微生物固定化载体5.10

合集下载

固定化微生物技术及其在污水脱氮方面的应用

固定化微生物技术及其在污水脱氮方面的应用

固定化微生物技术及其在污水脱氮方面的应用固定化微生物技术是一种将微生物细胞固定在一定载体上用于污水处理的技术。

随着环境污染问题日益凸显,固定化微生物技术在污水处理领域得到了广泛应用,其中在污水脱氮方面的应用尤为突出。

本文将从固定化微生物技术的原理和应用以及在污水脱氮方面的具体应用进行介绍。

一、固定化微生物技术的原理和应用固定化微生物技术是利用载体将微生物固定在一定位置,使其在一定范围内活动,有效利用微生物的代谢活性来处理污水中的有机物、氨氮、磷等物质。

常见的载体有多孔陶瓷、多孔玻璃、发泡塑料、植物渣等。

固定化微生物技术在污水处理中的应用主要有以下几个优点:1. 提高微生物的稳定性和抗冲击能力:微生物固定在载体上后,可以减少外界环境因素对微生物的影响,提高微生物的稳定性和抗冲击能力。

2. 提高微生物的代谢效率:固定化微生物技术可以使微生物在载体上形成一定密度,有利于微生物与底物的接触,从而提高微生物的代谢效率。

3. 增加微生物的保存性:通过固定化技术,可以使微生物在较长时间内保持生物学活性,减少了频繁接种的次数,提高了微生物的使用寿命。

氮是污水中主要的污染物之一,其中的氨氮和硝态氮是最主要的问题。

氨氮和硝态氮是水质中的两种重要氮源,对生态环境和人体健康都具有较大危害。

固定化微生物技术在污水脱氮方面的应用主要包括以下几种方式:1. 厌氧氨氮去除:通过将微生物固定在厌氧颗粒中,形成厌氧颗粒污泥床反应器,可以有效去除污水中的氨氮。

此种方法适用于富集和分离厌氧细菌群,提高氨氮的去除效率。

2. 低温硝化:低温硝化是指在低温条件下将氨氮氧化成硝态氮。

通过固定化微生物技术,可以将低温硝化微生物固定在一定载体上,在寒冷季节或寒冷地区,依然能够高效去除氨氮。

3. 排水塔工程:在城市污水处理厂的氨氮去除工程中,排水塔是一个重要的环节。

通过固定化技术,在排水塔中保存一定数量的高效硝化细菌,可以提高氨氮的氧化速率和硝态氮的去除效率。

微生物固定化载体5.10

微生物固定化载体5.10

微生物固定化载体固定化微生物技术是将特选的微生物固定在选证的载体上,限制或定位于一定的空间区域.使其高度密集并保持生物活性,在适宜条件下能够快速、大量增殖的现代生物技术。

固定化微生物具有生物浓度易控制、耐毒害能力强、菌种流失少、产物易分离、运行设备小型化等特点。

近年来固定化微生物技术的研究非常活跃,发展很快,已遍及环境保护、食品工业、化学分析、能源开发、医学和制药等多种领域,并得到了广泛的应用。

同时,对载体材料的性能也提出了更高的要求。

载体材料的性能对固定化微生物功能的发挥起着至关重要的作用,有关固定化载体材料的研究也就显得非常重要1.微生物固定化对载体材料的要求载体材料的主要作用是为微生物提供栖息和繁殖的稳定环境。

根据所固定的微生物种类以及固定化方法与工艺的不同,需要制备不同的周定化载体材料。

制备合适的载体材料是固定化细胞技术的关键,在选择和制备载体材料时,必须考虑所固定微生物的生理习性及其应用的环境条件。

一般情况下。

理想载体应该具有以下特征:(1)载体对细胞呈惰性,对微生物无毒害;(2)具有高的载体活性,固定化细胞密度大;(3)力学强度和化学稳定性好,耐微生物分解;(4)操作简便,易于成型;(5)底物和产物的扩散阻力小,具有良好的传质性能;(6)微生物的活性回收率要高,能较长时间使用和重复使用;(7)原料易得,成本低。

2.固定化载体材料的种类2.1天然载体材料天然无机类载体材料主要有沙粒、沸石、硅藻土等。

天然有机载体材料的究和应用较多,它们主要是天然多糖类材料,如纤维素及其衍生物、琼脂、角叉莱胶、海藻酸盐、卡拉胶。

2.2合成高分子载体该类材料应用较多的主要是聚乙烯醇、聚乙二醇、聚氨酯、羧甲基纤维素等。

2.3人工无机载体材料多孔陶瓷、活性炭、微孔玻璃、泡沫金属等人造无机载体,大多具有多孔结构,在与微生物接触时,利用吸附作用和电荷效应把微生物固定。

表1为具体固定化载体固定微生物的吸附物质的效果表。

固定化微生物简介及海藻酸钠包埋固定法

固定化微生物简介及海藻酸钠包埋固定法

固定化微生物简介及海藻酸钠包埋固定法李玉兵上海师范大学环境工程系2003级0313549摘要:固定化微生物技术起始于1959年,由Hattori等人首次实现了大肠杆菌的固定化,此后发展迅速。

该技术最初主要用于工业发酵,20世纪70年代以后,由于水污染严重,迫切需要一种高效、快速,能连续处理的废水处理技术,从而微生物固定化技术才在污水处理中得到广泛应用[1]。

固定化微生物技术是将微生物固定在载体上使其高度密集并保持其生物活性功能,在适宜条件下还可以增殖以满足应用之需的生物技术。

在生物反应器中所使用的微生物菌体往往被称之为生物催化剂。

由于在传统的废水生物处理工艺中,微生物通常是在水中以悬浮态生长的,因而易于从反应器中流失,又由于其与水的密度差小,因此从流出的水中回收微生物进行重复利用将变得较为困难或复杂。

为此,采用固定化技术,将微生物通过一定的技术手段是微生物固着生长,有利于提高生物反应器内微生物的数量,利于反应后的固液分离,利于去除氮,取出高浓度有机物或难以生物降解物质,提高系统的处理能力和适应性,是一项高效低耗,运行管理简单的废水生物处理技术[2]。

关键词:固定化,载体,海藻酸钠,细胞活性,前景1. 引言下面介绍一下固定化微生物中的一些基础知识,即固定化微生物的要求,载体的要求,以及载体种类,制备等。

1.1被固定的微生物(主要是人为选定的特效降解菌的优势菌种)基本条件:①投加的菌体活性高;②菌体可快速降解目标污染物;③在系统中不仅能竞争生存,而且可维持相当数量[1]。

1.2 固定化载体为微生物创造了更不易解体的生存环境,所以一个理想的固定化载体的选择也很重要。

适合于废水处理的固定化载体应具有以下性能:①对微生物无毒,生物滞留量高,不干扰生物分子的功能;②传质性能好;③具有足够的机械、物理和化学稳定性,不易被生物降解;④机械强度高,使用寿命长;⑤固定化操作简单;⑥对其它生物的吸附小;⑦价格低廉[1]。

