2.2.1条件概率公开课.

合集下载

2.2.1条件概率PPT优秀课件

2.2.1条件概率PPT优秀课件
94.对一个适度工作的人而言,快乐来自于工作,有如花朵结果前拥有彩色的花瓣。――[约翰·拉斯金] 95.没有比时间更容易浪费的,同时没有比时间更珍贵的了,因为没有时间我们几乎无法做任何事。――[威廉·班] 96.人生真正的欢欣,就是在于你自认正在为一个伟大目标运用自己;而不是源于独自发光.自私渺小的忧烦躯壳,只知抱怨世界无法带给你快乐。――[萧伯纳]
――[阿萨·赫尔帕斯爵士] 115.旅行的精神在于其自由,完全能够随心所欲地去思考.去感觉.去行动的自由。――[威廉·海兹利特]
116.昨天是张退票的支票,明天是张信用卡,只有今天才是现金;要善加利用。――[凯·里昂] 117.所有的财富都是建立在健康之上。浪费金钱是愚蠢的事,浪费健康则是二级的谋杀罪。――[B·C·福比斯] 118.明知不可而为之的干劲可能会加速走向油尽灯枯的境地,努力挑战自己的极限固然是令人激奋的经验,但适度的休息绝不可少,否则迟早会崩溃。――[迈可·汉默] 119.进步不是一条笔直的过程,而是螺旋形的路径,时而前进,时而折回,停滞后又前进,有失有得,有付出也有收获。――[奥古斯汀] 120.无论那个时代,能量之所以能够带来奇迹,主要源于一股活力,而活力的核心元素乃是意志。无论何处,活力皆是所谓“人格力量”的原动力,也是让一切伟大行动得以持续的力量。――[史迈尔斯] 121.有两种人是没有什么价值可言的:一种人无法做被吩咐去做的事,另一种人只能做被吩咐去做的事。――[C·H·K·寇蒂斯] 122.对于不会利用机会的人而言,机会就像波浪般奔向茫茫的大海,或是成为不会孵化的蛋。――[乔治桑] 123.未来不是固定在那里等你趋近的,而是要靠你创造。未来的路不会静待被发现,而是需要开拓,开路的过程,便同时改变了你和未来。――[约翰·夏尔] 124.一个人的年纪就像他的鞋子的大小那样不重要。如果他对生活的兴趣不受到伤害,如果他很慈悲,如果时间使他成熟而没有了偏见。――[道格拉斯·米尔多] 125.大凡宇宙万物,都存在着正、反两面,所以要养成由后面.里面,甚至是由相反的一面,来观看事物的态度――。[老子]

(完整版)2.2.1条件概率公开课(好用)

(完整版)2.2.1条件概率公开课(好用)
若事件A与B互斥,则: P( AU B) P(A) P(B)
2
你能算吗?
五一假期你妈妈带你到她的一个朋友家做客, 闲谈间正巧碰到她的女儿回家,这时主人介 绍说:“这是我的一个女儿,我还有一个孩 子呢。”这个家庭中有两个孩子,已知其中 有一个是女孩,问这时另一个孩子也是女孩 的概率为多大?
3
问题 该家庭中有两个孩子,已知其中有一个是女孩, 问另一个小孩也是女孩的概率为多大?
n A n
| A
61
36 6(2)
P AB 1 P 2
P 20 P
B B
|
A
n B n n AB n
6 36
3 6
1 6
1 2
12
2. 如图所示的正方形被平均分成9个部分,向大正
方形区域随机的投掷一个点(每次都能投中),设
投中最左侧3个小正方形的事件记为A,投中最上 面3个小正方形或中间的1个小正方形的事件记为B, 求 P(A|B), P(B|A),
解1:设A={出现的点数不超过3}={1,2,3} B={出现的点数是奇数} ={1,3,5}
只需求事件 A 发生的条件下,
事件 B 的概率即P(B|A)
51
B3
A
2
P(B | A) n( AB) 2
4,6
n( A) 3 解法一(减缩样本空间法14 )
例题1 在某次外交谈判中,中外双方都为了自身的利益 而互不相让,这时对方有个外交官提议以抛掷一 颗骰子决定,若已知出现点数不超过3的条件下再 出现点数为奇数则按对方的决议处理,否则按中 方的决议处理,假如你在现场,你会如何抉择?
11
练一练
1. 掷两颗均匀骰子,问:
⑴ “ 第一颗掷出6点”的概率是多少?

