数学中的最优化问题
数学中的优化与最优化问题
![数学中的优化与最优化问题](https://img.taocdn.com/s3/m/50d6cb3e178884868762caaedd3383c4ba4cb446.png)
数学中的优化与最优化问题数学中的优化与最优化问题是数学领域中的一个重要研究方向。
本文将介绍优化和最优化问题的基本概念和方法,并通过实际案例来说明其在现实世界中的应用。
一、优化问题的概念与方法1.1 优化问题的定义在数学中,优化问题是指寻找函数的极值(最大值或最小值)的问题。
一般来说,优化问题可以表示为以下形式:$$\max f(x)$$或$$\min f(x)$$其中,$f(x)$为要优化的目标函数,$x$为自变量。
1.2 常用的优化方法常用的优化方法包括一维搜索、梯度下降、牛顿法和拟牛顿法等。
这些方法可以根据具体问题的特点选择合适的方法进行求解。
二、最优化问题的概念与方法最优化问题是优化问题的一个特例,它在满足一系列约束条件的前提下寻找目标函数的最优解。
最优化问题可以表示为以下形式:$$\max f(x)$$或$$\min f(x)$$约束条件为:$$g_i(x)\geq 0, i=1,2,\dots,m$$$$h_j(x)=0, j=1,2,\dots,n$$其中$g_i(x)$和$h_j(x)$为约束函数。
最优化问题可以分为线性最优化和非线性最优化两种情况。
2.1 线性最优化线性最优化问题是指目标函数和约束条件均为线性函数的最优化问题。
常用的求解线性最优化问题的方法有单纯形法和内点法等。
2.2 非线性最优化非线性最优化问题是指目标函数和约束条件至少有一个为非线性函数的最优化问题。
求解非线性最优化问题的方法较为复杂,常用的方法有梯度下降法、牛顿法和拟牛顿法等。
三、优化与最优化问题的应用优化和最优化问题在现实生活中有着广泛的应用。
以下是其中的一些例子:3.1 交通路径优化交通路径优化是指通过优化算法来寻找最短路径或最快路径,以减少交通拥堵和节约时间。
例如,在导航软件中,通过优化算法可以找到最短路径来指导驾驶员的行驶方向。
3.2 物流配送优化物流配送优化是指通过优化算法来确定最佳的物流配送路线,以提高物流效率和减少成本。
数学中的最优化问题
![数学中的最优化问题](https://img.taocdn.com/s3/m/606fa07b31b765ce05081485.png)
“数学中的最优化问题”研究性学习课题名称:数学中的最优化问题指导老师:蒋行彪组员:刘露冬漫(组长) 杨瑶万昕张瑞课题界定:研究内容:研究背景:研究目的:研究方法:研究步骤:研究困难:预期结果:研究过程:(一)利用函数1、一次函数型例1、某城市有20个志愿青年,联合开发郊区50亩土地,这些土地适宜种蔬菜、棉花、水稻,这些作物每亩地所需劳力和预计产值如下表:请你设计一种方案,使每亩地都种上作物(水稻必种),所有劳力都有工作且作物预计总产值最大?并求出这个最大值。
分析:本题以经济问题为背景,若设种水稻、棉花、蔬菜分别为x亩、y亩、z亩,则由题意可将总产值w= f(x、y、z)转化为w关于x的一次函数关系式,从而利用x的范围,求出w的最大值。
解:设种x亩水稻(0<x≤50),y亩棉花(0≤y<50),z亩蔬菜(0≤y<50)时,总产值为w万元且每个劳力都有工作,则有由②,③得y=30- x,z=20+ x。
代入①得w=-x + 27。
又依题意可得4≤x≤50,x∈N 。
而函数 w关于x在[ 4,50 ]上单调递减。
∴当x=4时,w取最大值26.4。
此时y=24 ,z = 22,从而x=1,y=8,z=11,故方案是:安排1人4亩水稻,8人种24亩棉花,11人种22亩蔬菜时,农作物总产值最大,且所有劳力都有工作,最大总产值为26.4万元。
2.二次函数型例2、(2003年北京春季高考卷)某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.若每辆车的月租金每增加50元,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时, 租赁公司的月收益最大,最大月收益是多少?解:(1)当每辆车的月租金定为3600元时, 未租出的车为 12辆,以租出了车88辆答:能租出88辆。
数学中的最优化理论
![数学中的最优化理论](https://img.taocdn.com/s3/m/4175e355c381e53a580216fc700abb68a982ad3c.png)
数学中的最优化理论最优化理论作为数学中一个重要的分支,其目的是寻找在给定条件下能够使某一函数取得最优值的变量取值。
最优化问题广泛应用于工程、经济、计算机科学等领域,对于提高效率、降低成本具有重要意义。
本文将对最优化理论的基本概念、常见方法和应用进行介绍。
一、最优化理论的基本概念最优化问题可以归结为如下形式:$$\min_{x \in D} f(x)$$其中,$D$是定义域,$f(x)$是目标函数。
最优化问题分为约束优化和无约束优化两类。
在约束优化问题中,目标函数的取值需要满足一定的条件。
无约束优化问题则没有这样的限制条件。
在求解最优化问题时,我们需要找到一个使目标函数值最小的变量取值。
这个变量取值被称为最优解,对应的目标函数值被称为最优值。
最优解的存在性和唯一性是最优化问题的重要性质,而最优化理论研究的就是如何找到最优解。
二、最优化问题的常见求解方法1. 数学分析方法数学分析方法主要通过对目标函数进行求导以及对约束条件进行分析,来得到最优解。
这种方法通常适用于目标函数和约束条件具有良好的可导性质的情况。
通过求解一阶导数为零的方程组,可以得到最优解的可能取值。
然后通过二阶导数的符号来判断这些取值是最大值还是最小值。
2. 梯度下降法梯度下降法是一种常用的优化方法,特别适用于目标函数为凸函数的情况。
其基本思想是通过不断朝着函数梯度的负方向迭代,直到找到最小值或达到预设的停止条件。
梯度下降法的优势在于可以处理大规模问题,并且不需要求解函数的导数。
然而,梯度下降法可能陷入局部最优解,因此在实际应用中需要谨慎选择初始点和调整学习率。
3. 线性规划法线性规划是一种特殊的最优化问题,其目标函数和约束条件均为线性函数。
线性规划问题具有良好的可解性,并且有高效的算法可以求解。
最著名的线性规划方法是单纯形法,它通过不断沿着可行解空间中的边界移动,寻找最优解。
此外,整数规划、二次规划等也是常见的最优化问题,各自有不同的求解方法。
数学中的函数极值与最优化问题
![数学中的函数极值与最优化问题](https://img.taocdn.com/s3/m/8fca6f26fe00bed5b9f3f90f76c66137ee064f1c.png)
数学中的函数极值与最优化问题在数学中,函数的极值和最优化问题是重要的概念和方法。
通过对函数的极值的研究,我们可以找到函数的最大值和最小值,并应用于各种优化问题中。
一、函数的极值函数的极值是函数在某个特定区间内取得的最大值或最小值。
数学上,函数的极大值和极小值统称为极值。
1. 局部极值局部极值是指函数在某一个区间内取得的最大值或最小值。
局部极大值也称为极大值点,局部极小值也称为极小值点。
要判断一个函数在某点是否为局部极值,可以使用导数的方法。
对于一元函数,函数在该点的导数为0,且导数的符号在该点的左右两侧发生变化时,该点就是一个局部极值点。