微生物固定化技术处理水产养殖废水研究进展

微生物固定化技术处理水产养殖废水研究进展

二、研究现状分析
固定化微生物技术是一种利用微生物将废水中的有机物转化为无害物质的方 法。目前,国内外研究者已针对固定化微生物技术处理含油废水进行了大量研究。 在研究方法方面,主要有物理法、化学法和生物法。物理法主要通过吸附、萃取 等手段去除废水中的油脂,但处理效率较低;化学法主要通过氧化还原反应将油 脂分解为无害物质,
微生物固定化技术是一种新型的生物处理技术,通过将微生物固定在特定的 载体上,提高微生物的浓度和活性,从而增强废水的处理效果。微生物固定化技 术具有处理效果好、运行稳定、耐冲击负荷能力强等优点,在水产养殖废水处理 中具有广阔的应用前景。
微生物固定化技术介绍:微生物固定化技术是指通过物理或化学手段将游离 的微生物固定在特定的载体上,从而提高微生物的浓度和活性,使其能够更有效 地降解污染物。微生物固定化技术的方法主要包括:吸附法、共价键合法、交联 法、包埋法等。这些方法的分类主要依据是载体的性质和微生物与载体的结合方 式。
应用前景
随着人们对环境保护和食品安全问题的日益,包埋固定化微生物技术在水产 养殖水处理领域的应用前景广阔。未来,科研人员将继续研究如何优化包埋固定 化微生物技术的处理效率、降低成本和提高实用性。同时,该技术在其他领域的 广泛应用也将进一步推动其研究和应用的发展。
结论
包埋固定化微生物技术在水产养殖水处理领域的研究和应用取得了显著的成 果。该技术不仅可以有效处理养殖废水,还可以提高水质和增加产量,降低养殖 成本。未来,随着技术的不断进步和应用范围的扩大,包埋固定化微生物技术在 水产养殖水处理领域的应用将更加广泛和深入。
除了上述技术外,科研人员还在探索新的水产养殖模式和废水处理技术。例 如,循环水养殖(Recirculating Aquaculture Systems, RAS)是一种将养殖 废水进行循环再利用的养殖模式,可以减少废水的排放量,同时提高水资源的利 用效率。此外,一些新型的废水处理技术如膜生物反应器(MBR)、电化学高级 氧化(EO)和光催化氧化(Photocatalytic Oxidation)等也逐渐被应用到水 产养殖废水处理中。

微生物固定化技术

微生物固定化技术

固定化微生物技术是将特选的微生物固定在选证的载体上,使其高度密集并保持生物活性,在适宜条件下能够快速、大量增殖的生物技术。

这种技术应用于废水处理,有利于提高生物反应器内微生物(尤其是特殊功能的微生物)的浓度,有利于微生物抵抗不利环境的影响,有利于反应后的固液分离,缩短处理所需的时间。

利用固定化微生物技术提高废水处理效率的工艺方法也被称作”生物增效”,其适用的领域非常广泛,例如:化粪池、隔油槽、排水管、城市污水处理厂以及工业废水…等。

一般而言,针对特殊污染源,来自天然环境的微生物消耗很快、效率低下,即使有快速的繁殖能力仍不足以负荷。

因此,生物增效的作业过程还是依循自然的方式,向目标添加定制的、具有已知降解能力的微生物制剂(固定化微生物),处理效果则有明显的提升。

现在所研究的生物吸附剂的固定化方法主要有以下几种:1吸附法吸附法一般依靠生物体与载体之间的作用,包括范德华力、氢键、静电作用、共价键及离子键,两者间的屯电位,在微生物体和载体的相互作用中起重要作用。

常用的吸附载体有活性炭、木屑、多孔玻璃、多孔陶瓷、磁铁矿、硅藻土、硅胶、纤维素、聚氨醋泡沫体、离子交换树脂等。

它是一种简单易行、条件温和的固定化方法,但用它固定的生物体不够牢靠,容易脱落。

2交联法交联法又称无载固定化法,是一种不用载体的工艺,通过化学、物理手段使生物体细胞间彼此附着交联。

化学交联法它一般是利用醛类、胺类等具有双功能或多功能基团的交联剂与生物体之间形成共价键相互联结形成不溶性的大分子而加以固定,所使用的交联剂主要有戊二醛、聚乙烯酞胺、表氯醇等等。

物理交联法在是指在微生物培养过程中,适当改变细胞悬浮液的培养条件(如离子强度、温度、pH值等),使微生物细胞之间发生直接作用而颗粒化或絮凝来实现固定化,即利用微生物自身的自絮凝能力形成颗粒的一种固定化技术。

3包埋法在微生物的固定化方法中,以包埋法最为常用。

它的原理是将生物体细胞截留在水不溶性的凝胶聚合物孔隙的网络中,通过聚合作用或通过离子网络形成,或通过沉淀作用,或通过改变溶剂、温度、pH值使细胞截留.凝胶聚合物的网络可以阻止细胞的泄露,同时能让基质渗入和产物扩散出来。

微生物固定化技术的应用

微生物固定化技术的应用

微生物固定化技术的应用
微生物固定化技术是一种利用特定载体将微生物固定在其中,从而形
成固定化生物反应器的技术。

这种技术被广泛应用于生物处理、食品工业、制药工业、环境工程等领域,以下是一些应用方面的具体例子:
1.生物废水处理:利用固定化微生物反应器对污水进行处理,可降解
污水中的有机物和氮化物,减少污染物的排放。

2.食品工业:利用固定化酶和微生物进行制酸、发酵等过程,提高产
品质量和生产效率。

3.制药工业:利用固定化细胞或酶制备药物,提高出药率和产量,减
少废水和废气的排放。

4.处理重金属污染:固定化微生物对重金属污染进行处理,从废水中
去除重金属离子,减少对环境的污染。

5.土壤修复:利用固定化微生物对污染土壤进行修复,可以去除土壤
中的有害物质,恢复土壤质量。

6.生产生物能源:利用固定化微生物进行生物燃料和生物气体的生产,提高能源利用率和环保性。

总之,微生物固定化技术可以为许多领域带来更加有效和环保的解决
方案,是一种十分有用的生物技术。

固定化微生物技术

固定化微生物技术

固定化微生物技术及其在污水处理中的应用前言:固定化微生物技术是20世纪70年代在固定化酶技术的基础上上发展起来的。

固定化微生物技术是指用物理或化学方法将游离微生物细胞、动植物细胞、细胞器或酶限制或定位在某一特定空间范围内,保留其固有的催化活性,并能被重复和连续使用技术[1]。

,固定化微生物技术的本质是采用生物活性高分子载体固定、诱导和驯化出难降解有机物有特异性的特殊菌群,使微生物依据有机物的降解速度和次序分级排列,实现难降解有机物的高效去除;加之载体的高分子效应的影响,创造出适宜微生物生存的微环境,提高微生物的耐受性。

