DG=2,∴BQ=x+3.∴BE2=QE2+BQ2=(x+3)2+22=x2+6x+13,∴y(7+x)=x2+6x+13.∴.【点评】本题考查了四边形综合题,梯形的性质,矩形的判定和性质,相似三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.10.(徐汇区)如图,在△ABC中,∠C=90°,cot A=,点D为边AC上的一个动点,以点D为顶点作∠BDE=∠A,射线DE交边AB于点E,过点B作射线DE的垂线,垂足为点F.(1)当点D是边AC中点时,求tan∠ABD的值;(2)求证:AD•BF=BC•DE;(3)当DE:EF=3:1时,求AE:EB.【分析】(1)过点D作DG⊥AB于G,设AC=a,BC=a,由勾股定理得AB的长,在△ABD中,利用面积法可表示出DG的长,再利用勾股定理得出AG的长,从而解决问题;(2)首先利用两个角相等可证明△ADB∽△DEB,得,再证明△ACB∽△DFB,得,从而证明结论;(3)设DE=x,EF=3x,得DF=4x,由cot,可表示出BF的长,再利用勾股定理得出BE、BD的长,由(2)可知,△ADB∽△DEB,得,可表示出AB的长,从而解决问题.【解答】(1)解:如图,过点D作DG⊥AB于G,在Rt△ABC中,cot A=,设AC=a,BC=a,∵∠ACB=90°,∴AB===a,∵D是AC的中点,∴AD=,∵S,∴DG=,在Rt△ADG中,AG===,∴BG=AB﹣AG=a﹣=,在Rt△GDB中,tan;(2)证明:∵∠BDE=∠A,∠DBE=∠ABD,∴△ADB∽△DEB,∴,∵∠F=∠C=90°,∠A=∠BDE,∴△ACB∽△DFB,∴,∴,∴AD•BF=BC•DE;(3)解:∵,∴设DE=x,EF=3x,∴DF=4x,∵∠A=∠BDE,∴cot A=cot∠BDE=,在 Rt△BDF中,cot,∴BF=x,在Rt△BEF中,BE===x,在Rt△BDF中,DB===2x,由(2)可知,△ADB∽△DEB,∴,∴,∴AB=x,∴AE=AB﹣BE=x﹣x=x,∴,即AE:EB=7:17.【点评】本题是相似形综合题,主要考查了相似三角形的判定与性质,三角函数,勾股定理,三角形的面积等知识,利用代数方法解决几何问题是解题的关键.11.(长宁区)已知,在△ABC中,AB=AC=5,BC=8,点E是射线CA上的动点,点O是边BC上的动点,且OC=OE,射线OE交射线BA于点D.(1)如图,如果OC=2,求的值;(2)联结AO,如果△AEO是以AE为腰的等腰三角形,求线段OC的长;(3)当点E在边AC上时,联结BE、CD,∠DBE=∠CDO,求线段OC的长.【分析】(1)通过证明△ABC∽△OEC,可求EC的长,AE的长,通过证明△ADE∽△ODB,可求解;(2)分两种情况讨论,利用相似三角形的性质可求解;(3)通过证明△CDA∽△BEO,可得,通过证明△ABE∽△ODC,可得,列出等式可求解.【解答】解:(1)∵AB=AC=5,OE=OC=2,∴∠B=∠C,∠C=∠OEC,∴∠B=∠OEC=∠AED,又∵∠C=∠C,∴△ABC∽△OEC,∴,∴=,∴EC=,∴AE=,∵∠ADE=∠ADE,∠AED=∠B,∴△ADE∽△ODB,∴=()2=()2=;(2)如图1,当点E在AC上时,∵∠AEO>90°,△AEO是等腰三角形,∴AE=EO,由(1)可知:△ABC∽△OEC,∴,∴,∴EC=OC,∵AC=AE+EC=OC+OC=5,∴OC=;当点E在线段CA的延长线上时,如图2,∵∠EAO>90°,△AEO是等腰三角形,∴AE=AO,∴∠E=∠AOE,∵∠B=∠C=∠OEC,∴∠B=∠AOE,∴△ABC∽△AOE,∴,∴,∴AE=OC,由(1)可知:△ABC∽△OEC,∴,∴,∴EC=OC,∵AC=EC﹣AE=5,∴OC﹣OC=5,∴OC=,综上所述:线段OC的长为或;(3)如图3,当点E在线段AC上时,∵∠ABE=∠CDO,∠ABC=∠OEC,∴∠ABC﹣∠ABE=∠OEC﹣∠ODC,∴∠EBO=∠DCA,∵∠DAC=∠ABC+∠ACB=2∠ACB,∠BOE=∠ACB+∠OEC=2∠ACB,∴∠DAC=∠BOE,∴△CDA∽△BEO,∴,∵∠ABE=∠ODC,∠BAC=∠DOC,∴△ABE∽△ODC,∴,∴,∴,∴OC=8﹣或OC=8+(不合题意舍去),∴OC=8﹣.【点评】本题是三角形综合题,考查了等腰三角形的性质,相似三角形的判定和性质,添加恰当辅助线构造相似三角形是解题的关键.12.(崇明区)已知:如图,正方形的边长为1,在射线AB上取一点E,联结DE,将△ADE绕点D逆时针旋转90°,E点落在F处,联结EF,与对角线BD所在的直线交于点M,与射线DC交于点N.(1)当AE=时,求tan∠EDB的值;(2)当点E在线段AB上,如果AE=x,FM=y,求y关于x的函数解析式,并写出定义域;(3)联结AM,直线AM与直线BC交于点G,当BG=时,求AE的值.【分析】(1)如图1中,过点E作ER⊥BD于点R.解直角三角形求出ER,DR即可;(2)如图2中,过点M作MP⊥AB于点P,MQ⊥BC于点Q.证明===,构建关系式,可得结论;(3)分两种情形:如图3﹣1中,当点G在线段BC上时,过点M作MT⊥AB于点T.如图3﹣2中,当点G在CB的延长线上时,过点M作MT⊥AB交AB的延长线于点T.分别求解即可.【解答】解:(1)如图1中,过点E作ER⊥BD于点R.∵四边形ABCD是正方形,∴AB=AD=BC=CD=1,∠A=90°,∠BD=90°,∴BD===,∵ER⊥BD,∴∠EBR=∠BER=45°,∵AE=,∵BE=,∴ER=BR=,∴DR=﹣=,∴tan∠EDB===;(2)如图2中,过点M作MP⊥AB于点P,MQ⊥BC于点Q.∵∠ADC=∠EDF=90°,∴∠ADE=∠CDF,∵DA=DC,DE=DF,∴△ADE≌△CDF(SAS),∴AE=CF=x,在Rt△ADE中,DE==,∵DE=DF,∠EDF=90°,∴EF=DE=,∵∠EBM=∠FBM=45°,MP⊥BE,MQ⊥BF,∴MP=MQ,∴===,∴=,∴y=﹣x(0≤x≤1);(3)如图3﹣1中,当点G在线段BC上时,过点M作MT⊥AB于点T.∵BG∥AD,∴==,∵BD=,∴BM=,∴BT=TM=,∴ET=EB﹣BT=1﹣x﹣=﹣x,∵MT∥BF,∴=,∴=,解得x=±,经检验,x=是分式方程的解,且符合题意.∴AE=.如图3﹣2中,当点G在CB的延长线上时,过点M作MT⊥AB交AB的延长线于点T.∵BG∥AD,∴==,∵BD=,∴BM=,∴BT=TM=,∴ET=EB﹣BT=﹣(x﹣1)=﹣x,∵MT∥BF,∴=,∴=,解得x=±,经检验,x=是分式方程的解,且符合题意.∴AE=,综上所述,满足条件的AE的值为或.【点评】本题属于四边形综合题,考查了正方形的性质,等腰直角三角形的性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.13.(黄浦区)如图,在Rt△ABC与Rt△ABD中,∠ACB=∠DAB=90°,AB2=BC•BD,AB=3,过点A作AE⊥BD,垂足为点E,延长AE、CB交于点F,联结DF.(1)求证:AE=AC;(2)设BC=x,=y,求y关于x的函数关系式及其定义域;(3)当△ABC与△DEF相似时,求边BC的长.【分析】(1)将AB2=BC•BD转化为,进而根据勾股定理和比例性质推出,进而△ABC∽△DAB,进一步证明△BAE≌△BAC,从而命题得证;(2)作AG∥BE交BC的延长线于G,作GH⊥AB,推出△FBE∽△FGA和cos∠ABC=,再根据比例性质求得结果;(3)两种情形:△ACB∽△DEF和△ACB∽△FED,当△ACB∽△DEF时,由y=1求得结果,当△ACB∽△FED时,推出DF∥AB,从而=,根据△ABE∽△DBA,推出BD=,进而可求得结果.【解答】(1)证明:∵AB2=BC•BD,∴,∴=,∴=,即:=,∴,∵∠C=∠BAD=90°,∴△ABC∽△DAB,∴∠ADB=∠BAC,∵∠BAD=90°,∴∠ADB+∠ABD=90°,∵AE⊥BD,∴∠AEB=90°,∴∠EAB+∠ABD=90°,∴∠BAE=∠ADB,∴∠BAE=∠BAC,∵∠AEB=∠C,AB=AB∴△BAE≌△BAC(AAS),∴AE=AC;(2)如图1,作AG∥BE交BC的延长线于G,作GH⊥AB,∴△FBE∽△FGA,∠ABE=∠BAG,∴,由(1)得,∠EAB=∠BAC,∵∠AEB=∠ACB=90°,∴∠ABE=∠ABC,∴∠ABC=∠BAG,∴AG=BG,∴BH=AH=AB=,∵cos∠ABC=,∴,∴BG=,∴AG=,∴,∴,∴,∴=,∴y=(0<x<);(3)如图2,当△ACB∽△DEF时,∠EDF=∠BAC,∴∠EDF=∠ADE,∵∠DEF=∠DEA,DE=DE,∴△DEF≌△DEA(ASA),∴EF=AE,∴y=1,∴=1,∴x1=,x2=﹣(舍去),∴BC=,如图3,当△ACB∽△FED时,∠BAC=∠DFE,∵∠BAE=∠BAC,∴∠DFE=∠BAE,∴DF∥AB,∴=,∵△ABE∽△DBA,∴,∴,∴BD=,∴DE=BD﹣BE=﹣x,∴=,∴x=,∴BC=,综上所述:BC=或.【点评】本题考查了相似三角形的判定和性质,全等三角形判定和性质,等腰三角形的判定和性质等知识,解决问题的关键是作辅助线和正确分类,计算能力也很关键.14.(宝山区)如图,已知正方形ABCD,将边AD绕点A逆时针方向旋转n°(0<n<90)到AP的位置,分别过点C、D作CE⊥BP,DF⊥BP,垂足分别为点E、F.(1)求证:CE=EF;(2)联结CF,如果=,求∠ABP的正切值;(3)联结AF,如果AF=AB,求n的值.【分析】(1)作DG⊥CE于G,证明△BCE≌△CDG,进一步命题得证;(2)设∠ABP=α,设PD=a,CF=3a,通过角的运算推出∠BPD=45°,进而计算出EG,CG,EF,DG,进一步求得结果;(3)连接AF,CF,证得∠AFC=90°,再证得AF平分∠PAD,进一步求得结果.【解答】(1)证明:如图1,作DG⊥CE于G,∵CE⊥PB,∴∠DGC=∠BEC=90°,∴∠CBE+∠BCE=90°,∵四边形ABCD是正方形,∴∠BCD=90°,BC=CD,∴∠BCE+∠DCG=90°,∴∠CBE=∠DCG,∴△BCE≌△CDG(AAS),∴DG=CE,∵CE⊥PB,DF⊥PB,DG⊥CE,∴∠GEF=∠DFE=∠DGE=90°,∴四边形EFDG是矩形,∴EF=DG,∴CE=CF;(2)解:如图2,设∠ABP=α,设PD=a,CF=3a,∵四边形ABCD是正方形,∴AB=AD,∠ABC=∠BCD=∠BAD=90°,∵AP=AD,∴AB=AP,∴∠APB=∠ABP=α,∴∠BAP=180°﹣∠ABP﹣∠APB=180°﹣2α,∴∠PAD=∠PAB﹣∠BAD=90°﹣2α,∵AP=AD,∴∠APB=∠ADP==45°+α,∴∠FPD=∠APD﹣∠APB=45°,∴△PDF是等腰直角三角形,∴EG=DF=PD=,由(1)得:EF=CE,∴△EFC也是等腰直角三角形,∴DG=EF=CE==,∴CG=CE﹣EG=﹣a=,∴tan∠CDG==,同理(1)可证:∠BCE=∠ABP=α,∵∠BCE=∠CDG,∴∠ABP=∠CDG,∴tan∠ABP=;(3)解:如图3,连接AF,CF,∵四边形ABCD是正方形,∴∠BAC=∠CAD=45°,∵△CEF是等腰直角三角形,∴∠CFE=45°,∴∠CFE=∠BAC,∴点A、B、C、F共圆,∴∠AFE+∠ABC=180°,∵∠ABC=90°,∴∠AFE=90°,∵AF=,AB=AC,∴,即:cos∠CAF=,∴∠CAF=60°,∴∠DAF=∠CAF﹣∠DAC=60°﹣45°=15°,由(2)得:△PFD是等腰直角三角形,∴FD=FP,∵AP=AD,∴AF是PD的垂直平分线,∴∠PAD=2∠DAF=30°.【点评】本题考查了正方形性质,矩形的判定和性质,锐角三角形函数,确定圆的条件,等腰三角形的判定和性质等知识,解决问题的关键是通过角的转化,发现特殊角.15.(虹口区)已知:如图,在△ABC中,∠ACB=90°,AB=10,tan B=,点D是边BC延长线上的点,在射线AB上取一点E,使得∠ADE=∠ABC.过点A作AF⊥DE于点F.(1)当点E在线段AB上时,求证:=;(2)在(1)题的条件下,设CD=x,DE=y,求y关于x的函数关系式,并写出x的取值范围;(3)记DE交射线AC于点G,当△AEF∽△AGF时,求CD的长.【分析】(1)证明△ADE∽△ABD及△ADF∽△ABC,进而命题得证(2)根据△ADE∽△ABD得出,进而得出y与x的关系式,当x=0时,求得此时DE长,进而求得x的范围;(3)当G在线段AC上时,延长AF交BC于M,作MN⊥AB于N,可推出CM=CD,根据AM平分∠BAC,推出MN=CM,根据面积法求得CM,从而得出CD,G点在AC的延长线上不存在.【解答】(1)证明:∵∠ADE=∠ABC,∠DAE=∠BAD,∴△ADE∽△ABD,∴,∵AF⊥DE,∴∠AFD=∠ACB=90°,∴△ADF∽△ABC,∴,∴;(2)解:∵∠ACB=90°,tan B=,∴tan B==,设AC=3a,BC=4a,∵AC2+BC2=AB2,∴(3a)2+(4a)2=102,∴a=2,∴AC=6,BC=8,∴AD==,由(1)得,∴,∴y=,当x=0时,此时DE⊥AB,由S△ABC=得,10•DE=6×8,∴DE=,∴x>;(3)解:如图1,当G在线段AC上时,延长AF交BC于M,作MN⊥AB于N,∵△AEF∽△AGF,∴∠AEF=∠AGF,∴AF=AG,∴∠EAF=∠GAF=,∵∠DAF=∠BAC,∴∠DAC=∠GAF,∵AC⊥BD,∴∠AMC=∠ACD,∴AM=AD,∴CM=CD,∵AM平分∠BAC,∴MN=CM,由S△ABC=S△ABM+S△ACM得,,∴16•CM=48,∴CM=3,∴CD=3.如图2,当G点在AC的延长线上时,∵△AEF∽△AGF,∴∠AEF=∠AGF,∵∠AGF是∠AEF的外角,∴∠AGF>∠AEF,∴这种情形不存在,∴CD=3.【点评】本题考查了相似三角形判定和性质,等腰三角形的判定和性质,解直角三角形等知识,解决问题的关键是转化条件,发现特殊性.。