2. 全局极值全局极值是指函数在整个定义域内取得的最大值或最小值。
全局极大值也称为最大值,全局极小值也称为最小值。
要判断一个函数是否有全局极值,可以通过两种方法:一种是查看函数在定义域两个端点上的取值,另一种是对函数求导并找到导数为零的点。
二、最优化问题最优化问题是指在约束条件下,寻找函数的极值的问题。
最优化问题可以是线性的、非线性的,也可以是单目标的、多目标的。
最常见的最优化问题是线性规划问题。
线性规划问题的目标是在一组线性约束条件下,找到使目标函数取得最大值或最小值的变量值。
除了线性规划问题,还有一些非线性规划问题,如二次规划、整数规划等。
这些问题通常涉及到非线性目标函数和约束条件,需要使用更复杂的数学方法来求解。
三、函数极值与最优化问题的应用函数极值和最优化问题广泛应用于经济学、物理学、工程学等领域。
例如,在经济学中,最大化利润和最小化成本是最常见的优化目标;在物理学中,最小化能量和最大化效率是典型的优化问题。
此外,函数极值和最优化问题还被应用于机器学习、人工智能等领域。
在这些领域中,通过优化模型的参数,可以使模型对数据的拟合更好,从而提高预测或决策的准确性。
总结:函数的极值和最优化问题是数学中重要的概念和方法。
通过研究函数的极值,我们可以找到函数的最大值和最小值,应用于各种优化问题中。
最优化问题(含答案)
![最优化问题(含答案)](https://img.taocdn.com/s3/m/b4751aa8bd64783e08122b5d.png)
专题10 最优化问题阅读与思考数学问题中常见的一类问题是:求某个变量的最大值或最小值;在现实生活中,我们经常碰到一些带有“最”字的问题,如投入最少、效益最大、材料最省、利润最高、路程最短等,这类问题我们称之为最值问题,解最值问题的常见方法有:1.配方法由非负数性质得()02≥±b a .2.不等分析法通过解不等式(组),在约束条件下求最值. 3.运用函数性质对二次函数()02≠++=a c bx ax y ,若自变量为任意实数值,则取值情况为:(1)当0>a ,a bx 2-=时,a b ac y 442-=最小值 ;(2)当0<a ,abx 2-=时,a b ac y 442-=最大值 ;4.构造二次方程利用二次方程有解的条件,由判别式0≥∆确定变量的取值范围,进而确定变量的最值.例题与求解【例1】当x 变化时,分式12156322++++x x x x 的最小值是 .(全国初中数学联赛试题)解题思路:因分式中分子、分母的次数相等,故可将原分式用整式、真分式的形式表示,通过配方确定最小值.【例2】已知1≤y ,且12=+y x ,则223162y x x ++的最小值为( )A.719 B. 3 C. 727 D. 13 (太原市竞赛试题)解题思路:待求式求表示为关于x (或y )的二次函数,用二次函数的性质求出最小值,需注意的是变量x 、y 的隐含限制.【例3】()21322+-=x x f ,在b x a ≤≤的范围内最小值2a ,最大值2b ,求实数对(a ,b ).解题思路:本题通过讨论a ,b 与对称轴0=x 的关系得出结论.【例4】(1)已知211-+-=x x y 的最大值为a ,最小值b ,求22b a +的值. (“《数学周报》杯”竞赛试题)(2)求使()168422+-++x x 取得最小值的实数x 的值.(全国初中数学联赛试题)(3)求使2016414129492222+-+++-++y y y xy x x 取得最小值时x ,y 的值. (“我爱数学”初中生夏令营数学竞赛试题)解题思路:解与二次根式相关的最值问题,除了利用函数增减性、配方法等基本方法外,还有下列常用方法:平方法、判别式法、运用根式的几何意义构造图形等.【例5】如图,城市A 处位于一条铁路线上,而附近的一小镇B 需从A 市购进大量生活、生产用品,如果铁路运费是公路运费的一半,问:该如何从B 修筑一条公路到铁路边,使从A 到B 的运费最低?(河南省竞赛试题)解题思路:设铁路与公路的交点为C ,AC =x 千米,BC =y 千米,AD =n 千米,BD =m 千米,又设铁路每千米的运费为a 元,则从A 到B 的运费()ay m y n a S 222+--=,通过有理化,将式子整理为关于y 的方程.【例6】(1)设r x ,1+r x ,…,k x (r k >),为k -r +1个互不相同的正整数,且x r +x r +1+…+x k =2003,求k 的最大可能值.(香港中学竞赛试题)(2)a ,b ,c 为正整数,且432c b a =+,求c 的最小值.(全国初中数学联赛试题)解题思路:对于(1),因r =1,对k -r +1= k -1+1=k 个正整数x 1,x 2,…,x k ,不妨设x 1<x 2<…<x k =2013,可见,只有当各项x 1,x 2,…,x k 的值愈小时,才能使k 愈大(项数愈多),通过放缩求k 的最大值;对于(2),从()()222b ac a c =+-入手.能力训练A 级1.已知三个非负数a ,b ,c ,满足3a +2b +c =5和2a +b -3c =1,若m =3a +b -7c ,则m 的最小值为___________,最大值为 .2.多项式p =2x 2-4xy +5y 2-12y +13的最小值为 .3.已知x ,y ,z 为实数,且x +2y -z =6,x -y +2z =3,那么x 2+y 2+z 2的最小值为 .(“希望杯”邀请赛试题)4.若实数a ,b ,c ,满足a 2+b 2+c 2=9,则代数式(a -b )2+(b -c )2+(c -a )2的最大值为 ( )(全国初中数学联赛试题)5.已知两点A (3,2)与B (1,-1),点P 在y 轴上且使P A +PB 最短,则P 的坐标是( )A.(0,21-) B.(0,0) C.(0,611) D.(0,41-)(盐城市中考试题)6.正实数x ,y 满足1=xy ,那么44411y x +的最小值为( ) A.21 B. 85 C. 1 D. 45E. 2(黄冈市竞赛试题)7.某公司试销一种成本单价为500元/件的新产品,规定试销时的销售单价不低于成本单价,又不高于800元/件,经试销调查,发现销售量y (件)与销售单价x (元/件)可近似看作一次函数b kx y +=的关系(如图所示).(1)根据图象,求一次函数b kx y +=的解析式;(2)设公司获得的毛利润(毛利润=销售总价-成本总价)为S 元. ①试用销售单价x 表示毛利润;②试问:销售单价定为多少时,该公司可获得最大毛利润?最大毛利润是多少?此时的销量是多少?(南通市中考试题)8.方程()()06122=-+-+m x m x 有一根不大于1-,另一根不小于1,(1)求m 的取值范围;(2)求方程两根平方和的最大值与最小值.(江苏省竞赛试题)9.已知实数a ,b 满足122=++b ab a ,求22b ab a +-的最大值与最小值.(黄冈市竞赛试题)10.已知a ,b ,c 是正整数,且二次函数c bx ax y ++=2的图象与x 轴有两个不同的交点A ,B ,若点A ,B 到原点的距离都小于1,求a +b +c 的最小值.(天津市竞赛试题)11.