该技术的应用,为污水处理提供了一条新的技术途径,具有广阔的应用前景。

1、微生物固定化方法固定化微生物技术的方法分类多种多样,目前在国内外尚无一个统一的分类标准。

固定化微生物的制备方法大致可以分为包埋法、吸附法、共价结合法和交联法[ 2] 以及新近发展的无载体固定化方法[ 3] 。

1.1包埋法包埋法是将微生物限定在凝胶的微小格子或微胶囊等有限空间内,同时能让基质渗入和产物扩散出来。

凝胶聚合物的网络可以阻止细胞的泄漏,同时能让底物渗入和产物扩散出来。

包埋法对微生物活性影响小、颗粒强度高,是目前制备固定化微生物最常用、研究最广泛的固定化方法[4]。

1.2吸附法吸附法在固定化微生物技术处理污水中是研究最早、应用较广泛、技术也较成熟的方法。

在大多数生物膜反应器启动的早期,所应用的都是吸附法的原理。

固定化微生物方法可分为物理吸附和离子吸附两类[5]。

该方法操作简单,微生物固定过程对细胞活性的影响小,条件温和。

但这种方法结合的细胞数量有限,反应稳定性和重复性差,所固定的微生物数目受所用载体的种类及其表面积的限制[6],同时微生物与载体之间吸附强度也不够牢固,故载体的选择是关键。

1.3 共价结合法共价结合法是利用微生物细胞表面功能团与固相载体表面基团之间形成化学共价键相连来固定细胞, 因此结合紧密, 稳定性好, 但是基团结合时反应激烈, 操作复杂、难控制。

固定化微生物

固定化微生物

固定化微生物更新时间:2009-03-04 11:03来源:作者: 阅读:257网友评论0条固定化微生物技术是20世纪60年代发展起来的一门新兴生物技术。

该技术利用物理或化学的措施将游离微生物细胞或酶定位于限定的空间区域,并使其保持活性从而反复利用,具有效率高、稳定性强、反应易控制、对环境耐受力强、保持菌种高效等优点。

目前经常采用的生物固定化方法主要有吸附法、包埋法、交联法和共价结合法,尤以包埋法和吸附法最为常用。

选择合适的固定化细胞载体是这项技术的关键,固定化细胞载体主要有天然高分子凝胶载体(琼脂、海藻酸钙等)和有机合成高分子凝胶载体(如聚乙烯醇PVA、聚丙烯酰胺ACAM等)。

因为PVA凝胶具有无毒、廉价、对细胞活性损伤小、抗微生物分解和机械强度高等特点,被认为是目前最有效的固定化载体之一。

Nagadomi等使用由PVA-硼酸和海藻酸材料固定化的光合细菌处理水产废水,试验结果表明,固定化PVA球的水质净化能力比海藻酸盐固定化球强。

目前对处理水产养殖废水的固定化菌株研究得较多的是光合细菌和硝化细菌。

将光合细菌同载体结合并固定化,不仅可以增强沉降性,使水质净化效率提高、稳定性增强,微生物质量分数提高;同时还具有抗环境因子影响能力强,可长期保持包埋菌占优势而防止其它有害菌生长等优点。

郑耀通等[16]净化模拟养殖水质的试验结果表明,经PVA、SiO2、CaCO3、海藻酸钠组成的凝胶液固定化后的光合细菌可显著提高氨氮和COD的去除率,并能增加溶解氧。

加入固定化光合细菌15d后,氨氮含量下降98.9 %,溶解氧增加63.4%,COD去除率为70.6%。

由此可以看出,固定化光合细菌在去除氨氮、有机物质和增加溶解氧方面有明显的优越性。

硝化细菌主要用于生物脱氮。

黄正等选用PVA作为硝化细菌包埋体,添加适量粉末活性炭包埋固定化硝化污泥,制备固定化小球,经6周驯化后处理养殖废水,COD的去除率为74.9 %,氨氮的去除率达82.5 %。