2.2.1条件概率公开课

2.2.1条件概率公开课
设投中最左侧3个小正方形的事件记为A,投中最
上面3个小正方形或中间的1个小正方形的事件记
为B,求 P(A|B), P(B|A),
解:∵P( AB) 1 9
,P( A) 1 3
,P(B) 4 9
1
P(A
|
B)

P( AB) P(B)

9 4

1 4
9
1
P(B |
A)

P( AB) P( A)
n A n
| A
61
36 6(2)
P AB 1 P 2
P 20 P
B B

|

A

n B n n AB n
6 36


3 6
1 6

1 2
10
2. 如图所示的正方形被平均分成9个部分,向大正 方形区域随机的投掷一个点(每次都能投中),
9
练一练
1. 掷两颗均匀骰子,问:
⑴ “ 第一颗掷出6点”的概率是多少?
⑵ “掷出点数之和不小于10”的概率又是多少?
⑶ “已知第一颗掷出6点,则掷出点数之和不小于10”的概率呢?
11 12 13 14 15 16
21 22 23 24 25 26
61 62 63 64 65 66
31 32 33 34 35 36

9 1

1 3
11
3
收获
一、基本知识
1. 条件概率的定义. P B A P(AB) P(A) 0 P( A)
2. 条件概率的性质. (1)有界性(2)可加性
3.
条件概率的计算方法.
P
B

2.2.1条件概率(公开课)

2.2.1条件概率(公开课)

方法2:
95
P(B
A)
P( AB) P( A)
70 95
100 100
0.7368
B 70 95A
5
6.一批产品中有 4% 的次品,而合格品中一等品占 45% .从这批产品中任取一件,求该产品是一等品的概 率.
解 设A表示取到的产品是一等品,B表示取
出的产品是合格品, 则
P(A | B) 45% P(B ) 4%
P(A), P(B), P(A B), P(B A), P(AB),
80 20
12
12
12
100 100
20
80
100
P(C), P(C A), P(A B), P(AC)
40
32
100
80
12
32
80
100
7、甲,乙,丙3人参加面试抽签,每人的试题通过不放 回抽签的方式确定。假设被抽的10个试题签中有4个是 难题签,按甲先,乙次,丙最后的次序抽签。试求1) 甲抽到难题签,2)甲和乙都抽到难题签,3)甲没抽到 难题签而乙抽到难题签,4)甲,乙,丙都抽到难题签 的概率。
例3. 一张储蓄卡的密码共有6位数字,每位数字都可从 0—9中任选一个。某人在银行自动取款机上取钱时,忘 记了密码的最后一位数字,求:
(1)任意按最后一位数字,不超过2次就按对的概率;
(2)如果他记得密码的最后一位是偶数,不超过2次就 按对的概率。
例4.甲、乙两地都位于长江下游,根据一百多年的气象 记录,知道甲、乙两地一年中雨天占的比例分别为20% 和18%,两地同时下雨的比例为12%,问: (1)乙地为雨天时,甲地为雨天的概率为多少? (2)甲地为雨天时,乙地也为雨天的概率为多少?

条件概率(公开课)

条件概率(公开课)

法三:第一次抽到理科题,则还剩下两道理科、两道文 科题,故第二次抽到理科题的概率为: 1 C2 1 P( B A) 1 C4 2
规律总结: 问题4:谈谈你怎样判断条件概率的: 1、在……条件(前提)下,求……的概率; 2、当已知事件的发生影响所求事件的概率, 一般也认为是条件概率。 问题5:谈谈你求解条件概率的一般步骤: (1)用字母表示有关事件: (2)求n(AB),n(A)或P(AB),P(A)
P(B |A):相当于把A看作新的基本事件空间
例1:在5道题中有3道理科题和2道文科题,如果不放回 地依次抽取2道题,求: (1)第一次抽取到理科题的概率; (2)第一次和第二次都抽取到理科题的概率;
解:设第1次抽到理科题为事件A,第2次抽到理科题 为事件B,则第1次和第2次都抽到理科题为事件AB. (1)从5道题中不放回地依次抽取2道的事件数为
n() A 20
2 5
根据分步乘法计数原理,n( A) A A 12 n( A) 12 3 P ( A) n( ) 20 5
1 3 1 4
例1、在5道题中有3道理科题和2道文科题,如果不放回 地依次抽取2道题,求: (1)第一次抽取到理科题的概率; (2)第一次和第二次都抽取到理科题的概率;
(3)利用条件概率公式求
P ( AB) n( AB) P B A P ( A) n( A)
难点突破:
问题6:说出概率 P(B|A)与P(AB)的区别与联系
P( AB) 表示在样本空间 中, 计算 AB发生 的概率, 而 P(B A ) 表示在缩小的样本空间 A 中, 计算 B 发生的概率.用古典概率公式, 则 AB 中样本点数 P( B A ) , A 中样本点数 AB 中样本点数 P( AB) 中样本点数 一般来说, P(B A ) 比 P( AB) 大.

