数学建模之层次分析法
数学建模——层次分析法
在大石头中的重量比)可用向量
且
n
w ( w1 , w2 ,..., wn
T 表示, )
. 显然, 的各个列向量与 w 1 A i
i 1
w
仅相差一个比例
因子。 一般地,如果一个正互反阵
A
满足 (8.2.4)
aij a jk aik , i, j, k 1, 2,..., n
则
3 计算权向量并做一致性检验
定理1
当
n 阶正互反阵 A的最大特征根 n,
时
当且仅
A为一致阵。 由于 连续的依赖于 aii ,则 比 n 大的越多, 的不 A
n
一致性越严重。用最大特征值对应的特征向量作为被比较因
素对上层某因素影响程度的权向量,其不一致程度越大,引 起的判断误差越大。因而可以用
RI。方法为:
A1 , A2 ,, A500
2.则可得一致性指标 : CI1 , CI 2 ,CI500
CI1 CI 2 CI500 RI 500
n RI
1 2 500 n 500 n 1
1 2 3 4 5 6 7 8 9 10 11 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51
aii 1 ,如用 C1 , C2 ,..., Cn
2 构造成对比较矩阵
2.比较尺度 • 当比较两个可能具有不同性质的因素 Ci 和 C j 对于一个上层 因素 O 的影响时,Saaty提出用1—9尺度(见下表),即aij 的取值范围是1,2,,9 ,及其互反数1,1/ 2,,1/ 9 。其理由 如下:
重,景色次之,居住条件再次。 问题1.怎样由成对比较阵确定诸因素 C , C ,..., C 对上层因 1 2 n 素
数学建模——层次分析法模型
危害性分级模型的建立与求解1.基于层次分析模型对恐怖袭击事件危害性指标建立层次结构模型考虑到恐怖袭击事件的危害性、人员伤亡、经济损失、发生的时机、地域、针对的对象等等诸多因素有关,在构建指标体系时,无法全部考虑到所有指标,因此本文采用层次分析模型,以定性和定量相结合的方法处理指标。
根据上述分析可知, 影响恐怖事件危险性级别的因素有很多,但是,在构建综合评价指标体系时,很难一次性考虑全部细节,此时可以将问题分解成多个层次,而每个层次又包含多个要素,依据大系统理论的分解协调原理,由粗到细,从全局到局部地逐步深入分析,把危险性级别评价的诸多影响因素条理化、层次化,从而建立一个递阶层次分析模型具体的层次分析模型如图1所示。
通过附件1对所有数据指标分析,建立系统的递阶层次结构,第一层为目标层分为5大类,第二层为准则层,第三层为子准则层,第四层为方案层。
其结果目标层准则层子准则层方案层恐怖袭击危害性指标响应级别人员伤亡死亡人数级别1级别2级别3级别4级别5受伤人数被绑人数经济损失损失程度1损失程度2损失程度3损失程度4攻击类型攻击设施攻击个人攻击群体武器类型无杀伤力中小型杀伤力攻击设施1.2 构造成对比较矩阵上一层因素的同一层诸因素,用成对比较法和1~9比较尺度构建成对比较矩阵[1],直到最底层。
表2 标度------比较尺度解释标度 定义1 因素i 与因素j 相同重要 3 因素i 比因素j 稍重要 5 因素i 比因素j 较重要 7 因素i 比因素j 非常重要 9 因素i 比因素j 绝对重要2,4,6,8因素i 与因素j 的重要性的比值介于上述两个相邻等级之间倒数1,1/2,1/3,1/4,1/5,1/6,1/7,1/8,1/9因素j 与因素i 比较得到判断值为ij a 的互反数,ijji a a 1=1=ii a设要素为i F ,j F ;当i F 与j F 相比同等重要,有ij R =1 ;当i F 与j F 相比略为重要,有ij R =3/1 ;当i F 与j F 相比相当重要,有ij R =5/1 ;当i F 与j F 相比明显重要,有ij R =7/1 ;当i F 与j F 相比绝对重要,有ij R =9/1。
(完整版)数学建模之层次分析法
层次分析法层次分析法是一种解决多目标的复杂问题的定性与定量相结合的决策分析方法。
该方法将定量分析与定性分析结合起来,用决策者的经验判断各衡量目标能否实现的标准之间的相对重要程度,并合理地给出每个决策方案的每个标准的权数,利用权数求出各方案的优劣次序,比较有效地应用于那些难以用定量方法解决的课题。
缺点:(1)层次分析法的主观性太强,模型的搭建,判断矩阵的输入都是决策者的主观判断,往往会因为决策者的考虑不周、顾此失彼而造成失误。
(2)层次分析法模型的内部结构太过理想化,完全分离、彼此独立的层次结构在实践中很难做到。
(5)层次分析法只能从给定的决策方案中去选择,而不能给出新的、更优的策略。
1.模型的应用用于解决多目标的复杂问题的定性与定量相结合的决策分析。
(1)公司选拔人员,(2)旅游地点的选取,(3)产品的购买等,(4)船舶投资决策问题(下载文档),(5)煤矿安全研究,(6)城市灾害应急能力,(7)油库安全性评价,(8)交通安全评价等。
2.步骤①建立层次结构模型首先明确决策目标,再将各个因素按不同的属性从上至下搭建出一个有层次的结构模型,模型如下图所示。
目标层准则层方案层目标层:表示解决问题的目的,即层次分析要达到的总目标。
通常只有一个总目标。
准则层:表示采取某种措施、政策、方案等实现预定总目标所涉及的中间环节。
方案层:表示将选用的解决问题的各种措施、政策、方案等。
通常有几个方案可选。
注意:(1)任一元素属于且仅属于一个层次;任一元素仅受相邻的上层元素的支配,并不是任一元素与下层元素都有联系;(2)虽然对准则层中每层元素数目没有明确限制,但通常情况下每层元素数最好不要超过 9 个。
这是因为,心理学研究表明,只有一组事物在 9 个以内,普通人对其属性进行判别时才较为清楚。
当同一层次元素数多于 9 个时,决策者对两两重要性判断可能会出现逻辑错误的概率加大,此时可以通过增加层数,来减少同一层的元素数。
②构造判断(成对比较)矩阵以任意一个上一层的元素为准则,对其支配的下层各因素之间进行两两比a重要程度的衡量用Santy的1—9较。
层次分析法(AHP)建模
新余高等专科学校 数学建模教练组 2005-
6
Mathematical Contest in Modeling
层次分析法
3
计算权向量并做一致性检验
什么是权重(权系数)? 在决策问题中,通常要把变量Z表成变量x1,x2, … , xn的线性组合:
z w1x1 w2 x2 wn xn
n
其中 wi 0, wi 1 w1, w2 ,...., w则n
1 例: A 1/ 2
2 1
6 4
列向量 归一化
0.6 0.3
0.615 0.308
0.545 0.364
按行求和
1.760 0.972
1/ 6 1/ 4 1
0.1 0.077 0.091
0.268
, 即为
归一化
0.587 0.324 w
0.089
1.769 Aw 0.974
0.268
1 (1.769 0.974 0.268) 3.009
比较因素的权向量,其不一致程度应在容许的范围内.如何确定这个范围?