包埋法固定化微生物技术中的载体选择及在污水生物处理中的应用

包埋法固定化微生物技术中的载体选择及在污水生物处理中的应用

文章编号:1004-3918(2009)05-0554-05包埋法固定化微生物技术中的载体选择及在污水生物处理中的应用刘帅,张培玉,曲洋,郭沙沙(青岛大学环境科学与工程系,山东青岛266071)摘要:较详细介绍了包埋法固定化微生物技术中不同种类包埋载体的特点,比较分析了不同载体的使用对污水生物处理效果的影响,指出了包埋法的应用范围.关键词:固定化微生物技术;污水处理;包埋法;载体中图分类号:Q 819文献标识码:A传统的污水生物处理工艺以微生物悬浮态生长的活性污泥处理法为主.此法虽然有很多优点,并且早已在污水处理领域发挥着重要的作用,但同时也存在着许多很难克服的缺陷,比如反应器中生物量的浓度偏低、泥水分离困难、不耐冲击负荷、会出现污泥上浮膨胀和流失等问题.固定化微生物技术是应用于污水处理的新技术之一.由于固定化微生物技术可固定经筛选出的能降解特定物质的优势菌属,能使污水处理系统专一性、耐受性增强,处理效果稳定,运行管理简单,降解效率明显优于传统方法.因此,近年来固定化微生物技术已成为各国学者研究的热点课题,并且已有部分研究成果由实验室走向实际应用阶段.包埋法是固定化微生物技术中应用最广泛的方法之一,国内对于包埋法固定化微生物技术处理污水的研究很多,但是关于介绍和比较包埋法所用载体的文章较为少见.本文就包埋法固定化微生物技术研究中的载体选择进行了介绍,分析比较了不同载体的使用对污水生物处理效果的影响,指出了包埋法的应用范围,以期为包埋法固定化微生物技术中的载体选择提供有益参考.1包埋法固定化微生物技术在固定化微生物技术处理污水的研究中,包埋法是最为常用、研究最为广泛的固定化方法.目前关于该方法处理污水的研究已有大量报道.包埋法是将微生物细胞截留在水不溶性的多聚体化合物孔隙的网络空间中,通过聚合作用,或通过沉淀作用,或通过离子网络作用,或通过改变溶剂、温度、pH 值使细胞截留.多聚体化合物的网络可以阻止细胞的泄漏,同时能让底物渗入和产物扩散出来.包埋法可分为高分子合成包埋、离子网络包埋和沉淀包埋.该法操作简单,对微生物活性影响小,可将微生物细胞锁定在特定的高分子网络中,因此制作的固定化微生物的强度高,与微生物细胞的结合力强,化学性能稳定.2包埋法固定化微生物技术的载体选择包埋法所使用的载体种类较多,但都要求可以形成具有孔隙网络空间的能力,以便将微生物细胞截留在内.对包埋法微生物载体的普遍要求是:固定化过程简单,易于成型,成本低;对微生物无毒性,固定化后细胞密度大;物理稳定性和化学稳定性好,不易被分解.现有的包埋固定化载体大致可分为天然高分子凝胶载体和有机合成高分子载体两类:1)天然高分子凝胶载体有琼脂、角叉菜胶、海藻酸钠、卡拉胶和海藻酸钙等.天然高分子凝胶载体一般具有生物无毒、传质性能良好、成形方便且固定化密度高等优点,但强度较低、抗微生物分解能力较差、在厌氧条件收稿日期:2009-02-18基金项目:国家自然科学基金(50678085,50878107);山东省教育科技计划项目(J06I03);山东省研究生教育创新计划资助项目(SDYY07091)作者简介:刘帅(1987-),男,山东潍坊人,从事环境生物学研究通信作者:张培玉(1963-),男,山东青岛人,博士,教授,主要研究方向为环境生物技术.第27卷第5期2009年5月河南科学HENAN SCIENCE Vol.27No.5May 20092009年5月下易被微生物分解.为了克服天然高分子凝胶载体的这些不足,可用交联剂对其进行稳定化处理,通过处理可使天然载体的物理和化学稳定性得到极大的提高,但是载体的传质性能和微生物细胞活力会相应的下降.2)有机合成高分子载体有聚丙烯酰胺、聚乙烯醇、光硬化树脂、聚丙烯酸等.有机合成高分子载体的突出优点是抗微生物分解性能好、机械强度高、化学性能稳定、对细胞无毒且价格低廉,因而具有很高的利用价值,被认为是目前最有效的固定化载体.但有机合成高分子载体聚合物网络的形成条件比较剧烈,对微生物细胞的损害较大.3部分包埋剂在固定化微生物技术中的应用现今对于包埋法的研究非常广泛,从载体的构造到反应的机理和控制条件等各方面在国内外都有较深入的研究,不同载体的使用对污水生物处理会产生不同的效果.3.1海藻酸钙的使用海藻酸钙对微生物的毒性很小,固化成型方便,对微生物细胞的富集程度高,所以是目前天然高分子凝胶载体中研究最多、使用最广的载体之一.但是其稳定性差、机械强度不高等缺陷需要进一步改善.由于海藻酸钙固定化细胞的密度高,传质性能好,故对于重金属离子的吸附性能优良.国外的研究者对海藻酸钙包埋法在去除重金属离子的效率以及最佳去除条件等方面做了大量的试验和研究,证明了海藻酸钙作为载体包埋有关微生物,可以作为重金属的生物吸附剂使用,且处理效果较好.Bala Kiran 等[1]用海藻酸钙包埋蓝藻,在不同的金属初始浓度、不同的pH 值、不同的温度条件下研究了对Cr 6+的吸附效果,结果表明:在金属离子初始质量浓度为50~60mg /L ,pH 为2~3,温度45℃时获得最大吸附率82%.Y .Kacar 等[2]用海藻酸钙固定真菌(Phanerochaetech rysosporium )包括活的和加热灭活的2种形态菌体处理含Cd 2+的废水,最大吸附能力分别为(104.8±2.7)mg 和(123.5±4.3)mg ,0.5h 内镉的生物吸附很快就达到85%.海藻酸钙微生物系统用10mmol /L HCl 处理,回收吸附率可达到原来的97%.同样方法用海藻酸钙包埋另一种真菌(Lentinus sajorcaju )处理含Cd (Ⅱ)废水,实验显示在0.5h 之内,镉的生物吸附很快就达到85%[3],吸附能力与时间的关系符合假二级方程.Gulay Bayramoglu 等[4]用海藻酸钙包埋固定衣藻制得的固定化小球吸附Hg 2+,Cd 2+,Pb 2+,吸附60min 后可达到吸附平衡,并可用Langmuir 和Freundlich 吸附等温线描述;用2mol /L NaCl 溶液可将吸附在衣藻上的Hg 2+,Cd 2+,Pb 2+解吸下来,解吸率可高达95%.Arica M 等[5]将黄孢原毛平革菌(Phanerochaetech rysosporium )固定在海藻酸钙中,先制成活菌小球,再将活菌加入5mmol /L CaCl 2溶液,在90℃高温下加热10min ,制成固定加热灭活菌.将这2种菌用于吸附人工静态模拟废水中30~600mg /L 的Pb 2+和Zn 2+,对其吸附容量做了细致的研究,结果表明,在pH 5.0~6.0、吸附60min 后,加热灭活菌对Pb 2+和Zn 2+的吸附容量为355mg /g 和48mg /g (干质量),大于活菌球的282mg /g 和37mg /g (干质量).以海藻酸钙为载体的包埋技术还用于处理难降解有机物.国内有研究证明,用海藻酸钙包埋固定优势降解菌(Alcaligenes sp )降解2,6-二叔丁基(2,6-2DTBP ),在100.0mg /L 的初始质量浓度下,其降解率在12d 可达到86%.与未固定菌株相比,菌株经固定化包埋后其降解的能力大大提高,且固定化菌株对pH 值和温度的适应范围更宽,对底物具有更高的降解能力[6].除固定化微生物外,也有人研究用海藻酸钙固定化酶,但国内外在这方面的研究也较少,这可能是由于海藻酸钙相比较于其他包埋载体来说,凝胶网络的孔隙尺寸过大,酶容易从包埋网络中泄露,造成海藻酸钙对于酶的固定化的效率不高.3.2聚乙烯醇的使用聚乙烯醇(PVA )在有机合成高分子载体中也是目前研究最多、应用最广的载体之一.聚乙烯醇具有对生物毒性小、物理化学稳定性较高、抗生物分解能力强、价格低廉等优势,但是其传质性能不如海藻酸钙等天然高分子凝胶载体.国内外对于聚乙烯醇固定以硝化菌和反硝化菌的研究较为常见.使用聚乙烯醇包埋微生物的各种制作固定化微生物颗粒的方法中,在低温冷冻条件下包埋高效菌种被证明是一种可以保持高微生物活性的有效方法.国外有研究[7]表明,用PVA 冷冻法把硝化污泥固定在3~5mm 聚乙烯醇小球里用来处理养猪废水,采用批量试验和连续试验进行好氧处理.结果当HRT 为4h 时,NH 3-N 的硝化率为567mg /d ,硝化污泥小球不受养猪废水高BOD 浓度的影响,适用于快速和有效地去除厌氧养猪废水塘中的NH 4+.还有研究者[8]以PVA 刘帅等:包埋法固定化微生物技术中的载体选择及在污水生物处理中的应用555--第27卷第5期河南科学为载体,采用冷冻法混合固定硝化菌和反硝化菌,研究了好氧条件下同时硝化和反硝化的可行性及其脱氮特性.结果表明,硝化菌和反硝化菌混合固定时,由于载体内部形成了适合硝化和反硝化的环境,可以在好氧条件下同时进行硝化和反硝化,实现单级生物脱氮.混合固定时的氨氧化速度约为硝化菌单独固定时的14倍,约为PBS 脱氮速度的2.6倍.硝化菌和反硝化菌混合固定后对温度的敏感性减小,并且在较宽的溶解氧范围(2~6mg /L)保持稳定的脱氮速度.