SCADA系统的安全防护评估实践
scada网络安全防护
scada网络安全防护SCADA (Supervisory Control and Data Acquisition)是一种用于监控和控制工业过程的系统,常用于能源、水务、交通等领域。
SCADA网络安全防护是保护SCADA系统免受网络攻击和恶意操作的一种重要措施。
下面是一些SCADA网络安全防护的方法和建议。
1. 检测和防止未经授权的访问:SCADA系统应该只允许经过授权的用户访问。
可以采用双因素身份验证、访问控制列表等措施来确保只有合法用户能够访问系统。
2. 加强网络安全措施:SCADA系统应该建立独立的网络,与其他非关键系统隔离开来,以降低攻击的风险。
此外,应该使用防火墙、入侵检测系统(IDS)等网络安全设备来监控和防止恶意攻击。
3. 更新和升级软件:SCADA系统的软件应该定期更新和升级,以修复已知的漏洞和安全问题。
同时,应该监控供应商的安全公告,及时安装安全补丁。
4. 加密通信:SCADA系统的通信应该使用加密技术,以防止窃听和伪造数据。
可以使用虚拟专用网络(VPN)、SSL/TLS等方式进行通信加密和身份验证。
5. 安全培训和意识提高:SCADA系统的操作人员和管理员应该接受网络安全培训,了解常见的网络攻击手段和防范措施。
同时,应该定期进行安全意识提高活动,加强用户对安全问题的重视和警觉。
6. 定期备份和恢复:SCADA系统的数据应该进行定期备份,并存储在安全的位置。
在系统发生攻击或故障时,可以通过恢复备份数据来尽快恢复系统正常运行。
7. 持续监控和审计:SCADA系统应该建立监控和审计机制,及时发现和阻止异常活动。
可以使用安全信息和事件管理系统(SIEM)来实时监控系统的安全状态,并记录安全事件用于事后审计和调查。
总之,SCADA网络安全防护是保护工业控制系统免受网络攻击的重要措施,必须采取一系列的防护措施来保障系统的安全和稳定运行。
以上提到的几点建议可以作为参考,但是随着网络安全威胁的不断演变,SCADA网络安全防护也需要与时俱进,不断更新和完善防护策略。
工控系统信息安全防护能力评估评分操作方法表
工控系统信息安全防护能力评估检查表
严格安全测试
定变更计划并进行影响分
安全防护
(4项 6.5分)
应急响应预案,当遭受安全威胁导致工业控制系统出现异常或故障时,应立即采取紧急防护措施,防止事态扩大,并逐级报送直至属地省级工业和信息化主管部门,同时注意保护现场,以便进行调查取证
应急预案演练(7项 10分)
(9项 11分)
据进行保护,根据风险评估结果对数据信息进行分级分类管理
(3项 9分)制、成立信息安全协调小组等方式,明确工控安全管理责任人,落实工控安全责任制,部署工控安全防护措施
检查人:经办人:
部门领导:。
工业控制系统的安全评估与风险防护指南及实践案例
工业控制系统的安全评估与风险防护指南及实践案例随着工业控制系统的广泛应用和互联互通趋势的增强,工业控制系统的安全问题日益凸显。
为了保证工业控制系统的正常运行、确保工业生产的可靠性和行业信息的安全性,对工业控制系统进行安全评估并采取相应的风险防护措施变得尤为重要。
本文将为您介绍工业控制系统的安全评估与风险防护指南,并提供一些实践案例供参考。
一、工业控制系统的安全评估1.评估目标确定在进行工业控制系统的安全评估时,首先需要明确评估的目标。
评估可以是全面的,包括硬件设备、软件程序和网络架构等方面的安全性。
也可以是针对特定的系统、部分系统或特定的组件进行的局部评估。
2.风险分析与评估通过对工业控制系统的风险进行分析与评估,可以识别潜在的威胁和漏洞,并评估其对系统安全性的影响程度。
风险分析与评估主要包括:威胁分析、脆弱性分析、风险度量、风险评估和风险通信等过程。
3.安全策略制定根据风险评估的结果,制定相应的安全策略和安全控制措施。
安全策略应综合考虑技术、管理和法规等方面的要求,以确保工业控制系统的安全性。
安全控制措施包括逻辑访问控制、身份认证与授权、数据加密、网络隔离等。
4.安全评估报告撰写综合以上步骤的分析结果和控制措施,撰写工业控制系统的安全评估报告。
报告应包括系统概述、安全评估目标与方法、风险分析与评估结果、安全策略与控制措施等内容,并提出改进建议和风险防范措施。
二、工业控制系统的风险防护指南1.物理安全防护确保工业控制系统的物理安全是保障系统稳定运行的基本前提。
包括建立适当的访问控制措施、视频监控系统、入侵报警系统和物理隔离措施等,以防止未经授权的人员进入控制区域,避免非法接触和破坏控制设备。
2.网络安全防护工业控制系统的网络安全是防止恶意攻击和未授权访问的重要环节。
需要建立网络防火墙、入侵检测系统、流量监控和分析系统等,对网络通信进行监控和审计,及时发现并阻止潜在的网络攻击。
3.安全意识与培训提高工作人员的安全意识和相关知识能力,可以有效减少内部安全漏洞的风险。
浅谈继电保护运行的风险隐患及其评估
浅谈继电保护运行的风险隐患及其评估【摘要】电力系统的发展促进了继电保护技术的不断升级,从最初的电磁式继电保护发展到目前的微机型继电保护。
继电保护在整个电网运行中的地位越来越重要,如果继电保护存在安全隐患就会对整个电网的安全运行造成威胁,所以有必要对继电保护的隐患进行深入研究,对其进行在线的风险评估,及时规避隐患,保证电网安全稳定运行。
本文研究继电保护隐患对电网安全的影响,并提出了继电保护运行的在线评估方法。
【关键词】继电保护;风险隐患;在线评估随着经济的发展,我国电力行业的发展步伐也开始逐渐加快,电力行业的改革以及对新技术的应用也更加频繁,对于电力基础设施的管理也开始提上电力企业的工作日程。
国家电网的建设使得电力网络的覆盖范围越来越大,而由于其结构和运行方式的复杂化和多样化,电网的安全问题也成为人们关注的重点。
继电保护作为保障电网安全稳定运行的第一道防线,其作用和意义十分重大。
1.继电保护概述继电保护顾名思义,就是用有触点的继电器来保护电力系统及其元件(发电机、变压器、输电线路等),使之免遭损害。
当电力系统发生故障或异常工况时,在可能实现的最短时间和最小区域内,自动将故障设备从系统中切除,或发出信号由检修人员消除异常工况根源,以减轻或避免设备的损坏和对相邻地区供电的影响。
传统的继电保护系统因为受到运行方式的限制,自主应变能力差,潜在风险较大,对事故无法做出及时反应,易导致设备的误动或拒动,使事故扩大。
如果电网结构和运行状态出现突发性改变,尤其在电网负荷较大时,很可能造成继电保护系统失误,造成非预期连续跳闸,引发系统解列或大范围的停电事故。
其原因在于目前电力网络中使用的继电保护系统的动作依据是保护安装处设备的采集量,而非系统的全局量。
电网的不断发展和扩大,使其自身的结构和运行方式变得复杂多样,致使相关保护装置的定值整定难度加大,保护之间的动作配合也变得复杂,而在电网实际运行中往往会发生多重电网故障接连发生,此时很有可能因为整定的不合理导致保护之间的配合缺乏选择性,造成越级跳闸使停电范围扩大。
电厂scada系统课程设计
电厂scada系统课程设计一、课程目标知识目标:1. 让学生掌握电厂SCADA系统的基本概念、功能、组成及工作原理;2. 了解电厂生产过程中SCADA系统的重要作用;3. 掌握SCADA系统在电力行业中的应用案例。
技能目标:1. 培养学生运用SCADA系统进行电力设备监控、数据采集、远程控制的能力;2. 培养学生分析SCADA系统故障原因,提出解决方案的能力;3. 提高学生团队协作、沟通表达及实际操作能力。
情感态度价值观目标:1. 培养学生对电力行业的热爱,增强责任感;2. 培养学生严谨、细致的学习态度,提高实践操作能力;3. 增强学生的安全意识,培养安全操作习惯。
本课程针对高年级学生,结合学科特点,注重理论与实践相结合,以提高学生的实际操作能力和解决实际问题的能力。
课程目标具体、可衡量,旨在让学生在学习过程中,掌握电厂SCADA系统的相关知识,培养实际操作技能,同时树立正确的情感态度价值观。
后续教学设计和评估将围绕这些具体学习成果展开,以确保课程目标的实现。
二、教学内容1. 电厂SCADA系统基本概念:介绍SCADA系统的定义、发展历程、应用领域;2. SCADA系统组成及工作原理:详细讲解系统硬件(如传感器、控制器、通信设备等)和软件(如监控软件、数据处理软件等)的组成,阐述各部分工作原理及相互关系;3. SCADA系统在电厂中的应用:分析SCADA系统在发电、输电、变电、配电等环节的应用,以实际案例进行说明;4. SCADA系统操作与维护:教授SCADA系统的基本操作方法,包括数据监控、远程控制、故障诊断等,以及日常维护和故障处理方法;5. SCADA系统安全与防护:介绍SCADA系统安全风险,讲解安全防护措施,如防火墙、加密技术等;6. SCADA系统发展趋势:概述当前SCADA技术的发展趋势,如物联网、大数据、云计算等技术的融合应用。
教学内容依据课程目标进行选择和组织,保证科学性和系统性。
配套文件7-电力监控系统安全防护评估规范
9
电力监控系统安全等级保护工作
评估规范编制历程
2011年初,受原电监会委托,国调中心组织制订了《电力二次系统安全等级保护测评规范》,规范主要 在公安部等级保护系列规范的基础上结合电力监控系统特点明确测评方式方法,分为自测评、检查测评、上线 前测评和产品型式安全测评,提出了系统全生命周期各阶段的安全测评要求,并对测评的保密管理和风险控制 做出了要求。
相关发文及要求
2012年,原电监会印发《关于组织开展电力二次系统安全防护评估试点工 作的通知》(办安全函[2012]191号),要求组织开展电力监控系统安全防护 评估和等级保护测评试点工作,两项工作同步开展、一次完成,并根据电力行 业实际,遴选国家信息安全等级保护工作协调领导小组办公室推荐且对电力监 控系统熟悉的行业内具备资质的测评机构。
1万
管理 信息 大区
电力监控系统安全防护总体方案 6
电力监控系统安全防护实施效果
生产控制大区
控制区
非控制区
纵向认证 电力调度数据网
单向 隔离
管理信息大区
信息内网
信息外网
防火墙
电力企业数据网
按照四级等保要求强化了电力 监控系统纵深安全防护体系, 实施后至今未检测到网络攻击。
月均 2026
月均
347
1123万
定级指南》
《GB/T 25058-2010 信息安全技术 信息系统安全等级保护
实施指南》
《GB/T 20984-2007信息安全技术信息安全安全评估规范》
《信息安全等级保护管理办法》(公通字[2007]43号)
《电力行业信息系统等级保护定级工作指导意见》(电监信
《数控系统SCADA工具的设计与实现》
《数控系统SCADA工具的设计与实现》一、引言随着工业自动化程度的不断提高,数控系统在制造业中扮演着越来越重要的角色。
SCADA(Supervisory Control and Data Acquisition)工具作为数控系统的重要组成部分,能够实现对生产过程的实时监控和控制。
本文将详细介绍数控系统SCADA工具的设计与实现,包括其需求分析、系统设计、实现过程和效果评估等方面。
二、需求分析在设计和实现数控系统SCADA工具之前,首先需要进行需求分析。
这一阶段主要涉及对用户需求、系统功能、性能指标等方面的分析和研究。
1. 用户需求分析:通过对用户进行调研和沟通,了解用户对SCADA工具的需求和期望,包括实时监控、远程控制、数据存储和分析等功能。
2. 系统功能分析:根据用户需求,确定SCADA工具需要具备的功能模块,如数据采集、数据处理、报警提示、趋势分析等。
3. 性能指标:根据系统的实际需求和用户期望,制定性能指标,如实时性、稳定性、可扩展性等。
三、系统设计在需求分析的基础上,进行系统设计。
这一阶段主要包括系统架构设计、数据库设计、界面设计和模块设计等方面。
1. 系统架构设计:采用分布式架构,将数据采集、数据处理、报警提示等模块进行分离,提高系统的可维护性和可扩展性。
2. 数据库设计:根据系统功能需求,设计合理的数据库结构,包括数据表、字段、索引等,以支持数据的存储和查询。
3. 界面设计:设计直观、易用的界面,方便用户进行操作和监控。
界面应具备良好的交互性和响应性,提高用户体验。
4. 模块设计:将系统功能划分为不同的模块,如数据采集模块、数据处理模块、报警提示模块等,以便于开发和维护。
四、实现过程在系统设计的基础上,进行SCADA工具的实现。
这一阶段主要包括编程实现、测试和调试等方面。
1. 编程实现:根据系统设计和模块划分,使用合适的编程语言和开发工具进行编程实现。
在编程过程中,需要注意代码的可读性、可维护性和性能等方面。
工业控制系统信息安全防护能力评估方法