上海中考数学压轴题专题复习——二次函数的综合

上海中考数学压轴题专题复习——二次函数的综合

一、二次函数 真题与模拟题分类汇编(难题易错题)1.如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.【答案】(1)抛物线的解析式为223y x x =--+,直线的解析式为3y x .(2)(1,2)M -;(3)P 的坐标为(1,2)--或(1,4)-或317(+-或317()--. 【解析】分析:(1)先把点A ,C 的坐标分别代入抛物线解析式得到a 和b ,c 的关系式,再根据抛物线的对称轴方程可得a 和b 的关系,再联立得到方程组,解方程组,求出a ,b ,c 的值即可得到抛物线解析式;把B 、C 两点的坐标代入直线y=mx+n ,解方程组求出m 和n 的值即可得到直线解析式;(2)设直线BC 与对称轴x=-1的交点为M ,此时MA+MC 的值最小.把x=-1代入直线y=x+3得y 的值,即可求出点M 坐标;(3)设P (-1,t ),又因为B (-3,0),C (0,3),所以可得BC 2=18,PB 2=(-1+3)2+t 2=4+t 2,PC 2=(-1)2+(t-3)2=t 2-6t+10,再分三种情况分别讨论求出符合题意t 值即可求出点P 的坐标.详解:(1)依题意得:1203b a a b c c ⎧-=-⎪⎪++=⎨⎪=⎪⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,∴抛物线的解析式为223y x x =--+.∵对称轴为1x =-,且抛物线经过()1,0A ,∴把()3,0B -、()0,3C 分别代入直线y mx n =+,得303m n n -+=⎧⎨=⎩,解之得:13m n =⎧⎨=⎩, ∴直线y mx n =+的解析式为3y x =+.(2)直线BC 与对称轴1x =-的交点为M ,则此时MA MC +的值最小,把1x =-代入直线3y x =+得2y =,∴()1,2M -.即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为()1,2-. (注:本题只求M 坐标没说要求证明为何此时MA MC +的值最小,所以答案未证明MA MC +的值最小的原因).(3)设()1,P t -,又()3,0B -,()0,3C ,∴218BC =,()2222134PB t t =-++=+,()()222213610PC t t t =-+-=-+, ①若点B 为直角顶点,则222BC PB PC +=,即:22184610t t t ++=-+解得:2t =-,②若点C 为直角顶点,则222BC PC PB +=,即:22186104t t t +-+=+解得:4t =,③若点P 为直角顶点,则222PB PC BC +=,即:22461018t t t ++-+=解得: 1317t +=2317t -=. 综上所述P 的坐标为()1,2--或()1,4-或3171,2⎛+- ⎝⎭或3171,2⎛- ⎝⎭. 点睛:本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.2.在平面直角坐标系中,我们定义直线y=ax-a 为抛物线y=ax 2+bx+c (a 、b 、c 为常数,a≠0)的“衍生直线”;有一个顶点在抛物线上,另有一个顶点在y 轴上的三角形为其“衍生三角形”.已知抛物线233333y x x =--+“衍生直线”交于A 、B 两点(点A 在点B 的左侧),与x 轴负半轴交于点C .(1)填空:该抛物线的“衍生直线”的解析式为 ,点A 的坐标为 ,点B 的坐标为 ;(2)如图,点M 为线段CB 上一动点,将△ACM 以AM 所在直线为对称轴翻折,点C 的对称点为N ,若△AMN 为该抛物线的“衍生三角形”,求点N 的坐标;(3)当点E 在抛物线的对称轴上运动时,在该抛物线的“衍生直线”上,是否存在点F ,使得以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请直接写出点E 、F 的坐标;若不存在,请说明理由.【答案】(1)2323y=;(-2,231,0); (2)N 点的坐标为(0,3-3),(0,23+3);(3)E (-1,43F (023)或E (-1,43),F (-4103) 【解析】【分析】(1)由抛物线的“衍生直线”知道二次函数解析式的a 即可;(2)过A 作AD ⊥y 轴于点D ,则可知AN=AC ,结合A 点坐标,则可求出ON 的长,可求出N 点的坐标;(3)分别讨论当AC 为平行四边形的边时,当AC 为平行四边形的对角线时,求出满足条件的E 、F 坐标即可【详解】(1)∵2234323y x x =-+a=233-,则抛物线的“衍生直线”的解析式为2323y=; 联立两解析式求交点2234323332323y=y x x ⎧=--+⎪⎪⎨⎪⎪⎩,解得x=-2y=23⎧⎪⎨⎪⎩x=1y=0⎧⎨⎩, ∴A (-2,3B (1,0);(2)如图1,过A 作AD ⊥y 轴于点D ,在223432333y x x =--+中,令y=0可求得x= -3或x=1, ∴C (-3,0),且A (-2,23),∴AC=22-++2133=(23)()由翻折的性质可知AN=AC=13,∵△AMN 为该抛物线的“衍生三角形”,∴N 在y 轴上,且AD=2,在Rt △AND 中,由勾股定理可得DN=22AN -AD =13-4=3,∵OD=23,∴ON=23-3或ON=23+3,∴N 点的坐标为(0,23-3),(0,23+3);(3)①当AC 为平行四边形的边时,如图2 ,过F 作对称轴的垂线FH ,过A 作AK ⊥x 轴于点K ,则有AC ∥EF 且AC=EF ,∴∠ ACK=∠ EFH ,在△ ACK 和△ EFH 中ACK=EFH AKC=EHF AC=EF ∠∠⎧⎪∠∠⎨⎪⎩∴△ ACK ≌△ EFH ,∴FH=CK=1,HE=AK=23∵抛物线的对称轴为x=-1,∴ F 点的横坐标为0或-2,∵点F 在直线AB 上,∴当F 点的横坐标为0时,则F (0,233),此时点E 在直线AB 下方, ∴E 到y 轴的距离为EH-OF=32343,即E 的纵坐标为43∴ E(-1,-433);当F点的横坐标为-2时,则F与A重合,不合题意,舍去;②当AC为平行四边形的对角线时,∵ C(-3,0),且A(-2,23),∴线段AC的中点坐标为(-2.5,3),设E(-1,t),F(x,y),则x-1=2×(-2.5),y+t=23,∴x= -4,y=23-t,23-t=-233×(-4)+233,解得t=43-3,∴E(-1,43-3),F(-4,1033);综上可知存在满足条件的点F,此时E(-1,-433)、(0,233)或E(-1,43 -3),F(-4,1033)【点睛】本题是对二次函数的综合知识考查,熟练掌握二次函数,几何图形及辅助线方法是解决本题的关键,属于压轴题3.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.【答案】(1)y=﹣x2﹣2x+3;(2)抛物线与x轴的交点为:(﹣3,0),(1,0)(3)15.【解析】【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B 点坐标代入,即可求出二次函数的解析式;(2)根据函数解析式,令x=0,可求得抛物线与y轴的交点坐标;令y=0,可求得抛物线与x轴交点坐标;(3)由(2)可知:抛物线与x轴的交点分别在原点两侧,由此可求出当抛物线与x轴负半轴的交点平移到原点时,抛物线平移的单位,由此可求出A′、B′的坐标.由于△OA′B′不规则,可用面积割补法求出△OA′B′的面积.【详解】(1)设抛物线顶点式y=a(x+1)2+4,将B(2,﹣5)代入得:a=﹣1,∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3;(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3),令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,即抛物线与x轴的交点为:(﹣3,0),(1,0);(3)设抛物线与x轴的交点为M、N(M在N的左侧),由(2)知:M(﹣3,0),N(1,0),当函数图象向右平移经过原点时,M与O重合,因此抛物线向右平移了3个单位,故A'(2,4),B'(5,﹣5),∴S△OA′B′=12×(2+5)×9﹣12×2×4﹣12×5×5=15.【点睛】本题考查了用待定系数法求抛物线解析式、函数图象与坐标轴交点、图形面积的求法等知识.熟练掌握待定系数法、函数图象与坐标轴的交点的求解方法、不规则图形的面积的求解方法等是解题的关键.4.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)抛物线解析式为y=﹣x2+2x+3;直线AC的解析式为y=3x+3;(2)点M的坐标为(0,3);(3)符合条件的点P的坐标为(73,209)或(103,﹣139),【解析】分析:(1)设交点式y=a(x+1)(x-3),展开得到-2a=2,然后求出a即可得到抛物线解析式;再确定C(0,3),然后利用待定系数法求直线AC的解析式;(2)利用二次函数的性质确定D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(-3,0),利用两点之间线段最短可判断此时MB+MD的值最小,则此时△BDM的周长最小,然后求出直线DB′的解析式即可得到点M的坐标;(3)过点C作AC的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC的解析式为y=-13x+b,把C点坐标代入求出b得到直线PC的解析式为y=-13x+3,再解方程组223133y x xy x⎧-++⎪⎨-+⎪⎩==得此时P点坐标;当过点A作AC的垂线交抛物线于另一点P时,利用同样的方法可求出此时P点坐标.详解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得3p qq-+=⎧⎨=⎩,解得33pq=⎧⎨=⎩,∴直线AC的解析式为y=3x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),∵MB=MB′,∴MB+MD=MB′+MD=DB′,此时MB+MD的值最小,而BD的值不变,∴此时△BDM的周长最小,易得直线DB′的解析式为y=x+3,当x=0时,y=x+3=3,∴点M的坐标为(0,3);(3)存在.过点C作AC的垂线交抛物线于另一点P,如图2,∵直线AC的解析式为y=3x+3,∴直线PC的解析式可设为y=﹣13x+b,把C(0,3)代入得b=3,∴直线PC的解析式为y=﹣13x+3,解方程组223133y x xy x⎧-++⎪⎨-+⎪⎩==,解得3xy=⎧⎨=⎩或73209xy⎧=⎪⎪⎨⎪=⎪⎩,则此时P点坐标为(73,209);过点A作AC的垂线交抛物线于另一点P,直线PC的解析式可设为y=﹣x+b,把A(﹣1,0)代入得13+b=0,解得b=﹣13,∴直线PC的解析式为y=﹣13x﹣13,解方程组2231133y x x y x ⎧-++⎪⎨--⎪⎩==,解得10x y =-⎧⎨=⎩或103139x y ⎧=⎪⎪⎨⎪=-⎪⎩,则此时P 点坐标为(103,﹣139). 综上所述,符合条件的点P 的坐标为(73,209)或(103,﹣139). 点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式,理解两直线垂直时一次项系数的关系,通过解方程组求把两函数的交点坐标;理解坐标与图形性质,会运用两点之间线段最短解决最短路径问题;会运用分类讨论的思想解决数学问题.5.如图1,在平面直角坐标系中,直线AB :y =kx +b (k <0,b >0),与x 轴交于点A 、与y 轴交于点B ,直线CD 与x 轴交于点C 、与y 轴交于点D .若直线CD 的解析式为y =﹣1k(x +b ),则称直线CD 为直线AB 的”姊线”,经过点A 、B 、C 的抛物线称为直线AB 的“母线”.(1)若直线AB 的解析式为:y =﹣3x +6,求AB 的”姊线”CD 的解析式为: (直接填空);(2)若直线AB 的”母线”解析式为:2142y x x =-+,求AB 的”姊线”CD 的解析式; (3)如图2,在(2)的条件下,点P 为第二象限”母线”上的动点,连接OP ,交”姊线”CD 于点Q ,设点P 的横坐标为m ,PQ 与OQ 的比值为y ,求y 与m 的函数关系式,并求y 的最大值;(4)如图3,若AB 的解析式为:y =mx +3(m <0),AB 的“姊线”为CD ,点G 为AB 的中点,点H 为CD 的中点,连接OH ,若GH =5,请直接写出AB 的”母线”的函数解析式.【答案】(1)1(6)3y x =+;(2)(2,0)、(0,4)、(﹣4,0);(3)当m =﹣32,y 最大值为338;(4)y =x 2﹣2x ﹣3.【解析】【分析】(1)由k ,b 的值以及”姊线”的定义即可求解;(2)令x =0,得y 值,令y =0,得x 值,即可求得点A 、B 、C 的坐标,从而求得直线CD 的表达式;(3)设点P 的横坐标为m ,则点P (m ,n ),n =﹣12m 2﹣m+4, 从而求得直线OP 的表达式,将直线OP 和CD 表达式联立并解得点Q 坐标, 由此求得P Q y y ,从而求得y =﹣12m 2﹣32m+3,故当m =﹣32,y 最大值为338; (4)由直线AB 的解析式可得AB 的“姊线”CD 的表达式y =﹣1m(x+3),令x =0,得 y 值,令y =0,得x 值,可得点C 、D 的坐标,由此可得点H 坐标,同理可得点G 坐标, 由勾股定理得:m 值,即可求得点A 、B 、C 的坐标,从而得到 “母线”函数的表达式.