某单位花50万元买回一台高科技设备,根据对这种型号设备的跟踪调查显示:该设备投入使用后,若将养护和维修的费用均摊到每一天,则有结论:第x 天应付的养护与维修费为()⎥⎦⎤⎢⎣⎡+-500141x 元. (1)如果将设备从开始投入使用到报废所需的养护与维修费及购买设备费用的总和均摊到每一天,叫作每天的平均损耗,请你将每天的平均损耗y (元)表示为使用天数x (天)的函数.(2)按照此行业的技术和安全管理要求,当此设备的平均损耗达到最小值时,就应当报废,问:该设备投入使用多少天应当报废?(河北省竞赛试题)B 级1.a ,b 是正数,并且抛物线b ax x y 22++=和a bx x y ++=22都与x 轴有公共点,则22b a +的最小值是 .2.设x ,y ,z 都是实数,且满足x +y +z =1,xyz =2,则z y x ++的最小值为 .3.如图,B 船在A 船的西偏北45°处,两船相距210km ,若A 船向西航行,B 船同时向南航行,且B 船的速度为A 船速度的2倍,那么A 、B 两船的最近距离为 km .(全国初中数学竞赛试题)4.若a ,b ,c ,d 是乘积为1的四个正数,则代数式a 2+b 2+c 2+d 2+ab +bc +ac +ad +bd +cd 的最小值为( )A. 0B. 4C. 8D. 10(天津市竞赛试题)5.已知x ,y ,z 为三个非负实数,且满足3x +2y +z =5,x +y -z =2. 若s =2x +y -z ,则s 的最大值与最小值的和为( )A. 5B.423 C. 427 D. 435(天津市选拔赛试题)6.如果抛物线()112----=k x k x y 与x 轴的交点为A ,B ,顶点为C ,那么△ABC 的面积的最小值为( )A.1B.2C.3D.47.某商店将进货价每个10元的商品按每个18元售出时,每天可卖出60个,商店经理到市场上做了一番调查后发现,若将这种商品的售价(在每个18元的基础上)每提高1元,则日销售量就减少5个;若将这种商品的售价(在每个18元的基础上)每降低1元,则日销量就增加10个,为获得每日最大利润,此商品售价应定为每个多少元?(“祖冲之杯”邀请赛试题)8.有甲、乙两种商品,经营销售这两种商品所能获得的利润依次是p (万元)和q (万元),它们与投入资金x (万元)的关系有经验公式:x q x p 53,51==.今有3万元资金投入经营甲、乙两种商品,为获得最大利润,对甲、乙两种商品的资金投入分别应为多少?能获得多大的利润?(绍兴市竞赛试题)9.已知为x ,y ,z 为实数,且5=++z y x ,3=++zx yz xy ,试求z 的最大值与最小值.10.已知三个整数a ,b ,c 之和为13,且bca b =,求a 的最大值和最小值,并求出此时相应的b 与c 值.(四川省竞赛试题)11.设x1,x2,…,x n是整数,并且满足:①-1≤x i≤2,i=1,2,…,n②x1+x2+…+x n=19③x12+x22+…+x n2=99求x13+x23+…+x n3的最大值和最小值.(国家理科实验班招生试题)12.已知x1,x2,…,x40都是正整数,且x1+x2+…+x40=58,若x12+x22+…+x402的最大值为A,最小值为B,求A+B的值.(全国初中数学竞赛试题)专题10 最优化例1. 4 提示:原式=112-62-+)(x . 例2. B 提示:由-1≤y ≤1有0≤x ≤1,则z =2x 2+16x +3y 2=14x 2+4x +3是开口向上,对称轴为71-=x 的抛物线.例3. 分三种情况讨论:①0≤a <b ,则f (x )在a ≤x ≤b 上单调递减,∴f (a )=2b ,f (b )=2a ,即⎪⎪⎩⎪⎪⎨⎧+-=+-=213222132222b a a b 解得⎩⎨⎧==31b a ②a <b ≤0,则f (x )在a ≤x ≤b 上单调递增,∴f (a )=2a ,f (b )=2b ,即⎪⎪⎩⎪⎪⎨⎧+-=+-=213222132222b b a a 此时满足条件的(a ,b )不存在. ③a <0<b ,此时f (x )在x =0处取得最大值,即2b =f (0)=213,b =413,而f (x )在x =a 或x =b 处取最小值2a .∵a <0,则2a <0,又∵f (b )=f (413)=021341321-2>+⨯)(,∵f (a )=2a ,即2a =2132-2+a ,则⎪⎩⎪⎨⎧=--=413172b a 综上,(a ,b )=(1,3)或(17-2-,413) 例4. (1)121≤≤x ,y 2 = 21+216143-2+-)(x .当x =43时,y 2取得最大值1,a =1; 当21=x 或x =1时,y 2取得最小值21,b =22.故a 2+b 2=23.(2) 如图,AB =8,设AC =x ,则BC =8- x ,AD =2,CD =42+x ,BE =4,CE =16)-8(2+x BF =AD =2.10)24(816)8(4222222=++=+=≥+=+-++EF DF DE CE CD x x当且仅当D ,C ,E 三点共线时,原式取最小值.此时∵EBC ∽△DAC ,有224===DA EB CA BC , 从而x =AC =3831=AB .故原式取最小值时,x =38. (3)如图, 原式=[]2222222)24()13()32()01(032--0y x y x -+-+-+-+-+)()(=AB +BC +CD ≥AD ,其中A (-2,0),B (0,3x ),C (1,2y ),D (3,4),并且当点B ,C 在线段AD 上时,原式取得最小值,此时5423=x ,5432=y .例5. 由S =ay m y n a 2)(22+--,得an -S +2ay =a 22n y -,两边平方,经整理得0)()(4322222=+-+-+m a S an y S an a y a .因为关于y 的一元二次方程有实数解,所以[][]0)(34)(422222≥+-⨯--m a S an a S an a ,可化为2223-m a an S ≥)(.∵S >an ,∵am an S 3-≥,即am an S 3+≥,故S 最小=am an 3+.例6(1)设x 1≥1,x 2≥2,x k ≥k ,于是1+2+…+k ≤x 1+x 2+…+x k = 2003,即20032)1(≤+k k k (k +1)≤4006,∵62×63=3906<4006<4032=63×64,∴k ≤62. 当x 1=1,x 2=2,…x 61=61,x 62=112时,原等式成立,故k 的最大可能值为62.(2) 若取⎩⎨⎧=+=-222ba cb ac ,则2)1(2+=b b c 由小到大考虑b ,使2)1(+b b 为完全平方数.当b =8时,c 2=36,则c =6,从而a =28.下表说明c 没有比6更小的正整数解.显然,表中c 4-x 3的值均不是完全平方数,故c 的A 级1.57- 111- 2.1 3.14 提示:y =5-x ,z =4-x ,原式=3(x -3)2+14. 4.A 提示:原式=27-(a +b +c )2. 5.D 6.C 7.(1)y =-x +1000(500≤x ≤800) (2)①S =(x -500)(-x +1000)=-x 2+1500x -500000(500≤x ≤800);②S -(x -750)2+62500,即销售单价定为750时,公司可获最大毛利润62500元,此时销量为250件. 8.