附件:工业控制系统信息安全防护能力评估方法1.适用范围1.1本方法提出了工业控制系统信息安全防护能力评估的基本概念、实施流程和工作形式。
1.2本方法适用于规范对企业按照《工业控制系统信息安全防护指南》建立的工控安全防护能力开展的综合评价活动。
1.3本方法适用于评估工业控制系统的应用企业。
2.规范性文件2.1法律法规、指导性文件《中华人民共和国网络安全法》《国家网络空间安全战略》《国务院关于深化制造业与互联网融合发展的指导意见》(国发〔2016〕28号)《国务院关于印发〈中国制造2025〉的通知》(国发〔2015〕28号)《国务院关于积极推进“互联网+”行动的指导意见》(国发〔2015〕40号)《国务院关于大力推进信息化发展和切实保障信息安全的若干意见》(国发〔2012〕23号)《工业控制系统信息安全防护指南》(工信部信软〔2016〕338号)《关于加强工业控制系统信息安全管理的通知》(工信部协〔2011〕451号)2.2标准和技术规范GB/T32919-2016《信息安全技术工业控制系统安全控制应用指南》GB/T20984-2007《信息安全技术信息安全风险评估规范》3.术语与定义下列术语和定义适用于本方法。
3.1工业控制系统工业生产控制各业务环节涉及的有关人员、软硬件系统和平台的集合。
包括但不限于:可编程逻辑控制器(PLC)、分布式控制系统(DCS)、数据采集与监控系统(SCADA)等工业生产控制系统;紧急停车系统(ESD)、安全仪表系统(SIS)等工业控制过程安全保护系统;制造执行系统(MES)、企业资源计划系统(ERP)等工业生产调度与管理信息系统;工业云平台、工业大数据平台等工业服务应用系统。
3.2工业控制系统信息安全防护通过实施管理和技术措施,避免工业控制系统遭到非授权或意外的访问、篡改、破坏及损失。
3.3工业控制系统信息安全防护能力评估从综合评价的角度,运用科学的方法和手段,系统地分析和诊断工业控制系统所面临的威胁及其存在的脆弱性,评估企业工业控制系统安全防护水平,提出有针对性的抵御威胁的防护对策和整改措施,为最大限度地保障信息安全提供科学依据。
scada系统网络安全
scada系统网络安全SCADA系统(Supervisory Control and Data Acquisition)网络安全是指对SCADA系统进行网络安全防护和保障系统运行稳定、安全和可靠的措施。
SCADA系统是指监控和控制系统,用于监测和控制各种工业过程,如电力、水处理、油田和天然气开采等。
SCADA系统的网络安全非常重要,因为一旦系统受到攻击,可能会导致严重后果,例如停电、水处理设备故障或工业事故。
以下是保护SCADA系统网络安全的一些关键措施:首先,SCADA系统应该使用安全的网络连接,例如虚拟专用网络(VPN)。
VPN可以创建一个加密隧道,确保数据在网络上的传输是安全的。
此外,SCADA系统还应使用防火墙来阻止未经授权的访问,只允许授权用户通过特定端口进行连接。
其次,SCADA系统的操作系统和应用程序应该定期进行安全更新和补丁更新。
这可以帮助修复已知的安全漏洞和防止潜在的攻击。
此外,SCADA系统应使用强密码来保护用户账户和远程访问。
另外,SCADA系统的网络应该被细分为不同的网络区域,例如生产网络、控制网络和管理网络。
这样,即使有人入侵了一个网络区域,他们也不能直接访问其他区域。
此外,每个网络区域应该有专门的安全措施,例如网络隔离、访问控制和流量监测。
此外,SCADA系统还可以使用入侵检测系统(IDS)和入侵防御系统(IPS)来监测和防止潜在的攻击。
IDS可以监控网络流量和系统日志,并发现异常行为。
IPS可以及时对发现的安全威胁进行阻止或应对。
最后,SCADA系统的网络安全还应包括对系统的常规监测和审计。
这可以帮助发现异常行为和潜在的安全问题,并及时采取措施。
此外,系统管理员还应定期对SCADA系统进行安全测试和演练,以确保系统的安全性和可靠性。
总之,SCADA系统的网络安全是保障系统运行稳定、安全和可靠的关键措施。
通过使用安全的网络连接、定期更新和补丁、细分网络区域、使用入侵检测和防御系统以及进行常规监测和审计,可以有效地保护SCADA系统免受网络攻击和威胁。
电力监控系统安全防护总体方案
目次1 总则 (2)2 安全防护方案 (2)3 通用安全防护措施 (11)4安全管理 (12)5 安全防护评估 (14)6 附则 (15)附录1 相关安全防护法规和标准 (16)附录2 主要术语中英文对照 (17)1 总则1.1 本方案确定了电力监控系统安全防护体系的总体框架,细化了电力监控系统安全防护总体原则,定义了通用和专用的安全防护技术与设备,提出了梯级调度中心、发电厂、变电站、配电等的电力监控系统安全防护方案及电力监控系统安全防护评估规范。
1.2 电力监控系统安全防护的总体原则为“安全分区、网络专用、横向隔离、纵向认证”。
安全防护主要针对电力监控系统,即用于监视和控制电力生产及供应过程的、基于计算机及网络技术的业务系统及智能设备, 以及作为基础支撑的通信及数据网络等。
重点强化边界防护,同时加强内部的物理、网络、主机、应用和数据安全,加强安全管理制度、机构、人员、系统建设、系统运维的管理,提高系统整体安全防护能力, 保证电力监控系统及重要数据的安全。
1.3 电力监控系统安全防护是复杂的系统工程,其总体安全防护水平取决于系统中最薄弱点的安全水平。
电力监控系统安全防护过程是长期的动态过程, 各单位应当严格落实安全防护的总体原则, 建立和完善以安全防护总体原则为中心的安全监测、响应处理、安全措施、审计评估等环节组成的闭环机制。
1.4 本方案适用于电力监控系统的规划设计、项日审查、工程实施、系统改造、运行管理等。
2 安全防护方案根据«电力监控系统安全防护规定»的要求,电力.监控系统安全防护总体方案的框架结构如图1所示。
生产控制大区管理信息大区生产控制大区管理信息大区图例:正向安全隔离装置反向安全隔离装置纵向加密认证装置加密认证措施防火墙图1电力监控系统安全防护总体框架结构示意图2.1安全分区安全分区是电力监控系统安全防护体系的结构基础。
发电企业、电网企业内部基于计算机和网络技术的业务系统, 原则上划分为产控制大区和管理信息大区。
《工业互联网安全测试技术》课件—— 09 SCADA攻击实例流程
谢谢观赏
随着电力系统内信息物理系统融合的不断深化,SCADA系统的脆弱性越来越受到重视。 SCADA系统往往会成为网络攻击的着手环节,一般称为“SCADA Hacking”。能够用于 攻击SCADA系统的网络攻击手段有很多类型, 例如虚假数据注入攻击(false data injection attack,FDIA)
02 SCADA攻击实例流程
(3) SCADA攻击流程
步骤二:网络扫描 利用网络扫描可以通过端口、协议等信息快速定位SCADA和DCS系统。例如,如果扫 描出某设备的502端口使用的是Modbus协议,那么可以推断,与该设备连接的很可能是 HMI系统或某些监管工作站。
02 SCADA攻击实例流程
测量仪器、仪表、控制装置
信号分组终端和RTU
通信系统
主站
企业内部数据处理机构的 后台计算机系统
01 SCADA的简单描述
(3) SCADA系统软件
SCADA软件分为两类:专用的商用软件、开源软件。
①专用的商用软件通常称为“总控键”解决方案。它面临的最大问题:用户 对系统提供商具有不可替代性和巨大的依赖性。
典型的IED装置可以将模拟 输入传感器、模拟输出、PID (比例—积分—微分)控制、 通信系统和程序存储器集成在 同一个设备中。
以Hale Waihona Puke 网现场总线智能电子装置 (IED)
02
02 SCADA攻击实例流程
02 SCADA攻击实例流程
(1) SCADA攻击列表
针对数据采集与监视控制(SCADA)系统的网络攻击活动数量在2020年增长了近一 倍,针对SCADA系统的攻击行为,变得越来越普遍。主要攻击类型包括:
(3) SCADA攻击流程
威努特工控安全 典型SCADA系统安全防护案例分享
威努特工控安全典型SCADA系统安全防护案例分享威努特工控安全-典型scada系统安全防护案例分享共享典型SCADA系统安全保护案例一、前言工业控制系统已广泛应用于电力、轨道交通、石油化工、航空航天等工业领域。
目前,一大批关系国计民生的关键基础设施依靠工业控制系统实现自动化运行。
工业控制系统已成为国家重点基础设施的重要组成部分。
随着工业化与信息化进程的不断交叉融合,越来越多的信息技术应用到了工业领域。
由于工业控制系统广泛采用通用网络设备和it设施,以及与企业信息管理系统的集成,传统信息网络所面临的病毒、木马、入侵攻击、拒绝服务等安全威胁也正在向工业控制系统扩散。
二、项目背景国内某知名油田分公司下属采气厂所辖探区范围广阔,天然气探明储量具有举足轻重的战略地位,是油田最具开发潜力的区块之一。
该采气厂同时负责多个气田及其他探区的开发建设和管理,承担着部分气量转输以及向华北地区及周边城市供气的艰巨任务。
2022年8月和2022年5月,煤气生产厂相继发生两起异常停机事件,造成了不良影响,直接造成了巨大的经济损失。
然而,事故原因无法核实。
该事件引起了公司管理层对工业控制系统安全的高度重视,并将工业控制系统的安全防护提升到战略层面。
三、需求分析北京威努特科技有限公司(以下简称威努特)从接到客户需求的那一刻起,在实时高效、安全可靠、主动防御的前提下,努力为采气厂工业控制系统的安全防护创造准确的解决方案。
工控系统安全防护区别于信息系统安全防护的一个重要特征就是:防护的方案一定是基于对客户生产工艺流程的了解。
从大的方面讲,工控安全是生产安全的一部分,所有安全防护的目标就是保证生产的安全稳定运行,因此工控系统的实地调研和风险评估是一个非常重要的环节,通过该环节,才可以真正让安全需求落地。
经过调查和评估,winut总结了以下主要安全缺陷:?管理网与外网连接,生产网与管理网互通,生产网与管理网边界存在重重大安全隐患。
?作为数据采集及存储的关键部分,opc服务器存在诸多安全隐患。
工业互联网的安全风险与应对策略
工业互联网的安全风险与应对策略随着工业互联网的快速发展,企业生产和运营已经离不开信息技术的支持。
然而,随之而来的是数据安全和安全风险带来的挑战。
工业互联网的安全问题一直都是一个热点问题,所以解决这类问题也必须走在前列。
一、工业互联网安全风险总论1.数据泄露在工业互联网时代,企业通过传感器或采集设备搜集原始数据,并通过各种手段进行信息融合和挖掘,这些数据具有很高的价值。
然而,随着数据的增长和积累,数据泄露和数据安全问题也变得更加突出。
如果企业无法保护这些数据,这些宝贵的产权信息可能被窃取、泄露或篡改,进而会导出信息数据的泄漏罪及企业信誉的受损失。
2.工业控制系统(SCADA)安全漏洞工业互联网的关键设备(例如:控制器和传感器)需要运行在SCADA 系统中,在工业控制实时处理过程中也会遇到许多协议和安全风险。
攻击者(黑客)可以通过各种技术手段入侵SCADA,通过对SCADA进行攻击进而操纵企业工业生产的生产过程或者提供服务,进而产生一系列的重大灾难性事件。
3.供应链攻击供应链攻击是指黑客通过攻击企业的供应商和合作伙伴,来影响企业自身的安全。
这种攻击会破坏企业的生产链条,而且由于供应链环节较多,攻击难度很高,一旦攻击成功后果将非常严重,每个企业都应该关注这个问题的存在。
4.人为因素安全事故中的“人为因素”一直是几乎不可忽略的常见因素。
由于人为因素的存在,误操作、恶意行为、密码短、弱或共用,等各种问题导致安全事件不断、屡屡发生。
因此,必须建立和完善企业的安全管理体系和指南。
二、工业互联网安全防范措施1.授权认证授权认证技术可以对从外部进入的人员进行身份认证,进而防止非授权人员的访问,保障数据和系统的安全。
在互联网时代,将身份认证技术应用到安全防范方案中,可以有效地防止工业互联网中的非授权访问。
2.加密算法加密技术可以有效地抵御非授权人员的访问和攻击,保障工业互联网系统、设备和数据的可靠性和利用价值。
企业可以在服务器端和终端设备上采用加密算法,并结合访问控制、日志审计等技术保障工业互联网中各环节的安全。
工业控制系统信息安全防护能力评估方法
附件:工业控制系统信息安全防护能力评估方法1.适用范围1.1本方法提出了工业控制系统信息安全防护能力评估的基本概念、实施流程和工作形式。
1.2本方法适用于规范对企业按照《工业控制系统信息安全防护指南》建立的工控安全防护能力开展的综合评价活动。
1.3本方法适用于评估工业控制系统的应用企业。