【详解】(1)由题意得:k =﹣3,b =6, 则答案为:y =13(x+6); (2)令x =0,则y =4,令y =0,则x =2或﹣4,点A 、B 、C 的坐标分别为(2,0)、(0,4)、(﹣4,0),则直线CD 的表达式为:y =12(x+4)=12x+2; (3)设点P 的横坐标为m ,则点P (m ,n ),n =﹣12m 2﹣m+4, 则直线OP 的表达式为:y =n mx , 将直线OP 和CD 表达式联立得122n y x m y x ⎧=⎪⎪⎨⎪=+⎪⎩, 解得:点Q (2438m m m --+,222838m m m m +-+-) 则P Q y y =﹣12m 2﹣32m+4, y =1P Q P Q Q y y y PQ OQ y y -==-=﹣12m 2﹣32m+3, 当m =﹣32,y 最大值为338;(4)直线CD的表达式为:y=﹣1m(x+3),令x=0,则y=﹣3m,令y=0,则x=﹣3,故点C、D的坐标为(﹣3,0)、(0,﹣3m),则点H(﹣32,﹣32m),同理可得:点G(﹣32m,32),则GH2=(32+32m)2+(32﹣32m)2=(5)2,解得:m=﹣3(正值已舍去),则点A、B、C的坐标分别为(1,0)、(0,3)、(﹣3,0),则“母线”函数的表达式为:y=a(x﹣1)(x+3)=a(x2﹣2x﹣3),即:﹣3a=﹣3,解得:a=1,故:“母线”函数的表达式为:y=x2﹣2x﹣3.【点睛】此题是二次函数综合题目,考查了“姊线”的定义,待定系数法求二次函数解析式,二次函数的最值问题,掌握二次函数的有关性质是解答此题的关键.6.如图,抛物线y=ax2+bx过点B(1,﹣3),对称轴是直线x=2,且抛物线与x轴的正半轴交于点A.(1)求抛物线的解析式,并根据图象直接写出当y≤0时,自变量x的取值范围;(2)在第二象限内的抛物线上有一点P,当PA⊥BA时,求△PAB的面积.【答案】(1)抛物线的解析式为y=x2﹣4x,自变量x的取值范图是0≤x≤4;(2)△PAB的面积=15.【解析】【分析】(1)将函数图象经过的点B坐标代入的函数的解析式中,再和对称轴方程联立求出待定系数a和b;(2)如图,过点B作BE⊥x轴,垂足为点E,过点P作PE⊥x轴,垂足为F,设P(x,x2-4x),证明△PFA∽△AEB,求出点P的坐标,将△PAB的面积构造成长方形去掉三个三角形的面积.【详解】(1)由题意得,322a b b a+-⎧⎪⎨-⎪⎩==,解得14a b -⎧⎨⎩==,∴抛物线的解析式为y=x 2-4x , 令y=0,得x 2-2x=0,解得x=0或4, 结合图象知,A 的坐标为(4,0),根据图象开口向上,则y≤0时,自变量x 的取值范围是0≤x≤4;(2)如图,过点B 作BE ⊥x 轴,垂足为点E ,过点P 作PE ⊥x 轴,垂足为F ,设P (x ,x 2-4x ), ∵PA ⊥BA ∴∠PAF+∠BAE=90°, ∵∠PAF+∠FPA=90°, ∴∠FPA=∠BAE 又∠PFA=∠AEB=90° ∴△PFA ∽△AEB,∴PF AF AE BE =,即244213x x x--=-, 解得,x= −1,x=4(舍去) ∴x 2-4x=-5∴点P 的坐标为(-1,-5),又∵B 点坐标为(1,-3),易得到BP 直线为y=-4x+1 所以BP 与x 轴交点为(14,0) ∴S △PAB=115531524⨯⨯+= 【点睛】本题是二次函数综合题,求出函数解析式是解题的关键,特别是利用待定系数法将两条直线表达式解出,利用点的坐标求三角形的面积是关键.7.如图,直线y=﹣x+分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD∥y轴交BC 于点D,求△DMH周长的最大值.【答案】(1)(﹣1,0)(2)y=﹣x2+x+(3)【解析】试题分析:(1)由直线解析式可求得B、C坐标,在Rt△BOC中由三角函数定义可求得∠OCB=60°,则在Rt△AOC中可得∠ACO=30°,利用三角函数的定义可求得OA,则可求得A点坐标;(2)由A、B两点坐标,利用待定系数法可求得抛物线解析式;(3)由平行线的性质可知∠MDH=∠BCO=60°,在Rt△DMH中利用三角函数的定义可得到DH、MH与DM的关系,可设出M点的坐标,则可表示出DM的长,从而可表示出△DMH 的周长,利用二次函数的性质可求得其最大值.试题解析:(1)∵直线y=﹣x+分别与x轴、y轴交于B、C两点,∴B(3,0),C(0,),∴OB=3,OC=,∴tan∠BCO==,∴∠BCO=60°,∵∠ACB=90°,∴∠ACO=30°,∴=tan30°=,即=,解得AO=1,∴A(﹣1,0);(2)∵抛物线y=ax2+bx+经过A,B两点,∴,解得,∴抛物线解析式为y=﹣x2+x+;(3)∵MD∥y轴,MH⊥BC,∴∠MDH=∠BCO=60°,则∠DMH=30°,∴DH=DM,MH=DM,∴△DMH的周长=DM+DH+MH=DM+DM+DM=DM,∴当DM有最大值时,其周长有最大值,∵点M是直线BC上方抛物线上的一点,∴可设M(t,﹣t2+t+),则D(t,﹣t+),∴DM=﹣t2+t+),则D(t,﹣t+),∴DM=﹣t2+t+﹣(﹣t+)=﹣t2+t=﹣(t﹣)2+,∴当t=时,DM有最大值,最大值为,此时DM=×=,即△DMH周长的最大值为.考点:1、二次函数的综合应用,2、待定系数法,3、三角函数的定义,4方程思想8.(本小题满分12分)如图,在平面直角坐标系xOy中,抛物线()与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);(2)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为,求a的值;(3)设P是抛物线的对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.【答案】(1)A(-1,0),;(2);(3)P的坐标为(1,)或(1,-4).【解析】试题分析:(1)在中,令y=0,得到,,得到A(-1,0),B(3,0),由直线l经过点A,得到,故,令,即,由于CD=4AC,故点D的横坐标为4,即有,得到,从而得出直线l的函数表达式;(2)过点E作EF∥y轴,交直线l于点F,设E(,),则F(,),EF==,S△ACE=S△AFE-S△CFE==,故△ACE的面积的最大值为,而△ACE的面积的最大值为,所以,解得;(3)令,即,解得,,得到D (4,5a),因为抛物线的对称轴为,设P(1,m),然后分两种情况讨论:①若AD是矩形的一条边,②若AD是矩形的一条对角线.试题解析:(1)∵=,令y=0,得到,,∴A(-1,0),B(3,0),∵直线l经过点A,∴,,∴,令,即,∵CD=4AC,∴点D的横坐标为4,∴,∴,∴直线l的函数表达式为;(2)过点E作EF∥y轴,交直线l于点F,设E(,),则F(,),EF==,S△ACE=S△AFE-S△CFE===,∴△ACE的面积的最大值为,∵△ACE的面积的最大值为,∴,解得;(3)令,即,解得,,∴D(4,5a),∵,∴抛物线的对称轴为,设P(1,m),①若AD是矩形的一条边,则Q(-4,21a),m=21a+5a=26a,则P(1,26a),∵四边形ADPQ为矩形,∴∠ADP=90°,∴,∴,即,∵,∴,∴P1(1,);②若AD是矩形的一条对角线,则线段AD的中点坐标为(,),Q(2,),m =,则P(1,8a),∵四边形APDQ为矩形,∴∠APD=90°,∴,∴,即,∵,∴,∴P2(1,-4).综上所述,以点A、D、P、Q为顶点的四边形能成为矩形,点P的坐标为(1,)或(1,-4).考点:二次函数综合题.9.如图,直线y=﹣3x+3与x轴、y轴分别交于A,B两点,抛物线y=﹣x2+bx+c与直线y=c 分别交y轴的正半轴于点C和第一象限的点P,连接PB,得△PCB≌△BOA(O为坐标原点).若抛物线与x轴正半轴交点为点F,设M是点C,F间抛物线上的一点(包括端点),其横坐标为m.(1)直接写出点P的坐标和抛物线的解析式;(2)当m 为何值时,△MAB 面积S 取得最小值和最大值?请说明理由; (3)求满足∠MPO=∠POA 的点M 的坐标.【答案】(1)点P 的坐标为(3,4),抛物线的解析式为y=﹣x 2+3x+4;(2)当m=0时,S 取最小值,最小值为12;当m=3时,S 取最大值,最大值为5.(3)满足∠MPO=∠POA 的点M 的坐标为(0,4)或(247,12449).【解析】【分析】(1)代入y=c 可求出点C 、P 的坐标,利用一次函数图象上点的坐标特征可求出点A 、B 的坐标,再由△PCB ≌△BOA 即可得出b 、c 的值,进而可得出点P 的坐标及抛物线的解析式;(2)利用二次函数图象上点的坐标特征求出点F 的坐标,过点M 作ME ∥y 轴,交直线AB 于点E ,由点M 的横坐标可得出点M 、E 的坐标,进而可得出ME 的长度,再利用三角形的面积公式可找出S=﹣12(m ﹣3)2+5,由m 的取值范围结合二次函数的性质即可求出S 的最大值及最小值;(3)分两种情况考虑:①当点M 在线段OP 上方时,由CP ∥x 轴利用平行线的性质可得出:当点C 、M 重合时,∠MPO=∠POA ,由此可找出点M 的坐标;②当点M 在线段OP 下方时,在x 正半轴取点D ,连接DP ,使得DO=DP ,此时∠DPO=∠POA ,设点D 的坐标为(n ,0),则DO=n ,()()22304n -+-DO=DP 可求出n 的值,进而可得出点D 的坐标,由点P 、D 的坐标利用待定系数法即可求出直线PD 的解析式,再联立直线PD 及抛物线的解析式成方程组,通过解方程组求出点M 的坐标.综上此题得解. 【详解】(1)当y=c 时,有c=﹣x 2+bx+c , 解得:x 1=0,x 2=b ,∴点C 的坐标为(0,c ),点P 的坐标为(b ,c ), ∵直线y=﹣3x+3与x 轴、y 轴分别交于A 、B 两点, ∴点A 的坐标为(1,0),点B 的坐标为(0,3), ∴OB=3,OA=1,BC=c ﹣3,CP=b , ∵△PCB ≌△BOA ,∴BC=OA ,CP=OB , ∴b=3,c=4,∴点P 的坐标为(3,4),抛物线的解析式为y=﹣x 2+3x+4; (2)当y=0时,有﹣x 2+3x+4=0, 解得:x 1=﹣1,x 2=4, ∴点F 的坐标为(4,0),过点M 作ME ∥y 轴,交直线AB 于点E ,如图1所示, ∵点M 的横坐标为m (0≤m≤4),∴点M 的坐标为(m ,﹣m 2+3m+4),点E 的坐标为(m ,﹣3m+3), ∴ME=﹣m 2+3m+4﹣(﹣3m+3)=﹣m 2+6m+1, ∴S=12OA•ME=﹣12m 2+3m+12=﹣12(m ﹣3)2+5, ∵﹣12<0,0≤m≤4, ∴当m=0时,S 取最小值,最小值为12;当m=3时,S 取最大值,最大值为5; (3)①当点M 在线段OP 上方时,∵CP ∥x 轴, ∴当点C 、M 重合时,∠MPO=∠POA , ∴点M 的坐标为(0,4);②当点M 在线段OP 下方时,在x 正半轴取点D ,连接DP ,使得DO=DP ,此时∠DPO=∠POA ,设点D 的坐标为(n ,0),则DO=n ,∴n 2=(n ﹣3)2+16, 解得:n=256, ∴点D 的坐标为(256,0), 设直线PD 的解析式为y=kx+a (k≠0), 将P (3,4)、D (256,0)代入y=kx+a , 342506k a k a +=⎧⎪⎨+=⎪⎩,解得:2471007k a ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线PD 的解析式为y=﹣247x+1007, 联立直线PD 及抛物线的解析式成方程组,得:2241007734y x y x x ⎧=+⎪⎨⎪=-++⎩﹣,解得:1134x y =⎧⎨=⎩,2224712449x y ⎧=⎪⎪⎨⎪=⎪⎩.∴点M 的坐标为(247,12449). 综上所述:满足∠MPO=∠POA 的点M 的坐标为(0,4)或(247,12449).【点睛】本题考查了待定系数法求一次函数解析式、一次(二次)函数图象上点的坐标特征、全等三角形的性质、二次函数的性质、三角形的面积以及等腰三角形的性质,解题的关键是:(1)利用全等三角形的性质求出b 、c 的值;(2)利用三角形的面积公式找出S=﹣(m ﹣3)2+5;(3)分点M 在线段OP 上方和点M 在线段OP 下方两种情况求出点M 的坐标.10.如图,已知抛物线2y ax bx c =++(a≠0)经过A (﹣1,0)、B (3,0)、C (0,﹣3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当点P 到点A 、点B 的距离之和最短时,求点P 的坐标;(3)点M 也是直线l 上的动点,且△MAC 为等腰三角形,请直接写出所有符合条件的点M 的坐标.【答案】(1)223y x x =--;(2)P (1,0);(3).【解析】试题分析:(1)直接将A 、B 、C 三点坐标代入抛物线的解析式中求出待定系数即可; (2)由图知:A .B 点关于抛物线的对称轴对称,那么根据抛物线的对称性以及两点之间线段最短可知,直线l 与x 轴的交点,即为符合条件的P 点;(3)由于△MAC 的腰和底没有明确,因此要分三种情况来讨论:①MA=AC 、②MA=MC 、③AC=MC ;可先设出M 点的坐标,然后用M 点纵坐标表示△MAC 的三边长,再按上面的三种情况列式求解.试题解析:(1)将A (﹣1,0)、B (3,0)、C (0,﹣3)代入抛物线2y ax bx c=++中,得:0{9303a b c a b c c -+=++==-,解得:1{23a b c ==-=-,故抛物线的解析式:223y x x =--.(2)当P 点在x 轴上,P ,A ,B 三点在一条直线上时,点P 到点A 、点B 的距离之和最短,此时x=2b a -=1,故P (1,0); (3)如图所示:抛物线的对称轴为:x=2b a -=1,设M (1,m ),已知A (﹣1,0)、C (0,﹣3),则:2MA =24m +,2MC =2(3)1m ++=2610m m ++,2AC =10;①若MA=MC ,则22MA MC =,得:24m +=2610m m ++,解得:m=﹣1; ②若MA=AC ,则22MA AC =,得:24m +=10,得:m=6±;③若MC=AC ,则22MC AC =,得:2610m m ++=10,得:10m =,26m =-; 当m=﹣6时,M 、A 、C 三点共线,构不成三角形,不合题意,故舍去;综上可知,符合条件的M 点,且坐标为 M (1,6)(1,6-)(1,﹣1)(1,0).考点:二次函数综合题;分类讨论;综合题;动点型.。