国内关于聚乙烯醇固定硝化菌反硝化菌处理氨氮废水的研究也有一定进展,许多实验都有很高的氨氮去除率.谭佑铭[9]等研究固定化PVA 反硝化菌对富营养化水体中硝酸盐氮的还原能力,以及对水体中有机物的降解情况.结果,经过40d 的处理后,原水中的亚硝化菌和硝化菌能将水样中的氨氮转化成硝酸盐氮,转化率约为57.5%,但原水中的反硝化细菌作用较微弱,对照水样中总无机氮的去除率约为6.7%.耿振香等[10]采用聚乙烯醇包埋固定从活性污泥中筛选的硝化菌和反硝化菌,对生活污水进行硝化反硝化工艺处理,废水中氨氮为45mg /L ,pH 值为7.5,DO 为2.0mg /L ,水力停留时间为18h ,氨氮去除率可达96%.张爽等[11]采用聚乙烯醇-硼酸包埋法固定经常温富集培养的含耐冷菌的硝化污泥,用于处理常温和低温生活污水,进行了比较研究.结果表明,该固定化硝化菌群在常温下经过1个月的活性恢复和增殖后,转入低温环境,在短期内表现出一定的适应性,作用6h 后对NH 4-N 的去除率为80%左右.在常温下,该固定化菌更表现出高效的氨氮去除能力,作用3h 后,去除率达90%以上.赵兴利[12]等利用PVA 包埋粉末活性炭驯化硝化菌,以流化床为生物反应器,采用SBR 运行方式,固定化硝化菌寿命长达7个月以上,NH 4-N 去除率维持在90%以上.以上大量的研究表明,聚乙烯醇是固定硝化菌和反硝化菌处理氨氮废水的优良包埋载体,其包埋效果较好,对氨氮的去除效率较高.这主要是由两个方面的因素造成:一方面,聚乙烯醇可以利用自身内部空间对氧扩散情况的影响,自然形成由里而外的好氧区、缺氧区和厌氧区,从而使硝化菌和反硝化菌各自在适合于自身相对独立的环境下生长代谢,实现好氧条件下同时硝化反硝化;另一方面,聚乙烯醇的物理化学稳定性较强,机械性能好,所以对于硝化菌这种需要较长生长代谢时间的菌种的固定化效果好.因此,聚乙烯醇作为包埋材料处理氨氮废水具有很好的应用前景.聚乙烯醇作为包埋材料也可以用于重金属离子的废水处理,如用PVA 固定氧化亚铁硫杆菌(A cidithiobacillus ferrooxidans ),在稀释率0.4时,Fe 2+的最大氧化速率达到3.1g /(L ·h ),并且固定颗粒稳定性好,可连续运行2个月以上[13].采用液-液相分离的方法制备聚乙烯醇共包埋活性炭和纳米TiO 2的微球,对废水中的Cr 6+也有较好的处理效果.当微球加入量为140g /L ,微球中活性炭、纳米TiO 2包埋量分别为6%和4%,pH 值为3,作用时间为3h 时,Cr 6+的去除率可达90%以上,且微球使用方便,不会造成二次污染[14].聚乙烯醇与活性炭或其他吸附载体复合包埋微生物在处理难降解有机毒物方面也有不错的效果.采用PVA 和活性炭的复合载体制作固定化污泥颗粒处理含酚废水,结果表明,在污泥与载体体积比为1∶1、平均粒径2~4mm 的条件下,PVA 和活性炭的固定化污泥颗粒可以在水里停留6h ,泥水体积比为1∶4、进水酚达250mg /L 时,取得99.8%的酚去除率[15],废水可达到国家排放标准.国内还有研究者[16]采用PVA 与聚丙烯无纺布(多孔结构)的复合载体来降解含有喹啉、异喹啉、吡啶的高浓度氨氮焦化废水,3种难降解有机物经处理8h 后降解率均在90%以上.现对聚乙烯醇作为包埋载体在污水除磷方面也有一定的研究.使用PVA 作为包埋材料固定假单胞菌为优势微生物的活性污泥,采用硼酸进行交联,制成的固定化微生物系统可以保持较高的微生物细胞活性,该系统具有明显的除磷能力和较好的抗酸、碱冲击能力;在起始质量浓度为87.5mg /L 时,6h 可去除49.5%的磷;在酸性条件下,24h 除磷率为88.2%;在好氧条件下,固定化污泥还具有明显的脱氮能力[17].这为采用固定化细胞法同时进行污水的脱氮、除磷处理提供了可能.聚乙烯醇在包埋法处理废水中具有自身的特点与优势:①生物相容性强,对微生物细胞无毒,成本较低;②有极好的流变学性能(不易碎),可作为大多数反应器的固定化载体;③有超常的热稳定性(相比于热可逆性凝胶);④对生物降解耐受性很高,对培养介质成分无不良反应;⑤聚乙烯醇有很高的大小孔隙率,可提供最佳的菌体代谢物转运途径[18].正是由于聚乙烯醇作为有机合成高分子包埋载体所具有的巨大优势,所以它将会在固定化技术中得到更广泛的应用.3.3海藻酸钠的使用海藻酸钠作为固定化包埋载体材料,具有制备容易,价格低廉,传质性能良好的优点,应用范围也比较广泛.556--2009年5月在处理重金属方面,海藻酸钠作为固定化包埋载体材料对金属离子的吸附率较高,与国外学者采用海藻酸钙固定菌种处理重金属离子相对照,国内学者[19]采用海藻酸钠包埋小球藻和叉鞭金藻,制得含藻细胞的固定化胶球,用其对Ni 2+进行生物吸附,研究了固定化小球藻和固定化叉鞭金藻对污水中Ni 2+的吸附率.结果表明,对于同一种固定化微藻,处于对数生长中期时对Ni 2+吸附效果较好,且吸附过程主要在前4h 完成,Ni 2+浓度越大,吸附率越高.固定化微藻比悬浮态微藻吸附率高,固定化小球藻比固定化叉鞭金藻吸附率高.海藻酸钠作为固定化包埋载体材料对于高浓度有机废水和难降解污染物质的处理效果也非常显著.将海藻酸钠固定化活性污泥制成颗粒小球,以流化床反应器对甲醇废水进行处理,在溶解氧为6.6~6.9mg /L 的条件下,固定化小球与废水的体积比为30∶1000,最佳的工况条件是温度为30~40℃,pH 值为5.0~9.0;当进水COD<722.2mg /L ,进水甲醇<307.4mg /L 时,对COD 的去除率>85%,对甲醇的去除率可达到90%左右[20].以海藻酸钠为载体、戊二醛为交联剂净化有机废水,处理效率稳定在75%,而且耐水质水量变化的冲击力强,有机负荷承受能力增强,进水的COD CR 可高达2500mg /L [21].以海藻酸钠为固定化载体材料,以氯化钙作为交联剂将高效降解油脂菌—解脂耶氏酵母(Y arrowia lipolytica )包埋制备成固定化微生物小球处理油脂废水,结果表明与悬浮状态相比,固定化微生物温度适应范围增大、热适应性增强、pH 值往酸性方向偏移[22].用普通系统和高效菌种的悬浮投加型强化系统作比较,用海藻酸钠包埋某高效微生物菌种用于强化聚酯废水的生物处理,悬浮投加高效菌种可使出水COD 降低100mg /L ,处理率提高8%,而用海藻酸钠-氯化钙法包埋固定化之后投加则可使出水COD 降低了200mg /L ,处理率提高14%,使最终出水COD 达到100mg /L 以下[23],达到出水的排放要求,且减少了废水中对人类和环境有较大危害的1,4-二氧杂环己烷的含量.以上实验说明,海藻酸钠作为包埋材料不仅对金属离子的吸附率较高,而且对于高浓度有机废水和难降解有机污染物质的处理效果也较理想.3.4琼脂的使用琼脂作为固定化载体的特点是包埋微生物活性高、制作容易,主要用于重金属元素的去除.如Viktoriya V.Konovalova 等[25]的实验证明,在用游离假单胞菌做吸附试验时,当Cr 6+质量浓度达到30mg /mL ,吸附率明显下降;而将假单胞菌包埋在琼脂中再吸附Cr 6+,则Cr 6+质量浓度达到20mg /L 时仍然保持稳定的吸附效率.因此要保持较高的Cr 6+的吸附效率,就要避免菌体铬中毒现象的发生,而包埋后的菌体由于琼脂凝胶网格结构的保护减轻了菌体铬中毒性状.但是琼脂在去除重金属元素时也有一定的缺陷,比如氧和底物及产物的扩散受到限制,琼脂凝胶的机械强度不高,且成球受温度影响较大.4包埋法的应用范围随着对包埋法研究的不断深入和扩展,其在污水处理领域的应用也越来越广,但仍有一定局限性,例如由于微生物细胞处于包埋载体的内部,所以使其难以与大分子的污染物接触而发挥降解功能,如厌氧工艺处理含纤维素、蛋白质及脂类的废水.所以包埋法不适于处理大分子有机污染物.根据包埋法处理废水的特点以及实际研究中的应用情况,将其应用范围总结如下:①因为包埋法处理污水的运行管理简单,几乎不需污泥回流,所以适用于占地受限制、要求产泥量少、污泥处理可以简化或省略及运行管理方便的家庭、小区污水处理系统,比如中水道系统.②包埋法可以将微生物细胞稳定的固定在载体之上,使得微生物细胞在系统中的存留生存时间大大延长,所以适合高效菌种竞争力较弱、世代存活时间较长、自然条件下菌种优势难以维持的环境,比如硝化细菌或甲烷菌的培养与生长.③由于包埋法对于优势菌种有较强的选择能力,对于目标污染物的降解优势较为明显,所以适用于处理单一的或对其处理方式限制性很强的污染物.④由于载体阻隔的作用使得微生物经固定化后氧与底物的传质速率受到阻碍,所以在好氧系统中,受此因素的影响,限制了高密度微生物活性的发挥.但是在厌氧情况下,由于整个微生物系统不受氧传质速率的影响,废水中的有机物浓度可以大大高于好氧的条件,固定化微生物的处理能力得到充分的体现,同时由于微生物细胞的高度密集,所以包埋法适用于厌氧条件下的高浓度有机废水处理.⑤当包埋法处理的生物系统与有毒有害物质进行接触时,由于微生物细胞高度密集的强抵抗能力或载体的阻挡作用,削弱了有毒有害物对微生物的冲击作用.