Mathematical Contest in Modeling 第5讲: 层次分析法(AHP)建模
层次分析法基本简介 层次分析法的基本步骤
1. 建立层次结构模型 2. 构造成对比较阵(判断矩阵) 3. 计算权向量并做一致性检验 4. 计算组合权向量并做组合一致性检验
不完全层次结构模型
新余高等专科学校 数学建模教练组 (设计制作: syllen
权重(权系数)?
a. 将A的每一列向量归一化得 w~ij aij / n aij
w~ b. 对 ij
按行求和得w~i n w~ij
j 1
i 1
层次分析法数学建模
在某些情况下,层次分析法可能无法合理地分配权重,导致决策结果 与实际情况存在较大偏差。
无法处理动态变化
层次分析法主要用于静态决策问题,对于动态变化的决策问题处理能 力较弱。
05 结论与展望
结论
层次分析法是一种有效的决策分析方法,能够将复杂问题 分解为多个层次和因素,通过比较和判断各因素之间的相 对重要性,为决策提供依据。
实例三:风险评估问题
总结词
层次分析法在风险评估问题中,能够综合考虑风险的多种来源和影响因素,确定各因素之间的权重关 系,为风险的有效控制提供科学的依据。
详细描述
风险评估问题涉及到如何识别、评估和控制各种潜在的风险。层次分析法可以将风险的多种来源和影 响因素进行比较和判断,确定各因素之间的权重关系,为风险的有效控制提供科学的依据。同时,层 次分析法还可以用于制定风险应对策略和预案,提高组织的抗风险能力。
层次单排序与一致性检验
层次单排序
根据判断矩阵的性质和计算方法,计 算出各组成元素的权重值,并按照权 重值的大小进行排序。
一致性检验
对判断矩阵的一致性进行检验,以确 保各组成元素之间的相对重要性关系 符合逻辑和实际情况。
层次总排序与一致性检验
层次总排序
根据各层次的权重值和组成元素的权重值,计算出整个层次结构模型的权重值, 并进行总排序。
确定层次
根据问题的复杂程度和组 成元素的性质,将层次结 构划分为不同的层次,以 便于分析和计算。
判断矩阵的建立
确定判断标准
根据问题的特点和要求,确定判 断各组成元素之间相对重要性的 标准和方法。
构造判断矩阵
根据判断标准,构造出一个判断 矩阵,用于表示各组成元素之间 的相对重要性关系。
【数学建模浅谈层次分析法】
浅谈层次分析法摘要本文主要阐述层次分析法的定义、特点、基本步骤以及它的优缺点。
层次分析法是在对复杂的决策问题的本质、影响因素及其内在关系等进行深入分析的基础上,利用较少的定量信息使决策的思维过程数学化,从而为多目标、多准则或无结构特性的复杂决策问题提供简便的决策方法。
由于它在处理复杂的决策问题上的实用性和有效性,很快在世界范围内得到重视。
它的应用已遍及经济计划和管理、能源政策和分配、行为科学、军事指挥、运输、农业、教育、人才、医疗和环境等领域。
关键词:层次分析多目标多准则成对比较一致性检验前言数学是一切科学和技术的基础,是研究现实世界数量关系、空间形式的科学。
随着社会的发展,电子计算机的出现和不断完善,数学不但运用于自然科学各学科、各领域,而且渗透到经济、管理以至于社会科学和社会活动的各领域。
众所周知,利用数学解决实际问题,首先要建立数学模型,然后才能在该模型的基础上对实际问题进行分析、计算和研究。
数学建模(Mathematical Modeling)活动是讨论建立数学模型和解决实际问题的全过程,是一种数学思维方式。
从学术的角度来讲,数学建模就是利用数学技术去解决实际问题;从价值的角度来讲,数学建模是一个思维过程,它是一个解决问题的过程(创新),更是一个升华理论方法的过程(总结);从哲学的角度来讲,数学建模是认识世界和改造世界的过程。
1 数学建模过程和技巧数学建模的过程是通过对现实问题的简化、假设、抽象,提炼出数学模型;然后运用数学方法和计算机工具等,得到数学上的解答;再把它反馈到现实问题,给出解释、分析,并进行检验。
若检验结果符合实际或基本符合,就可以用来指导实践;否则就再假设、再抽象、再修改、再求解、再应用。
构造数学模型不是一件容易的事,其建模过程和技巧具体主要包括以下步骤:⑴模型准备在建模前要了解实际问题的背景,明确建模的目的和要求;深入调研,去粗取精,去伪存真,找出主要矛盾;并按要求收集必要的数据。
数学建模方法详解三种最常用算法
数学建模方法详解--三种最常用算法一、层次分析法层次分析法[1] (analytic hierarchy process,AHP)是美国著名的运筹学家T.L.Saaty教授于20世纪70年代初首先提出的一种定性与定量分析相结合的多准则决策方法[2,3,4].该方法是社会、经济系统决策的有效工具,目前在工程计划、资源分配、方案排序、政策制定、冲突问题、性能评价等方面都有广泛的应用.(一) 层次分析法的基本原理层次分析法的核心问题是排序,包括递阶层次结构原理、测度原理和排序原理[5].下面分别予以介绍.1.递阶层次结构原理一个复杂的结构问题可以分解为它的组成部分或因素,即目标、准则、方案等.每一个因素称为元素.按照属性的不同把这些元素分组形成互不相交的层次,上一层的元素对相邻的下一层的全部或部分元素起支配作用,形成按层次自上而下的逐层支配关系.具有这种性质的层次称为递阶层次.2.测度原理决策就是要从一组已知的方案中选择理想方案,而理想方案一般是在一定的准则下通过使效用函数极大化而产生的.然而对于社会、经济系统的决策模型来说,常常难以定量测度.因此,层次分析法的核心是决策模型中各因素的测度化.3.排序原理层次分析法的排序问题,实质上是一组元素两两比较其重要性,计算元素相对重要性的测度问题. (二) 层次分析法的基本步骤层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一致的[1]. 1. 成对比较矩阵和权向量为了能够尽可能地减少性质不同的诸因素相互比较的困难,提高结果的准确度.T .L .Saaty 等人的作法,一是不把所有因素放在一起比较,而是两两相互对比,二是对比时采用相对尺度.假设要比较某一层n 个因素n C C ,,1 对上层一个因素O 的影响,每次取两个因素i C 和j C ,用ij a 表示i C 和j C 对O 的影响之比,全部比较结果可用成对比较阵1,0,ij ij ji n nijA a a a a表示,A 称为正互反矩阵. 一般地,如果一个正互反阵A 满足:,ij jk ik a a a ,,1,2,,i j k n L (1)则A 称为一致性矩阵,简称一致阵.容易证明n 阶一致阵A 有下列性质: ①A 的秩为1,A 的唯一非零特征根为n ;②A 的任一列向量都是对应于特征根n 的特征向量.如果得到的成对比较阵是一致阵,自然应取对应于特征根n 的、归一化的特征向量(即分量之和为1)表示诸因素n C C ,,1 对上层因素O 的权重,这个向量称为权向量.如果成对比较阵A 不是一致阵,但在不一致的容许范围内,用对应于A 最大特征根(记作 )的特征向量(归一化后)作为权向量w ,即w 满足:Aw w (2)直观地看,因为矩阵A 的特征根和特征向量连续地依赖于矩阵的元素ij a ,所以当ij a 离一致性的要求不远时,A 的特征根和特征向量也与一致阵的相差不大.(2)式表示的方法称为由成对比较阵求权向量的特征根法.2. 比较尺度当比较两个可能具有不同性质的因素i C 和j C 对于一个上层因素O 的影响时,采用Saaty 等人提出的91 尺度,即ij a 的取值范围是9,,2,1 及其互反数91,,21,1 .3. 一致性检验成对比较阵通常不是一致阵,但是为了能用它的对应于特征根 的特征向量作为被比较因素的权向量,其不一致程度应在容许范围内.