专题18 圆压轴题 -备战2023年中考数学一轮复习考点帮(上海专用)(解析版)

专题18 圆压轴题 -备战2023年中考数学一轮复习考点帮(上海专用)(解析版)

专题18 圆压轴题以圆为背景的综合问题是中考压轴题的命题趋势之一,按往年命题趋势猜测,很大概率会和平行线段分线段成比例(2020年),梯形,特殊平行四边形(最新热点)等知识点结合,主要考查学生挖掘信息的能力,难题分解能力,数学综合能力考点一定圆结合直角三角形,考察函数关系,圆心距,存在性问题;考点二定圆结合直角三角形;三角形相似,线段与周长的函数关系;考点三定圆结合直角三角形;考察函数关系,三角形面积比值问题;考点四定圆结合平行线,弧中点,考察函数关系,与圆相切问题;考点五动圆结合三角形,考察三角形相似,考察三角形相似,函数关系;考点六动圆结合内切直角三角形,三角形相似,线段比,圆位置关系;考点七动圆结合定圆,考察函数关系,与圆有关的位置关系;考点八动圆结合定圆,函数关系,四边形,正多边形结合的问题。

一、解答题1.(2022·上海嘉定·统考二模)在半圆O中,AB为直径,AC,AD为两条弦,且∠CAD+∠DAB=90°.(1)如图1,求证:»等于»CD;AD(2)如图2,点F在直径AB上,DF交AC于点E,若AE=DE,求证:AC=2DF;(3)如图3,在(2)的条件下,连接BC,若AF=2,BC=6,求弦AD的长.AB为直径Q\∠ADB=90°\∠DBA+∠DAB=90°DAC+∠DAB=90°Q∠\∠DAC=∠DBA又Q∠DCA=∠DBA\∠DAC=∠DCA\AD=CD\»AD=»CD(2)证明:如图:连接BD、CD,过点D作DG⊥AC于点G \аDGA=90由(1)知AD=CD\垂直平分ACDG\AC AG=2QAE DE=\ÐÐ=ADF DACDAC+∠DAB=90°Q∠\∠ADF+∠DAB=90°\ÐаDFA AGD==90又=QAD DA()\△≌△ADF DAG AASDF AG\=\AC DF=2(3)2.(2021春·上海徐汇·九年级统考阶段练习)已知:⊙O 的半径为3,OC ^弦AB ,垂足为D ,点E 在⊙O 上,ECO BOC Ð=Ð,射线CE 与射线OB 相交于点F .设,AB x =,CE y =,(1)求y与x之间的函数解析式,并写出函数定义域;(2)当OEFD为直角三角形时,求AB的长;(3)如果1BF=,求EF的长.∴AB =OB =3(3)①当CF =OF =OB –BF =2时,可得:△CFO ∽△COE ,CE =292OC CF =,∴EF =CE –CF =95222-=.②当CF =OF =OB +BF =4时,可得:△CFO ∽△COE ,CE =294OC CF =,∴EF =CF–CE =97444-=.【点睛】本题考查了有关圆的知识的综合题,分类讨论是解决问题的关键.3.(2023春·上海·九年级专题练习)如图,等边△ABC 内接于⊙O ,P 是»AB上任一点(点P 与点A 、B 重合),连接AP 、BP ,过点C 作CM ∥BP 交P A 的延长线于点M .(1)求∠APC 和∠BPC 的度数;(2)求证:△ACM ≌△BCP ;(3)若P A =1,PB =2,求四边形PBCM 的面积;(4)在(3)的条件下,求»AB的长度.【答案】(1)∠APC =60°,∠BPC =60°(2)见解析(3)15344.(2021秋·上海金山·九年级期末)定理:一条弧所对的圆周角等于这条弧所对的圆心角的一半.如图1,∠A =12∠O .已知:如图2,AC 是⊙O 的一条弦,点D 在⊙O 上(与A 、C 不重合),联结DE 交射线AO 于点E ,联结OD ,⊙O 的半径为5,tan ∠OAC =34.(1)求弦AC 的长.(2)当点E 在线段OA 上时,若△DOE 与△AEC 相似,求∠DCA 的正切值.(3)当OE=1时,求点A与点D之间的距离(直接写出答案).由垂径定理得:AH=在Rt△OAH中,tanÐ∴设OH=3x,AH=∵OH2+AH2=OA2,由(1)可得OH=3,∵OE=1,∴AE=4,ME=6,∵EG∥OH,∴△AEG∽△AOH,又∵∠M =∠C , 同理可求EG =185,∴EC =22GC EG +∵AM 是直径,∴∠ADM =90°=∠EGC又∵∠M =∠C ,∴△EGC ∽△ADM ,5.(2021·上海·统考二模)如图,已知扇形AOB 的半径4OA =,90AOB Ð=°,点C 、D 分别在半径OA 、OB 上(点C 不与点A 重合),联结CD .点P 是弧AB 上一点,PC PD =.(1)当3cot 4ODC Ð=,以CD 为半径的圆D 与圆O 相切时,求CD 的长;(2)当点D 与点B 重合,点P 为弧AB 的中点时,求OCD Ð的度数;(3)如果2OC =,且四边形ODPC 是梯形,求PCD OCDS S △△的值.6.(2021·上海青浦·统考二模)已知:在半径为2的扇形AOB 中,0180AOB m m Ð=°£(<),点C 是»AB上的一个动点,直线AC 与直线OB 相交于点D .(1)如图1,当090m BCD V <<,是等腰三角形时,求D Ð的大小(用含m 的代数式表示);(2)如图2,当90m =,点C 是»AB 的中点时,连接AB ,求ABD ABCS S V V 的值;(3)将»AC沿AC所在的直线折叠,当折叠后的圆弧与OB所在的直线相切于点E,且OE=时,求线段AD的长.1(3)图2如下:【点睛】本题考查圆的综合菱形的判定和性质、勾股定理等是解题关键.7.(2022春·上海·九年级专题练习)已知⊙O的直径AB=4,点P为弧AB上一点,联结P A、PO,点C为劣弧AP上一点(点C不与点A、P重合),联结BC交P A、PO于点D、E.(1)如图,当cos∠CBO=7时,求BC的长;8(2)当点C为劣弧AP的中点,且△EDP与△AOP相似时,求∠ABC的度数;(3)当AD=2DP,且△BEO为直角三角形时,求四边形AOED的面积.8.(2021·上海·九年级专题练习)如图,已知在四边形ABCD 中,//AD BC ,90ABC Ð=°,以AB 为直径的O e 交边DC 于E 、F 两点,1AD =,5BC =,设O e 的半径长为r .(1)联结OF ,当//OF BC 时,求O e 的半径长;(2)过点O 作OH EF ^,垂足为点H ,设OH y =,试用r 的代数式表示y ;(3)设点G为DC的中点,联结OG、OD,ODGV是否能成为等腰三角形?如果能,试求出r的值;如不能,试说明理由.Ð=Ð,GOD GDO∵//OG AD,∴ADO GODÐ=Ð,∴ADO GDOÐ=Ð,∴DO是ADGÐ的平分线,由题意知:OA AD^,,又OH CD^∴OA OH=,则此时圆O和CD相切,不合题意;综上所述,ODGV能成为等腰三角形,22r=.【点睛】本题考查了垂径定理、梯形中位线定理、勾股定理、角平分线的性质、等腰三角形的性质等知识;熟练掌握垂径定理和梯形中位线定理是解题的关键.9.(2022·上海·九年级专题练习)如图,已知AB是半圆O的直径,AB=6,点C在半圆⊥,垂足为点D,AD的延长线与弦BC交于点E,与半圆O交于点O上.过点A作AD OCF(点F不与点B重合).的中点时,求弦BC的长;(1)当点F为¶BC(2)设OD=x,DE=y,求y与x的函数关系式;AE(3)当△AOD与△CDE相似时,求线段OD的长.10.(2021·上海·九年级专题练习)如图,已知半圆⊙O的直径AB=10,弦CD∥AB,且CD=8,E为弧CD的中点,点P在弦CD上,联结PE,过点E作PE的垂线交弦CD于点G,交射线OB于点F.(1)当点F与点B重合时,求CP的长;(2)设CP=x,OF=y,求y与x的函数关系式及定义域;(3)如果GP=GF,求△EPF的面积.一、解答题1.(2022·上海嘉定·统考二模)在半圆O中,AB为直径,AC,AD为两条弦,且∠CAD+∠DAB=90°.(1)如图1,求证:»等于»CD;AD(2)如图2,点F在直径AB上,DF交AC于点E,若AE=DE,求证:AC=2DF;(3)如图3,在(2)的条件下,连接BC,若AF=2,BC=6,求弦AD的长.(3)取BC中点H,连接OH、OD,则BH=CH=1BC=3,OH⊥BC,证2Rt△OED≌Rt△BHO,推出OE=BH=3,OD=OA=5,则在Rt△OED中,求出DE的长,在Rt△AED中,可求出AD的长.(1)证明:如图:连接BD、CDAB为直径Q\∠ADB=90°\∠DBA+∠DAB=90°DAC+∠DAB=90°Q∠\∠DAC=∠DBA又Q∠DCA=∠DBA\∠DAC=∠DCA\AD=CD\»AD=»CD(2)证明:如图:连接BD、CD,过点D作DG⊥AC于点G\а=90DGA由(1)知AD=CD\垂直平分ACDG\AC AG=2Q=AE DE\ÐÐ=ADF DAC2.(2021春·上海徐汇·九年级统考阶段练习)已知:⊙O的半径为3,OC^弦AB,垂足为D ,点E 在⊙O 上,ECO BOC Ð=Ð,射线CE 与射线OB 相交于点F .设,AB x =,CE y =,(1)求y 与x 之间的函数解析式,并写出函数定义域;(2)当OEF D 为直角三角形时,求AB 的长;(3)如果1BF =,求EF 的长.3.(2023春·上海·九年级专题练习)如图,等边△ABC内接于⊙O,P是»上任一点AB(点P与点A、B重合),连接AP、BP,过点C作CM∥BP交P A的延长线于点M.(1)求∠APC和∠BPC的度数;(2)求证:△ACM≌△BCP;(3)若P A=1,PB=2,求四边形PBCM的面积;(4)在(3)的条件下,求»的长度.AB4.(2021秋·上海金山·九年级期末)定理:一条弧所对的圆周角等于这条弧所对的圆心角的一半.如图1,∠A=12∠O.已知:如图2,AC是⊙O的一条弦,点D在⊙O上(与A、C不重合),联结DE交射线AO于点E,联结OD,⊙O的半径为5,tan∠OAC=34.(1)求弦AC的长.(2)当点E在线段OA上时,若△DOE与△AEC相似,求∠DCA的正切值.(3)当OE=1时,求点A与点D之间的距离(直接写出答案).由垂径定理得:AH=∵∠DEO =∠AEC ,∴当△DOE 与△AEC »»AD AD=Q \12ACD DOE Ð=Ð,∴△AEG∽△AOH,∴AE EG AGAO OH AH==,∴4013345EG AG==,∴2413EG=,由(1)可得 OH =3,∵OE =1,∴AE =4,ME =6,∵EG ∥OH ,∴△AEG ∽△AOH ,∴45AE AG EG AO AH OH ===AG 16EG 12又∵∠M =∠C ,同理可求EG =185,∴EC =22GC EG +∵AM 是直径,∴∠ADM =90°=∠EGC 又∵∠M =∠C ,∴△EGC ∽△ADM ,5.(2021·上海·统考二模)如图,已知扇形AOB 的半径4OA =,90AOB Ð=°,点C 、D 分别在半径OA 、OB 上(点C 不与点A 重合),联结CD .点P 是弧AB 上一点,PC PD =.(1)当3cot 4ODC Ð=,以CD 为半径的圆D 与圆O 相切时,求CD 的长;(2)当点D 与点B 重合,点P 为弧AB 的中点时,求OCD Ð的度数;(3)如果2OC =,且四边形ODPC 是梯形,求PCD OCDS S △△的值.。

中考数学专题复习――压轴题(含答案)

中考数学专题复习――压轴题(含答案)