公开课——条件概率(一)

公开课——条件概率(一)

2.2.1 条件概率教学目标(一)知识目标在具体情境中,了解条件概率的概念,掌握条件概率的计算公式,并能运用条件概率公式解决有关的简单概率问题.(二)情感目标创设教学情境,培养学生学习数学的良好思维习惯和兴趣,加深学生对从特殊到一般的思想认知规律的认识,树立学生善于创新的思维品质.(三)能力目标在知识的教学过程中,培养学生从特殊到一般的探索归纳能力及运算能力和应用新知的能力,渗透归纳、转化的数学思想方法.教学重点条件概率的概念,条件概率公式的简单应用.教学难点正确理解条件概率公式,并能灵活运用条件概率公式解决简单实际问题.教学过程一、复习引入1、复习:(1)两个事件A、B的和事件(BABA或+):事件A、B中至少有一个发生,当事件A、B 互斥时,()()()P A B P A P B+=+(2)两个事件A、B的积事件(BAAB或)事件A、B同时发生,若AB为不可能事件,则说事件A与B互斥.(),(),()P AB P A P B有什么关系呢?2、引例1:三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,问题1:事件B:最后一名同学抽到中奖奖券的概率为多少?1 ()3 P B=问题2: 如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到奖券的概率又是多少?12 P=问题3:为什么两个问题的概率不一样?通过回答问题3:,引出课题条件概率:因为问题2中已知第一名同学的抽奖结果会影响最后一名同学抽到中奖奖券的概率:若记A:第一名同学没有抽到中奖使得,一般地,在已知另一事件A 发生的前提下,事件B 发生的可能性大小不一定再是P(B).我们将问题2的事件记为(|)P B A ,称为在“A 已发生”的条件下,B 发生的条件概率 二、新授课:(一)条件概率的概念设A 和B 为两个事件,那么,在“A 已发生”的条件下,事件B 发生的概率叫做______________________. 用符号___________表示。

条件概率(公开课)-2022年学习资料

条件概率(公开课)-2022年学习资料

反思-求解条件概率的一般步骤:-1用字母表示有关事件-2求PAB,PA或nAB,nA-3利用条件概率公式求 PB14-hAB
例题2在某次外交谈判中,中外双方都为了自身的利益-而互不相让,这时对方有个外交官提议以抛掷一-颗骰子决定, 已知出现点数不超过3的条件下再-出现点数为奇数则按对方的决议处理,否则按中-方的决议处理,假如你在现场,你 如何抉择?-解1:设A={出现的点数不超过3}={1,2,3}-B={出现的点数是奇数}={1,3,5}需求事件A发生的条件下,-事件B的概率即PB丨A-PBIA=-nAB-4,6-解法一(减缩样本空间法)
例1:在5道题中有3道理科题和2道文科题,如-果不放回地依次抽取2道题,求:-1第一次抽取到理科题的概率; 2第一次和第二次都抽取到理科题的概率;-解:设第1次抽到理科题为事件A,第2次抽到理科题-为事件B,则第1 和第2次都抽到理科题为事件AB.-1从5道题中不放▣地依次抽取2道的事件数为-n2=A=20-根据分步乘法 数原理,A=A?×A4=12-.PA=-nA
露考:-如果已经知道第一名同学没有抽到中奖-奖券,那么最后一名同学抽到中奖奖券-的概率又是多少?-“第一名 学没有抽到中奖奖券”为事件A-“最后一名同学抽到中奖奖券”为事件B
二、内涵理解:-为什么上述例中PBA≠PB?-样本空间不一样-PB以试验下为条件,样本空间是-PB|A以A 生为条件,样本空间缩小为A-PBA相当于把A看作-新的样本空间求AB发生-的概率
例2-考虑恰有两个小孩的家庭.-1-若已知某一家有一个女孩,求这家另一个是男孩-的概率;-2若已知某家第一 是男孩,求这家有两个男孩-相当于第二个也是男孩的概率-假定生男生女为等可能-3设rAE=RBIA,PKA求 B
例题2在某次外交谈判中,中外双方都为了自身的利益-而互不相让,这时对方有个外交官提议以抛掷一-颗骰子决定, 已知出现点数不超过3的条件下再-出现点数为奇数则按对方的决议处理,否则按中-方的决议处理,假如你在现场,你 如何抉择?-解2:-设A=出现的点数不超过3}={1,2,3}-B={出现的点数是奇数}={1,3-,5} 只需求事件A发生的条件下,-事件B的概率即PBIA-由条件概率定义得-PBIA=-PAB-/3-4,6-p -3解法二(条件概率定义法)