若已经给出n 阶一致阵的特征根是n ,则n 阶正互反阵A 的最大特征根n ,而当n 时A 是一致阵.所以 比n 大得越多,A 的不一致程度越严重,用特征向量作为权向量引起的判断误差越大.因而可以用n 数值的大小衡量A 的不一致程度.Saaty 将1nCI n(3)定义为一致性指标.0CI 时A 为一致阵;CI 越大A 的不一致程度越严重.注意到A 的n 个特征根之和恰好等于n ,所以CI 相当于除 外其余1n 个特征根的平均值.为了确定A 的不一致程度的容许范围,需要找到衡量A 的一致性指标CI 的标准,又引入所谓随机一致性指标RI ,计算RI 的过程是:对于固定的n ,随机地构造正互反阵A ,然后计算A 的一致性指标CI .表1 随机一致性指标RI 的数值表中1,2n 时0RI ,是因为2,1阶的正互反阵总是一致阵.对于3n 的成对比较阵A ,将它的一致性指标CI 与同阶(指n 相同)的随机一致性指标RI 之比称为一致性比率CR ,当0.1CICR RI(4) 时认为A 的不一致程度在容许范围之内,可用其特征向量作为权向量.对于A 利用(3),(4)式和表1进行检验称为一致性检验.当检验不通过时,要重新进行成对比较,或对已有的A 进行修正. 4. 组合权向量由各准则对目标的权向量和各方案对每一准则的权向量,计算各方案对目标的权向量,称为组合权向量.一般地,若共有s 层,则第k 层对第一层(设只有1个因素)的组合权向量满足:1,3,4,kkk w W w k s L (5)其中 kW 是以第k 层对第1k 层的权向量为列向量组成的矩阵.于是最下层对最上层的组合权向量为:132s s s w W W W w L (6)5. 组合一致性检验在应用层次分析法作重大决策时,除了对每个成对比较阵进行一致性检验外,还常要进行所谓组合一致性检验,以确定组合权向量是否可以作为最终的决策依据.组合一致性检验可逐层进行.如第p 层的一致性指标为p n p CI CI ,,1 (n 是第1 p 层因素的数目),随机一致性指标为1,,p p nRI RI L ,定义11,,P p p p n CI CI CI w L 11,,p p p p n RI RI RI wL 则第p 层的组合一致性比率为:,3,4,,p p p CI CRp s RIL (7) 第p 层通过组合一致性检验的条件为 0.1pCR .定义最下层(第s 层)对第一层的组合一致性比率为:2*sP p CR CR (8)对于重大项目,仅当*CR 适当地小时,才认为整个层次的比较判断通过一致性检验.层次分析法的基本步骤归纳如下:(1) 建立层次结构模型 在深入分析实际问题的基础上,将有关的各个因素按照不同属性自上而下地分解成若干层次.同一层的诸因素从属于上一层的因素或对上层因素有影响,同时又支配下一层的因素或受到下层因素的作用,而同一层的各因素之间尽量相互独立.最上层为目标层,通常只有1个因素,最下层通常为方案或对象层,中间可以有1个或几个层次,通常称为准则或指标层,当准则过多时(比如多于9个)应进一步分解出子准则层.(2) 构造成对比较阵从层次结构模型的第2层开始,对于从属于上一层每个因素的同一层诸因素,用成对比较法和91 比较尺度构造成对比较阵,直到最下层.(3)计算权向量并做一致性检验对于每一个成对比较阵计算最大特征根及对应特征向量,利用一致性指标,随机一致性指标和一致性比率做一致性检验.若检验通过,特征向量(归一化后)即为权向量;若不通过,重新构造成对比较阵.(4)计算组合权向量并做组合一致性检验利用公式计算最下层对目标的组合权向量,并酌情作组合一致性检验.若检验通过,则可按照组合权向量表示的结果进行决策,否则需重新考虑模型或重新构造那些一致性比率CR较大的成对比较阵.(三) 层次分析法的优点1.系统性层次分析把研究对象作为一个系统,按照分解、比较判断、综合的思维方式进行决策,成为继机理分析、统计分析之后发展起来的系统分析的重要工具.2.实用性层次分析把定性和定量方法结合起来,能处理许多用传统的最优化技术无法着手的实际问题,应用范围很广.同时,这种方法将决策者与决策分析者相互沟通,决策者甚至可以直接应用它,这就增加了决策的有效性.3.简洁性具有中等文化程度的人即可了解层次分析的基本原理和掌握它的基本步骤,计算也非常简便,且所得结果简单明确,容易为决策者了解和掌握.(四) 层次分析法的局限性层次分析法的局限性可以用囿旧、粗略、主观等词来概括.第一,它只能从原有的方案中选优,不能生成新方案;第二,它的比较、判断直到结果都是粗糙的,不适于精度要求很高的问题;第三,从建立层次结构模型到给出成对比较矩阵,人的主观因素的作用很大,这就使得决策结果可能难以为众人接受.当然,采取专家群体判断的方法是克服这个缺点的一种途径. (五) 层次分析法的若干问题层次分析法问世以来不仅得到广泛的应用而且在理论体系、计算方法等方面都有很大发展,下面从应用的角度讨论几个问题. 1. 正互反阵最大特征根和对应特征向量的性质成对比较阵是正互反阵.层次分析法中用对应它的最大特征根的特征向量作为权向量,用最大特征根定义一致性指标进行一致性检验.这里人们碰到的问题是:正互反阵是否存在正的最大特征根和正的特征向量;一致性指标的大小是否反映它接近一致阵的程度,特别,当一致性指标为零时,它是否就为一致阵.下面两个定理可以回答这些问题. 定理1 对于正矩阵A (A 的所有元素为正数) 1)A 的最大特征根是正单根 ;2) 对应正特征向量w ( 的所有分量为正数);3)w IA I I A k k k lim ,其中1,1,1 I ,w 是对应 的归一化特征向量.定理2 n 阶正互反阵A 的最大特征根n ;当n 时A 是一致阵.定理2和前面所述的一致阵的性质表明,n 阶正互反阵A 是一致阵的充要条件为 A 的最大特征根n .2. 正互反阵最大特征根和特征向量的实用算法众所周知,用定义计算矩阵的特征根和特征向量是相当困难的,特别是矩阵阶数较高时.另一方面,因为成对比较阵是通过定性比较得到的比较粗糙的量化结果,对它精确计算是不必要的,下面介绍几种简单的方法. (1) 幂法 步骤如下:a .任取n 维归一化初始向量 0wb .计算1,0,1,2,k k wAw k %L c .1k w%归一化,即令ni k ik k ww1111~~d .对于预先给定的精度 ,当 1||1,2,,k k i i i n L 时,1k w 即为所求的特征向量;否则返回be. 计算最大特征根 111k n ik i in %这是求最大特征根对应特征向量的迭代法, 0w 可任选或取下面方法得到的结果.(2) 和法 步骤如下:a. 将A 的每一列向量归一化得1nij ij iji a a%b .对ij %按行求和得1ni ij j %%c .将i %归一化 *121,,,ni ini w%%L 即为近似特征向量.d. 计算 11n ii iAw n ,作为最大特征根的近似值.这个方法实际上是将A 的列向量归一化后取平均值,作为A 的特征向量.(3) 根法 步骤与和法基本相同,只是将步骤b 改为对ij %按行求积并开n 次方,即11nn iij j%%.根法是将和法中求列向量的算术平均值改为求几何平均值.3. 为什么用成对比较阵的特征向量作为权向量当成对比较阵A 是一致阵时,ij a 与权向量n w ,,1 的关系满iij ja,那么当A 不是一致阵时,权向量w 的选择应使得ij a 与ij相差尽量小.这样,如果从拟合的角度看确定w 可以化为如下的最小二乘问题: 21,,11min i nniij i n i j j aL (9) 由(9)式得到的最小二乘权向量一般与特征根法得到的不同.