2.规范性文件2.1法律法规、指导性文件《中华人民共和国网络安全法》《国家网络空间安全战略》《国务院关于深化制造业与互联网融合发展的指导意见》(国发〔2016〕28号)《国务院关于印发〈中国制造2025〉的通知》(国发〔2015〕28号)《国务院关于积极推进“互联网+”行动的指导意见》(国发〔2015〕40号)《国务院关于大力推进信息化发展和切实保障信息安全的若干意见》(国发〔2012〕23号)《工业控制系统信息安全防护指南》(工信部信软〔2016〕338号)《关于加强工业控制系统信息安全管理的通知》(工信部协〔2011〕451号)2.2标准和技术规范GB/T32919-2016《信息安全技术工业控制系统安全控制应用指南》GB/T20984-2007《信息安全技术信息安全风险评估规范》3.术语与定义下列术语和定义适用于本方法。
3.1工业控制系统工业生产控制各业务环节涉及的有关人员、软硬件系统和平台的集合。
包括但不限于:可编程逻辑控制器(PLC)、分布式控制系统(DCS)、数据采集与监控系统(SCADA)等工业生产控制系统;紧急停车系统(ESD)、安全仪表系统(SIS)等工业控制过程安全保护系统;制造执行系统(MES)、企业资源计划系统(ERP)等工业生产调度与管理信息系统;工业云平台、工业大数据平台等工业服务应用系统。
3.2工业控制系统信息安全防护通过实施管理和技术措施,避免工业控制系统遭到非授权或意外的访问、篡改、破坏及损失。
3.3工业控制系统信息安全防护能力评估从综合评价的角度,运用科学的方法和手段,系统地分析和诊断工业控制系统所面临的威胁及其存在的脆弱性,评估企业工业控制系统安全防护水平,提出有针对性的抵御威胁的防护对策和整改措施,为最大限度地保障信息安全提供科学依据。
scada系统网络安全
scada系统网络安全SCADA系统网络安全在当今数字化时代,许多基础设施和工业控制系统都依赖于SCADA(Supervisory Control and Data Acquisition,监控控制和数据采集)系统来实现远程监控和控制。
然而,这种便利性往往伴随着网络安全威胁的增加,使SCADA系统成为黑客攻击的目标。
因此,保护SCADA系统的网络安全变得至关重要。
首先,建立有效的访问控制是确保SCADA系统网络安全的基础。
只有经过授权的用户才能够访问系统,而其他未授权的用户则应被阻止。
此外,对于每个用户,应该根据其权限分配适当的访问级别,限制其对系统进行更改的能力。
这样可以防止未经授权的用户对系统进行恶意更改或访问敏感数据。
其次,网络防火墙的使用是保护SCADA系统免受外部威胁的另一种重要措施。
网络防火墙可以对进入SCADA系统的数据流进行控制和筛选,只允许经过验证的数据通过。
此外,网络防火墙还可以监控网络流量,及时检测并应对异常活动,例如未经授权的数据访问或恶意软件攻击。
此外,加密通信是确保SCADA系统网络安全的关键。
通过使用加密协议,可以确保从SCADA系统发送的数据在传输过程中不被窃听或篡改。
同时,使用身份验证技术,例如数字证书,可以验证通信的双方的身份,防止被冒充者进行未经授权的访问。
最后,定期的网络安全审计和漏洞扫描也是确保SCADA系统网络安全的重要步骤。
通过定期检查系统中的弱点和漏洞,及时修补和加固系统,可以减少黑客攻击的风险,并提高系统的安全性。
综上所述,保护SCADA系统的网络安全需要建立有效的访问控制、使用网络防火墙、加密通信以及定期的网络安全审计和漏洞扫描。
只有综合使用这些措施,才能确保SCADA系统免受黑客攻击的威胁。
工业自动化中的SCADA系统安全性分析与加固
工业自动化中的SCADA系统安全性分析与加固随着工业自动化的不断发展,SCADA(Supervisory Control and Data Acquisition,监控与数据采集)系统应用越来越广泛。
然而,SCADA系统的安全问题也日益突出。
本文将对工业自动化中的SCADA系统进行安全性分析,并提出相应的加固措施,以确保SCADA系统的安全性。
首先,针对SCADA系统的安全性进行分析,我们需要了解其特点和脆弱性。
SCADA系统在工业控制系统中扮演着重要的角色,它负责监控和控制工业设备,同时收集和分析大量的数据。
然而,由于其通信和操作特点,SCADA系统容易受到各种安全威胁,比如恶意软件攻击、非法访问和数据篡改等。
其次,我们需要对SCADA系统进行漏洞扫描和安全评估,以确定存在的潜在风险。
漏洞扫描可以帮助发现系统中的弱点和漏洞,而安全评估可以评估系统的整体安全性。
通过这些工作,我们可以全面了解SCADA系统存在的安全隐患,为制定有效的加固措施提供依据。
接下来,我们需要采取一系列加固措施来提高SCADA系统的安全性。
首先,建立完善的访问控制机制。
这包括用户身份验证、角色权限管理和访问审计等措施,以确保只有合法的用户才能访问和操作SCADA系统。
其次,加密通信以保护系统中敏感数据的传输安全。
通过使用安全协议和加密算法,可以有效防止数据在传输过程中被篡改或窃取。
此外,及时更新和修补系统的补丁和漏洞是至关重要的,以避免已知的安全漏洞被攻击者利用。
另外,进行定期的备份和紧急应对计划的制定也是必要的。
在遭受攻击或数据丢失时,可以通过备份和应急计划快速恢复系统,并减少损失。
此外,SCADA系统的物理安全也是不可忽视的。
采取措施来保护SCADA系统的物理设备,比如锁定控制室、设置监控摄像头和安装入侵报警设备等,可以有效防止未经授权的人员对系统进行操作或干扰。
最后,持续的监控和漏洞管理是确保SCADA系统安全性的关键。
SCADA和DCS系统的网络安全风险评估(可编辑)
附一英文原文Cyber security risk assessment for SCADA and DCS networks P.A.S. Ralstona,J.H. Grahamb, J.L. Hiebba University of Louisville, JB Speed School of Engineering, 40292 Louisville, KY, United Statesb Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY 40292, United StatesAbstractThe growing dependence of critical infrastructures and industrial automation on interconnected physical and cyber-based control systems has resulted in a growing and previously unforeseen cyber security threat to supervisory control and data acquisition SCADA and distributed control systems DCSs . It is critical that engineers and managers understand these issues and know how to locate the information they need. This paper provides a broad overview of cyber security and risk assessment for SCADA and DCS, introduces the main industry organizations and government groups working in this area, and gives a comprehensive review of the literature to date. Major concepts related to the risk assessment methods are introduced with references cited for more detail. Included are risk assessment methods such as HHM, IIM, and RFRM which have been applied successfully to SCADA systems with many interdependencies and have highlighted the need for quantifiable metrics. Presented in broad terms is probability risk analysis PRA which includes methods such as FTA, ETA, and FEMA. The paper concludes with a general discussion of tworecent methods one based on compromise graphs and one on augmented vulnerability trees that quantitatively determine the probability of an attack, the impact of the attack, and the reduction in risk associated with a particular countermeasure.Keywords: SCADA; DCS; Risk analysis; Vulnerability assessment; Control systems1. Critical infrastructure protection: SCADA and DCS cyber securityCritical infrastructures CIs are physical and cyber based systems that are essential for day-to-day operation of the economy and government. Electric power production and distribution, water treatment and supply, gas and oil production and distribution, and telecommunications are excellent examples of CI. Protecting and assuring the availability of CI is vital to both the US and world economies. CI assets are often privately held and can cross international borders. The August 2003 northeast blackout, which also affected Canada, shows how CI crosses international boundaries. The President’s Report on Critical Infrastructure Protection and Presidential Directive 63 PDD 63 acknowledged and highlighted that computer-based control systems, supervisory control and data acquisition SCADA and distributed control systems DCSs , were vital to the daily operation of many CIs and were susceptible to both cyber and physical attacks. The Homeland Security Act of 2002 assigned to the Department of Homeland Security DHS the responsibility for developing a comprehensive national plan for critical infrastructure protection. Aspart of its infrastructure protection mission, DHS is focusing on risk management and analysis