中考数学专题复习――压轴题(含答案)中考数学专题复习――压轴题1.已知:如图,抛物线y=-x2+bx+c与x轴、y轴分别相交于点A(-1,0)、B(0,3)两点,其顶点为D.(1)求该抛物线的解析式;(2)若该抛物线与x轴的另一个交点为E. 求四边形ABDE 的面积;(3)△AOB与△BDE是否相似?如果相似,请予以证明;如果不相似,请说明理由.b4ac b2(注:抛物线y=ax+bx+c(a≠0)的顶点坐标为2a,4a )2.2. 已知直角梯形纸片OABC在平面直角坐标系中的位置如图所示,四个顶点的坐标分别为O(0,0),A(10,0),B(8,23),C(0,2),点T在线段OA上(不与线段端点重合),将纸片折叠,使点A落在射线AB上(记为点A′),折痕经过点T,折痕TP与射线AB交于点P,设点T的横坐标为t,折叠后纸片重叠部分(图中的阴影部分)的面积为S;(1)求∠OAB的度数,并求当点A′在线段AB上时,S关于t 的函数关系式;(2)当纸片重叠部分的图形是四边形时,求t的取值范围;(3)S存在最大值吗?若存在,求出这个最大值,并求此时t 的值;若不存在,请说明理由.3. 如图,在Rt△ABC中,A 90,AB 6,AC 8,D,E分别是边AB,AC的中点,点P从点D出发沿DE方向运动,过点P作PQ BC于Q,过点Q作QR∥BA交AC于R,当点Q与点C重合时,点P停止运动.设BQ x,QR y.(1)求点D到BC的距离DH的长;(2)求y关于x的函数关系式(不要求写出自变量的取值范围);(3)是否存在点P,使△PQR为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.H QC4.在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N.以MN 为直径作⊙O,并在⊙O内作内接矩形AMPN.令AM=x.(1)用含x的代数式表示△MNP的面积S;(2)当x为何值时,⊙O与直线BC相切?(3)在动点M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数表达式,并求x为何值时,y的值最大,最大值是多少?P 图35、如图1,已知双曲线y=BD 图2B图1k(k0)与直线y=k′x交于A,B两点,点A在第一象限.试x解答下列问题:(1)若点A的坐标为(4,2).则点B的坐标为;若点A的横坐标为m,则点B的坐标可表示为;(2)如图2,过原点O作另一条直线l,交双曲线y=k(k0)于P,Q两点,点P在第一x象限.①说明四边形APBQ一定是平行四边形;②设点A.P的横坐标分别为m,n,四边形APBQ可能是矩形吗?可能是正方形吗?若可能,直接写出mn应满足的条件;若不可能,请说明理由.6. 如图1,在平面直角坐标系中,己知ΔAOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连结AP,并把ΔAOP绕着点A按逆时针方向旋转.使边AO与AB重合.得到ΔABD.(1)求直线AB的解析式;(2)当点P运动到点(,0)时,求此时DP的长及点D 的坐标;(3)是否存在点P,使ΔOPD的面积等于3,若存在,请求出符合条件的点P的坐标;若不存在,请说明理由. 47.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连结BG,DE.我们探究下列图中线段BG、线段DE 的长度关系及所在直线的位置关系:(1)①猜想如图1中线段BG、线段DE的长度关系及所在直线的位置关系;②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度,得到如图2、如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断.(2)将原题中正方形改为矩形(如图4―6),且AB=a,BC=b,CE=ka,CG=kb (a b,k 0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由.(3)在第(2)题图5中,连结DG、BE,且a=3,b=2,k= 1,求BE2 DG2的值.28.如图1所示,直角梯形OABC的顶点A、C分别在y轴正半轴与x轴负半轴上.过点B、C作直线l.将直线l平移,平移后的直线l与x轴交于点D,与y轴交于点E.(1)将直线l向右平移,设平移距离CD为t(t 0),直角梯形OABC被直线l扫过的面积(图中阴影部份)为s,s关于t的函数图象如图2所示,OM为线段,MN为抛物线的一部分,NQ为射线,N点横坐标为4.①求梯形上底AB的长及直角梯形OABC的面积;②当2 t 4时,求S关于t的函数解析式;(2)在第(1)题的条件下,当直线l向左或向右平移时(包括l与直线BC重合),在直线上是否存在点P,使PDE为等腰直角三角形?若存在,请直接写出所有满..AB..足条件的点P的坐标;若不存在,请说明理由.9.如图,菱形ABCD的边长为2,BD=2,E、F分别是边AD,CD上的两个动点,且满足AE+CF=2.(1)求证:△BDE≌△BCF;(2)判断△BEF的形状,并说明理由;(3)设△B EF的面积为S,求S的取值范围.10.如图,抛物线L1:y x2 2x 3交x轴于A、B两点,交y轴于M点.抛物线L1向右平移2个单位后得到抛物线L2,L2交x 轴于C、D两点. (1)求抛物线L2对应的函数表达式;(2)抛物线L1或L2在x轴上方的部分是否存在点N,使以A,C,M,N为顶点的四边形是平行四边形.若存在,求出点N的坐标;若不存在,请说明理由;(3)若点P是抛物线L1上的一个动点(P不与点A、B重合),那么点P关于原点的对称点Q是否在抛物线L2上,请说明理由.11 20XX年5月1日,目前世界上最长的跨海大桥――杭州湾跨海大桥通车了.通车后,苏南A地到宁波港的路程比原来缩短了120千米.已知运输车速度不变时,行驶时间将从原来的3时20分缩短到2时.(1)求A地经杭州湾跨海大桥到宁波港的路程.(2)若货物运输费用包括运输成本和时间成本,已知某车货物从A地到宁波港的运输成本是每千米1.8元,时间成本是每时28元,那么该车货物从A地经杭州湾跨海大桥到宁波港的运输费用是多少元?(3)A地准备开辟宁波方向的外运路线,即货物从A地经杭州湾跨海大桥到宁波港,再从宁波港运到B地.若有一批货物(不超过10车)从A地按外运路线运到B地的运费需8320元,其中从A地经杭州湾跨海大桥到宁波港的每车运输费用与(2)中相同,从宁波港到B地的海上运费对一批不超过10车的货物计费方式是:一车800元,当货物每增加1车时,每车的海上运费就减少20元,问这批货物有几车?12.如图1,把一张标准纸一次又一次对开,得到“2开”纸、“4开”纸、“8开”纸、“16开”纸.已知标准纸的短边长为a....(1)如图2,把这张标准纸对开得到的“16开”张纸按如下步骤折叠:第一步将矩形的短边AB与长边AD对齐折叠,点B落在AD上的点B 处,铺平后得折痕AE;第二步将长边AD与折痕AE对齐折叠,点D正好与点E重合,铺平后得折痕AF.则AD:AB的值是,AD,AB的长分别是,.(2)“2开”纸、“4开”纸、“8开”纸的长与宽之比是否都相等?若相等,直接写出这个比值;若不相等,请分别计算它们的比值.(3)如图3,由8个大小相等的小正方形构成“L”型图案,它的四个顶点E,F,G,H分别在“16开”纸的边AB,BC,CD,DA上,求DG的长.(4)已知梯形MNPQ中,MN∥PQ,∠M 90,MN MQ 2PQ,且四个顶点M,N,P,Q都在“4开”纸的边上,请直接写出2个符合条件且大小不同的直角梯形的面积.4开a2开8开开图1D FA ED GBE 图2CBF 图3C13.如图,在梯形ABCD中,AB∥CD,AB=7,CD=1,AD =BC=5.点M,N分别在边AD,BC上运动,并保持MN∥AB,ME⊥AB,NF⊥AB,垂足分别为E,F.(1)求梯形ABCD的面积;(2)求四边形MEFN面积的最大值.(3)试判断四边形MEFN能否为正方形,若能,求出正方形MEFN的面积;若不能,请说明理由.C A E F B14.如图,点A(m,m+1),B(m+3,m-1)都在反比例函数y (1)求m,k的值;(2)如果M为x轴上一点,N为y轴上一点,以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式.友情提示:本大题第(1)小题4分,第(2)小题7分.对完成第(2)小题有困难的同学可以做下面的(3)选做题.选做题2分,所得分数计入总分.但第(2)、(3)小题都做的,第(3)小题的得分不重复计入总分.(3)选做题:在平面直角坐标系中,点P的坐标为(5,0),点Q的坐标为(0,3),把线段PQ向右平移4个单位,然后再向上平移2个单位,得到线段P1Q1,则点P1的坐标为,点Q1的坐标为.k的图象上.x15.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图12,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.(1) 请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;(2)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;(3)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.0),A(6,0),C(0,3).动点Q从点16.将一矩形纸片OABC 放在平面直角坐标系中,O(0,2秒时,动点P从点A出发以3相等的速度沿AO向终点O运动.当其中一点到达终点时,另一点也停止运动.设点P的O出发以每秒1个单位长的速度沿OC向终点C运动,运动运动时间为t(秒).(1)用含t的代数式表示OP,OQ;PQ沿PQ翻折,点O恰好落在CB边上的点D处,求点D (2)当t 1时,如图1,将△O的坐标;(4)连结AC,将△OPQ沿PQ翻折,得到△EPQ,如图2.问:PQ与AC能否平行?PE与AC能否垂直?若能,求出相应的t值;若不能,说明理由.图117.如图16,在平面直角坐标系中,直线y x轴交于点A,与y轴交于点C,抛物线y ax2x c(a 0)经过A,B,C三点.3(1)求过A,B,C三点抛物线的解析式并求出顶点F的坐标;(2)在抛物线上是否存在点P,使△ABP为直角三角形,若存在,直接写出P点坐标;若不存在,请说明理由;(3)试探究在直线AC上是否存在一点M,使得△MBF的周长最小,若存在,求出M点的坐标;若不存在,请说明理由.18.(20XX年沈阳市)如图所示,在平面直角坐标系中,矩形ABOC的边BO在x轴的负半轴上,边OC在y轴的正半轴上,且AB1,OB ABOC绕点O按顺时针方向旋转60后得到矩形EFOD.点A的对应点为点E,点B的对应点为点F,点C 的对应点为点D,抛物线y ax2 bx c过点A,E,D.(1)判断点E 是否在y轴上,并说明理由;(2)求抛物线的函数表达式;(3)在x轴的上方是否存在点P,点Q,使以点O,B,P,Q为顶点的平行四边形的面积是矩形ABOC面积的2倍,且点P 在抛物线上,若存在,请求出点P,点Q的坐标;若不存在,请说明理由.19.(20XX年四川省巴中市) 已知:如图14,抛物线y 与直线y32x 3与x轴交于点A,点B,433x b相交于点B,点C,直线y x b与y轴交于点E.44(1)写出直线BC的解析式.(2)求△ABC的面积.(3)若点M在线段AB上以每秒1个单位长度的速度从A 向B运动(不与A,B重合),同时,点N在射线BC上以每秒2个单位长度的速度从B向C运动.设运动时间为t秒,请写出△MNB的面积S与t的函数关系式,并求出点M运动多少时间时,△MNB的面积最大,最大面积是多少?20.(20XX年成都市)如图,在平面直角坐标系xOy中,△OAB 的顶点A的坐标为(10,0),顶点B在第一象限内,且AB sin∠OAB=. 5(1)若点C是点B关于x轴的对称点,求经过O、C、A三点的抛物线的函数表达式;(2)在(1)中,抛物线上是否存在一点P,使以P、O、C、A为顶点的四边形为梯形?若存在,求出点P的坐标;若不存在,请说明理由;(3)若将点O、点A分别变换为点Q(-2k ,0)、点R(5k,0)(k1的常数),设过Q、R两点,且以QR的垂直平分线为对称轴的抛物线与y轴的交点为N,其顶点为M,记△QNM的面积为S QMN,△QNR的面积S QNR,求S QMN∶S QNR的值.21.(20XX年乐山市)在平面直角坐标系中△ABC的边AB在x 轴上,且OAOB,以AB为直径的圆过点C若C的坐标为(0,2),AB=5,A,B两点的横坐标XA,XB是关于X的方程x2 (m 2)x n 1 0的两根:(1) 求m,n的值(2) 若∠ACB的平分线所在的直线l交x轴于点D,试求直线l对应的一次函数的解析式(3) 过点D任作一直线l分别交射线CA,CB(点C除外)于点M,N,则是否为定值,若是,求出定值,若不是,请说明理由`11 的值CMCNL`22.(20XX年四川省宜宾市)已知:如图,抛物线y=-x2+bx+c与x轴、y轴分别相交于点A(-1,0)、B(0,3)两点,其顶点为D. (1)求该抛物线的解析式;(2)若该抛物线与x轴的另一个交点为E. 求四边形ABDE的面积;(3)△AOB与△BDE是否相似?如果相似,请予以证明;如果不相似,请说明理由.b4ac b2(注:抛物线y=ax+bx+c(a≠0)的顶点坐标为2a,4a )223.(天津市20XX年)已知抛物线y 3ax2 2bx c,(Ⅰ)若a b 1,c 1,求该抛物线与x轴公共点的坐标;(Ⅱ)若a b 1,且当1 x 1时,抛物线与x轴有且只有一个公共点,求c的取值范围;x2 1时,(Ⅲ)若a b c 0,且x1 0时,对应的y1 0;对应的y2 0,试判断当0 x 1时,抛物线与x轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.24.(20XX年大庆市)如图①,四边形AEFG和ABCD都是正方形,它们的边长分别为a,b(b≥2a),且点F在AD上(以下问题的结果均可用a,b的代数式表示).(1)求S△DBF;(2)把正方形AEFG绕点A按逆时针方向旋转45°得图②,求图②中的S△DBF;(3)把正方形AEFG绕点A旋转一周,在旋转的过程中,S△DBF是否存在最大值、最小值?如果存在,直接写出最大值、最小值;如果不存在,请说明理由. .GAF①GAB② ECDC25. (20XX年上海市)已知AB 2,AD 4,DAB 90,AD∥BC (如图13).E是射线BC上的动点(点E与点B不重合),M是线段DE的中点.(1)设BE x,△ABM的面积为y,求y关于x的函数解析式,并写出函数的定义域;(2)如果以线段AB为直径的圆与以线段DE为直径的圆外切,求线段BE的长;(3)联结BD,交线段AM于点N,如果以A,N,D为顶点的三角形与△BME相似,求线段BE的长.AC B B E C备用图图1326. (20XX年陕西省)某县社会主义新农村建设办公室,为了解决该县甲、乙两村和一所中学长期存在的饮水困难问题,想在这三个地方的其中一处建一所供水站.由供水站直接铺设A管道到另外两处.如图,甲,乙两村坐落在夹角为30的两条公路的AB段和CD段(村子和公路的宽均不计),点M表示这所中学.点B在点M的北偏西30的3km处,点A在点M的正西方向,点D在点M的南偏西60的处.为使供水站铺设到另两处的管道长度之和最短,现有如下三种方案:方案一:供水站建在点M处,请你求出铺设到甲村某处和乙村某处的管道长度之和的最小值;方案二:供水站建在乙村(线段CD某处),甲村要求管道建设到A处,请你在图①中,画出铺设到点A和点M处的管道长度之和最小的线路图,并求其最小值;方案三:供水站建在甲村(线段AB某处),请你在图②中,画出铺设到乙村某处和点M处的管道长度之和最小的线路图,并求其最小值.综上,你认为把供水站建在何处,所需铺设的管道最短?27. (20XX年山东省青岛市)已知:如图①,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2),解答下列问题:(1)当t为何值时,PQ∥BC?(2)设△AQP的面积为y(cm),求y与t之间的函数关系式;(3)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由;(4)如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQP′C,那么是否存在某一时刻t,使四边形PQP′C为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.2图①P28. (20XX年江苏省南通市)已知双曲线yk1与直线y x相交于A、B两点.第一象限x4k上的点M(m,n)(在A点左侧)是双曲线y 上的动点.过点B作BD∥y轴于点D.过Nxk(0,-n)作NC∥x轴交双曲线y 于点E,交BD于点C.x(1)若点D坐标是(-8,0),求A、B两点坐标及k的值.(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式.(3)设直线AM、BM分别与y轴相交于P、Q两点,且MA =pMP,MB=qMQ,求p-q的值.29. (20XX年江苏省无锡市)一种电讯信号转发装置的发射直径为31km.现要求:在一边长为30km的正方形城区选择若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到预设的要求?(2)至少需要选择多少个安装点,才能使这些点安装了这种转发装置后达到预设的要求?答题要求:请你在解答时,画出必要的示意图,并用必要的计算、推理和文字来说明你的理由.(下面给出了几个边长为30km的正方形城区示意图,供解题时选用)图1 图2 图3 图4压轴题答案c 31. 解:(1)由已知得:解得1 b c 0c=3,b=2∴抛物线的线的解析式为y x 2x 3 (2)由顶点坐标公式得顶点坐标为(1,4)所以对称轴为x=1,A,E关于x=1对称,所以设对称轴与x轴的交点为F所以四边形ABDE的面积=S ABO S梯形BOFD S2111AO BO (BO DF) OF EF DF*****= 1 3 (3 4) 1 2 4 222==9(3)相似如图,222所以BD BE 20, DE 20即:BD BE DE,所以BDE是直角三角形222所以AOB DBE 90 ,且所以AOBAOBO,BDBE2DBE.2. (1) ∵A,B两点的坐标分别是A(10,0)和B(8,23),∴tan OAB233,10 8∴ OAB 60当点A在线段AB上时,∵ OAB 60 ,TA=TA,∴△ATA是等边三角形,且TP TA ,∴TP (10 t)sin60113(10 t),A P AP AT (10 t),222∴S S A TP1 A P TP (10 t)2,282 当A与B重合时,AT=AB= 4,sin60所以此时6 t 10.(2)当点A在线段AB的延长线,且点P在线段AB(不与B重合)上时,纸片重叠部分的图形是四边形(如图(1),其中E是TA 与CB的交点),当点P与B重合时,AT=2AB=8,点T的坐标是(2,又由(1)中求得当A与B重合时,T的坐标是(6,0) 所以当纸片重叠部分的图形是四边形时,2 t 6.(3)S存在最大值1当6 t 10时,S ○(10 t)2,8在对称轴t=10的左边,S的值随着t的增大而减小,∴当t=6时,S的值最大是23.2当2 t 6时,由图○1,重叠部分的面积S S○ A TP S A EB ∵△AEB的高是A Bsin60 ,∴S31(10 t)2 (10 t 4)2 822( t2 4t 28) (t 2)2 43 88当t=2时,S的值最大是4;3当0 t 2,即当点A和点P都在线段AB的延长线是(如图○2,其中E是TA与○CB的交点,F是TP与CB的交点),∵ EFT FTP ETF,四边形ETAB是等腰形,∴EF=ET=AB=4,∴S11EF OC 4 23 43 22综上所述,S的最大值是4,此时t的值是0 t 2. 3. 解:(1)A Rt ,AB 6,AC 8,BC 10.1点D为AB中点,BD AB 3.DHB A 90,B B.△BHD∽△BAC,*****12 AC 8 .,DH *****05(2)QR∥AB,QRC A 90.C C,△RQC∽△ABC,RQQCy10 x,,*****3x 6.5即y关于x的函数关系式为:y (3)存在,分三种情况:①当PQ PR时,过点P作PM QR于M,则QM RM.1 2 90,C 2 90,1 C.H QC84QM4cos 1 cosC ,,105QP51 3x 6 425 ,x 18.*****②当PQ RQ时,HQCQ312x 6 ,55x 6.③当PR QR时,则R为PQ中垂线上的点,于是点R为EC 的中点,11CR CE AC 2.24QRBAtanC ,CRCA3x 6156 ,x .2281815综上所述,当x为或6或时,△PQR为等腰三角形.524. 解:(1)∵MN∥BC,∴∠AMN=∠B,∠ANM=∠C.∴ △AMN ∽ △ABC.图1xAN∴ AM AN,即.43ABAC3∴ AN=x.……………2分4∴ S=S MNP S AMN133x x x2.(0<x<4)……………3分2481MN.2(2)如图2,设直线BC与⊙O相切于点D,连结AO,OD,则AO =OD =在Rt△ABC中,BC.由(1)知△AMN ∽ △ABC.BQD 图2xMN∴ AM MN,即.45ABBCx,45∴ OD x.…………………5分8∴ MN过M点作MQ⊥BC 于Q,则MQ OD5x.8在Rt△BMQ与Rt△BCA中,∠B是公共角,∴ △BMQ∽△BCA.∴ BM QM.BCAC55 x25x,AB BM MA 25x x 4.∴ BM*****96.4996∴ 当x=时,⊙O与直线BC相切. (7)分49(3)随点M的运动,当P点落在直线BC上时,连结AP,则O点为AP的中点.∵ MN∥BC,∴ ∠AMN=∠B,∠AOM=∠APC∴ △AMO ∽ △ABP.∴ x=∴ AM AO 1.AM=MB=2.ABAP2故以下分两种情况讨论:3① 当0<x≤2时,y SΔPMN x2.8∴ 当x=2时,y最大3232 . ……………………………………8分82P② 当2<x<4时,设PM,PN分别交BC于E,F.∵ 四边形AMPN是矩形,∴ PN∥AM,PN=AM=x.又∵ MN∥BC,∴ 四边形MBFN是平行四边形.∴ FN=BM=4-x.∴ PF x 4 x 2x 4.又△PEF ∽ △ACB.图4PF S PEF∴ .AB S ABC∴ S PEF232x 2 .……………………………………………… 9分23392y S MNP S PEF=x2 x 2 x2 6x 6.……………………10分8282929 8当2<x<4时,y x 6x 6 x 2.88 38时,满足2<x<4,y最大2.……………………11分38综上所述,当x 时,y值最大,最大值是2.…………………………12分3k5. 解:(1)(-4,-2);(-m,-)m∴ 当x(2) ①由于双曲线是关于原点成中心对称的,所以OP=OQ,OA=OB,所以四边形APBQ。

上海市2008年—2014年中考数学压轴题图文解析

上海市2008年—2014年中考数学压轴题图文解析

满分解答
(1)如图 2,过点 A 作 AH⊥BC,垂足为 H.
4 ,所以 BH=4,AH=3. 5 又已知 BC=8,由于 BH=4,所以点 A 在 BC 的垂直平分线上. 所以 CA=BA=5 . 如图 3,当圆 C 经过点 A 时,CP=CA =5.
在 Rt△ABH 中,AB=5 ,cosB=
图2 图3 (2)如图 4,当 AP//CG 时,由于 AE//BC,CP=CE ,所以四边形 AECP 是菱形,边长 为圆的半径 r. 过点 C 作 CQ⊥AD,垂足为 Q. 在 Rt△CEQ 中, CQ=3 ,CE= r, EQ=4-r,由勾股定理,
1 1 8 4 S△BDP= BP DE (t 3) (t 3) , 2 2 3 3
如图 6,过点 D 作 x 轴的平行线交 y 轴于 M,过点 P 作 y 轴的平行线,设两条直线交于 点 N.
8 1 4 由于 S 矩形 OMNP= t ,S△OCP=t,S△OCP= ,S△PND= (t 1) , 3 3 3 8 1 4 4 所以 S△CDP= t t (t 1) t 1 . 3 3 3 3 4 1 解方程 (t 3) t 1 ,得 t=5. 3 3
华东师大出版社荣誉出品 《挑战中考数学压轴题》系列产品·2
上海市 2008 年—2014 年中考数学压轴题图文解析
例1 例2 例3 例4 例5 例6 例7 例8 例9 例 10 例 11 例 12 例 12 2014 年上海市中考第 24 题 / 2 2014 年上海市中考第 25 题 / 4 2013 年上海市中考第 24 题 / 6 2013 年上海市中考第 25 题 / 8 2012 年上海市中考第 24 题 / 10 2012 年上海市中考第 25 题 / 12 2011 年上海市中考第 24 题 / 14 2011 年上海市中考第 25 题 / 16 2010 年上海市中考第 24 题 / 18 2010 年上海市中考第 25 题 / 19 2009 年上海市中考第 24 题 / 21 2009 年上海市中考第 25 题 / 23 2008 年上海市中考第 25 题 / 25