所以包埋法较适合于有毒有害物质的生物降解.刘帅等:包埋法固定化微生物技术中的载体选择及在污水生物处理中的应用557--第27卷第5期河南科学参考文献:[1]Kiran B ,Kaushik A ,Kaushik C P.Response surface methodological approach for optimizing removal of Cr (VI )from aqueoussolution using immobilized cyanobacterium [J ].Chemical Engineering Journal ,2006,23(6):1-7.[2]Kacar Y ,Arpa C ,Tan S ,et al.Biosorption of Hg (Ⅱ)and Cd (Ⅱ)fromaqueous solutions :comparison of biosorption capacity ofalginate andimmobilized live and heat inactivated Phanerochaetechrysosporium[J ].Process Biochemistry ,2002,37(6):201-210.[3]Bayramoglu G ,Dehizh A ,Bektass ,et al.Entrapment of lentinus sajor caju into Ca-alginate gelbeads for removaI of Cd (Ⅱ)ionsfrom aqueous solution :preparation and biosorption kinetics andysi [J ].Microchemical Journal ,2002,72(1):63-76.[4]Bayramoglu G ,Tuzun I ,Celik G ,et al.Biosorption ofmercury (Ⅱ),cadmium (Ⅱ)and lead (Ⅱ)from aqueous system by microalgaeChlamydomonas immobilized in alginate beads [J ].Int J Miner Process ,2006,81(6):35-43.[5]Arica M Y ,Arpa C ,Ergene A ,et al.Ca-alginate as asupport for Pb (II )and Zn (II )biosorption with immobilized Phanerochaetechrysosporium [J ].Carbohyd Poly ,2003,52:167-174.[6]张志刚,徐德强,李光明,等.固定化优势菌种降解2,6-二叔丁基酚[J ].中国环境科学,2005,25(1):57-60.[7]Vanotti M B ,Hunt P G.Nitrification treatment of swine wastewater with acclimated nitrifying sludge immobilized in polymerpellets [J ].Tansactions of the Asae ,2000,43(2):405-414.[8]Cao Guomin ,Zhao Qingxiang ,Sun Xianbo ,et al.Characterization of nitrifying and denitrigying bacteria coimmobilized in PVAand kinetics model of biological nitrogen removal by coimmobilized cells [J ].Enzyme and Microbial Technology ,2002,30:49-55.[9]谭佑铭,罗启芳,王琳,等.固定化反硝化菌对富营养化水体脱氮的试验研究[J ].中国卫生工程学,2003,2(2):65-68.[10]耿振香,邱新发.固定化微生物法处理含氨氮废水[J ].应用化工,2007,36(9):933-935.[11]张爽,姜蔚,徐桂芹,等.固定化硝化菌在不同温度下对氨氮的去除效能研究[J ].环境科学与管理,2008,33(5):91-95.[12]赵兴利,兰淑澄.固定化硝化菌去除废水中氨氮工艺的研究[J ].环境科学,1999,20(1):39-42.[13]Long Zhonger ,Huang Yunhong ,Cai Zhaoling ,et al.Biooxidation of ferrous iron by immobilized Acidithiobacillus ferrooxidansin poly (vinyl alcohol )cryogel carriers [J ].Biotechnology Letters ,2003,25(3):245-249.[14]黄毅,薛晚侠,汪池金,等.聚乙烯醇包埋活性炭/纳米TiO 2微球处理含铬废水的研究[J ].工业用水与废水,2008,39(2):46-48.[15]魏远隆.固定化微生物法处理含酚废水的研究[J ].南京理工大学学报,2005,29(3):326-329.[16]黄霞,陈钱.固定化优势菌种处理焦化废水中几种难降解有机物的试验研究[J ].中国环境科学,1995,15(1):1-4.[17]席淑琪.固定化污泥除磷的初步研究[J ].污染防治技术,1999,12(4):233-248.[18]L ozinsky V I ,P lieva F M.Poly (vinyl alcoho1)cryogelsemployed as matrices for cell immobilization Overview of recent researchand developments [J ].Enzyme and Microbial Technology ,1998,23(3-4):227-242.[19]张欣华,杨海波.固定化海洋微藻对污水中Ni 2+的吸附[J ].生物技术,2003,13(5):25-27.[20]黄川,王里奥,崔志强,等.采用海藻酸钠固定化微生物技术处理甲醇废水[J ].中国给水排水,2008,24(7):78-81.[21]彭云华.对固定化微生物技术靴有机废水最佳方法的探讨[J ].城市给排水,2005,19(3):21-24.[22]吴兰,万金保.固定化解脂耶氏酵母(Ya rrowi a lipolytica )处理油脂废水的性能研究[J ].环境工程学报,2008,2(4):482-486.[23]赵美云,雷中方.海藻酸钠包埋高效菌种强化处理聚酯废水的试验研究[J ].工业水处理,2006,26(3):20-23.[24]张志刚,徐德强,李光明,等.固定化优势菌种降解2,6-二叔丁基酚[J ].中国环境科学,2005,25(1):57-60.[25]Konovalova V V ,Dmytrenko G M ,Nigmatullin R R ,et al.Chromium (VI )reduction in a membrane bioreactor withimmobilized Pseudomonas cells [J ].Enzyme and Microbial Technology ,2003,33(6):899-907.The Choice of Carriers Used in Entrapping Method of ImmobilizedMicroorganisms Technology and Its Application in Sewage DisposalLiu Shuai ,Z hang Peiyu ,Q u Yang ,G uo Shasha(Department of Environmental Science and Engineering ,Qingdao University ,Qingdao 266071,Shandong China )Abstract:In this paper ,the characters of different carriers used in entrapping method are introduced in detail ,the different effects of such carriers applied in sewage disposal are compared and analyzed ,finally the spectrum of application of entrapping method is summarized.Key words:immobilized microorganisms technology ;sewage disposal ;entrapping method ;carriers 558--。