through the risk management division RMD and officeof risk management and analysis RMA , which is leading the department’s efforts to create a framework for overall management and analysis of risks to homeland security. A national asset database NADB is being compiled and overseen by RMD that will serve as a national list of critical resources, such as the number and location of dams, power plants, and other assets. The NADB is not yet complete.Within DHS there are programs and groups that are looking specifically at SCADA control systems security. The National Infrastructure Advisory Council NIAC convergence workgroup is investigating the cyber security of SCADA and process control systems and will eventually make recommendations regarding their protection. The National Communication System NCS , a federal agency transferred to DHS, focuses exclusively on communication systems including SCADA systems. The Department of Homeland Security Science and Technology Directorate conducts and funds research in many areas including cyber security; part of their mission is to lead the development of robust process control and SCADA systems. The Control Systems Security Program CSSP of the National Cyber Security Division NCSD of DHS leads an initiative to secure our nation’s critical infrastructure by identifying, analyzing, and reducing cyber risks associated with the control systems that govern our infrastructures.Established in 2003 as the operational arm of the NCSD to protect the nation’s Internet infrastructure, US-CERT Computer Emergency Readiness Team coordinates defenses against and responses to cyber attacks across the nation. For control system security, US-CERT publishes documents to assist in determining vulnerabilities and improving control system security including vendor specific vulnerabilities and solutions. Worldwide, there are more than 250 organizations that use the name “CERT” related to cyber security response; US-CERT is independent of these but may coordinate with them on security incidents. The CERT R Coordination Center CERT/CC , established at Carnegie Mellon University in 1988 and working jointly with DHS, contributes expertise for protecting the nation’s information infrastructure by coordi nating defense against and response to cyber attacks.The objectives of the most recent National Infrastructure Protection Plan include building security partnerships to implement critical infrastructure protection programs, assessing risk, implementing risk reduction programs, and imizing use of resources. Risk assessment for all cyber systems including SCADA and DCS are an integral part of the document that aims to provide a national unifying structure to all protection efforts. Until recently, there has been little specific guidance on the actual analysis of risk assessment, specifically as it relates to SCADA and DCS and the risk of cyber-based attacks on these systems. What is necessary, and what is occurring, is a cooperative effortbetween government, industry, and academia to address critical infrastructure security, including cyber security and risk management for SCADA and DCS.1.1. Government and industry groups contributionsInformation Sharing and Analysis Centers ISACs, 0>.投稿赚钱 were created by Presidential Directive 63 .投稿赚钱 and are private, independent organizations designed to share important information about cyber vulnerabilities, threats, intrusions and anomalies within and between industry sector sand the government. Recently, a government organization, the Multi-State Information Sharing and Analysis Center MSISAC, .投稿赚钱 has been created as the central resource for gathering and sharing information on cyber threats between states and local government and is recognized by DHS as the national center for coordination of cyber readiness and response. This site has links to almost all national initiatives. The Idaho National Laboratory INL, .投稿赚钱 in conjunction with the Sandia National Lab, Argon National Lab, Oak Ridge National Lab, and Pacific Northwest National Lab have created the National SCADA Test Bed in a setting that includes a functioning power grid and synergistic cyber and wireless test beds. Sandia National Laboratory .投稿赚钱 has created The Center for SCADA Security where SCADA research, training, red teams, and standards development takes place. In addition to pure research, the National SCADA Testbed NTSB Program work includes supporting the development of industry standardscovering cyber security of control systems. Two reports [7,8] summarize these activities to date. Researchers at Sandia have also recently developed and published a SCADA Security Policy Framework [9] which ensures that all critical topics have been adequately addressed by specific policy rather than by relying on standard IT security policy. In addition to full-fledged research activities such as those at national laboratories, standards bodies and industry groups are working to address the needs of control systemsecurity [10]. These include, but are not limited to: ISA Instrumentation, Systems, and Automation Society , NIST National Institute for Standards and Technology , Chemical Sector Cyber Security Program organized by the Chemical Information Technology Council ChemITC , which absorbed the CIDX Chemical Industry Data Exchange Cyber Security Initiative in January 