因为(9)式将导致求解关于i 的非线性方程组,计算复杂,且不能保证得到全局最优解,没有实用价值.如果改为对数最小二乘问题:21,,11min ln ln i nni ij i n i j j aL (10)则化为求解关于ln i 的线性方程组.可以验证,如此解得的i 恰是前面根法计算的结果.特征根法解决这个问题的途径可通过对定理2的证明看出. 4. 成对比较阵残缺时的处理专家或有关学者由于某种原因无法或不愿对某两个因素给出相互比较的结果,于是成对比较阵出现残缺.应如何修正,以便继续进行权向量的计算呢?一般地,由残缺阵 ij A a 构造修正阵 ijA a %%的方法是令,,0,,1,ij ij ij ij i i a a i j a a i jm m i i j%为第行的个数, (11)表示残缺.已经证明,可以接受的残缺阵A 的充分必要条件是A 为不可约矩阵.(六) 层次分析法的广泛应用层次分析法在正式提出来之后,由于它在处理复杂的决策问题上的实用性和有效性,很快就在世界范围内得到普遍的重视和广泛的应用.从处理问题的类型看,主要是决策、评价、分析、预测等方面. 这个方法在20世纪80年代初引入我国,很快为广大的应用数学工作者和有关领域的技术人员所接受,得到了成功的应用.层次分析法在求解某些优化问题中的应用[5]举例 假设某人在制定食谱时有三类食品可供选择:肉、面包、蔬菜.这三类食品所含的营养成分及单价如表所示表2 肉、面包、蔬菜三类食品所含的营养成分及单价该人体重为55kg维生素A 7500国际单位 (IU)维生素B 1.6338mg热量 R 8548.5kJ考虑应如何制定食谱可使在保证营养需求的前提下支出最小?用层次分析法求解最优化问题可以引入包括偏好等这类因素.具体的求解过程如下:①建立层次结构② 根据偏好建立如下两两比较判断矩阵表3 比较判断矩阵max 2 ,10CI ,100.1CR ,主特征向量0.75,0.25W 故第二层元素排序总权重为 10.75,0.25W表4 比较判断矩阵111max 1113,0,0,0.58CI CR RI ,主特征向量0.4,0.4,0.2W故相对权重 210.4,0.4,0.2,0P③ 第三层组合一致性检验问题因为 2111211112120;0.435CI CI CI W RI RI RI W ,212200.1CR CR CI RI故第三层所有判断矩阵通过一致性检验,从而得到第三层元素维生素A 、维生素B 、热量Q 及支出E 的总权重为:221221120.3,0.3,0.15,0.25W P W P P W求第四层元素关于总目标W 的排序权重向量时,用到第三层与第四层元素的排序关系矩阵,可以用原始的营养成分及单价的数据得到.注意到单价对人们来说希望最小,因此应取各单价的倒数,然后归一化.其他营养成分的数据直接进行归一化计算,可得表5表5 各营养成分数据的归一化则最终的第四层各元素的综合权重向量为:3320.2376,0.2293,0.5331W P W ,结果表明,按这个人的偏好,肉、面包和蔬菜的比例取0.2376:0.2293:0.5331较为合适.引入参数变量,令10.2376x k ,20.2293x k ,30.5331x k ,代入 1LP123min 0.02750.0060.007f x x x131231231230.352725.075000.00210.00060.002 1.6338..(1)11.930011.5100 1.048548.5,,,0x x x x x s t LP x x x x x x则得k f 0116.0min13.411375000.0017 1.6338..26.02828548.50k k s t LP k k容易求得1418.1k ,故得最优解 *336.9350,325.1650,755.9767x;最优值 *16.4497f ,即肉336.94g ,面325.17g ,蔬菜755.98g ,每日的食品费用为16.45元.总之,对含有主、客观因素以及要求与期望是模糊的优化问题,用层次分析法来处理比较适用.二、模糊数学法模糊数学是1965年美国控制论专家L.A.Zadeh创立的.模糊数学作为一门新兴学科,它已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判等各方面.在气象、结构力学、控制、心理学方面已有具体的研究成果.(一) 模糊数学的研究内容第一,研究模糊数学的理论,以及它和精确数学、随机数学的关系;第二,研究模糊语言和模糊逻辑,并能作出正确的识别和判断;第三,研究模糊数学的应用.(二) 模糊数学在数学建模中应用的可行性1.数学建模的意义在于将数学理论应用于实际问题[6].而模糊数学作为一种新的理论,本身就有其巨大的应用背景,国内外每年都有大量的相关论文发表,解决了许多实际问题.目前在数学建模中较少运用模糊数学方法的原因不在于模糊数学理论本身有问题,而在于最新的研究成果没有在第一时间进入数学建模的教科书中,就其理论本身所具有的实用性的特点而言,模糊数学应该有助于我们解决建模过程中的实际问题.2.数学建模的要求是模型与实际问题尽可能相符.对实际问题有这样一种分类方式:白色问题、灰色问题和黑色问题.毫无疑问,引进新的方法对解决这些问题大有裨益.在灰色问题和黑色问题中有很多现象是用“模糊”的自然语言描述的.在这种情况下,用模糊的模型也许更符合实际.3.数学建模活动的目的之一是培养学生的创新精神.用新理论、新方法解题应该受到鼓励.近年来,用神经网络法、层次分析法等新方法建立模型的论文屡有获奖,这也说明了评审者对新方法的重视.我们相信,模糊数学方法应该很好,同样能够写出优秀的论文.(三) 模糊综合评判法中的最大隶属原则有效度在模糊统计综合评判中,如何利用综合评判结果向量12,,,m b b b b L ,其中, 01j b ,m为可能出现的评语个数,提供的信息对被评判对象作出所属等级的判断,目前通用的判别原则是最大隶属原则[7].在实际应用中很少有人注意到最大隶属原则的有效性问题,在模糊综合评判的实例中最大隶属原则无一例外地被到处搬用,然而这个原则并不是普遍适用的.最大隶属原则有效度的测量1. 有效度指标的导出在模糊综合评判中,当11max 1,1njj j nj bb 时,最大隶属原则最有效;而在 1max 01,jj nbc c 1n j j b nc 时,最大隶属原则完全失效,且1max jj nb 越大(相对于1njj b 而言),最大隶属原则也越有效.由此可认为,最大隶属原则的有效性与1max jj nb 在1njj b 中的比重有关,于是令:11max njjj nj b b (12)显然,当11max 1,1njj j nj bb 时,则1 为 的最大值,当 1max 01jj nb c c ,1njj bnc时,有1n 为 的最小值,即得到 的取值范围为:11n .由于在最大隶属原则完全失效时,1n 而不为0,所以不宜直接用 值来判断最大隶属原则的有效性.为此设:11111n n n n(13)则 可在某种程度上测定最大隶属原则的有效性.而最大隶属原则的有效性还与j nj b 1sec (jnj b 1sec 的含义是向量b 各分量中第二大的分量)的大小有很大关系,于是我们定义:11sec njjj nj b b(14)可见: 当 1,1,0,0,,0b L 时, 取得最大值12.当 0,1,0,0,,0b L 时, 取得最小值0.即 的取值范围为012 ,设 02120.一般地, 值越大最大隶属原则有效程度越高;而 值越大,最大隶属原则的有效程度越低.