沪科版九年级数学中考复习:一次函数的综合应用压轴题(含答案)

沪科版九年级数学中考复习:一次函数的综合应用压轴题(含答案)

沪科版九年级数学中考复习:一次函数的综合应用压轴题(含答案)1.甲、乙两家商场平时以同样价格出售相同的商品.新冠疫情期间,为了减少库存,甲、乙两家商场打折促销.甲商场所有商品按9折出售,乙商场对一次购物中超过100元后的价格部分打8折.(1) 以x(元)表示商品原价,y(元)表示实际购物金额,分别就两家商场的让利方式写出y关于x的函数解析式;(2) 新冠疫情期间如何选择这两家商场去购物更省钱?2.某水果市场销售一种香蕉.甲店的香蕉价格为4元/千克;乙店的香蕉价格为5元/千克,若一次购买6千克以上,超过6千克部分的价格打7折.(1) 设购买香蕉x千克,付款金额为y元,分别就两店的付款金额写出y关于x的函数解析式.(2) 到哪家店购买香蕉更省钱?请说明理由.3. 某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1) 如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?(2) 若购买乙种奖品的件数不超过甲种奖品件数的3倍,如何购买甲、乙两种奖品,使得总花费最少?4. 随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,则今年的销售总额将比去年减少10%.(1) 求A型自行车去年每辆售价多少元.(2) 该车行今年计划新进一批A型自行车和新款B型自行车共60辆,且B 型自行车的进货数量不超过A型自行车数量的两倍.已知A型自行车和B型自行车的进货价格分别为1 500元和1 800元,计划B型自行车的销售价格为2 400元,应如何组织进货才能使这批自行车销售获利最多?5. 有一块矩形地块ABCD,AB=20米,BC=30米.为美观,拟种植不同的花卉,如图所示,将矩形ABCD分割成四个等腰梯形及一个矩形,其中梯形的高相等,均为x米.现决定在等腰梯形AEHD和BCGF中种植甲种花卉;在等腰梯形ABFE 和CDHG中种植乙种花卉;在矩形EFGH中种植丙种花卉.甲、乙、丙三种花卉的种植成本分别为20元/米2、60元/米2、40元/米2,设三种花卉的种植总成本为y元.(1) 当x=5时,求种植总成本y;(2) 求种植总成本y与x的函数解析式,并写出自变量x的取值范围;(3) 若甲、乙两种花卉的种植面积之差不超过120平方米,求三种花卉的最低种植总成本.6. 众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到A地和B地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如下表:现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往A地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.(1) 这20辆货车中,大货车、小货车各有多少辆?(2) 求y与x的函数解析式,并直接写出x的取值范围.(3) 若运往A地的物资不少于140吨,求总运费y的最小值7. 为了抗击新冠疫情,某市甲、乙两厂积极生产了某种防疫物资共500吨,乙厂的生产量比甲厂的2倍少100吨.这批防疫物资将运往A地240吨,B地260吨,运费如下表(单位:元/吨).(1) 求甲、乙两厂各生产了这批防疫物资多少吨.(2) 设这批物资从乙厂运往A地x吨,全部运往A,B两地的总运费为y元.求y与x之间的函数解析式,并设计使总运费最少的调运方案.(3) 当每吨运费均降低m元(0<m≤15且m为整数)时,按(2)中设计的调运方案运输,总运费不超过5 200元.求m的最小值.8. 推进农村土地集约式管理,提高土地的使用效率是新农村建设的一项重要举措.某村在小城镇建设中集约了2 400亩土地,计划对其进行平整.经投标,由甲、乙两个工程队来完成平整任务.甲工程队每天可平整土地45亩,乙工程队每天可平整土地30亩.已知乙工程队每天的工程费比甲工程队少500元,当甲工程队所需工程费为12 000元,乙工程队所需工程费为9 000元时,两工程队工作天数刚好相同.(1) 甲、乙两个工程队每天各需工程费多少元?(2) 现由甲、乙两个工程队共同参与土地平整,已知两个工程队工作天数均为正整数,且所有土地刚好平整完,总费用不超过110 000元.①甲、乙两工程队分别工作的天数共有多少种可能?②写出其中费用最少的一种方案,并求出最少费用.9. 天水市某商店准备购进A,B两种商品,A种商品每件的进价比B种商品每件的进价贵20元,用2 000元购进A种商品和用1 200元购进B种商品的数量相同.商店将A种商品每件的售价定为80元,B种商品每件的售价定为45元.(1) A种商品每件的进价和B种商品每件的进价各是多少元?(2) 商店计划用不超过1 560元的资金购进A,B两种商品共40件,其中A 种商品的数量不低于B种商品数量的一半,该商店有几种进货方案?(3) “五一”期间,商店开展优惠促销活动,决定对每件A种商品售价优惠m(10<m<20)元,B种商品售价不变,在(2)的条件下,请设计出m的不同取值范围内,销售这40件商品获得总利润最大的进货方案.10. 倡导垃圾分类,共享绿色生活.为了对回收的垃圾进行更精准的分类,某机器人公司研发出A型和B型两款垃圾分拣机器人,已知2台A型机器人和5台B 型机器人同时工作2 h共分拣垃圾3.6吨,3台A型机器人和2台B型机器人同时工作5 h共分拣垃圾8吨.(1) 1台A型机器人和1台B型机器人每小时各分拣垃圾多少吨?(2) 某垃圾处理厂计划向机器人公司购进一批A型和B型垃圾分拣机器人,这批机器人每小时一共能分拣垃圾20吨.设购买A型机器人a台(10≤a≤45),B 型机器人b台,请用含a的代数式表示b.(3) 机器人公司的报价如下表:在(2)的条件下,设购买总费用为w万元,问如何购买使得总费用w最少?请说明理由.11. 甲、乙两地的路程为290 km,一辆汽车早上8:00从甲地出发,匀速向乙地行驶,途中休息一段时间后,按原速继续前进,当离甲地路程为240 km时接到通知,要求中午12:00准时到达乙地.设汽车出发x h后离甲地的路程为y km,如图,折线OCDE表示接到通知前y与x之间的函数关系.(1) 根据图象可知,休息前汽车行驶的速度为______km/h.(2) 求线段DE所表示的y与x之间的函数解析式.(3) 接到通知后,汽车仍按原速行驶能否准时到达?请说明理由.12. “低碳生活,绿色出行”是一种环保、健康的生活方式,小丽从甲地匀速步行前往乙地,同时,小明从乙地沿同一路线匀速步行前往甲地,两人之间的距离y(m)与步行时间x(min)之间的函数关系如图中折线段AB-BC-CD所示.(1) 小丽与小明出发________min相遇.(2) 在步行过程中,若小明先到达甲地.①求小丽和小明步行的速度;②计算出点C的坐标,并解释点C的实际意义.13. 某商店代理销售一种水果,六月份的销售利润y(元)与销售量x(千克)之间函数关系的图象如图中折线所示.请你根据图象及这种水果的相关销售记录提供的信息,解答下面的问题:(1) 截止到6月9日,该商店销售这种水果一共获利多少元?(2) 求图象中线段BC所在直线对应的函数解析式.14. 受新冠肺炎疫情影响,一水果种植专业户有大量成熟水果无法出售.“一方有难,八方支援”,某水果经销商主动从该种植专业户购进甲、乙两种水果进行销售.专业户为了感谢经销商的援助,对甲种水果的出售价格根据购买量给予优惠,对乙种水果按25元/千克的价格出售.设经销商购进甲种水果x千克,付款y元,y与x之间的函数关系如图所示.(1) 直接写出当0≤x≤50和x>50时,y与x之间的函数解析式.(2) 若经销商计划一次性购进甲、乙两种水果共100千克,且甲种水果不少于40千克,但又不超过60千克.如何分配甲、乙两种水果的购进量,才能使经销商付款总金额w(元)最少?(3) 若甲、乙两种水果的销售价格分别为40元/千克和36元/千克.经销商按(2)中甲、乙两种水果购进量的分配比例购进两种水果共a千克,且销售完a 千克水果获得的利润不少于1 650元,求a的最小值.答案1.甲、乙两家商场平时以同样价格出售相同的商品.新冠疫情期间,为了减少库存,甲、乙两家商场打折促销.甲商场所有商品按9折出售,乙商场对一次购物中超过100元后的价格部分打8折.(1) 以x(元)表示商品原价,y(元)表示实际购物金额,分别就两家商场的让利方式写出y关于x的函数解析式;(2) 新冠疫情期间如何选择这两家商场去购物更省钱?解:(1) 由题意,得y甲=0.9x;当0<x≤100时,y乙=x,当x>100时,y乙=100+(x-100)×0.8=0.8x+20,∴y乙={x(0<x≤100),0.8x+20(x>100)(2) 当0<x≤100时,0.9x<x,即y甲<y乙,此时选择甲商场购物更省钱;当x>100时:若0.9x<0.8x+20,即100<x<200时,y甲<y乙,此时选择甲商场购物更省钱;若0.9x=0.8x+20,即x=200时,y甲=y乙,此时在两家商场购物花费一样;若0.9x>0.8x+200,即x>200时,y甲>y乙,此时选择乙商场购物更省钱.综上所述,当0<x<200时,选择甲商场购物更省钱;当x=200时,在两家商场购物花费一样;当x>200时,选择乙商场购物更省钱2.某水果市场销售一种香蕉.甲店的香蕉价格为4元/千克;乙店的香蕉价格为5元/千克,若一次购买6千克以上,超过6千克部分的价格打7折.(1) 设购买香蕉x千克,付款金额为y元,分别就两店的付款金额写出y关于x的函数解析式.(2) 到哪家店购买香蕉更省钱?请说明理由.解:(1) y甲=4x;当0<x≤6时,y乙=5x,当x>6时,y乙=5×6+5×70%(x-6)=3.5x+9,∴y乙={5x(0<x≤6),3.5x+9(x>6)(2) 当0<x≤6时,4x<5x,即y甲<y乙,此时到甲店购买香蕉更省钱;当x>6时:①若4x<3.5x+9,即6<x<18时,y甲<y乙,此时到甲店购买香蕉更省钱;②若4x=3.5x+9,即x=18时,y甲=y乙,此时到甲店、乙店购买香蕉的费用相同;③若4x>3.5x+9,即x>18时,y甲>y乙,此时到乙店购买香蕉更省钱.综上所述,当0<x<18时,到乙店购买香蕉更省钱;当x=18时,到甲店、乙店购买香蕉的费用相同;当x>18时,到乙店购买香蕉更省钱3. 某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1) 如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?(2) 若购买乙种奖品的件数不超过甲种奖品件数的3倍,如何购买甲、乙两种奖品,使得总花费最少?解:(1) 设甲种奖品购买了x件,则乙种奖品购买了(30-x)件.根据题意,得30x +20(30-x)=800,解得x=20,此时30-x=10.答:甲种奖品购买了20件,乙种奖品购买了10件(2) 设甲种奖品购买了y件,乙种奖品购买了(30-y)件.设购买两种奖品的总费用为w 元,则w =30y +20(30-y)=10y +600.根据题意,得 30-y ≤3y ,解得y ≥7.5.在w =10y +600中,∵ 10>0,∴ w 随y 的增大而增大.∴ y =8时,w 有最小值,此时30-y =22,w 最小=10×8+600=680.答:当购买甲种奖品8件、乙种奖品22件时,总花费最少,最少费用为680元4. 随着人们“节能环保,绿色出行”意识的增强,越来越 多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A 型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,则今年的销售总额将比去年减少10%.(1) 求A 型自行车去年每辆售价多少元.(2) 该车行今年计划新进一批A 型自行车和新款B 型自行车共60辆,且B 型自行车的进货数量不超过A 型自行车数量的两倍.已知A 型自行车和B 型自行车的进货价格分别为1 500元和1 800元,计划B 型自行车的销售价格为2 400元,应如何组织进货才能使这批自行车销售获利最多?解:(1) 设去年A 型自行车每辆售价x 元,则今年售价每辆为(x -200)元.由题意,得80 000x =80 000(1−10%)x−200,解得x =2 000.经检验,x =2 000是原方程的根,且符合题意.答:去年A 型自行车每辆售价为2 000元(2) 设今年新进A 型自行车a 辆,则新进B 型自行车(60-a)辆,获利y 元.由题意,得y =(2 000-200-1 500)a +(2 400-1 800)(60-a)=-300a +36 000.∵ B 型自行车的进货数量不超过A 型自行车数量的两倍,∴ 60-a ≤2a ,解得a ≥20.在y =-300a +36 000中,∵ k =-300<0,∴ y 随a 的增大而减小.∴ 当a =20时,y 有最大值,此时60-a =40.答:当新进A 型自行车20辆,B 型自行车40辆时,这批自行车销售获利最多5. 有一块矩形地块ABCD ,AB =20米,BC =30米.为美观,拟种植不同的花卉,如图所示,将矩形ABCD 分割成四个等腰梯形及一个矩形,其中梯形的高相等,均为x 米.现决定在等腰梯形AEHD 和BCGF 中种植甲种花卉;在等腰梯形ABFE 和CDHG 中种植乙种花卉;在矩形EFGH 中种植丙种花卉.甲、乙、丙三种花卉的种植成本分别为20元/米2、60元/米2、40元/米2,设三种花卉的种植总成本为y 元.(1) 当x =5时,求种植总成本y ;(2) 求种植总成本y 与x 的函数解析式,并写出自变量x 的取值范围;(3) 若甲、乙两种花卉的种植面积之差不超过120平方米,求三种花卉的最低种植总成本.解:(1) 当x =5时,EF =20-2x =10米,EH =30-2x =20米,∴ y =2×12(EH +AD)x ×20+2×12(GH +CD)x ×60+EF ·EH ×40=(20+30)×5×20+(10+20)×5×60+20×10×40=22 000(元)(2) ∵ EF =(20-2x)米,EH =(30-2x)米,∴ y =2×12(30+30-2x)x ×20+2×12(20+20-2x)x ×60+(30-2x)(20-2x)×40=-400x +24 000(0<x <10)(3) S 甲=2×12(EH +AD)×x =(30-2x +30)x =-2x 2+60x ,同理S 乙=-2x 2+40x.∵ 甲、乙两种花卉的种植面积之差不超过120平方米,∴ -2x 2+60x -(-2x 2+40x)≤120,解得x ≤6.∴ 0<x ≤6.在y =-400x +24 000中,∵ -400<0,∴ y 随x 的增大而减小.∴ 当x =6时,y 的最小值为21 600.答:三种花卉的最低种植总成本为21 600元6. 