2006, IEC International Electrotechnical Commission , CIGRE International Council on Large Electric Systems , AGA American Gas Association , and NERC North American Electric Reliability Council . All have published documents on cyber security and risk assessment for control systems, with links provided to these documents at the websites for these organizations.Some important contributions by these groups include two published technical reports by ISA that cover security technologies and how to apply them to control systems , and AGA documents on communications encryption. AGA’s ongoing work is focused on encryption for legacy systems, networked systems, and eventually forembedding developed technologies into devices during the manufacturing process. NERC has finalized cyber security standards that will establish the requirements for security management programs, electronic and physical protection, personnel, incident reporting, and recovery plans. The National Institute of Standards and Technology NIST through its Process Control Security Requirements Forum PCSRF has defined a cohesive, cross-industry, baseline set of common security requirements for existing and new control systems for various industries as well as a comprehensive guide to SCADA system security.Perhaps the most ambitious group created and funded by the Department of Homeland Security/Homeland Security Advanced Research Projects Agency DHS/HSARPA is called the Process Control Systems Forum, .投稿赚钱 Established in February 2005 the PCSF mission is to accelerate the design, development, and deployment of more secure control and legacy systems that are crucial to securing critical infrastructures. This group is not a standards body; its purpose is to provide the opportunity for technical exchange with a focus on common needs, practices, and consensus architectures in order to accelerate the development and implementation of more secure process control systems PCS . One goal of the PCSF is to provide communication and information dissemination capabilities that extend beyond the current boundaries of other organizations that are working on control systems issues. Through “workin g groups”, it interfaces with other organizations includinginternational groups.The Institute for Information Infrastructure Protection I3P , .投稿赚钱 was founded in 2001 by the Department of Homeland Security DHS as a consortium of government, academic, and nonprofit organizations to coordinate fundamental research and development efforts in information infrastructure protection. The I3P funded a research endeavor “Unifying Stakeholders and Security Programs to Address SCADA Vulnerability and Infrastructure Interdependen cies”, a SCADA project that is investigating ways to advance the security of process control systems. A main task is to develop a risk assessment methodology and tool to support the development of inherently secure SCADA and PCS systems, Another report identified existing security metrics tools and their applicability to PCS and an overview of risk analysis. This report also included an extensive bibliography of cyber security documents. A concise and informative history of critical infrastructure concerns through mid 2005, with emphasis on security of SCADA, is found in a System Administration Audit Network Security SANS Institute paper. The SANS Institute .投稿赚钱 created in 1989, provides training and performs research in information security. The British Columbia Institute of Technology Industrial Security Incident Database reported in 2004 that there was a sharp increase in events around 2001, and that the source of cyber attacks shifted from internal attacks to 70% external attacks, reinforcing the need for SCADA and DCS cyber security.1.2. SCADA and DCScyber security concernsEarly digital communication in SCADA and DCS systems was achieved using serial networks and the ubiquitous RS-232, RS-422, and RS-485 standards. This meant that while networks were still relatively isolated, there was consolidation of both communications channels and communication standards. Due to low fidelity and limited channel capacity of early serial communications, these protocols supported only the minimal functionality needed to achieve reliable scanning and control of points within a remote device, with little or no attention to security. For example, data messages sent as clear text and operating and control commands accepted without any authentication. Today SCADA and DCS communication is carried through a variety of media: Ethernet, wireless, shared leased lines, and even the Internet. These communication channels are increasingly less isolated, leaving SCADA and DCS vulnerable to the forgery of commands and status data. In addition to this threat, SCADA and DCS are now built from commercial off-the-shelf COTS components including commercial operating systems that have known security vulnerabilities. When combined with increased network convergence and connectivity, the use of COTS components makes SCADA and DCS vulnerable to common cyber attacks.Recognition of the threat created by the lack of authentication in SCADA and DCS protocols and the use of COTS components is described in a number of recent publications. Exploiting the vulnerabilities in SCADA systems can have seriousconsequences which can result in loss of service to