微生物在载体表面的固定机理

微生物在载体表面的固定机理

33/36
六、水力剪切作用
在实际水处理中,水力剪切力的强弱决定 了生物膜反应器启动周期。 最常用于描述水力剪切作用对细菌在载体 表面固定、附着技术是辐射型流动室(Radial Flow Chamber),简称RFC。
七、接触时间
34/36
2.4
硝化细菌在载体表面固定措施
常用的硝化细菌在载体表面附着、 固定的方法有两大类:一是通过载体 表面的改性,二是通过细菌表面的改 性。
35/36
12/36
根据图2表明,亚硝化细菌的附着过程遵循一 级可逆反应动力学。Liu明确提出微生物在载体表 面的可逆附着行为遵守一级可逆反应动力学准则。
微生物附着固定速度可表示为:
13/36
二、微生物不可逆附着模型
已附着、固定的微生物开始其各种生理活动, 可用如下过程模式描述:
式中a3——生物膜或固定微生物净积累常数,T-1
表一、导致微生物可逆吸附的各种引力和斥力
物理力 范德华力 异电引力 化学力 氢键,酯化反应等 离子对的形成(例如:-NH3+….OOC-) 斥力 范德华力 粒子空间位 阻
热力学力 正离子对的形成(例如:-COO….Ca2+…OOC-) 同电斥力等
表面张力 表面自由 能 粒子桥键等
表面功
表面临界 张力
其实验结果表明在生物膜形成初期,生物量积 累过程遵循一级反应动力学(见图3)。
14/36
图3.生物膜积累随时间变化(Re=17200以及µ=0.28h-1)
15/36
在一个连续运行的生物反应器中,早期生物膜形 成速率主要依赖以下两个因素:意识微生物与载体表 面接触频度;再则是悬浮微生物的增长活性。 大量实验表明,微生物与载体间接触频度直接取 决于悬浮微生物浓度、微生物体的性质及水力学强度, 这些通常由可测定的悬浮微生物浓度(X)和雷诺数 (Re)表示。至于悬浮微生物活性可通过其增长比速 度(µ)来描述。

《固定化微生物技术》课件

《固定化微生物技术》课件

技术原理
微生物通过物理或化学手段被固 定在载体上,在反应器内与废水 中的有机物质进行生物反应,将 有机物质转化为无害的物质。
技术应用
废水处理、生物反应器、生物制 药等领域。
微生物简介
微生物定义
微生物是指一类个体微小、结构简单、通常以二分裂方式进行繁 殖,并且在适宜环境下能够独立完成生命活动的生物。
活时间。
在生物燃料生产中的应用
总结词
提高产量、降低成本、环保
VS
详细描述
固定化微生物技术应用于生物燃料生产中 ,可提高产油效率,降低生产成本。通过 固定化工程菌,可实现连续化生产,提高 油品质量和收率。同时,该技术还可减少 环境污染,促进可持续发展。
在药物生产中的应用
总结词
高表达、高纯度、安全性
2023
PART 06
未来展望与研究方向
REPORTING
新技术的应用
纳米技术
信息技术
利用纳米材料和纳米技术提高固定化 微生物的稳定性和活性,实现更高效 的应用。
通过物联网、大数据和人工智能等技 术,实现固定化微生物的智能化监测 和管理,提高其运行效率和安全性。
生物工程技术
利用基因编辑技术对微生物进行改造 ,提高其性能和适应性,进一步拓展 固定化微生物技术的应用范围。
提高微生物活性
通过改进固定化方法和载体选择,提高微生 物的活性。
优化操作条件
进一步优化操作条件,提高处理效果和稳定 性。
2023
PART 05
固定化微生物技术的应用 实例
REPORTING
在废水处理中的应用
总结词
高效、稳定、低成本
详细描述
固定化微生物技术在水处理领域应用广泛,通过将微生物固定在载体上,实现高效稳定 的污水处理效果。该技术可降低处理成本,提高微生物的抗冲击能力,延长微生物的存

微生物固定化聚氨酯载体研究祥解

微生物固定化聚氨酯载体研究祥解
微生物 多功能试剂
+ +++
载体
6
7
2 聚氨酯载体的合成
• 以聚氨酯作为载体固定化微生物,其合成是重点研究方 向。 • 活性碳纤维与聚氨酯泡沫复合载体的制备:活性碳纤维 的加入提高了聚氨酯泡沫的亲水性、孔隙率,改善了聚氨 酯泡沫载体生物相容性、化学和生物稳定性能,延长了聚 氨酯泡沫的使用寿命,在活性碳纤维的添加量为3(wt)%~ 5(wt)%时效果最佳。 • 聚醚型聚氨酯多孔载体材料:分别以1,4一丁二醇(1, 4-BDO)、三乙醇胺、二羟甲基丁~(DMBA)为扩链刑制 备了一系列适合微生物培养的聚氨酯泡沫载体材料 (PUF)。随着扩链剂的量增加,材料拉伸强度,以及耐 老化性能提高。
• 包埋法:使微生物扩散进入多孔性载体内部,或 利用高聚物在形成凝胶时将微生物包埋在其内部。
• 共价结合法:将微生物活化后,利用微生物表面 的基团(氨基、羧基、羟基、酚基等)与固相载 体表面基团连接形成共价键,固定微生物。
5
• 吸附法:依据带电的微生物细胞和载体之间的静 电作用,使微生物细胞固定的方法,是传统的固 定微生物的方法。 • 交联法:利用双功能或多功能试剂,直接与微生 物表面的基团如氨基、羟基和氨基酸等交联,形 成共价键固定细胞微生物。微生物
9
4 微生物固定化聚氨酯泡ቤተ መጻሕፍቲ ባይዱ的应用
• 4.1 处理废水
聚氨酯材料固定 化微生物处理含 酚废水,结果表 明: 在酚浓度较 低时, 主要是以 聚氨酯材料吸附 为主, 当酚浓度 达到一定程度时, 固定化微生物酚 降解效果较为显 著; 在温度30℃、 pH 为7时, 苯酚 去除效果较好。
载体微生物
NH4NO2NO3-
PO43-、 HPO42-、 H2PO4-
利用聚氨酯泡沫微生物固定化载 体的SBBR除磷,TP的平均去除 率分别达到91.38%。