(1)-4≤m ≤2 (2)设方程两根为x 1,x 2,则x 12+x 22=4(m -34)2+1034,由此得x 12+x 22最小值为1034,最大值为101.9.设a 2-ab +b 2=k ,又a 2+ab +b 2=1②,由①②得ab =12(1-k ),于是有(a +b )2=12(3-k )≥0,∴k ≤3,从而a +b =.故a ,b 是方程t 2t +12k -=0的两实根,由Δ≥0,得133k ≤≤. 10.设A (x 1,0),B (x 2,0),其中 x 1,x 2是方程ax 2+bx +c =0的两根,则有x 1+x 2=b a -<0,x 1x 2=ca>0,得x 1<0,x 2<0,由Δ=b 2-4ac >0,得b >∵|OA |=|x 1|<1,|OB |=|x 2|<1,∴-1<x 1<0,-1<x 2<0,于是ca=x 1x 2<1,c <a .由于a 是正整数,已知抛物线开口向上,且当x =-1时,对应的二次函数值大于0,即a -b +c >0,a +c >b .又a ,b ,c 是正整数,有a +c ≥b ,从而a +c >2,则212>>≥,于是a >4,即a ≥5,故b =即b ≥5.因此,取a =5,b =5,c =1,y =5x 2+5x +1满足条件,故a +b +c 的最小值为11. 11.(1)该设备投入使用x 天,每天平均损耗为y =11111[500000(0500)(1500)(2500)(500)]4444x x -+⨯++⨯++⨯++++L=11(1)[500000500x ]42x x x -++⨯=500000749988x x ++. (2)y =500000749988x x ++7749999988≥=.当且仅当5000008xx =,即x =2000时,等号成立.故这台设备投入使用2000天后应当报废.B 级 1.20 提示:a 2-8b ≥0,4b 2-4a ≥0,从而a 4≥64b 2≥64a ,a ≥4,b 2≥4. 2.4 提示:构造方程. 3. 提示:设经过t 小时后,A ,B 船分别航行到A 1,B 1,设AA 1=x ,则BB 1=2x ,B 1A 1=4.D 提示:a 2+b 2≥2ab ,c 2+d 2≥2cd ,∴a 2+b 2+c 2+d 2≥2(ab +cd )≥=4.∴ab +cd ≥2,同理bc +ad ≥2,ac +bd ≥2. 5.A 提示:x =s -2≥0,y =5-43s ≥0,z =1-13s ≥0,解得2≤s ≤3,故s 的最大值与最小值的和为5. 6.A 提示:|AB |=C (2125,24k k k -++-),ABC S V ,而k 2+2k +5=(k +1)2+4≥4. 7.设此商品每个售价为x 元,每日利润为S 元.当x ≥18时,有S =[60-5(x -18)](x -10)=-5(x -20)2+500,即当商品提价为20元时,每日利润为500元;当x ≤18时,S =[60+10(18-x )](x -10)=-10(x -17)2+490,即当商品降价为17元时,每日利润最大,最大利润为490元,综上,此商品售价应定为每个20元. 8.设对甲、乙两种商品的资金投入分别为x ,(3-x )万元,设获取利润为s ,则s15x =s -15x x 2+(9-10s )x +25s 2-27=0,∵关于x 的一元二次方程有实数解,∴(9-10s )2-4×(25s 2-27)≥0,解得1891.05180s ≤=,进而得x =0.75(万元),3-x =2.25(万元).即甲商品投入0.75万元,乙商品投入2.25万元,获得利润1.05万元为最大. 9.y =5-x -z ,代入xy +yx +zx =3,得x 2+(z -5)x +(z 2-5z +3)=0.∵x 为实数,∴Δ=(z -5)2-4(z 2-5z +3)≥0,解得-1≤z ≤133,故z 的最大值为133,最小值为-1. 10.设b cx a b==,则b =ax ,c =ax 2,于是,a +b +c =13,化为a (x 2+x +1)=13.∵a ≠0,∴x 2+x +1-13a=0 ①.又a ,b ,c 为整数,则方程①的解必为有理数,即Δ=52a -3>0,得到1≤a ≤5231≤a ≤16.当a =1时,方程①化为x 2+x -12=0,解得x 1=-4,x 2=3. 故a min =1,b =-4,c =16 或a min =1,b =3,c =9.当a =16时,方程①化为x 2+x +316=0.解得x 1=-34,x 2=-14.故a min =16,b =-12,c =9;或a min =16,b =-4,c =1. 11.设x 1,x 2,…,x n 中有r 个-1,s 个1,t 个2,则219499r s t r s t -++=⎧⎨++=⎩,得3t +s =59,0≤t ≤19.∴x 13+x 23+…+x n 3=-r +s +8t =6t +19.∴19≤x 13+x 23+…+x n 3≤6×19+19=133.∴在t =0,s =59,r =40时,x 13+x 23+…+x n 3取得最小值19;在t =19,s =2,r =21时,x 13+x 23+…+x n 3取得最大值133. 12.∵把58写成40个正整数的和的写法只有有限种,∴x 12+x 22+…+x 402的最大值和最小值存在.不妨设x 1≤x 2≤…≤x 40.若x 1>1,则x 1+x 2=(x 1-1)+(x 2+1),且(x 1-1)2+(x 2+1)2=x 12+x 22+2(x 2-x 1)+2>x 12+x 22.于是,当x 1>1时,可以把x 1逐步调整到1,此时,x 12+x 22+…+x 402的值将增大.同理可以把x 2,x 3,…,x 39逐步调整到1,此时x 12+x 22+…+x 402的值将增大.从而,当x 1,x 2,…,x 39均为1,x 40=19时,x 12+x 22+…+x 402取得最大值,即A =22239111+++L 1442443个+192=400.若存在两个数x i ,x j ,使得x j -x i ≥2(1≤i <j ≤40),则(x i +1)2+(x j -1)2=x i 2+x j 2-2(x i -x j -1)<x i 2+x j 2.这表明,在 x 1,x 2,…,x 40中,若有两个数的差大于1,则把较小的数加1,较大的数减1此时,x 12+x 22+…+x 402的值将减小,因此,当x 12+x 22+…+x 402 取得最小值时,x 1,x 2,…,x 40中任意两个数的差都不大于1. 故当x 1=x 2=…=x 22=1,x 23=x 24=…=x 40=2时,x 12+x 22+…+x 402取得最小值,即222111+++L 144244322个222222+++⋯+=94从而,A+B=494.。
高考数学技巧如何利用微分解决最优化问题
![高考数学技巧如何利用微分解决最优化问题](https://img.taocdn.com/s3/m/8f8ed9c682d049649b6648d7c1c708a1284a0ab3.png)
高考数学技巧如何利用微分解决最优化问题高考数学中,最优化问题是一个重要的考点。
解决最优化问题的一种常用方法是利用微分,通过微分求极值点,进而求得最优解。
本文将介绍如何运用微分技巧解决最优化问题。