数学课件:2.2.1 条件概率

数学课件:2.2.1 条件概率

,考虑到大量重
������
复试验时,条件频率������������������������������的稳定值即为条件概率 P(B|A),又因为事件
AB
发生的频率������������������、事件
������
A
发生的频率������������的稳定值分别为
������
P(A∩B),P(A),于是有 P(B|A)=������(������������(⋂������)������).
条件概率公式 P(B|A)=������(������������(⋂������)������),P(A)>0.
12
知识拓展 (1)计算条件概率的公式为 P(B|A)=������(������������(⋂������)������),P(A)>0,它
可以用频率的稳定值来解释:设进行 n 次试验,事件 A 发生了 nA 次,
令A=“2次都取得白球”,包括2个基本事件, 因此 P(A)=A252 = 110.
题型一 题型二
解法二用概率乘法公式.
令Ai=“第i次取得白球”(i=1,2), 则A=A1∩A2, 由乘法公式,得
P(A)=P(A1∩A2)=P(A1)P(A2|A1)=25
×
1 4
=
110.
反思 公式 P(B|A)=������(������������(⋂������)������) 既是条件概率的定义,同时又是求条
知道第一名同学没有抽到奖券的条件下,即事件A发生的前提
下,P(B|A)=
1 2
,显然知道了事件A的发生,影响了事件B的发生的概率.
事实上,在已知事件A没有中奖的前提下,奖券情况已经发生了变化,

高中数学2.2.1 条件概率 名师公开课市级获奖课件(人教A版选修2-3)

高中数学2.2.1 条件概率 名师公开课市级获奖课件(人教A版选修2-3)

例如:投掷一颗均匀骰子,并且已知出现的是偶数点, 那么对试验结果的判断与没有这一已知条件的情形 不同 . ________ 2.已知事件B发生条件下,事件A发生的概率称为事件A 关于事件 B 的条件概率,简称为 __________________ A对B的条件概率 ,记作 __________ P(A|B) .
跟踪练习 2.掷两颗均匀的骰子,问: (1)至少有一颗是6点的概率是多少? (2) 在已知它们点数不同的条件下,至少有一颗是 6 点的 概率又是多少? 分析:第(2)小题即为条件概率,条件是两颗骰子点数不 同,可用条件概率计算公式求解. 解析:(1)对两颗骰子加以区别,则共有36种不同情况, 它们是等可能的.
3.一般说来,在古典概型下都可以这样做,但若回到原 来的样本空间,则当P(B)≠0时,有:
在B发生的条件下A包含的样本点数 P(A|B)= 在B发生的条件下的样本点数 AB包含的样本点数 n( AB) = n( A) B包含的样本点数
例如: (1)3 张奖劵中只有 1 张能中奖,现分别由 3 名同学 1 无放回地抽取,则最后一名同学抽到中奖奖劵的概率是____. 3 (2)如果已经知道第一名同学没有抽到中奖奖劵,则最后 1 一名同学抽到中奖奖劵的概率是______. 2
(2)甲地为雨天时,乙地也为雨天的概率是多少?
解析: 设 “ 甲地为雨天 ” 为事件 A , “ 乙地为雨天 ” 为 事件B,根据题意得P(A)=0.2,P(B)=0.18,P(AB)=0.12,所 以: (1)乙地为雨天时,甲地也是雨天的概率是 PAB 0.12 P(A|B)= = ≈0.67. PB 0.18
红球 玻璃球 木质球 2 3 蓝球 4 7 小计 6 10
小计
5
11