utility customers, financial loss to service providers due to damaged equipment and corruption of metering information, and finally environmental damage and potential loss of human life. Several sections of a National Academy of Science publication “Making the Nation Safer” describe in greater detail security vulnerabilities in SCADA systems, their relation to different critical infrastructures, and the potential devastating consequences of successful attacks.Numerous articles and guides have been published recently to aid SCADA and DCS users and vendors. The President’s Critical Infrastructure Protection Board, and the Department of Energy, has developed 21 steps to help any organization improve the security of its SCADA networks. The United Kingdom has a similar guide provided by the National Infrastructure Security Coordination Centre NISCC . The Chemical Industry Data Exchange has guidance documents posted, and other papers available for download at the Chemical Sector Cyber Security Program website .投稿赚钱 The General Accounting Office in 1999 issued a guide to help federal managers implement information security risk assessments by providing case studies. Many in the industrial community have been slow to accept the problem with SCADA and DCS systems because such systems were historically stand alone and isolated. Emphasis was on reliability and performance, not security. Because of connections to company networks and the Internet, these systemsare now vulnerable to typical network threats. This is exacerbated by the fact that SCADA systems are now tightly integrated into business and economic processes. A more recent guide with information to enhance industrial control systems security provides a foundation to help implement secure systems, secure existing systems, and make security a process. Many current references and links to related standards guides are provided.A General Accounting Office Report succinctly identified the trends that have escalated the risks to SCADA systems: adoption of standardized technologies with known vulnerabilities, connectivity of control systems to other networks, constraints on the use of existing security technologies and practices, insecure remote connections, and widespread availability of technical information about control systems. These trends have moved SCADA systems from proprietary, closed networks to systems with security challenges comparable to enterprise Information Technology IT systems. The PCS community will need to find compensating security controls until inherently secure systems are available and insecure legacy systems replaced. Since control systems last 15 years or longer, securing legacy systems will require hardware and software retrofit solutions to become commercially available.Much information has focused on becoming aware of the growing problem of securing SCADA and DCS systems, recognizing the threats, and learning how to find solutions. Several introduce and explain applicable security technology such asvulnerability testing and assessment intrusion detection and security monitoring of networks, and encryption, network architecture and system hardware hardening, and hardening operating systems. Geer’s article points out that hardening operating systems could close network access to systems that some control applications require for proper functioning. He further notes that improperly implemented security could fail by making control systems difficult to use; employees will circumvent security in such situations. The article concludes with an important warning to users, that they should not spend time worrying about an ideal approach to security to adopt, but rather take the available and effective interim steps now. A recent survey article summarizes many of these issues and provides an overview of research issues related to strengthening cyber security.DHS sees a need for commercial owners of critical infrastructure to invest in more secure networks and encouragement for SCADA system vendors to build security into their products. Some initial response to this need is now appearing on the market. Honeywell’s Experion Process Knowledge System R300 now includes embedded cyber security that protects against denial of service attacks and message flooding by protecting the controller network. Plant data Technologies has recently developed a new type of firewall designed to be distributed throughout the SCADA environment and is said to deliver a higher level of network segmentation and defense. The SCADA Procurement Project, established in March 2006,is a joint effort among public and private sectors focused on development of a common procurement language with a goal of federal, state and local asset owners and regulators to use these procurement requirements to imize the collective buying power to help ensure that security is integrated into SCADA systems. The most recent version is available. As standards bodies, vendors, and users cooperate and acquire more experience with proper security expectation and testing, it can become an embedded and expected quality assurance issue.Byres and Franz point out that security vulnerability in control hardware is as important as software and communication vulnerability. They state that many industrial control system vulnerabilities are the result of procedural or