1. 寻找极值点在解决最优化问题时,首先需要找到目标函数的极值点。
对于一元函数,我们可以通过求导来找到函数的极值点。
假设有一个函数f(x),我们先求函数的一阶导数f'(x)。
将f'(x)=0的解所对应的x值称为临界点,再比较临界点和区间端点的函数值,从中找出使f(x)取得极值的点。
2. 检验极值在找到极值点后,需要进行极值的检验。
检验的目的是确认找到的极值点确实是函数的极值点。
我们可以利用二阶导数来进行检验。
首先求解函数的二阶导数f''(x),然后将极值点代入二阶导数的表达式中。
如果f''(x)>0,则说明该点为极小值点;如果f''(x)<0,则说明该点为极大值点。
如果二阶导数等于0,则说明该点处可能存在拐点。
3. 求解最优解经过前两个步骤,我们已经确定了函数的极值点。
利用找到的极值点,我们可以求解最优解。
最优解取决于最大值或最小值,我们只需要将极值点代入目标函数中,即可得到最优解。
同时,需要注意在一个区间中可能存在多个极值点,需要对每个极值点进行比较,才能找到最优解。
4. 题目拓展:约束条件下的最优化问题除了无约束的最优化问题外,高考数学还常考寻找约束条件下的最优解。
对于这类问题,我们可以通过拉格朗日乘数法来解决。
假设有一个函数f(x,y,z),同时存在约束条件g(x,y,z)=0。
首先,我们将约束条件g(x,y,z)代入函数f(x,y,z)得到一个新的函数h(x,y,z)。
然后,通过求解新函数h(x,y,z)的极值点,便能得到约束条件下的最优解。
综上所述,微分技巧是解决最优化问题的一种重要方法。
通过寻找极值点、检验极值、求解最优解等步骤,可以有效地解决高考数学中的最优化问题。
数学中的最优化问题研究课题
![数学中的最优化问题研究课题](https://img.taocdn.com/s3/m/f9b9e5a2c9d376eeaeaad1f34693daef5ef713ba.png)
数学中的最优化问题研究课题在数学的海洋里,有一种现象叫做最优化问题,听上去像是在说“怎么把生活过得更好”,其实也就是在找寻一个最优解。
想象一下,我们每天都面临选择,今天吃什么、去哪里玩,甚至是怎么买到最便宜的商品。
这些小选择就像是数学里的变量,虽然微小,却能影响我们的生活质量。
数学里的最优化问题就像是在告诉我们,别担心,你并不是孤军奋战,咱们可以用数学的力量来帮忙。
说到最优化,得先提到“目标函数”这个小家伙。
它就像是你上班前早上醒来那一瞬间的想法:“今天我一定要把工作做得最好!”目标函数能帮助我们量化这一目标。
举个例子,假设你想要吃得既好又省钱,那目标函数就是“美味与花费的平衡”。
我们需要考虑多个目标,比如在考大学的时候,成绩和兴趣如何兼顾,这可真是一个棘手的问题。
再来聊聊“约束条件”,这玩意儿就像是你父母给你设定的规则:“你不能吃太多糖果!”或者是“得先完成作业才能出门!”约束条件限制了我们的选择,使得最优解不再那么简单。
想想,你在选择一个好的课程时,既要考虑老师的水平,又得顾忌自己的时间安排,这样一来,决定起来可真是像打仗一样艰难。
不过别急,最优化问题就是要在这样的限制下,找到那个让你心满意足的答案。
这时候,线性规划登场了。
哎,这个名词听上去有点严肃,但它其实就像是一个聪明的朋友,帮助你解决在约束条件下如何取得最大利益的问题。
想象一下你要安排一次旅行,预算有限,但你又想玩得尽兴,线性规划就是在告诉你:“没问题,我来帮你把这些花费列个清单,确保你既能去海边,也能去山上。
”运用线性规划的方法,我们可以把复杂的问题简单化,直白得让人觉得“这都行!”。
最优化问题可不仅限于线性规划。
还有非线性规划、整数规划等等,听上去像是数学的“武林高手”,各自有各自的招数。
非线性规划就像是那种“我不走寻常路”的侠客,它适合那些目标和约束不太好用直线描绘的问题。
比如,想想一位艺术家,追求的是创造与灵感的平衡,可能在这条路上得走很多弯路,但总有一条通往成功的道路在等着她。
数学中的最优化问题
![数学中的最优化问题](https://img.taocdn.com/s3/m/8fd3b8a2988fcc22bcd126fff705cc1754275f68.png)
数学中的最优化问题数学中的最优化问题是一类重要的数学问题,其目标是寻找某个函数的最优解,即使得函数取得最大值或最小值的输入变量的取值。
最优化问题在数学、经济学、物理学等领域有广泛的应用,对于解决实际问题具有重要意义。
一、最优化问题的基本概念在介绍最优化问题之前,需要先了解几个基本的概念。
1. 目标函数:最优化问题中,我们定义一个目标函数,该函数是一个关于变量的函数,表示我们要优化的目标。
2. 约束条件:最优化问题中,往往存在一些限制条件,这些条件限制了变量的取值范围。
这些限制条件可以是等式约束或者不等式约束。
3. 最优解:最优解是指满足约束条件下使得目标函数取得最优值的变量取值。
最优解可能是唯一的,也可能存在多个。
二、最优化问题的求解方法在数学中,有多种方法可以求解最优化问题。
以下是几种常见的方法:1. 解析法:对于一些特殊的最优化问题,我们可以通过解析的方法求解。
这种方法通常需要对目标函数进行求导,并解方程得到极值点。
2. 迭代法:对于一些复杂的最优化问题,解析法并不适用,这时可以采用迭代法求解。
迭代法通过不断地逼近最优解,逐步优化目标函数的值。
3. 线性规划:线性规划是一种常见的最优化问题,它的约束条件和目标函数都是线性的。
线性规划可以利用线性代数的方法进行求解,有着广泛的应用。
4. 非线性规划:非线性规划是一类更一般的最优化问题,约束条件和目标函数都可以是非线性的。
非线性规划的求解比线性规划更为困难,需要采用一些数值方法进行逼近求解。
三、最优化问题的应用最优化问题在各个领域都有广泛的应用,下面以几个具体的例子来说明:1. 经济学中的最优化问题:经济学中的生产优化、消费优化等问题都可以抽象为最优化问题。
通过求解最优化问题,可以找到最有效的生产组合或最佳的消费策略。
2. 物理学中的最优化问题:在物理学中,最优化问题常常涉及到动力学、优化控制等方面。
例如,在机械设计中,可以通过最优化问题确定各部件的尺寸和形状,使得机械系统具有最佳的性能。
探讨数学最优化问题在现实生活中的应用
![探讨数学最优化问题在现实生活中的应用](https://img.taocdn.com/s3/m/b07b0dac846a561252d380eb6294dd88d0d23df3.png)
探讨数学最优化问题在现实生活中的应用数学最优化问题是数学中的一个重要分支,它研究如何找到函数的最大值或最小值,以及在给定约束条件下的最优解。
在现实生活中,数学最优化问题有着广泛的应用,涉及到经济学、工程、管理、生物学等多个领域。
本文将探讨数学最优化问题在现实生活中的应用,并举例说明其重要性和价值。
数学最优化问题在经济学领域的应用非常广泛。
经济学家常常需要求解各种优化问题,例如企业的生产成本最小化、利润最大化等。
在生产成本最小化的问题中,经济学家需要找到最优的生产方案,使得生产成本最小化,从而提高企业的竞争力和盈利能力。
而在利润最大化的问题中,经济学家需要找到最优的市场策略,以最大化企业的利润。
这些问题都可以通过数学最优化方法来求解,从而为企业的决策和规划提供科学依据。
数学最优化问题在工程领域也有着重要的应用。
工程师在设计各种系统和设备时,常常需要考虑到资源的最优利用和系统的性能最优化。