课件9:2.2.1 条件概率

课件9:2.2.1 条件概率

学以致用 2.某人忘记了电话号码的最后一个数字,因而他随意拨号,假设拨过了的 号码不再重复,试求: (1)拨号不超过 3 次就接通电话的概率; (2)如果他记得号码的最后一位是奇数,拨号不超过 3 次就接通电话的概率.
解:设第 i 次拨号接通电话为事件 Ai(i=1,2,3),则 A=A1∪( A 1A2)∪( A 1 A 2A3) 表示“拨号不超过 3 次就接通电话”. (1)因为事件 A1 与事件 A 1A2,A 1 A 2A3 彼此互斥,所以 P(A)=110+190×19+190 ×89×18=130. (2)用 B 表示“最后一位是奇数”的事件,则 P(A|B)=P(A1|B)+P( A 1A2|B)+P( A 1 A 2A3|B) =15+45××14+45××34××13=35.
[随堂训练]
1.已知 P(B|A)=12,P(AB)=83,则 P(A)等于( )
3
13
A.16
B.16
3
1
C.4
D.4
【解析】由 P(AB)=P(A)P(B|A)可得 P(A)=34.
【答案】C
2.4 张奖券中只有 1 张能中奖,现分别由 4 名同学无放回地抽取.若已
知第一名同学没有抽到中奖奖券,则最后一名同学抽到中奖奖券的概率
C.0<P(B|A)<1
D.P(A|A)=0
【解析】∵P(B|A)=PPAAB,P1A≥1,
∴P(B|A)≥P(AB),故 A 不正确;
当 P(A)=1 时,P(B)=P(AB),则 P(B|A)=P(B)=PPBA,所以 B 正确;
而 0≤P(B|A)≤1,P(A|A)=1,∴C、D 不正确.
【答案】B
2.2.1 条件概率

课件10:2.2.1 条件概率

课件10:2.2.1 条件概率
例3 一个盒子中有6只好晶体管,4只坏晶体管,任取 两次,每次取一只,每一次取后不放回.若已知第一 只是好的,求第二只也是好的的概率.
解:令 Ai={第 i 只是好的},i=1,2. 解法 1:抽取两只,第 1 只是好的共有 C16C19种取法,两只都是 好的共有 C16C15种取法, 故 P(A2|A1)=CC1616CC1519=59. 解法 2:因事件 A1 已发生(已知),故我们只研究事件 A2 发生便 可,在 A1 发生的条件下,盒中仅剩 9 只晶体管,其中 5 只好的, 所以 P(A2|A1)=AAB发发生生的的可可能能数数=59.
解:(1)设“先摸出 1 个白球不放回”为事件 A,“再摸出
1 个白球”为事件 B,则“先后两次摸到白球”为 AB,先
摸一球不放回,再摸一球共有 4×3 种结果,
∴P(A)=12,P(AB)=24××13=16, 1
∴P(B|A)=61=31. 2
(2)设“先摸出一个白球放回”为事件 A1,“再摸出一个白
方法总结 P(B|A)表示事件 B 在“事件 A 已发生”这个附加条件下的概率与没有 这个附加条件的概率是不同的.也就是 说,条件概率是在原随机试验的条件上再 加上一定的条件,求另一事件在此“新条 件”下发生的概率.因此,利用缩小样本空间的观点计算条件概率 时,首先,明确是求“在谁发生的前提下谁的概率”,其次,转换 样本空间,即把即定事件 A 所含的基本事件定义为新的样本空间, 显然待求事件 B 便缩小为事件 AB,如图所示.从而 P(B|A)= AB发生的可能数 A发生的可能数 .
B 的事件数为 A41A16=24,故 P(B)=2442.
AB 的事件数为 A41A31=12,故 P(AB)=1422.
12 由条件概率公式,得 P(A|B)=PPABB=2442=0.5.