administrative security failings rather than software failings. They suggest classifying vulnerabilities by where or how they enter into a product’s life cycle: inherent protocol vulnerabilities, product design vulnerabilities, implementation vulnerabilities, and mis-configuration vulnerabilities.2. Risk assessment for SCADA and DCS systemsMiller and Byres point out that the many papers discussing vulnerabilities of control systems neglect the articulation of relative risk of particular implementations. All resources that need protection and the vulnerabilities that can become threats must be identified. Then, policy, procedures, or technology for protection can be determined. The general area of risk assessment is vast, with many methods and tools available to use for assessing risk of variousenvironments including SCADA and PCS systems. A non-exhaustive list of available tools can be found from Risk worldmercial systems such as Risk Watch provide an automated tool to perform qualitative or quantitative risk analyses and vulnerability assessments. This tool employs user friendly interfaces, comprehensive knowledge databases, predefined risk analysis templates, data linking functions, and proven risk analysis analytic techniques.OCTAVE Operationally Critical Threat, Asset, and Vulnerability Evaluation , is a framework for identifying and managing information security risks developed at Carnegie Mellon University’s CERT Coordination Center. It is a self directed activity by a team that draws on the knowledge of many employees to define the current state of security, identify risks to critical assets, and set a security strategy. It also uses event/fault tree analyses to model threats to critical assets.CORAS is a tool-supported methodology for model based risk analysis of security-critical systems developed under the European Information Society Technologies Programme. It was completed in 2003, and a website .投稿赚钱 is maintained where one can download the tool, receive updates, and locate the many related papers. Unlike many of the commercial tools, CORAS documents clearly explain what methods are used for risk assessment, such as fault tree analysis FTA and failure mode effect criticality analysis FMECA , though few quantitative results are presented.As part of their participation in DOE response to PDD 63Lawrence Livermore National Laboratory LLNL began assessing vulnerabilities and risk in the electric power infrastructure in 1998. The discussion of their activities indicated a focus on cyber security, particularly for SCADA, but specific analytical techniques were not discussed. Identification of vulnerabilities was a major focus of the assessment processes, and grew to include live penetration testing, “zero-knowledge” attacks, and crossover attacks that included physical stages and cyber stages. Lopez points out that the most difficult portion of the assessment was the analysis or risk characterization. After the creation of DHS and the shift in critical infrastructure protection to new departments within DHS, LLNL and other national labs began performing vulnerability and risk assessment for other critical infrastructures and for entire regions of the US. A recent Sandia National Laboratories report attempted to classify risk assessment methods, primarily available risk assessment tools according to level of detail and approach in order for users to be able to select the most appropriate method.2.1. Published research on overall risk assessmentPublished work related to risk assessment is very difficult to categorize. Several different aspects define the research, primarily how much of the overall process is tackled. Risk assessment is a multiphase process: it starts with risk identification, proceeds to risk analysis, follows with risk evaluation and ranking, and ends with the management and treatment phases.Many ofthe government guidelines and industry publications mentioned previously describe qualitative risk assessment approaches. Researchers at Georgia Institute of Technology present a qualitative, but very systematic approach to overall risk assessment for information systems. Especially helpful is their development of a three axis view of the threat space which organizes the problem of risk management and the presentation of a procedure for computing losses due to threats and benefits of countermeasures.The next articles discussed are holistic in their approach and are studies of huge, interdependent systems. The research includes the risk analysis phase, but the exact details of the risk analysis methods will be discussed separately in the following section. These are noted separately because of their large scope and the massive effort involved in the risk identification phase.A number of modeling and simulation approaches under development at Sandia National Laboratories directly address interdependencies and offer insight into the operational and behavioral characteristics of critical infrastructures. Detailed interdependency models and simulations of the following categories have been made: 1 aggregate supply and demand tools which evaluate the total demand for an infrastructure service and the ability to provide it, 2 dynamic simulations to examine infrastructure operations, disruption effects, and downstream consequences, 3 agent-based models which model physical components and their interactions and operationalcharacteristics, 4 physics-based models that analyze aspects of infrastructure with standard engineering techniques, 5 population mobility models primarily for transportation and social network study, and 6 Leontif InputCOutput models which provide an aggregated, timein dependent analysis of generation, flow, and consumption of commodities among infrastructure sectors. Such modeling and simulation abilities are integral to infrastructure risk analyses.The most comprehensive risk identification methodology to address interdependencies is hierarchical holographic modeling HHM , Chittester and Haimes described HHM as a method that “can identify all concei。