例如在交通运输领域,工程师需要设计最优的交通信号控制方案,以最大化道路的通行效率和最小化交通堵塞。
在电力系统领域,工程师需要设计最优的电网结构和运行方式,以最大化供电可靠性和最小化能源浪费。
这些工程问题都可以通过数学最优化方法来求解,从而为工程项目的设计和运行提供科学依据。
数学最优化问题在生物学、医学等领域也有着重要的应用。
例如在生物学研究中,科学家需要设计最优的实验方案和数据分析方法,以最大化实验效果和最小化实验成本。
在医学诊断领域,医生需要设计最优的诊断方案和治疗方案,以最大化医疗效果和最小化医疗成本。
这些生物学和医学问题都可以通过数学最优化方法来求解,从而为科学研究和医疗诊断提供科学依据。
数学最优化问题在现实生活中有着广泛的应用,涉及到经济学、工程、管理、生物学等多个领域。
通过数学最优化方法,我们可以找到各种优化问题的最优解,为决策和规划提供科学依据。
数学最优化问题的研究和应用对于推动现实生活中的各种领域的发展和进步具有重要意义。
数学的最优化问题
![数学的最优化问题](https://img.taocdn.com/s3/m/45e1a8207f21af45b307e87101f69e314332fabe.png)
数学的最优化问题数学的最优化问题是数学领域中一个重要的研究方向,它旨在寻找某个函数的最大值或最小值,同时满足一定的约束条件。
最优化问题在现实生活中有着广泛的应用,涉及到经济学、工程学、物理学等众多领域。
本文将从最优化问题的定义、数学建模、优化算法和应用实例四个方面来探讨数学的最优化问题。
一、最优化问题的定义最优化问题的目标是寻找一个函数的最大值或最小值,以使得函数值达到最好的状态。
最优化问题的数学表示可以用如下形式表示:\[\begin{align*}\text{maximize } & f(x) \\\text{subject to } & g_i(x) \leq 0, i = 1,2,\ldots,m \\& h_j(x) = 0, j = 1,2,\ldots,p\end{align*}\]其中,$f(x)$是目标函数,$g_i(x) \leq 0$是不等式约束条件,$h_j(x) = 0$是等式约束条件,$x$是自变量。
最优化问题可以是单目标或多目标的,约束条件可以是线性或非线性的。
最优化问题的求解目标是找到满足约束条件下使目标函数取得最优结果的解$x^*$。
二、数学建模数学建模是最优化问题求解的关键环节。
在数学建模中,我们需要将实际问题转化为数学模型,以便能够用数学方法进行求解。
数学建模主要包括定义目标函数和约束条件,选择自变量和确定问题的求解方法等步骤。
首先,我们需要明确最优化问题的目标。
目标函数可以是任何能够量化实际问题的指标,例如最大化利润、最小化成本等。
其次,我们需要考虑问题的约束条件。
约束条件可以包括一些限制条件,例如资源的有限性、技术限制等。
约束条件的设计对最优解的求解有着重要的影响。
然后,我们需要选择适当的自变量。
自变量是我们在问题中可以灵活操作和调整的变量,通过调整自变量的取值,我们可以探索最优化问题的解空间。
最后,我们需要确定问题的求解方法。
常见的最优化求解方法包括线性规划、非线性规划、整数规划、动态规划等。
数学最优化介绍
![数学最优化介绍](https://img.taocdn.com/s3/m/5516e465abea998fcc22bcd126fff705cd175c40.png)
数学最优化介绍
数学最优化,也称为数学优化或最优化,是在一定约束条件下,求解一个目标函数的最大值或最小值的问题。
它研究的是在现实问题中,如何使用数学模型进行建模,并在若干约束条件下,找到问题的最优解。
最优化问题的一般形式是:给定目标函数f(x),在约束条件g(x)和h(x)的限制下,寻找使f(x)取得最大值或最小值的x值。
最优化问题可以分为离散优化问题和连续优化问题。
离散优化问题的目标函数的输入变量是离散的,例如整数或有限集合中的元素。
连续优化问题的目标函数的输入变量则是连续的。
解决最优化问题通常需要使用各种优化算法,如梯度下降法、牛顿法、拟牛顿法等。
这些算法通过迭代的方式逐步逼近最优解。
在最优化问题中,还需要考虑约束条件,如线性约束、非线性约束等。
在实际应用中,最优化问题可以应用于许多领域,如机器学习、数据挖掘、运筹学、生产调度、物流运输等。
通过最优化方法,可以找到在给定约束条件下最优的决策方案,从而提高生产效率、节约成本、提高服务质量等。
数学中的优化理论与最优化方法
![数学中的优化理论与最优化方法](https://img.taocdn.com/s3/m/14810fa10342a8956bec0975f46527d3250ca654.png)
数学中的优化理论与最优化方法一、优化理论概述1.优化理论的定义:优化理论是研究如何从一组给定的方案中找到最优方案的数学理论。
2.优化问题的类型:–无约束优化问题–有约束优化问题3.优化问题的目标函数:–最大值问题–最小值问题二、无约束优化方法1.导数法:–单调性:函数在极值点处导数为0–凸性:二阶导数大于0表示函数在该点处为凸函数2.梯度下降法:–基本思想:沿着梯度方向逐步减小函数值–步长:选择合适的步长以保证收敛速度和避免振荡3.牛顿法(Newton’s Method):–基本思想:利用函数的一阶导数和二阶导数信息,构造迭代公式–适用条件:函数二阶连续可导,一阶导数不间断三、有约束优化方法1.拉格朗日乘数法:–基本思想:引入拉格朗日乘数,将有约束优化问题转化为无约束优化问题–适用条件:等式约束和不等式约束2.库恩-塔克条件(KKT条件):–基本思想:优化问题满足KKT条件时,其解为最优解–KKT条件:约束条件的斜率与拉格朗日乘数相等,等式约束的拉格朗日乘数为03.序列二次规划法(SQP法):–基本思想:将非线性优化问题转化为序列二次规划问题求解–适用条件:问题中包含二次项和线性项四、最优化方法在实际应用中的举例1.线性规划:–应用领域:生产计划、物流、金融等–目标函数:最大化利润或最小化成本–约束条件:资源限制、产能限制等2.非线性规划:–应用领域:机器人路径规划、参数优化等–目标函数:最大化收益或最小化成本–约束条件:物理限制、技术限制等3.整数规划:–应用领域:人力资源分配、设备采购等–目标函数:最大化利润或最小化成本–约束条件:资源限制、整数限制等4.动态规划:–应用领域:最短路径问题、背包问题等–基本思想:将复杂问题分解为多个子问题,分别求解后整合得到最优解5.随机规划:–应用领域:风险管理、不确定性优化等–基本思想:考虑随机因素,求解期望值或最坏情况下的最优解数学中的优化理论与最优化方法是解决实际问题的重要工具,掌握相关理论和方法对于提高问题求解能力具有重要意义。
数学中的最优化问题
![数学中的最优化问题](https://img.taocdn.com/s3/m/e23223d583c4bb4cf6ecd186.png)
首先介绍一下我们选这个课题的原因:1.数学是一门基础学科,学习数学可以培养我们思维的严谨性,对其他学科的学习有所帮助。
使我们遇到问题能够冷静思考,并提高探究能力。
2.我们的指导老师平易近人(这也是我们选此课题的一个重要原因之一).那么,什么是最优化问题呢?最优化概念反映了人类实践活动中十分普遍的现象,即要在尽可能节省人力、物力和时间前提下,争取获得在可能范围内的最佳效果,因此,最优化问题成为现代数学的一个重要课题,涉及统筹、线性规划一排序不等式等内容。