2.2.1条件概率(一).ppt

2.2.1条件概率(一).ppt

注:⑴ 0 ≤ P(B | A) ≤1;
⑵几何解释: ⑶可加性:
如果 B和C 互斥,

BA
那么 P(B C) | A P(B | A) P(C | A)
基本概念
2.概率 P(B|A)与P(AB)的区别与联系
P(AB) 表 示 在 样 本 空 间 中,计 算 AB发 生
的 概 率,而 P(B A) 表 示 在 缩 小 的 样 本 空 间A 中, 计 算 B 发 生 的 概 率.用 古 典 概 率 公 式,则
一般地,在已知另一事件A发生的前提下,事件B发
生的可能性大小不一定再是P(B).即 P(B | A) P(B)
条件的附加意味着对样本空间进行压缩.
思考2?
对于上面的事件A和事件B,P(B|A)与它们的概 率有什么关系呢?
n( AB) P(B | A) n( AB) n() P( AB)
P(B
A)

AB 中 样 本 点 数 A 中 样 本 点 数,
P(AB)

AB 中 样 本 点 数 中样本点数
一 般 来 说, P(B A)比 P(AB) 大.
例题分析
例1:在6道题中有4道理科题和2道文科题,如果不放回
的依次抽取2道题 (1)第一次抽到理科题的概率 (2)第一次与第二次都抽到理科题的概率 (3)第一次抽到理科题的条件下,第二次抽到理科 题的概率.
2.2.1条件概率(一)
探究:
三张奖券中只有一张能中奖,现分别由三名同学 无放回的抽取,问最后一名同学抽到中奖奖券的概率 是否比前两名同学小。
思考1?
如果已经知道第一名同学没有抽到中奖奖券,那 么最后一名同学抽到中奖奖券的概率又是多少?
已知第一名同学的抽奖结果为什么会影响最 后一名同学抽到中奖奖券的概率呢?

数学:2.2.1《条件概率》课件(新人教B版选修2-3)

数学:2.2.1《条件概率》课件(新人教B版选修2-3)

例题.如图所示的正方形被平均分成9个部分,向 大正方形区域随机地投掷一个点(每次都能投中) 设投中最左侧3个小正方形区域的事件记为A,投 中最上面3个小正方形或正中间的1个小正方形 区域的事件记为B,则P(AB)=___,P(A|B)=_____
例题.在一个盒子中有大小一样的20个球, 其中10个红球,10个白球,求第一个人 摸出一个红球,紧接着第二个人摸出一个 白球的概率
因为 P ( A) 0.8, P ( B ) 0.4,
P ( AB) 0.4 1 . P ( AB ) P ( B ), 所以 P ( B A) P ( A) 0.8 2
例:一个盒子中有4只白球、2只黑球,从中不 放回地每次任取1只,连取2次,求
(1) 第一次取得白球的概率; (2) 第一、第二次都取得白球的概率; (3) 第一次取得黑球而第二次取得白球的概率. 引申: 一个盒子中有4只白球、2只黑球,从中不放回地每次任 取1只,连取3次,求 (1) 第一次是白球的情况下,第二次、第三次均都取 得 白球的概率; (2) 第一次、第二次均取得白球的情况下,第三次是 白球的概率。
1. 条件概率的定义.
2. 条件概率的计算.
公式: P ( A B ) P ( AB )
P( B)
乘法公式: P(AB)=P(B) P(A|B)(正,反)B源自A(反,正)(正,正)
问题2:抛掷一颗骰子,观察出现的点数 A={出现的点数是奇数}={1,3,5} B={出现的点数不超过3}={1,2,3} 若已知出现的点数不超过3,求出现的点数是奇数的概率 6 B A 2, 1, 3 5 4
条件概率公式
若P(B) ﹥0,则事件B已发生的条 件下事件A发生的概率是
问题情境
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学 选修2-3
2.2.1条件概率
东光一中数学组
2011年3月15日
1
情 景 引 入
2
情景引入
三张奖券中只有一张能中奖,现分别由三名同学无放回 地抽取一张,奖品是“周杰伦演唱会门票一张”,那么问 最后一名同学中奖的概率是否比前两位小?
3
如果已经知道第一名同学没有中奖, 那么最后一名同学中奖的概率是多少? 知道第一名同学 的结果会影响最 后一名同学中奖 的概率吗?
在5道题中有3道理科题和2道文科题。 如果不放回地依次抽取2道题,求:
(1)第1次抽到理科题的概率;
(2)第1次和第2次都抽到理科题的概率; (3)在第1次抽到理科题的条件下,第2次抽到理科题的概率。 解:设Ω为“从5道题中不放回地依次抽取2道题的样本 空间,“第1次抽到理科题”为事件A, “第2次抽到理科题”为事件B,则“第1次和第2次都抽到 理 n( A) 12 3 科题”就是事件 AB. 2 1 1 (1) n() A5 20, n( A) A3 A4 12, P( A) . n() 20 5 n(AB) 6 3 2 (2) n(AB ) A3 6, P( AB) . 3 n() 20 10
5
条件概率(conditional probability ) 1.定义
一般地,设A,B为两个事件,且 P ( A) 0 ,称
P ( AB ) 为事件A发生的条件下,事件B P B A P ( A) 发生的条件概率.
P(B|A)读作A发生的条件下B发生的概率,
n( AB) P B A n( A) P ( AB) P ( A)
0
n A
n B 6 1 6 1 (2) P B 36 6 36 6 n
P
2
2 P B | A
0
n AB n