因此,可以定义测量最大隶属原则有效度的相对指标:112121n n n n(15) 使用 指标能更准确地表明实施最大隶属原则的有效性.2. 指标的使用从 指标的计算公式看出 与 成反比,与 成正比.由 与 的取值范围,可以讨论 的取值范围: 当 取最大值, 取最小值时, 将取得最小值0;当 取最小值, 取最大值时, 将取得最大值:因为 0lim ,所以可定义0 时, .即:0 .由以上讨论,可得如下结论:当 时,可认定施行最大隶属原则完全有效;当1 时,可认为施行最大隶属原则非常有效;当0.51 时,可认为施行最大隶属原则比较有效,其有效程度即为 值;当00.5 时可认为施行最大隶属原则是最低效的;而当0 时,可认定施行最大隶属原则完全无效.有了测量最大隶属原则有效度的指标,不仅可以判断所得可否用最大隶属原则确定所属等级,而且可以说明施行最大隶属原则判断后的相对置信程度,即有多大把握认定被评对象属于某个等级. 讨论a . 在很多情况下,可根据 值的大小来直接判断使用最大隶属原则的有效性而不必计算 值.根据 与 之间的关系,当0.7 ,且4n 时,一定存在1 .通常评价等级数取4和9之间,所以4n 这一条件往往可以忽略,只要0.7 就可免算 值,直接认定此时采取最大隶属原则确定被评对象的等级是很有效的.b . 如果对 12,,,m b b b b L 进行归一化处理而得到b ,则可直接根据b 进行最大隶属原则的有效度测量. (四) 模糊数学在数学建模中的应用模糊数学有诸多分支,应用广泛.如模糊规划、模糊优化设计、综合评判、模糊聚类分析、模糊排序、模糊层次分析等等.这些方法在工业、军事、管理等诸多领域被广泛应用. 举例 带模糊约束的最小费用流问题[8]问题的提出 最小费用流问题的一般提法是:设 ,,,D V A c 是一个带出发点s v 和收点t v 的容量-费用网络,对于任意,ijv v A ,ijc表示弧 ,i j v v 上的容量,ij 表示弧 ,i j v v 上通过单位流量的费用,0v 是给定的非负数,问怎样制定运输方案使得从s v 到t v 恰好运输流值为0v 的流且总费用最小?如果希望尽可能地节省时间并提高道路的通畅程度,问运输方案应当怎样制定?模型和解法 问题可以归结为:怎样制定满足以下三个条件的最优运输方案?(1)从s v 到t v 运送的流的值恰好为0v ;(2)总运输费用最小;(3)在容量ij c 大的弧 ,i j v v 上适当多运输.如果仅考虑条件(1)和(2),易写出其数学模型为:,0,,0,,,,min()..0,0i j s j j s t j j t i j j i ij ijv v Asj js v v A v v A tj jt v v Av v A ij ji i s t v v A v v A ij ijf f f v f f v M s t f f v V v v f c把条件(3)中的“容量大” 看作A 上的一个模糊子集A %,定义其隶属函数 : 0,1A 为: 00,0,1,ij ij ij i j A d c c v ij c c v v e c c%其中 1,i j ij v v c A cg (平均容量)21,21,0,1lg 1i j i j ij v v A ij v v A A c c d A c cg g建立ij 是为了量化“适当多运输”这一模糊概念.对条件(2)作如下处理:对容量ij c 大的弧 ,i j v v ,人为地降低运价ij ,形成“虚拟运价”ij ,其中ij 满足:ij c 越大,相应的ij 的调整幅度也越大.选取ij 为 1kij ij ij , ,i j v v A .其中k 是正参数,它反映了条件(2)和条件(3)在决策者心目中的地位.决策者越看重条件(3),k 取值越小;当k 取值足够大时,便可忽略条件(3) .一般情况下,合适的k 值最好通过使用一定数量的实际数据进行模拟、检验和判断来决定.最后,用ij 代替原模型M 中的ij ,得到一个新的模型M .用现有的方法求解这个新的规划问题,可期望得到满足条件(3)的解.模型的评价 此模型在原有的数学规划模型和解法的基础上,增加了模糊约束.新模型比较符合实际,它的解包含了原模型的解,因而它是一个较为理想的模型.隶属度的确定在模糊数学中有多种方法,可以根据不同的实际问题进行调整.同样的思想方法可以处理其他的模糊约束问题.三、灰色系统客观世界的很多实际问题,其内部结构、参数以及特征并未全部被人们了解,对部分信息已知而部分信息未知的系统,我们称之为灰色系统.灰色系统理论是从系统的角度出发来研究信息间的关系,即研究如何利用已知信息去揭示未知信息.灰色系统理论包括系统建模、系统预测、系统分析等方面.(一)灰色关联分析理论及方法灰色系统理论[9]中的灰色关联分析法是在不完全的信息中,对所要分析研究的各因素,通过一定的数据,在随机的因素序列间,找出它们的关联性,找到主要特性和主要影响因素.计算方法与步骤:1.原始数据初值化变换处理分别用时间序列 k 的第一个数据去除后面的原始数据,得出新的倍数列,即初始化数列,量纲为一,各值均大于零,且数列有共同的起点.2. 求关联系数0000min min ||max max ||||max max ||k i k k i k ik i ki k k i k k i k ikx x x x x x x x3. 取分辨系数 01 4. 求关联度11ni ki k k r n(二) 灰色预测1.灰色预测方法的特点(1)灰色预测需要的原始数据少,最少只需四个数据即可建模;(2)灰色模型计算方法简单,适用于计算机程序运行,可作实时预测;(3) 灰色预测一般不需要多因素数据,而只需要预测对象本身的单因素数据,它可以通过数据本身的生成,寻找系统内在的规律;(4) 灰色预测既可做短期预测,也可做长期预测,实践证明,灰色预测精度较高,误差较小.2. 灰色预测GM(1,1)模型的一点改进一些学者为了提高预测精度做出了大量的研究工作,提出了相应的方法.本文将在改善原始离散序列光滑性的基础上,进一步研究GM(1,1)预测模型的理论缺陷及改进方法[10].问题的存在及改进方法如下:传统灰色预测GM(1,1)模型的一般步骤为: (1)1-ADO :对原始数据序列0k x 1,2,,k n L 进行一次累加生成序列 101kk i i x x1,2,,k n L(2)对0x 数列进行光滑性检验:00,k ,当0k k 时:0011101k k k k ii x x x x文献[11]进一步指出只要0101k k ii x x 为k 的递减函数即可.(3)对1x 作紧邻生成: 1111*1*,2,3,,k k k Z x x k n L一般取0.5b ax dtdx 11 (16)为灰色微分方程 01k k x aZ b 的白化方程. (4)按最小二乘法计算参数,a b(5)解(16)式并进行离散化得模拟序列1x 和0x 的计算公式: 1101exp k x x b a ak b a ,其中0,1,2,,k n L01111011exp *exp k k k x x x a x b a ak ,其中1,2,k L并假定 111101x x x文献[12,13]指出:假定 111101x x x 的理由是不充分的,文献[14]认为应当以最后一个 1n x 为已知条件来确定微分方程中常数项m c 的值,理由是最后一个数据是最新的,最能反映实际情况.同时文献[15]又进一步提出常数m c 的确定,由于数据序列中。
数学建模(层次分析法(AHP法))
例1. 选择旅游地 如何在3个目的地中按照景色、 费用、居住条件等因素选择.