油气管道SCADA系统数据传输的安全风险及其解决方案
油气管道SCADA系统数据传输的安全风险及其解决方案摘要:中国石油天然气股份有限公司的长输油气管道在北京油气调控中心实施集中调度,逐渐形成了依托于通信网络的分布式SCADA系统,对安全提出了更高的要求。
当前油气管道SCADA系统的数据传输过程中存在的主要风险因素有:缺少接入控制、使用开放的标准协议、采用明文传输并接入了大量不安全的网络设备,而相应的防护措施不多,特别是中控系统和站控系统之间的数据传输依托光纤网、卫星和公网,使用基于以太网TCP\IP的应用层协议,存在较大风险。
为此,结合国内外已有的SCADA安全相关的标准和一些学者提出的防护策略,提出了一种安全防护解决方案,即通过建立基于认证和权限控制的接入控制机制、部署硬件防火墙和加密网关、加强对外安全等方法进行安全防护。
该方案可为工程设计提供参考。
关键词:油气管道SCADA系统安全数据传输协议接入控制认证权限加密Risk analysis of data transmission security in an oil and gas pipeline SCADAsystem and countermeasuresAbstract:As the Beijing Oil and Gas Control Center plays its role in undertaking the centralized control of long-distance pipelines operated by PetroChina,a distributed SCADA systenl relying on communication network is gradually formed,for which securitv is highly requlred. There exist many risks in data transmission of such a SCADA system at present:lacking access control,using open standard protocols,transmlttlng in plain texts,and connecting a plenty of insecure network devices without appropriate protectionmeasures,E8pecially,a potential higher risk even threatens the data transmission between the central control system and station control system with an application layer protocol based on Ethernet and TCP/IP,which relies on the optical flber network,satellite and public network.In view of this,according to the standards published at home and abroad associated with SCADA securitv and many security protectlon strategies proposed by some scholars,this paperpresents the following countermeasures:setting up an access control mechanlsmsbased on authentication and authority control,deploying hardware firewalls and cncryption gateways,strengthening the exterior security,etc.This study will be a rcference for engineering design.Keywords:oil and gas pipeline,SCADA,security,data transmission,protocol,access control,authentication,privilege,encryption油气管道SCADA(Supervisory Control And Data Acquisition,监视控制与数据采集)系统,是一种针对油气长输过程进行数据采集、监视和控制的工业控制系统,通过对现场设备信号进行实时采集、加工、汇总、计算和展示,以实现设备监控、参数调节以及信号报警等远程监控功能[1]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
前言
PREFACE
随着信息技术的发展,传统意义上较为封闭 并普遍认为安全的SCADA系统正面临着有意或者 无意、非授权的访问、修改或者破坏等威胁。 SCADA系统一旦受到攻击,会给用户带来巨大损 失,直接或间接地影响国民经济和社会稳定,甚 至危及国家安全。因此,开展SCADA系统的安全 防护评估工作刻不容缓。
5
根据脆弱性的严重程度以及安全事件所作用的资产价 值,计算安全事件的损失;
6 根据安全事件发生的可能性以及安全事件的损失,计 算安全事件一旦发生对组织造成的影响,即风险值。
3
鄯善输油站SCADA 系统的安全防护评估
鄯善输油站SCADA系统的安全防护评估
鄯善输油站为鄯善原油首站、鄯善成品油中间站和鄯善原油储备 库合建站场。鄯善输油站SCADA系统主要完成站内工艺数据采集、监 视、控制等,并向调度中心传送实时数据,接受调度中心下达的任务。
前言
PREFACE
国际上,SCADA系统的安全防护研究已开展多年。 美国建立了“工业控制系统安全评估实验室”进行相 关研究。
一些国际标准化组织陆续推出了相关标准、规范、 建议以及指南,如NIST800-82、ISA/IEC 62443等。
在国内,“工业控制系统信息安全技术国家工程实 验室”为解决工业控制系统信息安全问题提供了有力的 技术支撑。GB/T 30976-2014系列标准为开展工控领 域系统和产品的评估提供依据。
根据识别得到的脆弱性,并结合SCADA系统的实际运行 情况,对脆弱性的严重性程度进行了赋值。
鄯善输油站SCADA系统的安全防护评估
风险计算(本次评估采用矩阵法进行风险计算)
根据调研得到的威胁发生频率和脆弱性严重程度, 在矩阵中进行对照,确定鄯善输油站SCADA系统安全事 件发生的可能性。
中华人民共和国石油天然气行业标准
前言
PREFACE
本规范共分8章和2个附录,主要技术内容包括: 范围、定义和缩写、系统管理、物理安全、系统访 问控制、系统发布、网络设计和数据交换、现场通 信等的设计做出了统一规定。本规范描述了SCADA系 统的安全防护理念,并提供了一套制定合理安全防 护标准的框架。并在评估SCADA系统进行可能的系统 改进时,发现掌握和了解系统的漏洞和风险是非常 重要的。
安全防护风险分析原理图
安全防护风险分析
安全防护风险分析包括以下基本步骤:
1
对资产进行识别,并对资产的价值进行赋值;
2 对威胁进行识别,并对威胁出现的频率进行赋值;
3 对脆弱性进行识别,并对脆弱性的严重程度进行赋值;
安全防护风险分析
安全防护风险分析包括以下基本步骤:
4
根据威胁以及威胁利用脆弱性的难易程度,计算安全事件发 生的可能性;
前言
PREFACE
本标准起草单位:
中国石油管道局工程有限公司 北京油气调空中心 中国石油管道公司 中石化石油工程设计有限公司
中华人民共和国石油天然气行业标准
前言
PREFACE
从系统可靠性与信息安全两个方面出发, 研究油气管道SCADA系统的安全问题,有必 要建立一套可行、有效、先进的评估方法, 为承担管道SCADA系统安全评估业务提供技 术基础。
资产识别 1
4 风险计算
威胁识别 2
3 脆弱性识别
鄯善输油站SCADA系统的安全防护评估
资产识别
本次评估采用开小组会议以及对关键资产进行现场实际 查看的资产识别方法。
鄯善输油站属于本次评估范围内的SCADA系统主要由成 品油过程控制系统、成品油ESD系统、原油过程控制系统、 原油ESD系统、储备库过程控制系统、储备库消防系统、操 作员站、消防工作站、站控服务器、交换机、路由器、光端 机等组成。
对调研得到的系统资产,依据资产的实际情况,逐一分 析其在保密性、完整性和可用性三个属性上的等级,并综合 评定得出资产的价值。然后利用资产重要性程度的判断准则, 得出资产的重要性等级。级别越高,资产越重要。
鄯善输油站SCADA系统的安全防护评估
威胁识别
本次调研中,通过分析威胁的来源,并根据以往 发生的安全事件记录、相关行业的威胁统计数据、评 估人员的经验以及与用户的沟通确认,得出鄯善输油 站SCADA系统可能面临的威胁,并对威胁发生的频率进 行赋值。
鄯善输油站SCADA系统的安全防护评估
脆弱性识别
SCADA系统的脆弱性,一般包括管理脆弱性和技术脆弱 性。本次评估,结合实际需求,按照API1164中SCADA系统的 安全防护要求,进行SCADA系统的脆弱性识别。
调研中发现的、与API1164标准所提要求不符合的项, 将导致SCADA系统在安全防护方面的脆弱性。这些脆弱性一 旦被攻击者利用,就可以获得SCADA系统的额外权限,能够 在未授权的情况下访问或者破坏系统,从而导致危害SCADA 系统的安全事件发生。
为了全面了解SCADA系统的安全性A系统的安全防护评估工作。
鄯善输油站SCADA系统的安全防护评估
鄯善输油站为鄯善原油首站、鄯善成品油中间站和鄯善原油储 备库合建站场。鄯善输油站SCADA系统主要完成站内工艺数据采集、 监视、控制等,并向调度中心传送实时数据,接受调度中心下达的 任务。为了全面了解SCADA系统的安全性,西部管道公司特将鄯善输 油站作为典型站,首次开展了SCADA系统的安全防护评估工作。
中华人民共和国石油天然气行业标准
目录
CONTENT
安全防护风险 安全防护风险分析 鄯善输油站SCADA系统的安全防护评估
1 安全防护风险
安全防护风险
安全防护风险是指人为或自然的 威胁,利用信息系统及其管理体系中 存在的脆弱性,导致安全事件发生的 可能性及其对组织造成的影响。
安全防护风险
安全防护风险基本要素:
资产
威胁攻击 和损害的 对象
威胁
触发安全 事件
脆弱性
威胁可利 用的环节
安全防护风险
安全防护风险要素的关系图:
2 安全防护风险分析
安全防护风险分析
安全防护风险的三个基本要素都拥有各自的属性 资产的属性:资产价值 资产的属性:威胁发生的频率 脆弱性的属性:脆弱性的严重程度
安全防护风险分析
安全防护风险分析是将资产、威胁、脆弱性三个要素以及 每个要素的属性进行关联,并建立各要素之间的相互作用关系。