3 1 6 2
10
2. 如图所示的正方形被平均分成9个部分,向大正 方形区域随机的投掷一个点(每次都能投中), 设投中最左侧3个小正方形的事件记为A,投中最 上面3个小正方形或中间的1个小正方形的事件记 为B,求 P(A|B), P(B|A),
B
A∩B
A
P(B|A)相当于把A当做新的样本空间来计算AB发生的概率。
P(A|B)怎么读?怎么理解?怎么求解?
6
2.条件概率的性质: (1)有界性: 0 P B A 1
(2)可加性:如果B和C是两个互斥事件,则
P B C A P B A P C A
7
例1
(古典概型) (一般概型)
4. 求解条件概率的一般步骤
用字母表示有关事件 求相关量 代入公式求P(B|A)
二、思想方法
1.由特殊到一般 2.类比、归纳、推理 3.数形结合
12
作业
(1)课本54页练习1,2,3
(2)金太阳导学测评(八十二)
13
14
练一练
21 22
31 32 41 42 51 52 61 62
23 24 25 26
61 62 63Βιβλιοθήκη 646566B
A∩B
A
解:设Ω 为所有基本事件组成的全体,“第一颗掷出6点”为事件 “掷出点数之和不小于10”为事件B,则“已知第一颗掷出6点, 掷出点数之和不小于10”为事件AB
(1) P A n P AB 1 (3)1 P B | A
探究:
不妨记为 P( B
A)
AB B

B
已知A发生
A
4
思考: 计算 P(B A) ,涉及事件A和AB,那么用事件A 和
AB 的概率 P(A) 和P(AB)可以表P(B|A)吗?

B
n( A) P ( A) n( ) n( AB ) P ( AB ) n( )
已知A发生
AB
A
P ( B | A) ?
(3)法1 P( B | A) P( AB) 10 1 . 3 2法2 P( A) 5
n( AB) 6 8 1 P( B | A) n( A) 12 2
想一想
你能归纳出求解条件概率的一般步骤吗?
求解条件概率的一般步骤: (1)用字母表示有关事件
(2)求P(AB),P(A)或n(AB),n(A)
1 1 P( B) 4 解:∵ P ( AB ) , , P ( A) 9 9 3 1 P ( AB ) 9 1 P( A | B) 4 4 P ( B) 9 1 P ( AB ) 9 1 P ( B | A) 1 3 P ( A) 3
11
收获
一、基本知识
P ( AB) 1. 条件概率的定义. P B A P( A) 0 P ( A) 2. 条件概率的性质. (1)有界性(2)可加性 n( AB) P ( AB ) P B A P B A 3. 条件概率的计算方法. n( A) P ( A)
P ( AB) n( AB) ( 3 )利用条件概率公式求 P B A P ( A) n( A)
9
1. 掷两颗均匀骰子,问: ⑴ “ 第一颗掷出6点”的概率是多少? ⑵ “掷出点数之和不小于10”的概率又是多少? ⑶ “已知第一颗掷出6点,则掷出点数之和不小于10”的概率呢?
11 12 13 14 15 16 33 34 35 36 43 44 45 46 53 54 55 56 63 64 65 66
相关文档
最新文档