将决策问题分为3个或多个层次: 最高层:目标层。表示解决问题的目的,即层次分析
要达到的总目标。通常只有一个总目标。 中间层:准则层、指标层、…。表示采取某种措施、
政策、方案等实现预定总目标所涉及的中间环节; 一般又分为准则层、指标层、策略层、约束层等。 最低层:方案层。表示将选用的解决问题的各种措施、 政策、方案等。通常有几个方案可选。 每层有若干元素,层间元素的关系用相连直线表示。
然后再考虑各种型号冰箱在上述各中间标 准下的优劣排序。借助这种排序,最终作 出选购决策。在决策时,由于6种电冰箱对 于每个中间标准的优劣排序一般是不一致 的,因此,决策者首先要对这7个标准的重 要度作一个估计,给出一种排序,然后把6 种冰箱分别对每一个标准的排序权重找出 来,最后把这些信息数据综合,得到针对 总目标即购买电冰箱的排序权重。有了这 个权重向量,决策就很容易了。
常用来解决诸如综合评价、选择决策方案、 估计和预测、投入量的分配等问题。
层次分析法建模
一 、问题的提出 日常生活中有许多决策问题。决策是指
在面临多种方案时需要依据一定的标准选择 某一种方案。 例1 某人准备选购一台电冰箱 他对市场上的6种不同类型的电冰箱进行了解 后,选取一些中间指标进行考察。例如电冰 箱的容量、制冷级别、价格、型式、耗电量、 外界信誉、售后服务等。
②工作收入较好(待遇好); ③生活环境好(大城市、气候等工作条件等); ④单位名声好(声誉等); ⑤工作环境好(人际关系和谐等) ⑥发展晋升机会多(如新单位或前景好)等。
数学建模(层次分析法(AHP法))
判断矩阵元素a 判断矩阵元素 ij的标度方法
标度 1 3 5 7 9 2 , 4 , 6, 8 倒数 含义 表示两个因素相比, 表示两个因素相比,具有同样重要性 表示两个因素相比, 表示两个因素相比,一个因素比另一个因素稍微重要 表示两个因素相比, 表示两个因素相比,一个因素比另一个因素明显重要 表示两个因素相比, 表示两个因素相比,一个因素比另一个因素强烈重要 表示两个因素相比, 表示两个因素相比,一个因素比另一个因素极端重要 上述两相邻判断的中值
层次分析法在经济、科技、文化、军事、 环境乃至社会发展等方面的管理决策中都 有广泛的应用。 常用来解决诸如综合评价、选择决策方案、 估计和预测、投入量的分配等问题。
层次分析法建模
一 、问题的提出 日常生活中有许多决策问题。 日常生活中有许多决策问题。决策是指 在面临多种方案时需要依据一定的标准选择 某一种方案。 某一种方案。 例1 某人准备选购一台电冰箱 他对市场上的6 他对市场上的6种不同类型的电冰箱进行了解 选取一些中间指标进行考察。例如电冰 指标进行考察 后,选取一些中间指标进行考察。例如电冰 箱的容量、制冷级别、价格、型式、耗电量、 箱的容量、制冷级别、价格、型式、耗电量、 外界信誉、售后服务等 外界信誉、售后服务等。
目标层
O(选择旅游地 选择旅游地) 选择旅游地
准则层
C1 景色
C2 费用
C3 居住
C4 饮食
C5 旅途
要比较各准则C1,C2,… , Cn对目标O的重要性 要比较各准则 对目标 的重要性
Ci :Cj ⇒aij
选 择 C1 旅 C2 游 C 3 地
C4 C5 C1
层次分析法(AHP法 层次分析法(AHP法)
Analytic Hierarchy Process
层次分析法及其应用数学建模
层次单排序
根据判断矩阵求解各因素对于上一层次因素的相 对重要性权重,得到层次单排序结果。
02
一致性检验
对判断矩阵进行一致性检验,检查各因素之间的 相对重要性是否合理。
层次总排序与一致性检验
层次总排序
根据各层次的权重和下一层因素相对于上一层因素的权重,计算出最底层因素相对于总目标的 权重。
一致性检验
判断矩阵的构造
确定比较标度
比较同一层次中各因素对于上一 层次因素的相对重要性,通常采 用1-9的标度法进行比较。
构造判断矩阵
根据比较标度,构造出判断矩阵, 矩阵中的元素表示对应因素的比 较结果。
求解判断矩阵
通过计算判断矩阵的特征向量, 得到各因素对于上一层次因素分析法可以根据问题 的实际情况调整层次结构 和判断矩阵,具有较高的 灵活性。
局限性
主观性
层次分析法在构造判断矩阵时依赖于专 家的主观判断,因此结果可能受到专家
主观因素的影响。
计算复杂度较高
对于大规模问题,层次分析法的计算 复杂度较高,需要借助计算机进行辅
助计算。
一致性检验困难
对于构造的判断矩阵,一致性检验是 一个难题,需要找到合适的检验方法。
层次分析法在数学建模中的应用
01 在数学建模中,层次分析法常用于解决多目标决 策问题,例如在资源分配、方案选择、风险评估 等方面。
02 通过构建层次结构模型,可以将复杂的决策问题 分解为多个层次,使得决策过程更加清晰和有条 理。
02 在应用层次分析法时,需要构建判断矩阵,并进 行一致性检验,以确保决策的合理性和准确性。
02
层次分析法的基本原理
层次结构模型的建立
01 明确问题
首先需要明确问题的目标,并确定相关的因素, 将因素按照属性不同分为不同的层次,形成层次 结构。
数学建模队员的选拔-层次分析法
数学建模队员的选拔-层次分析法层次分析法(Analytic Hierarchy Process,简称AHP)是一种多准则决策方法,通过构造层次结构分析问题,通过对于决策中所涉及的因素和目标进行层次分解,将问题的各部分分解成若干层次,在该层次结构中使用定量和定性的方法来描述因素之间的关联和权重。
本文将利用层次结构模型,以及层次分析法,对数学建模队员的选拔进行分析。
层次结构模型在进行数学建模队员的选拔中,影响选拔的多个因素可以构建成一个层次结构模型。
例如:在数学建模队员选拔中,可以将最终选出的队员作为最终的目标,而影响选拔的因素可以分解成以下多个因素:1.专业水平:参赛者们的数学水平、学习能力、逻辑思维等问题。
2.团队合作能力:参赛者是否适应团队合作及与人组队互动等问题。
3.沟通和表达能力:参赛者的表达能力、口头和文字沟通交流等问题。
4.个人素质:如责任感、进取心、合作精神、团队协作精神等。
层次分析法在层次分析法中,问题通常首先进行分层,使用准则、子准则和指标以及目标来描述问题,并按照这种结构构造一个具有层次结构特征的问题描述。
接着,将问题中的各个层次之间的依赖关系描述出来,并将各个准则、子准则、指标和目标的重要性大小转化为数量化的比较关系。
比较矩阵是层次分析法中的核心概念。
比较矩阵是一种用于比较各个因素之间差异的矩阵视图,在比较矩阵中,每一个单元格代表两个不同的元素之间的相对权重。
比较矩阵的各行数值之和为1。
以数学建模队员选拔的专业水平为例:在该因素层面上考虑选择队员是否有良好的数学水平、学习能力、逻辑思维;在这些因素比较中,可以进行两两比较后形成下图所示的矩阵视图。
| 比较矩阵 | 数学水平 | 学习能力 | 逻辑思维 ||--------------|----------|----------|----------|| 数学水平 | 1 | 3 | 5 || 学习能力 | 1/3 | 1 | 3 || 逻辑思维 | 1/5 |1/3 | 1 |上表中的数字代表数量级:按比例表示数据之间的重要程度或优先级,并且满足归一化性质:对于矩阵中的每一列,它们的权重比之和应为1。
数学建模层次分析法
(Analytic Hierarchy Process) 建模
数学建模
模型背景 基本步骤 应用实例
一、模型背景
❖ 美国运筹学家匹兹堡大学教授Saaty在20世纪70 年代初提出的一种层次权重决策分析方法。
❖层次分析法(Analytic Hierarchy Process简称AHP) 是一种定性和定量分析相结合的决策分析方法。
对总目标Z的排序为
A1
A2
Am
a1, a2 ,, am
B层n个因素对上层 A中因素为 Aj
其层次单排序为
B1
B2
Bn b1 j ,b2 j ,,bnj ( j 1,2,, m)
层次 A A1
层次 B a1
B1
b11
B2
b21
.