通俗的讲,就是如何使得一件事情做到最好的问题。
比如,教师怎么达到最好的教学效果,商人如何获得最大的利润,穷学生每天如何吃饭花最少的钱等等。
当然要达到上面的目的都有一定的限制条件:教师的教学时间有限;商人不能偷工减料以次充好,不能不给工人少发工资等等;穷学生不能不考虑营养的平衡,食物的量应该足够等等。
在数学里,最优化问题还是一个求最大或最小值的问题,例子里讲到的限制条件就是数学里的约束条件.问题的解决首先是建立一个在一定约束条件下相关变量(比如穷学生吃饭里,每种食物的单价,需要的分量)与所要追求的目标函数(所要花的饭钱)的模型,接下来就是求解使得模型取得极值时相关变量的值(选择哪几种食物,各吃多少分量)。
用我自己的一句话来概括,就是“走一条最简便、最高效率的路;用最短的时间,做最多的有用功。
”针对”商品销售最优化"这一环节,我们还设计了一份问卷调查,分析如下:总体分析:商家最优化意识不够强,统筹思想有待提高,还未能将数学最优化很好的运用到生产实践中.我们遇到的困难是:1.所学的数学知识有局限性,还不够全面2。
数据的整理、分析存在局限性3。
小组的积极性还未能得到充分的调动我们的解决方法是:1.向指导老师请教2。
进行全面的小组讨论3.寻求班级其他同学的帮助我们的一点心得:最优化问题不管是在提高自身思维能力方面,还是在平时生活处理问题.都是大有益处的.既然是研究,我们就该开动脑袋想,合作探讨必不可少.它的作用是巨大的:它使我学到了如何运用数学方法解决生活问题,实现方法最优化,计划最优化,过程最优化,结果最优化等等,不胜枚举.我们也取得优异的成就。
数学中的最优化问题求解方法
![数学中的最优化问题求解方法](https://img.taocdn.com/s3/m/45de6dde18e8b8f67c1cfad6195f312b3169ebdf.png)
数学中的最优化问题求解方法随着科技的迅速发展,人们对于各种事物的需求也越来越高。
而大多数时候,我们是希望达到“最优化”的状态,即在一定条件下,尽可能地取得最大收益或最小成本。
因此,在现实生活中,最优化问题思维逐渐成为人们解决问题的重要方法之一。
而在数学领域,最优化问题同样具有重要作用。
本文将从最优化问题基本概念、最优化建模和求解方法三方面,介绍最优化问题的相关知识。
一、最优化问题基本概念最优化问题,即指在满足一定约束条件下,求出某些目标(如最大值或最小值)最优的解。
最优化问题的基本形式为:$\max_{x\in S} f(x)\qquad$或$\qquad\min_{x\in S} f(x)$其中,$f(x)$为目标函数,$x$为变量,$S$为变量的约束条件。
在最优化问题中,“最大值”和“最小值”藏在目标函数里。
目标函数中哪个变量每增加1,函数数值改变的最大值或最小值就被称为局部最优解或全局最优解。
因此,最优化问题的关键在于如何确定最优解,这便需要我们对其建模和求解。
二、最优化建模最优化问题的关键在于合理建立问题模型。
根据问题特性,我们可以将其分为线性规划、非线性规划、整数规划、混合整数规划、多目标规划等不同类型。
2.1 线性规划线性规划问题是指目标函数和约束条件均为线性函数的最优化问题。
线性规划模型最为简单,但覆盖了许多实际应用的情况。
其基本形式为:$\max_{x\in\Re^n}c^Tx\qquad s.t.\qquad Ax\leq b,x\geq0$其中,向量$c$, $b$和矩阵$A$均为已知的常数,$x$为待求的向量。
在式子中,第一行为目标函数,第二行代表约束条件。
由于目标函数和约束条件均为线性函数,因此这是典型的线性规划问题。
2.2 非线性规划非线性规划问题是指其中一个或多个约束条件或目标函数为非线性函数的最优化问题。
非线性规划比线性规划更为广泛,因此变量取值空间、目标函数和约束条件也更灵活多样。
最优化之基本概念
![最优化之基本概念](https://img.taocdn.com/s3/m/5d333d71783e0912a2162a2a.png)
最优化之基本概念第一章1.最优化问题的数学模型包含有三个要素:即变量(又称设计变量)、目标函数、约束条件。
(变量、目标函数、约束条件 (4)2.(最优化问题的三种表达形式……P5中)3.称为集约束,通常不作考虑,可认为目标函数的定义域。
一般有。
可行点(容许点):满足所有约束的点称为可行点或容许点。
可行域(容许集):全体可行点构成的集合称为可行域,也叫容许集,记为D。
(P5)4.最优点:在可行域内找到的点,使得目标函数值取得最优值。
最优值:目标函数值最优解:,但习惯上把本身称为最优解。
(P5底)5.处理最优化问题的3种方法:解析法、图解法、迭代法6.迭代算法:选取一个初始可行点,然后根据现有的信息确定本次迭代的一个搜索方向和适当的步长,从而得到一个新点。
搜索方向迭代步长下降算法:求有上升算法:求有(P9)7.收敛速度:衡量算好好坏的一个标准。
(P9底)具有超线性收敛或者二阶收敛的算法是较快速的算法。
(P10)8.计算终止的计算终止准则:无约束优化问题的三种计算终止准则:点距准则、函数下降量准则、梯度准则。
(P11)约束优化问题有各自的终止准则。
优化算法的基本迭代过程:(P11底)9.图解法:(P6)运用求解二位优化问题可行域:即约束集合(P6)等高线:在三维空间中,不同的c值得到不同的投影曲线。
没一条投影曲线对应一个c 值,称投影曲线为目标函数的等值线或者等高线。
(P7)10.组合优化问题举例:背包问题即0-1问题:P13 例1.9 需要设为二进制变量,表示装第i个物品。
旅行商问题(TSP):(P14)组合爆炸P15聚类问题:(P14)组合爆炸P1511.算法复杂性:算法对时间的复杂性T(n)和对空间的复杂性S(n)。
算法的时间复杂性:算法执行基本操作的次数算法的空间复杂性:算法执行期间占用的存储单位(P15)12.组合优化问题分类:根据算法的复杂性,可分为P类、 NP类、NP完全类。
P类问题:具有多项式实践求解算法NP类问题:未找到球最优解的多项式实践算法NP完全类问题:任何一个问题至今未发现有多项式算法;只要其中一个问题找到了多项式算法,那么其他所有问题均有多项式算法。
最优化问题
![最优化问题](https://img.taocdn.com/s3/m/f2f4b61f25c52cc58bd6befa.png)
【练习4】 1.用长26厘米的铁丝围成各种长方形,要求长和 宽的长度都是整厘米数,围成的长方形的面积最 大是多少?
2.一个长方形的周长是20分米,它的面积最大是 多少?
3.一个长方形的面积是36平方厘米,并且长和宽 的长度都是整厘米数。这个长方形的周长最长是 多少厘米?
ቤተ መጻሕፍቲ ባይዱ
【例题5】 用3~6这四个数字分别组成两个两位 数,使这两个两位数的乘积最大。
3.在早晨起床后的1小时内,小欣要完成以下事情: 叠被3分钟,洗脸刷牙8分钟,读外语30分钟,吃 早餐10分钟,收碗擦桌5分钟,收听广播30分钟。 最少需要多少分钟?
【例题3】 五(1)班赵明、孙勇、李佳三位同学同 时到达学校卫生室,等候校医治病。赵明打针需要5 分钟,孙勇包纱布需要3分钟,李佳点眼药水需要1 分钟。卫生室只有一位校医,校医如何安排三位同 学的治病次序,才能使三位同学留在卫生室的时间 总和最短?