微生物固定化的方法和应用

微生物固定化的方法和应用

微生物固定化的方法和应用
微生物固定化是一种利用生物体系固定化生物体的方法,可以使
微生物与其代谢产物稳定地存在于不同的环境中。

这种方法通常包括
将微生物或其细胞固定在高分子基材上或在一些吸附剂上,以使微生
物能够长期地与环境联系并发挥其活性。

目前已有多种微生物固定化
的方法,如以下几种:
1.凝胶微生物固定化:该方法是将微生物或其代谢产物与聚合物
混合物一起凝胶固定化。

凝胶方法可以令微生物长期固定于材料上,
通过固定化,可以提高微生物的生产效率和活性。

2.包埋法微生物固定化:此方法是将微生物与聚合物混合后,将
混合物包裹在微小气泡中。

包埋法可以保护微生物,使其不受环境影响,可以延长微生物的寿命,并可提高微生物的生产效率。

3.微生物纤维固定化:采用无纺布制备作为基质,将微生物凝胶
固定于无纺布上,以便在生产中使用。

对于过生产季节性的酶类产品,可以使用该方法固定化微生物,以延长生产周期。

4.交联法微生物固定化:用化学交联剂,将微生物与载体进行固定,使微生物不易被抑制和灭活。

交联法在微生物的良好生长条件下,可以提高微生物的耐性和活性。

目前微生物固定化应用非常广泛,在制药、食品工程、环境保护
等领域中均有应用。

例如,在制药领域中,微生物固定化方法可应用
于发酵、代谢产物提取等工序中,以提高产量和纯度;在食品领域,
微生物固定化可以使生产中的微生物更加稳定,以保证产品质量和长
效存储;在环境保护领域中,微生物固定化可用于水处理、废物处理
等领域,如微生物萃取技术可既能高效地去除重金属等有害物质,同
时又能够将废弃物转化成有用的资源。

养殖厂污水处理中的微生物固定技术

养殖厂污水处理中的微生物固定技术

养殖厂污水处理中的微生物固定技术养殖厂是我们社会中不可或缺的一部分,但其生产过程中所产生的污水对环境造成了严重的污染。

因此,我们需要采取一些有效的方法来处理养殖厂的污水,其中微生物固定技术是一种值得关注的处理方法。

本文将详细介绍养殖厂污水处理中的微生物固定技术,并分点列出相关内容,以期对读者有所启发。

一、微生物固定技术的定义与原理1. 微生物固定技术是一种将特定的微生物细胞依附在固体载体上,通过微生物的代谢能力来降解污染物的处理方法。

2. 微生物固定技术的原理是通过将微生物与固体载体结合,形成一种稳定的生物膜,使得微生物在特定条件下能够高效降解污染物。

二、微生物固定技术在养殖厂污水处理中的应用1. 利用微生物固定技术来处理养殖厂污水可以降低处理成本并提高处理效率。

2. 微生物固定技术可以减少污水处理过程中对化学药剂的依赖,降低对环境的二次污染。

3. 通过固定微生物膜,可以提高微生物的降解效率和稳定性,保证不同批次污水的处理效果的一致性。

4. 微生物固定技术可以有效地去除污水中的氨氮、硝酸盐等有机物和无机物,减少污染物对水体的危害。

三、微生物固定技术的关键操作与控制措施1. 选择合适的固体载体是微生物固定技术中的关键。

常见的固体载体包括海藻、多孔陶瓷等,选择不同的载体需要考虑其与微生物细胞的相容性和固定效果。

2. 控制适宜的操作条件是确保微生物固定技术的关键。

包括适宜温度、pH值和营养物质的供应等。

3. 定期检测和调整微生物固定技术系统中的微生物数量和新附着微生物的情况,保证微生物固定技术的稳定性和高效性。

4. 确保微生物固定技术系统的通气和加氧,提供充足的氧气供给以满足微生物降解污染物的需要。

四、微生物固定技术的优势与前景展望1. 微生物固定技术相比传统的污水处理方法具有低成本、低能耗和低污染的优势,可以在一定程度上实现养殖厂污水的资源化利用。

2. 微生物固定技术对于处理难降解物质和高浓度有机废水具有较好的适应性和处理效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微生物固定化载体
固定化微生物技术是将特选的微生物固定在选证的载体上,限制或定位于一定的空间区域.使其高度密集并保持生物活性,在适宜条件下能够快速、大量增殖的现代生物技术。

固定化微生物具有生物浓度易控制、耐毒害能力强、菌种流失少、产物易分离、运行设备小型化等特点。

近年来固定化微生物技术的研究非常活跃,发展很快,已遍及环境保护、食品工业、化学分析、能源开发、医学和制药等多种领域,并得到了广泛的应用。

同时,对载体材料的性能也提出了更高的要求。

载体材料的性能对固定化微生物功能的发挥起着至关重要的作用,有关固定化载体材料的研究也就显得非常重要
1.微生物固定化对载体材料的要求
载体材料的主要作用是为微生物提供栖息和繁殖的稳定环境。

根据所固定的微生物种类以及固定化方法与工艺的不同,需要制备不同的周定化载体材料。

制备合适的载体材料是固定化细胞技术的关键,在选择和制备载体材料时,必须考虑所固定微生物的生理习性及其应用的环境条件。

一般情况下。

理想载体应该具有以下特征:(1)载体对细胞呈惰性,对微生物无毒害;(2)具有高的载体活性,固定化细胞密度大;(3)力学强度和化学稳定性好,耐微生物分解;(4)操作简便,易于成型;(5)底物和产物的扩散阻力小,具有良好的传质性能;(6)微生物的活性回收率要高,能较长时间使用和重复使用;(7)原料易得,成本低。

2.固定化载体材料的种类
2.1天然载体材料
天然无机类载体材料主要有沙粒、沸石、硅藻土等。

天然有机载体材料的究和应用较多,它们主要是天然多糖类材料,如纤维素及其衍生物、琼脂、角叉莱胶、海藻酸盐、卡拉胶。

2.2合成高分子载体
该类材料应用较多的主要是聚乙烯醇、聚乙二醇、聚氨酯、羧甲基纤维素等。

2.3人工无机载体材料
多孔陶瓷、活性炭、微孔玻璃、泡沫金属等人造无机载体,大多具有多孔结构,在与微生物接触时,利用吸附作用和电荷效应把微生物固定。

表1为具体固定化载体固定微生物的吸附物质的效果表。

表2位固定化载体的特性。

表1常见的固定化载体
3.固定化微生物吸附铂钯
国内少有文献报道利用海藻酸钠、PV A、壳聚糖、生物炭等固定化载体固定化微生物吸附铂钯的研究,吸附重金属离子与净化废水的研究较多。

有研究表明,PVA中添加SA可以避免固定化颗粒制备过程中的粘连现象,改善PVA的成球性,以生物炭为载体制备固定化菌剂投加入土壤后,会促进污染物由土壤向固定化载体迁移,使固定化载体同时富集微生物和污染物,增加微生物和污染物的接触,实现污染物的富集-降解一体化,有助于促进土壤修复效果。

综合以上,又考虑到固定化载体的成本,结合实验室的条件,故可以设计以下实验:
(1)利用海藻酸钠做为固定化载体,固定大肠杆菌或普罗维斯登菌,吸附重金属离子研究。

(2)利用PV A做为固定化载体,固定大肠杆菌或普罗维斯登菌,吸附重金属离子
研究。

(3)利用生物炭做为固定化载体,固定大肠杆菌或普罗维斯登菌,吸附重金属离子研究。

(4)利用以上三种材料的两两混合或者三者混合做为固定化载体,固定大肠杆菌或普罗维斯登菌,吸附重金属离子研究。

相关文档
最新文档