.
.
.
.
.
Bn
bn1
A2 … Am B 层次总
a2
… am 排序权值
RI 0i RIi 0.58 i 1
CR CI / RI 0.087 / 0.58 0.015 0.1
C5
0.118 0.166 0.166 0.668
层次P的 总排序
0.3 0.246 0.456
层次分析法的优点
系统性——将对象视作系统,按照分解、比较、判断、综合 的思维方式进行决策。成为成为继机理分析、统 计分析之后发展起来的系统分析的重要工具;
w(2) (0.263, 0.475, 0.055, 0.090, 0.110)T
同样求第3层(方案)对第2层每一元素(准则)的权向量
方案层对C1(景色)的 成对比较阵
方案层对C2(费用)的 成对比较阵
…Cn
层次分析法-数学建模
步骤5 层次总排序即求各方案的综合得分
前面我们求的都是在一层中各因素的权重,这个过程称为单
层次排序。不妨设准则层权向量W (w1, w2,L , wn ),T 而方案层有 l
个方案可供选择,且每个方案的权向量分别为 1, 2,L , l 。那么 每个方案对最终目标的影响程度(C1,C2,L ,Cl )T 就可以通过下面的 式子算出来了。
合理分配企业利润
准则层 调动积极性 提高企业质量 改善生活条件
方案层 发奖金 扩展福利设施 引进人才和设备
在层次划分及因素选取时,我们要注意三点:
(1)上层对下层有支配作用;
(2)同一层因素不存在支配关系(相互独立);
(3)每层因素一般不要超过9个。 (心理学家通过实验认为,人对许多东西优劣及优劣 程度判断能力,最多大致在9个以内,超过这个范围就 会判断失真。例如,人们在面对琳琅满目的商品常常会 眼花缭乱,难以抉择。)
23
9
重要性
xi比 x j 相同 稍重要 重要
绝对 很重要 重要
aij
1
3
5
7
9
在每两个等级之间有一个中间状态, aij 可分别 取值 2 , 4 ,L , 8 。
例如:评价电影的好坏
目标层
评价
准则层 娱乐性 x1 艺术性 x2 教育性 x3
方案层 电影1
电影2
……
这
个人认为:
x1 : x2 3
层次分析法是将定性问题定量化处理的一种有效手 段。
面临各种各样的方案,要进行比较、判断、评价、 最后作出决策。这个过程主观因素占有相当的比重给用 数学方法解决问题带来不便。T.L.saaty等人20世纪在七 十年代提出了一种能有效处理这类问题的实用方法。
数学建模的层次分析法
1、层次分析法的基本概念
1、层次分析法的基本概念
层次分析法(Analytic Hierarchy Process,AHP)是一种广泛应用于数学 建模中的方法。它通过将复杂问题分解为多个层次,帮助我们更好地理解和解决 实际问题。层次分析法的基本原理是将一个复杂问题分解为多个相关因素,并根 据这些因素之间的相对重要性进行排序。
3、层次分析法的实际应用
(4)权重计算:通过计算判断矩阵的特征向量,得到每个因素的权重值。 (5)一致性检验:对判断矩阵进行一致性检验,以确保得到的权重值是合理的。
3、层次分析法的实际应用
(6)结果分析:根据权重值的大小,对每个因素进行分析,从而得到问题的解 决方案。层次分析法在多目标决策、资源分配、风险评估等领域有着广泛的应用。 例如,在多目标决策中,层次分析法可以帮助我们确定各目标的权重,从而得到 最优解。
三、大学生毕业设计质量评价的 数学模型建立
三、大学生毕业设计质量评价的数学模型建立
1、确定评价指标:根据模糊层次分析法的原理,我们首先需要确定评价指标 体系。选取与毕业设计质量相关的指标,建立多级递阶结构,其中一级指标为选 题质量、设计过程、成果质量等,二级指标为选题难度、选题新颖性、设计规范 性等。
2、数学建模在各领域的应用
在科学研究领域,数学建模被广泛应用于物理学、化学、生物学等学科。例 如,牛顿第二定律、万有引力定律等都是通过数学建模得到的。在工程技术领域, 数学建模也发挥着重要的作用。例如,桥梁设计、建筑设计等领域都需要用到数 学建模来分析结构稳定性和安全性。此外,数学建模在金融、经济、社会等领域 也有着广泛的应用。
参考内容
一、引言
一、引言
随着高等教育的普及化,大学生毕业设计的质量评价已成为一个重要的研究 领域。毕业设计是大学生综合素质和教育水平的直接体现,因此,对其质量进行 科学、客观的评价至关重要。本次演示将介绍一种基于模糊层次分析法(Fuzzy Analytic Hierarchy Process,FAHP)的大学生毕业设计质量评价数学建模方 法,旨在为提高毕业设计质量和评价效率提供有效手段。
数学建模实验报告1,层次分析法
数学建模实验报告一、实验要求柴静的纪录片《穹顶之下》从独立媒体人的角度调查了席卷全国多个省份的雾霾的成因,提出解决的方法有:关停重污染的钢铁厂、提高汽柴油品质、淘汰排放不达标汽车、提高洗煤率等,请仔细观看该纪录片,根据雾霾的成因,选择你认为治理雾霾确实可行的几个方案,并用AHP方法给出这几个主要方案的重要性排序。
二、前期准备1、理解层次分析法(AHP)的原理、作用,掌握其使用方法。
2、观看两遍柴静所拍摄的纪录片《穹顶之下》,选出我认为可较为有效地治理雾霾的几个方法,初步确定各方法的有效性(即权重)。
3、初步拟定三个方案,每个方案中各个治理方法的权重不同。
三、思路&分析1、根据纪录片《穹顶之下》和个人的经验判断给出各个记录雾霾的方法对于治理雾霾的判断矩阵,以及三个不同方案对于五大措施的判断矩阵。
2、了解了AHP的原理后,不难发现MATLAB在其中的作用主要是将判断矩阵转化为因素的权重矩阵。
当然矩阵要通过一致性检验,得到的权重才足够可靠。
3、分别得到准则层对目标层、方案层对准则层的权重之后,进行层次总排序及一致性检验。
得到组合权向量(方案层对目标层)即可确定适用方案。
四、实验过程1、确定层次结构2、构造判断矩阵(1)五大措施对于治理雾霾(准则层对目标层)的判断矩阵(2)三个方案对于五大措施(方案层对准则层)的判断矩阵3、层次单排序及一致性检验该部分在MATLAB中实现,每次进行一致性检验和权向量计算时,步骤相同,输入、输出参数一致。
(虽然输入的矩阵阶数可能不同,但可以不把矩阵阶数作为参数输入,而通过[n,n]=size(A)来算得阶数。
)因此考虑将这个部分定义为一个函数judge,输入一个矩阵A,打印一致性检验结果和权向量计算结果,并返回权向量、一致性指标CI、平均随机一致性指标RI。
将此脚本存为judge.m,在另一脚本ahp.m中调用。
代码如下:调试通过后,下面便用此函数进行一致性检验及权向量计算:(1)准则层对目标层(A矩阵)(2)方案层对准则层(BB矩阵)代码:结果:注:实际实验时,一开始构造的五个矩阵中有两个没有通过一致性检验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四讲层次分析法