众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到A 地和B 地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如下表:现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往A 地,其余前往B 地,设前往A 地的大货车有x 辆,这20辆货车的总运费为y 元.(1) 这20辆货车中,大货车、小货车各有多少辆?(2) 求y 与x 的函数解析式,并直接写出x 的取值范围.(3) 若运往A 地的物资不少于140吨,求总运费y 的最小值解:(1) 设大货车有m 辆,则小货车有(20-m)辆.根据题意,得15m +10(20-m)=260,解得m =12,此时20-m =8.答:大货车、小货车分别有12辆、8辆(2) ∵ 到A 地的大货车有x 辆,∴ 到A 地的小货车有(10-x)辆,到B 地的大货车有(12-x)辆,到B 地的小货车有(x -2)辆.∴ y =900x +500(10-x)+1 000(12-x)+700(x -2)=100x +15 600,其中2≤x ≤10(3) 根据题意,得运往A 地的物资共有[15x +10(10-x)]吨,∴ 15x +10(10-x)≥140,解得x ≥8.∴ 8≤x ≤10.在y =100x +15 600中,∵ 100>0,∴ y 随x 的增大而增大.∴ 当x =8时,y 有最小值,此时y 最小=100×8+15 600=16 400.答:总运费y 的最小值为16 400元7. 为了抗击新冠疫情,某市甲、乙两厂积极生产了某种防疫物资共500吨,乙厂的生产量比甲厂的2倍少100吨.这批防疫物资将运往A 地240吨,B 地260吨,运费如下表(单位:元/吨).(1) 求甲、乙两厂各生产了这批防疫物资多少吨.(2) 设这批物资从乙厂运往A 地x 吨,全部运往A ,B 两地的总运费为 y 元.求y 与x 之间的函数解析式,并设计使总运费最少的调运方案.(3) 当每吨运费均降低m 元(0<m ≤15且m 为整数)时,按(2)中设计的调运方案运输,总运费不超过5 200元.求m 的最小值.解:(1) 设这批防疫物资甲厂生产了a 吨,乙厂生产了b 吨.根据题意,得{a +b =500,2a −b =100,解得{a =200,b =300.答:这批防疫物资甲厂生产了200吨,乙厂生产了300吨(2) 根据题意,得y =20(240-x)+25[260-(300-x)]+15x +24(300-x)=-4x +11 000.∵ { x ≥0,240−x ≥0,300−x ≥0,x −40≥0,解得40≤x ≤240.在 y =-4x +11 000中,∵ -4<0,∴ y 随x 的增大而减小.∴ 当x =240时,可以使总运费最少,此时调运方案为甲厂的200吨物资全部运往B 地,乙厂运往A 地240吨,运往B 地60吨(3) 根据题意和(2)的解答,得y =-4x +11 000-500m.当x =240时,y 最小=-4×240+11 000-500m =10 040-500m ,∴ 10 040-500m ≤5 200,解得m ≥9.68.∵ 0<m ≤15且m 为整数,∴ m 的最小值为108. 推进农村土地集约式管理,提高土地的使用效率是新农村建设的一项重要举措.某村在小城镇建设中集约了2 400亩土地,计划对其进行平整.经投标,由甲、乙两个工程队来完成平整任务.甲工程队每天可平整土地45亩,乙工程队每天可平整土地30亩.已知乙工程队每天的工程费比甲工程队少500元,当甲工程队所需工程费为12 000元,乙工程队所需工程费为9 000元时,两工程队工作天数刚好相同.(1) 甲、乙两个工程队每天各需工程费多少元?(2) 现由甲、乙两个工程队共同参与土地平整,已知两个工程队工作天数均为正整数,且所有土地刚好平整完,总费用不超过110 000元.① 甲、乙两工程队分别工作的天数共有多少种可能?② 写出其中费用最少的一种方案,并求出最少费用.解:(1) 设甲工程队每天需工程费x 元,则乙工程队每天需工程费(x -500)元.由题意,得12 000x =9 000x−500,解得x =2 000. 经检验,x = 2 000是原方程的解,且符合题意,则x -500=1 500.答:甲工程队每天需工程费2 000元,乙工程队每天需工程费1 500元(2) ① 设甲工程队平整m 天,乙工程队平整n 天.由题意,得45m +30n =2 400①,且2 000m +1 500n ≤110 000②.由①,得n =80-1.5m ③,把③代入②,得2 000m +1 500(80-1.5m)≤110 000,解得m ≥40.∵ n >0,∴ 80-1.5m >0,解得m <5313.∴ 40≤m <5313. ∵ m ,n 是正整数,∴ m =40,n =20或m =42,n =17或m =44,n =14或m =46,n =11或m =48,n =8或m =50,n =5或m =52,n =2.∴ 甲、乙两工程队分别工作的天数共有7种可能② 总费用w =2 000m +1 500(80-1.5m)=-250m +120 000.∵-250<0,∴ w 随m 的增大而减小.∴ 当m =52时,w 有最小值,此时n =2,w 最小=-250×52+120 000=107 000.答:费用最少的方案为甲工程队平整52天,乙工程队平整2天,最少费用为107 000元9. 天水市某商店准备购进A ,B 两种商品,A 种商品每件的进价比B 种商品每件的进价贵20元,用2 000元购进A 种商品和用1 200元购进B 种商品的数量相同.商店将A 种商品每件的售价定为80元,B 种商品每件的售价定为45元.(1) A 种商品每件的进价和B 种商品每件的进价各是多少元?(2) 商店计划用不超过1 560元的资金购进A ,B 两种商品共40件,其中A 种商品的数量不低于B 种商品数量的一半,该商店有几种进货方案?(3) “五一”期间,商店开展优惠促销活动,决定对每件A 种商品售价优惠m(10<m <20)元,B 种商品售价不变,在(2)的条件下,请设计出m 的不同取值范围内,销售这40件商品获得总利润最大的进货方案.解:(1) 设A 种商品每件的进价是x 元,则B 种商品每件的进价是(x -20)元.由题意,得2 000x =1 200x−20,解得x =50. 经检验,x =50是原方程的解,且符合题意,此时x -20=30.答:A 种商品每件的进价是50元,B 种商品每件的进价是30元(2) 设购进A 种商品a 件,则购进B 种商品(40-a)件.由题意,得{50a +30(40−a )≤1 560,a ≥12(40−a ),解得403≤a ≤18.∵ a 为正整数,∴ a =14,15,16,17,18.∴ 该商店共有5种进货方案(3) 设销售A ,B 两种商品共获利y 元.由题意,得y =(80-50-m)a +(45-30)(40-a)=(15-m)a +600.① 当10<m <15时,15-m >0,y 随a 的增大而增大,∴ 当a =18时,获利最大,即方案为购进18件A 种商品,22件B 种商品;② 当m =15时,15-m =0, y 与a 的值无关,即第(2)问中所有进货方案获利相同;③ 当15<m <20时,15-m <0,y 随a 的增大而减小,∴ 当a =14时,获利最大,即方案为购进14件A 种商品,26件B 种商品10. 倡导垃圾分类,共享绿色生活.为了对回收的垃圾进行更精准的分类,某机器人公司研发出A 型和B 型两款垃圾分拣机器人,已知2台A 型机器人和5台B 型机器人同时工作2 h 共分拣垃圾3.6吨,3台A 型机器人和2台B 型机器人同时工作5 h 共分拣垃圾8吨.(1) 1台A型机器人和1台B型机器人每小时各分拣垃圾多少吨?(2) 某垃圾处理厂计划向机器人公司购进一批A型和B型垃圾分拣机器人,这批机器人每小时一共能分拣垃圾20吨.设购买A型机器人a台(10≤a≤45),B 型机器人b台,请用含a的代数式表示b.(3) 机器人公司的报价如下表:在(2)的条件下,设购买总费用为w万元,问如何购买使得总费用w最少?请说明理由.解:(1) 设1台A型机器人和1台B型机器人每小时各分拣垃圾x吨和y吨.由题意,得{(2x+5y)×2=3.6,(3x+2y)×5=8,解得{x=0.4,y=0.2.答:1台A型机器人和1台B型机器人每小时各分拣垃圾0.4吨和0.2吨(2) 由题意,得0.4a+0.2b=20,∴b=100-2a(10≤a≤45)(3) 选购A型机器人35台,B型机器人30台时,总费用w最少理由:①当10≤a<30时,40<b≤80,∴w=20×a+0.8×12(100-2a)=0.8a +960.∵0.8>0,∴当a=10时,w有最小值,w最小=968;②当30≤a≤35时,30≤b≤40,∴w=0.9×20a+0.8×12(100-2a)=-1.2a+960.∵-1.2<0,∴当a=35时,w有最小值,w最小=918;③当35<a≤45时,10≤b<30,∴w=0.9×20a+12(100-2a)=-6a+1 200.∵-6<0,∴当a=45时,w有最小值,w最小=930.∵918<930<968,∴选购A型机器人35台,B型机器人30台时,总费用w最少,此时需要918万元.11. 甲、乙两地的路程为290 km,一辆汽车早上8:00从甲地出发,匀速向乙地行驶,途中休息一段时间后,按原速继续前进,当离甲地路程为240 km时接到通知,要求中午12:00准时到达乙地.设汽车出发x h后离甲地的路程为y km,如图,折线OCDE表示接到通知前y与x之间的函数关系.(1) 根据图象可知,休息前汽车行驶的速度为______km/h.(2) 求线段DE所表示的y与x之间的函数解析式.(3) 接到通知后,汽车仍按原速行驶能否准时到达?请说明理由.解:(1)80(2) 休息后按原速继续前进行驶的时间为(240-80)÷80=2(h),∴点E的坐标为(3.5,240).设线段DE所表示的y与x之间的函数解析式为y=kx+b(1.5≤x≤3.5),则{1.5k+b=80,3.5k+b=240,解得{k=80,b=−40,∴线段DE所表示的y与x之间的函数解析式为y=80x-40(1.5≤x≤3.5) (3) 不能理由:接到通知后,汽车仍按原速行驶,则全程所需时间为290÷80+0.5=4.125(h).∵12:00-8:00=4(h),4<4.125,∴接到通知后,汽车仍按原速行驶不能准时到达.12. )“低碳生活,绿色出行”是一种环保、健康的生活方式,小丽从甲地匀速步行前往乙地,同时,小明从乙地沿同一路线匀速步行前往甲地,两人之间的距离y(m)与步行时间x(min)之间的函数关系如图中折线段AB-BC-CD所示.(1) 小丽与小明出发________min相遇.(2) 在步行过程中,若小明先到达甲地.①求小丽和小明步行的速度;②计算出点C的坐标,并解释点C的实际意义.解:(1)30(2) ①设小丽步行的速度为V1 m/min,小明步行的速度为V2 m/min,且V2>V1,则{30V1+30V2=5400,(67.5−30)V1=30V2,解得{V1=80,V2=100.答:小丽步行的速度为80 m/min,小明步行的速度为100 m/min②解法一:设点C的坐标为(x,y),则(100+80)(x-30)+80(67.5-x)=5 400,解得x=54,y=(100+80)×(54-30)=4 320. ∴点C的坐标为(54,4 320).解法二:5 400÷100=54(min),54×80=4 320(m),∴点C的坐标为(54,4 320).点C的实际意义:两人出发54 min时,小明到达甲地,此时两人相距4 320 m13. 某商店代理销售一种水果,六月份的销售利润y(元)与销售量x(千克)之间函数关系的图象如图中折线所示.请你根据图象及这种水果的相关销售记录提供的信息,解答下面的问题:(1) 截止到6月9日,该商店销售这种水果一共获利多少元?(2) 求图象中线段BC 所在直线对应的函数解析式.解:(1) 200×(10-8)=400(元).答:截止到6月9日,该商店销售这种水果一共获利400元(2) 设点B 的坐标为(a ,400).根据题意,得(10-8)×(600-a)+(10-8.5)×200=1 200-400,解得a =350,∴ 点B 的坐标为(350,400).设线段BC 所在直线对应的函数解析式为y =kx +b ,则{350k +b =400,800k +b =1 200,解得{k =169,b =−2 0009,∴ 线段BC 所在直线对应的函数解析式为y =169x -2 000914. 受新冠肺炎疫情影响,一水果种植专业户有大量成熟水果无法出售.“一方有难,八方支援”,某水果经销商主动从该种植专业户购进甲、乙两种水果进行销售.专业户为了感谢经销商的援助,对甲种水果的出售价格根据购买量给予优惠,对乙种水果按 25元/千克的价格出售.设经销商购进甲种水果x 千克,付款y 元,y 与x 之间的函数关系 如图所示.(1) 直接写出当0≤x ≤50和x >50时,y 与x 之间的函数解析式.(2) 若经销商计划一次性购进甲、乙两种水果共 100千克,且甲种水果不少于40千克,但又不超过60千克.如何分配甲、乙两种水果的购进量,才能使经销商付款总金额w(元)最少?(3) 若甲、乙两种水果的销售价格分别为40元/千克和36元/千克.经销商按(2)中甲、乙两种水果购进量的分配比例购进两种水果共a 千克,且销售完a 千克水果获得的利润不 少于1 650元,求a 的最小值.解:(1) 当0≤x ≤50时,设y =tx ,根据题意,得50t =1 500,解得t =30,∴ y =30x ;当x >50时,设y =kx +b ,根据题意,得{50k +b =1 500,70k +b =1 980,解得{k =24,b =300,∴ y =24x +300.∴ y ={30x (0≤x ≤50),24x +300(x >50)(2) 设购进甲种水果a 千克,则购进乙种水果(100-a)千克,且40≤a ≤60.① 当40≤a ≤50时,w =30a +25(100-a)=5a +2 500.∵ 5>0,∴ w 随a 的增大而增大.∴ 当a =40 时,w 最小=2 700. ② 当50<a ≤60时,w =24a +300+25(100-a)=-a +2 800.∵ -1<0,∴ w 随a 的增大而减小.∴ 当a =60时,w 最小=2 740.∵ 2 740>2 700,∴ 当a =40时,付款总金额最少,最少付款总金额为2 700元.此时购进乙种水果100-40=60(千克).答:购进甲种水果40千克,购进乙种水果60千克,才能使经销商付款总金额w(元)最少(3) 由(2)可设购进甲种水果为25a 千克,购进乙种水果为35a 千克.当0≤25a ≤50,即0≤a ≤125时,由题意,得25a ×(40-30)+35a ×(36-25)≥1 650,解得a ≥8 25053.∵ 8 25053>125,与0≤a ≤125矛盾,舍去.当25a >50,即a >125时,由题意,得25a ×40-(24×25a +300)+35a ×(36-25)≥1 650,解得a ≥150.∵ 150>125,∴ 这种情况符合题意.∴ a 的最小值为150。