【练习1】 1.烤面包时,第一面需要2分钟,第二面只要烤1 分钟,即烤一片面包需要3分钟。小丽用来烤面包 的架子,一次只能放两片面包,她每天早上吃3片 面包,至少要烤多少分钟?
2.用一只平底锅烙大饼,锅里只能同时放两个。 烙熟大饼的一面需要3分钟,现在要烙3个大饼, 最少要用几分钟?
3.小华用平底锅烙饼,这只锅同时能放4个大饼, 烙一个要用4分钟(每面各需要2分钟)。可小华 烙6个大饼只用了6分钟,他是怎样烙的?
2.甲、乙、丙三人到商场批发部洽谈业务,甲、乙、丙 三人需要的时间分别是10分钟、16分钟和8分钟。怎样安 排,使3人所花的时间最少?最少时间是多少?
3.甲、乙、丙、丁四人同时到一水龙头处用水,甲洗托 把需要3分钟,乙洗抹布需要2分钟,丙洗衣服需要10分钟, 丁用桶注水需要1分钟。怎样安排四人用水的次序,使他 们所花的总时间最少?最少时间是多少?
最优化问题
![最优化问题](https://img.taocdn.com/s3/m/facaa901bed5b9f3f90f1cd4.png)
最优化问题最优化概念反映了人类实践活动中十分普遍的现象,即要在尽可能节省人力、物力和时间前提下,争取获得在可能范围内的最佳效果,因此,最优化问题成为现代数学的一个重要课题,涉及统筹、线性规划一排序不等式等内容。
最优化问题不仅具有趣味性,而且由于解题方法灵活,技巧性强,因此对于开拓解题思路,增强数学能力很有益处。
但解决这类问题需要的基础知识相当广泛,很难做到一一列举。
因此,主要是以例题的方式让大家体会解决这些问题的方法和经验。
[经典例题]例1 :货轮上卸下若干只箱子,总重量为10吨,每只箱子的重量不超过1吨,为了保证能把这些箱子一次运走,问至少需要多少辆载重3吨的汽车?[分析] 因为每一只箱子的重量不超过1吨,所以每一辆汽车可运走的箱子重量不会少于2吨,否则可以再放一只箱子。
所以,5辆汽车本是足够的,但是4辆汽车并不一定能把箱子全部运走。
例如,设有13只箱子,,所以每辆汽车只能运走3只箱子,13只箱子用4辆汽车一次运不走。
因此,为了保证能一次把箱子全部运走,至少需要5辆汽车。
例2: 用10尺长的竹竿来截取3尺、4尺长的甲、乙两种短竹竿各100根,至少要用去原材料几根?怎样截法最合算?[分析] 一个10尺长的竹竿应有三种截法:(1)3尺两根和4尺一根,最省;(2)3尺三根,余一尺;(3)4尺两根,余2尺。
为了省材料,尽量使用方法(1),这样50根原材料,可截得100根3尺的竹竿和50根4尺的竹竿,还差50根4尺的,最好选择方法(3),这样所需原材料最少,只需25根即可,这样,至少需用去原材料75根。
例3: 一个锐角三角形的三条边的长度分别是两位数,而且是三个连续偶数,它们个位数字的和是7的倍数,这个三角形的周长最长应是多少厘米?[分析] 因为三角形三边是三个连续偶数,所以它们的个位数字只能是0,2,4,6,8,并且它们的和也是偶数,又因为它们的个位数字的和是7的倍数,所以只能是14,三角形三条边最大可能是86,88,90,那么周长最长为86+88+90=264厘米。
探讨数学最优化问题在现实生活中的应用
![探讨数学最优化问题在现实生活中的应用](https://img.taocdn.com/s3/m/afbd06edcf2f0066f5335a8102d276a2002960a5.png)
探讨数学最优化问题在现实生活中的应用数学最优化问题是数学中研究如何寻找某些目标的最小或最大值的一类问题。
这类问题在现实生活中有着广泛的应用,例如生产计划、投资组合、物流配送、交通规划等等。
以下就数学最优化问题在现实生活中的应用进行探讨。
1. 生产计划与资源分配在生产计划中,最优化问题的应用主要是调度与资源分配的问题。
如果企业能够科学合理地制定生产计划,精准地掌握产品的生产和交期,就能有效地提高生产效率、降低生产成本。
为了避免生产过程中出现瓶颈,需要优化生产计划,确保每个环节都达到最佳状态,从而提高产能。
2. 投资组合投资组合是指将资金分配到不同的投资品种中,以达到最大收益或最小风险的目的。
对于投资者来说,如何选取最佳的投资组合,是一个重要的决策问题。
投资组合的优化问题就是如何分配投资组合中各个资产的比例以实现最大收益,或通过控制风险降低投资风险。
3. 物流配送物流配送是指将货物从生产厂家或仓库中发出,通过物流体系的运输和流通,最终将货物交付到客户手中的过程。
物流配送优化问题包括订单规划、运输路径规划、配送服务等。
通过数学最优化问题的分析,可以最大程度地优化整个物流配送的流程,提高物流效率,降低运输成本,提升物流服务质量。
4. 交通规划交通规划优化问题是指城市的交通网络的路径规划、公交线路规划等问题。
通过数学和计算机技术,可以对交通网络进行模拟和仿真,提高交通路网的通行效率,制定更优化的交通路线规划方案,推动生态城市的建设。
总之,数学最优化问题在现实生活中的应用非常广泛,其应用涵盖了生产计划、物流配送、投资组合、交通规划等等领域,为人们生活提供了更为便捷的服务。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最优化,是应用数学的一个分支,主要研究以下形式的问题:
给定一个函数,寻找一个元素使得对于所有A中的,(最小化);或者(最大化)。
这类定式有时还称为“数学规划”(譬如,线性规划)。
许多现实和理论问题都可以建模成这样的一般性框架。
典型的,A一般为欧几里德空间中的子集,通常由一个A必须满足的约束等式或者不等式来规定。
A的元素被称为是可行解。
函数f被称为目标函数,或者费用函数。
一个最小化(或者最大化)目标函数的可行解被称为最优解。
一般情况下,会存在若干个局部的极小值或者极大值。
局部极小值x * 定义为对于一些δ > 0,以及所有的x 满足
}-;
公式
成立。
这就是说,在周围的一些闭球上,所有的函数值都大于或者等于在该点的函数值。
一般的,求局部极小值是容易的,但是要确保其为全域性的最小值,则需要一些附加性的条件,例如,该函数必须是凸函数。
主要分支
线性规划当目标函数f是线性函数而且集合A是由线性等式函数和线性不等式函数来确定的,我们称这一类问题为线性规划
整数规划当线性规划问题的部分或所有的变量局限于整数值时,我们称这一类问题位整数规划问题
二次规划目标函数是二次函数,而且集合A必须是由线性等式函数和线性不等式函数来确定的。
非线性规划研究的是目标函数或是限制函数中含有非线性函数的问题。
随机规划研究的是某些变量是随机变量的问题。
动态规划研究的是最优策略基于将问题分解成若干个较小的子问题的优化问题。
组合最优化研究的是可行解是离散或是可转化为离散的问题。
无限维最优化研究的是可行解的集合是无限维空间的子集的问题,一个无限维空间的例子是函数空间。