在现实世界中,往往会遇到决策的问题,比如如何选择旅游景点的问题,选择升学志愿的问题等等。
在决策者作出最后的决定以前,他必须考虑很多方面的因素或者判断准则,最终通过这些准则作出选择。
比如选择一个旅游景点时,你可以从宁波、普陀山、浙西大峡谷、雁荡山和楠溪江中选择一个作为自己的旅游目的地,在进行选择时,你所考虑的因素有旅游的费用、旅游地的景色、景点的居住条件和饮食状况以及交通状况等等。
这些因素是相互制约、相互影响的。
我们将这样的复杂系统称为一个决策系统。
这些决策系统中很多因素之间的比较往往无法用定量的方式描述,此时需要将半定性、半定量的问题转化为定量计算问题。
层次分析法是解决这类问题的行之有效的方法。
层次分析法将复杂的决策系统层次化,通过逐层比较各种关联因素的重要性来为分析、决策提供定量的依据。
一、建立系统的递阶层次结构
首先要把问题条理化、层次化,构造出一个有层次的结构模型。
一个决策系统大体可以分成三个层次:
(1) 最高层(目标层):这一层次中只有一个元素,一般它是分析问题的预定目标或理想结果;
(2) 中间层(准则层):这一层次中包含了为实现目标所涉及的中间环节,它可以由若干个层次组成,包括所需考虑的准则、子准则;
(3) 最低层(方案层):这一层次包括了为实现目标可供选择的各种措施、决策方案等。
比如旅游景点问题,我们可以得到下面的决策系统:
目标层——选择一个旅游景点
准则层——旅游费用、景色、居住、饮食、交通
方案层——宁波、普陀山、浙西大峡谷、雁荡山、楠溪江
二、构造成对比较判断矩阵和正互反矩阵
在确定了比较准则以及备选的方案后,需要比较若干个因素对同一目标的影响,从额确定它们在目标中占的比重。
如旅游问题中,五个准则对于不同决策者在进行决策是肯定会有不同的重要程度,而不同的方案在相同的准则上也有不同的适合程度表现。
层次结构反映了因素之间的关系,但准则层中的各准则在目标衡量中所占的比重并不一定相同,在决策者的
心目中,它们各占有一定的比例。
在确定影响某因素的诸因子在该因素中所占的比重时,遇到的主要困难是这些比重常常不易定量化。
此外,当影响某因素的因子较多时,直接考虑各因子对该因素有多大程度的影响时,常常会因考虑不周全、顾此失彼而使决策者提出与他实际认为的重要性程度不相一致的数据,甚至有可能提出一组隐含矛盾的数据。
为看清这一点,可作如下假设:将一块重为1千克的石块砸成n 小块,你可以精确称出它们的重量,设为n w w ,,1L ,现在,请人估计
这n 小块的重量占总重量的比例(不能让他知道各小石块的重量)
,此人不仅很难给出精确的比值,而且完全可能因顾此失彼而提供彼此矛盾的数据。
成对比较法:
设要比较n 个因素},,,{21n y y y Y L =对同一目标的影响,每次取两个因素i y 和j y ,ij a 表示i y 与j y 对目标的影响程度之比,其中ij a 的取值由Saaty 的1-9值法决定:
标度
含 义 1
3
5
7
9
2,4,6,8
倒数 表示两个因素相比,具有相同重要性 表示两个因素相比,前者比后者稍重要 表示两个因素相比,前者比后者明显重要 表示两个因素相比,前者比后者强烈重要 表示两个因素相比,前者比后者极端重要 表示上述相邻判断的中间值 若因素i y 与因素j y 的重要性之比为ij a ,那么因素i y 与因素j y 重
要性之比为ij ji a a /1=。
定义1 若矩阵n n ij a A ×=)(满足
(i )0>ij a ,(ii )ij ji a a /1=(n j i ,,2,1,L =)
则称之为正互反矩阵(易见1=ii a ,n i ,,1L =)。
从心理学观点来看,分级太多会超越人们的判断能力,既增加了作判断的难度,又容易因此而提供虚假数据。
Saaty 等人还用实验方法比较了在各种不同标度下人们判断结果的正确性,实验结果也表明,采用1~9标度最为合适。
三、权向量和一致性指标
上述构造成对比较判断矩阵的办法虽能减少其它因素的干扰,较客观地反映出一对因子影响力的差别。
但综合全部比较结果时,其中难免包含一定程度的非一致性。
如果比较结果
是前后完全一致的,则矩阵A 的元素还应当满足:
ik jk ij a a a =,n k j i ,,2,1,,L =∀ 。
定义2 满足关系式ik jk ij a a a =,n k j i ,,2,1,,L =∀的正互反矩阵称为一致矩阵。
需要检验构造出来的(正互反)判断矩阵A 是否严重地非一致,以便确定是否接受A 。
定理1 正互反矩阵A 的最大特征根max λ必为正实数,其对应特征向量的所有分量均为正实数。
A 的其余特征值的模均严格小于max λ。
定理2 若A 为一致矩阵,则
(i )A 必为正互反矩阵。
(ii )A 的转置矩阵T
A 也是一致矩阵。
(iii )A 的任意两行成比例,比例因子大于零,从而1)(rank =A (同样,A 的任意两列也成比例)。
(iv )A 的最大特征值n =max λ,其中n 为矩阵A 的阶。
A 的其余特征根均为零。
(v )若A 的最大特征值max λ对应的特征向量为T n w w W ),,(1L =,则j i ij w w a /=,n j i ,,2,1,L =∀,即
⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡=n n n n n n w w w w w w w w w w w w w w w w w w A L L L L L L L 21
222121211
1 定理3 n 阶正互反矩阵A 为一致矩阵当且仅当其最大特征根n =max λ,且当正互反矩
阵A 非一致时,必有n >max λ。
根据定理3,我们可以由max λ是否等于n 来检验判断矩阵A 是否为一致矩阵。
由于特征根连续地依赖于ij a ,故max λ比n 大得越多,A 的非一致性程度也就越严重,max λ对应的标准化特征向量也就越不能真实地反映出},,{1n x x X L = 在对因素Z 的影响中所占的比重。
因此,对决策者提供的判断矩阵有必要作一次一致性检验,以决定是否能接受它。
对判断矩阵的一致性检验的步骤如下:
(i )计算一致性指标CI 1
max −−=n n CI λ; (ii )查找相应的平均随机一致性指标RI 。
对9,,1L =n ,Saaty 给出了RI 的值,如下表所示: n
1 2 3 4 5 6 7 8 9 RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45
RI 的值是这样得到的,用随机方法构造500个样本矩阵:随机地从1~9及其倒数中抽。