上海初三数学压轴题总结含答案

上海初三数学压轴题总结含答案

24.已知抛物线24y ax ax c =-+与y 轴交于点()0,3A ,点B 是抛物线上的点,且满足AB ∥x 轴,点C 是抛物线的顶点.(1)求抛物线的对称轴及B 点坐标;(2)若抛物线经过点()2,0-,求抛物线的表达式; (3)对(2)中的抛物线,点D 在线段AB 上,若以点A 、C 、D 为顶点的三角形与AOC ∆相似,试求点D 的坐标.五、(本题满分14分)25.如图,已知ABC ∆与BDE ∆都是等边三角形,点D 在边AC 上(不与A 、C 重合),DE 与AB 相交于点F .(1)求证:BCD ∆∽DAF ∆; (2)若1BC =,设CD x =,AF y =; ①求y 关于x 的函数解析式及定义域; ②当x 为何值时,79BEF BCD S S ∆∆=?(第24题图)A BCDE F(第25题图)24、(本题满分12分)如图,在平面直角坐标系中,直线AB:44y xa=+(a≠0)分别交x轴、y轴于B、A两点,直线AE分别交x轴、y轴于E、A两点,D是x轴上的一点,OA=OD,过点D作CD⊥x轴,交AE于C,连接BC,当动点B在线段OD上运动(不与点O点D重合)且AB⊥BC时(1)求证:△ABO∽△BCD;(2)求线段CD的长(用a的代数式表示);(3)若直线AE的方程是1316y x b=-+,求tan∠BAC的值.25、(本题满分14分)已知边长为4的正方形ABCD截去一个角后变为五边形ABCFE(如图),其中EF=cot∠DEF=12,(1)求线段DE、DF的长;(2)若P是线段EF上的一个动点,过P做PG⊥AB,PH⊥BC,设PG=x,四边形BHPG的面积为y,求y和x的函数关系式(写出定义域),并画出函数大致图像;2012年上海宝山区一模考试题25.(本题共3小题,4分+5分+3分,满分12分)我们知道,互相垂直且有公共原点的两条数轴构成平面直角坐标系.如果坐标系中两条坐标轴不垂直,那么这样的坐标系称为“斜坐标系”.如图9,P是斜坐标系xOy中的任意一点,与直角坐标系相类似,过点P分别作两坐标轴的平行线,与x轴、y轴交于点M、N,若M、N在x轴、y轴上分别对应实数a、b,则有序数对(a,b)叫做点P在斜坐标系xOy中的坐标.(1)如图10,已知斜坐标系xOy中,∠xOy=60°,试在该坐标系中作出点A(-2,2),并求点O、A之间的距离;(2)如图11,在斜坐标系xOy中,已知点B(4,0)、点C(0,3),P(x,y)是线段BC上的任意一点,试求x、y之间一定满足的一个等量关系式;(3)若问题(2)中的点P在线段BC的延长线上,其它条件都不变,试判断上述x、y之间的等量关系是否仍然成立,并说明理由.(图11)26.(本题共3小题,3分+6分+5分,满分14分)如图12,已知线段AB ,P 是线段AB 上任意一点(不与点A 、B 重合),分别以AP 、BP 为边,在AB 的同侧作等边△APD 和△BPC ,联结BD 与PC 交于点E ,联结CD . (1) 当BC ⊥CD 时,试求∠DBC 的正切值;(2) 若线段CD 是线段DE 和DB 的比例中项,试求这时PBAP 的值;(3) 记四边形ABCD 的面积为S ,当P 在线段AB 上运动时,S 与BD 2是否成正比例, 若成正比例,试求出比例系数;若不成正比例,试说明理由.2011学年第一学期期末考试九年级数学试卷(共4页,第4页)ABP(图12)ABP(备用图)2010奉贤区初三一模考试题24.(本题满分12分,第(1)小题6分,第(2)小题6分)如图,已知抛物线与x 轴交于点(20)A -,,(40)B ,(1)求抛物线的解析式及其顶点D 的坐标;(2)设直线CD 交x 轴于点E .在线段OB 存在点P ,使得点P 到直线CD 的距离等于点P 如果存在,求出点P25.(本题满分14分,第(1)小题3分,第(2)小题4分,第(3)小题7分)如图,直角梯形ABCD 中,AB ∥DC ,∠DAB =90°,AD =2DC =4,AB =6.动点M 以每秒1个单位长的速度,从点A 沿线段AB 向点B 运动;同时点P 以相同的速度,从点C 沿折线C -D -A 向点A 运动.当点M 到达点B 时,两点同时停止运动.过点M 作直线l ∥AD ,与折线A -C -B 的交点为Q .点M 运动的时间为t (秒).(1)当0.5t =时,求线段QM 的长;(2)点M 在线段AB 上运动时,是否可以使得以C 、P 、Q 为顶点的三角形为直角三角形,若可以,请直接写出t 的值(不需解题步骤);若不可以,请说明理由. (3)若△PCQ 的面积为y ,请求y 关于出t 的函数关系式及自变量的取值范围;Q A B CDlMP 第25题图AB CD(备用图1)ABCD(备用图2)2012卢湾区初三一模考试题答案24. 解(1)由题意得,42ax a-=-,∴对称轴为直线2x =;…………………(2分) ∵点()0,3A ,点B 是抛物线上的点,AB ∥x 轴,∴AB 被直线2x =垂直平分,∴()4,3B .………………………………………(1分)(2)∵抛物线经过点()0,3,()2,0-,所以有3,4830c a a =⎧⎨++=⎩,……………(2分)解得1,43.a c ⎧=-⎪⎨⎪=⎩,∴抛物线的表达式为2134y x x =-++.………………………(1分)(3)∵抛物线的对称轴为直线2x =,∴()2,4C ,…………………………(1分) 过点C 作CE y ⊥轴,垂足为点E ,设对称轴与AB 交于点F .……………(1分) ∵AB ∥x 轴,∴90CFA ∠=︒,∴CEO CFA ∠=∠,又∵2142CE OE ==,12CF AF =,∴CE CFOE AF=,∴EOC ∆∽FAC ∆,…………(1分) ∴AOC CAF ∠=∠,………………………………………………………………(1分)当AOC ∆∽DAC ∆时,有AO COAD AC=,∵3,AO CO AC ===,∴32AD =,∴3,32D ⎛⎫⎪⎝⎭;…………………(1分) 当AOC ∆∽CAD ∆时,有AO CO AC AD=, ∴103AD =,∴10,33D ⎛⎫⎪⎝⎭,………………………………………………………(1分) 综上所述满足条件的点D 的坐标为3,32⎛⎫ ⎪⎝⎭或10,33⎛⎫⎪⎝⎭.五、(本题满分14分) 25.(1)证明:∵ABC ∆与BDE ∆都是等边三角形,∴60A C BDE ∠=∠=∠=︒,……………………………………………………(1分) ∵ADF BDE C DBC ∠+∠=∠+∠,∴ADF DBC ∠=∠,……………………(2分) ∴BCD ∆∽DAF ∆.………………………………………………………………(1分) (2)∵BCD ∆∽DAF ∆,∴BC CDAD AF=,………………………………………(1分) ∵1BC =,设CD x =,AF y =,∴11xx y=-,………………………………(1分)∴()201y x x x =-<<.……………………………………………………………(2分) (3)解法一:∵ABC ∆与BDE ∆都是等边三角形,∴60E C ∠=∠=︒,60EBD CBA ∠=∠=︒,∴EBF CBD ∠=∠,…………(1分)∴EBF ∆∽CBD ∆,∴BE BFBC BD=,……………………………………………(1分) ∵BE BD =,1BC =,∴2BE BF =,……………………………………………(1分)∵EBF ∆∽CBD ∆,79BEF BCD S S ∆∆=,∴2279BEF BCD S BE S BC ∆∆==, ……………………(1分) ∴279BE BF ==,∴29AF =,…………………………………………………(1分) ∴229x x -=,解得1221,33x x ==,∴当13x =或23时,79BEF BCD S S ∆∆=.…………(1分)解法二:∵△ABC 与BDE ∆都是等边三角形,∴60E C ∠=∠=︒,60EBD CBA ∠=∠=︒,∴EBF CBD ∠=∠,…………(1分)∴EBF ∆∽CBD ∆,∵79BEF BCD S S ∆∆=,∴2279BEF BCD S BE S BC ∆∆==,……………………(1分) ∵1BC =,BE BD =,∴279BD =. ……………………………………………(1分) 过点B 作BH AC ⊥于点H ,……………………………………………………(1分)∵60C ∠=︒,∴BH =,∴16DH =,12CH =, 当点D 在线段CH 上时,111263CD CH DH =-=-=;………………………(1分)当点D 在线段CH 的延长线上时,112263CD CH DH =+=+=,……………(1分)综上所述,当13x =或23时,79BEF BCD S S ∆∆=2011金山区初三一模24、(1)∵CD ⊥BE ∴∠CDO =∠AOD =90°……………………………………(1分) ∴∠ABO +∠BAO =90°∵CB ⊥AB ∴∠ABO +∠CBD =90° ∴∠BAO=∠CBD …………………………………………………………………………(1分) ∴△ABO∽△BCD …………………………………………………………………………(1分) (2)∵A (0,4) B (﹣a ,0)(a <0) ∴AO=4BO=﹣a ……………………………………………………………………(2分) ∵△ABO ∽△BCD ∴CD BDOB AO=∵OD =AO =4, ∴BD =4+a …………………………………………………………(1分) ∴(4)4a a CD -+=(﹣4<a <0) ………………………………………………………(2分)(3)∵C (4,(4)4a a -+),b =4 ∴(4)1344416a a -+=-⨯+即:21243013a a a a ++==-=- ………………………………………………(2分)∵△ABO ∽△BCD ∴BC BDAB AO=在Rt △ABC 中,∠ABC =90° tan ∠BAC =44BC BD aAB AO +==当11a =-时,tan ∠BAC =34……………………………………………………………(1分) 当23a =-时,tan ∠BAC =14………………………………………………………(1分) 25、(1)∵四边形ABCD 是正方形,∴∠D =90° ∵cot ∠DEF =12DE DF =设DE =m ,则DF =2m ……………………………………………………………(1分) ∴222DE DF EF += ……………………………………………………………………(1分) 即255m = m = 1 ∴DE = 1 DF =2 ……………………………………………(2分) (2)延长GP 交DC 于M ∵PG ⊥AB ,PH ⊥BC∴GP ∥DA ∥BC ∴PH ∥BG ∴PM FMDE FD=……………………………………………………………………………(1分)∵PG =x ,GM =BC =4 PM =4-x FM =2(4-x ) ……………………………(1分) ∴PH=MC=CF+FM=10-2x ………………………………………………………(1分) ∴2(102)210y x x x x=-=-+(3≤x ≤4) ……………………………………………(2分) 画图正确 ……………………………………………………………………………(2分) (3)当23PG PH =时,即21023x x =- ∴207x =(不合题意舍去)…………………(1分) 当23PH PG =时,即10223x x -= ∴154x =…………………………………………(1分) 758y = …………………………………………………………………………………(1分)2012年上海宝山区一模考试题25. (1) 图(略) ----------------(1分)作AM ∥y 轴,AM 与x 轴交于点M ,AN ∥x 轴,AN 与y 轴交于点N ,则四边形AMON 为平行四边形,且OM=ON ,-----(1分)∴ AMON 是菱形,OM=AM ∴OA 平分∠MON ,又∠xOy =60°,∴ ∠MOA =60°,---------------(1分) ∴△MOA 是等边三角形, ∴ OA=OM =2 ----------------(1分) (2) 过点P 分别作两坐标轴的平行线,与x 轴、y 轴交于点M 、N ,----------------(1分) 则 PN=x ,PM=y ,----------------(1分) 由PN ∥OB ,得CBCP OB PN =,即CB CPx =4.--------------(1分) 由PM ∥OC ,得BCBP OC PM =,即BC BPy =3.------------(1分) ∴ 134=+=+BCBP CB CP y x .----------------(1分) 即1243=+y x .(3)当点P 在线段BC 的延长线上时,上述结论仍然成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
②解:设 AP=x,则 DP=5-x,由△ABP∽△DPC,得 AB PD ,即 2 5 x , AP DC x 2
解得 x1=1,x2=4,则 AP 的长为 1 或 4. (2)①解:类似(1)①,易得△ABP∽△DPQ,∴ AB AP .即 2 x ,
PD DQ 5 x 2 y
得 y 1 x2 5 x 2 ,1<x<4. 22
……………………(1 分)
解法二 此时∠CPQ= 1 ∠PCN=22.5°,∠APB=90°-22.5°=67.5°, 2
∠ABP=180°-(45°+67.5°)=67.5°,得∠APB=∠ABP,
海量资源,欢迎共阅
∴ AP=AB=1,∴ x=1.
……………………(1 分)
上海市 2003 年初中毕业高中招生统一考试
解法二
作 PT⊥BC,T 为垂足(如图 2),那么四边形 PTCN 为正方形.
∴ PT=CB=PN.
又∠PNQ=∠PTB=90°,PB=PQ,∴△PBT≌△PQN.
S S = 四边形 PBCQ △四边形 PBT+S 四边形 PTCQ=S 四边形 PTCQ+S△PQN=S 正方形 PTCN
…(2 分)
并写出函数的定义域;
②当 CE=1 时,写出 AP 的长(不必写出解题过程).
27.(1)①证明:
∵∠ABP=180°-∠A-∠APB,∠DPC=180°-∠BPC-∠APB,∠BPC=∠A, ∴∠ABP=∠DPC.∵在梯形 ABCD 中,AD∥BC,AB=CD,∴∠A=∠D.∴△ABP ∽△DPC.
②AP=2 或 AP=3- 5 .
(题 27 是一道涉及动量与变量的考题,其中(1)可看作(2)的特例,故(2)的推断 与证明均可借鉴(1)的思路.这是一种从模仿到创造的过程,模仿即借鉴、套用,创造即 灵活变化,这是中学生学数学应具备的一种基本素质,世上的万事万物总有着千丝万缕的联 系,也有着质的区别,模仿的关键是发现联系,创造的关键是发现区别,并找到应付新问题 的途径.)
上海市 2002 年中等学校高中阶段招生文化考试
海量资源,欢迎共阅
27.操作:将一把三角尺放在边长为 1 的正方形 ABCD 上,并使它的直角顶点 P 在对角
线 AC 上滑动,直角的一边始终经过点 B,另一边与射线 DC 相交于点 Q.
图5
图6
图7
探究:设 A、P 两点间的距离为 x.
(1)当点 Q 在边 CD 上时,线段 PQ 与线段 PB 之间有怎样的大小关系?试证明你观
和四边形 BCNM 都是矩形,△AMP 和△CNP 都是等腰直角三角形(如图 1).
∴ NP=NC=MB.
……………………(1 分)
∵ ∠BPQ=90°,∴ ∠QPN+∠BPM=90°.
而∠BPM+∠PBM=90°,∴ ∠QPN=∠PBM.
……………………(1 分)
又∵ ∠QNP=∠PMB=90°,∴ △QNP≌△PMB. ……………………(1 分)
27.如图,在正方形 ABCD 中,AB=1 ,弧 AC 是点 B 为圆心,AB 长为半径的圆的一段弧。
点 E 是边 AD 上的任意一点(点 E 与点 A、D 不重合),过 E 作弧 AC 所在圆的切线,交边 DC
=CN2=(1- 2 x )2= 1 x2- 2x +1
2
2
∴ y= 1 x2- 2x +1(0≤x< 2 ).
2
2
……………………(1 分)
(3)△PCQ 可能成为等腰三角形
①当点 P 与点 A 重合,点 Q 与点 D 重合,这时 PQ=QC,△PCQ 是等腰三角形,
此时 x=0
……………………(1 分)
2
2
2 x. 4
………………(1 分)
S△PCQ=
1 2
CQ·PN=
1 2
×(1-
2x )(1- 2 x )= 1 - 3 2 x + 1 x2
2
24
2
S
四边形 PBCQ=S△PBC+S△PCQ=
1 2
x2-
2x +1.
(1 分)
即 y= 1 x2- 2x +1(0≤x< 2 ).
2
2
……………………(1 分,1 分)
海量资源,欢迎共阅
上海历年中考数学压轴题复习
2001 年上海市数学中考
27.已知在梯形 ABCD 中,AD∥BC,AD<BC,且 AD=5,AB=DC=2. (1)如图 8,P 为 AD 上的一点,满足∠BPC=∠A.
图8
①求证;△ABP∽△DPC ②求 AP 的长. (2)如果点 P 在 AD 边上移动(点 P 与点 A、D 不重合),且满足∠BPE=∠A,PE 交 直线 BC 于点 E,同时交直线 DC 于点 Q,那么 ①当点 Q 在线段 DC 的延长线上时,设 AP=x,CQ=y,求 y 关于 x 的函数解析式,
察得到结论;
(2)当点 Q 在边 CD 上时,设四边形 PBCQ 的面积为 y,求 y 与 x 之间的函数解析式,
并写出函数的定义域;
(3)当点 P 在线段 AC 上滑动时,△PCQ 是否可能成为等腰三角形?如果可能,指出
所有能使△PCQ 成为等腰三角形的点 Q 的位置,并求出相应的 x 的值;如果不可能,试说
②当点 Q 在边 DC 的延长线上,且 CP=CQ 时,△PCQ 是等腰三角形(如图 3)
……………………(1 分)
解法一 此时,QN=PM= 2 x ,CP= 2 -x,CN= 2 CP=1- 2 x .
2
2
2
∴CQ=QN-CN= 2 x -(1- 2 x )= 2x -1.
2
2
当 2 -x= 2x -1 时,得 x=1.
明理由.
(图 5、图 6、图 7 的形状大小相同,图 5 供操作、实验用,图 6 和图 7 备用)
五、(本大题只有 1 题,满分 12 分,(1)、(2)、(3)题均为 4 分)
27.
图1图2图3
(1)解:PQ=PB
……………………(1 分)
证明如下:过点 P 作 MN∥BC,分别交 AB 于点 M,交 CD 于点 N,那么四边形 AMND
∴ PQ=PB.
(2)解法一
由(1)△QNP≌△PMB.得 NQ=MP.
∵ AP=x,∴ AM=MP=NQ=DN= 2 x ,BM=PN=CN=1- 2 x ,
2
2

∴ CQ=CD-DQ=1-2· 2 x =1- 2x . 2
海量资源,欢迎共阅

S△PBC=
1 2
BC·BM=
1 2
×1×(1-
2 x )= 1 -
相关文档
最新文档