土力学清华大学3

合集下载

土力学清华大学版课后习题答案2020年修正版

土力学清华大学版课后习题答案2020年修正版

清华大学《土力学》第二版课后习题答案2020版说明:删除了应力路径、库尔曼图解法等与考试无关的习题,增加与考试相关的地基承载力原理题,使得与注册岩土考试内容完全相适应。

清华大学《土力学》第二版课后习题答案2020版 (1)第一章土的物理性质与工程分类 (2)第一节土的三相换算 (2)第二节土的性质、颗粒级配及定名 (3)第三节土的相对密实度 (5)第四节土的压实性 (5)第二章土的渗透性和渗流问题 (5)第一节达西定律 (5)第二节渗透试验、抽水试验 (6)第三节等效渗透系数 (7)第四节二维渗流与流网 (7)第五节渗透力与渗透破坏 (8)第三章土体中的应力计算 (10)第一节有效应力原理 (10)第二节基底附加应力计算 (12)第四章土的变形特性和地基沉降计算 (15)第一节土的一维压缩性指标 (15)第二节地基沉降量计算 (15)第三节饱和土体渗流固结理论 (17)第五章土的抗剪强度 (19)第一节直接剪切试验 (19)第二节三轴压缩试验 (21)第三节组合三轴压缩试验 (24)第四节孔隙水压力系数 (26)第五节十字板剪切试验 (26)第六章挡土结构物上的土压力 (27)第一节朗肯土压力 (27)第二节库伦土压力 (27)第三节特殊土压力 (28)第七章边坡稳定分析 (30)第一节无粘性土边坡稳定性 (30)第二节圆弧法边坡稳定性分析 (32)第八章地基承载力 (33)第一节土力学教材原理习题 (33)第二节地基承载力深宽修正 (37)第三节抗剪强度计算地基承载力 (39)第一章土的物理性质与工程分类第一节土的三相换算1-1(清华土力学习题1-1)在某一地下水位以上的土层中,用体积72cm 3的环刀取样,经测定土的质量129.1g ,烘干质量为121.5g ,土粒比重为2.70g ,问该土样的含水量、天然(湿)重度、饱和重度、浮重度和干重度各位多少?按计算结果,试分析比较各种情况下土的各种重度有何规律。

新版土力学课后习题答案(清华大学出版社)-新版.pdf

新版土力学课后习题答案(清华大学出版社)-新版.pdf

1-5:
Gs w
d

1e
e G s w 1 2.7 *1 1 0.59
d
1.70
Sr
wGs
22% * 2.7 1 85%
e
0.59
所以该料场的土料不适合筑坝,建议翻晒,使其含水率降低。
1-6:
Dr
(d
) d min
d max
( d max
) d min
d
式中 Dr=0.7
d m ax 1.96 g / cm 3
sat 粘 土
sat 砂 层 ,故只考虑
sat 粘 土 就可以
3
i cr
sat 粘 土 1 2.04 1 1.04 g / cm
h 又 icr
L 则 h 1.38 故开挖深度为
7.5 (h 3) 3
4.5 h 3
6m 时,基坑中水深至少
1.38m 才能防止发生流土现象
i cr 时
L
h L * i cr 30 *1.055 31.65 cm
水头差值为 32cm 时就可使土样发生流土破坏
2-4 解:
(1) h A 6 m , hC
7.5 m , hB
h A hC 2
6.75 m
j r w * i r w * h 3.675 kN / m 3 l
(2)若要保持水深 1m , i
3
1.94 g / cm
ms
2.7
3
d
1.48 g / cm
V s V w 1.81
3
d
d g 14.8 K N / m
Vv e
Vs
0.81
乙:
I p wL w p 8

土力学笔记(清华大学出版社)

土力学笔记(清华大学出版社)

第一章:土的物理性质及工程分类土是三相体——固相(土颗粒)、液相(土中水)和气相(土中空气)。

固相:是由难溶于水或不溶于水的各种矿物颗粒和部分有机质所组成。

2.土粒颗粒级配(粒度) 2. 土粒大小及其粒组划分b.土粒颗粒级配(粒度成分)土中各粒组相对含量百分数称为土的粒度或颗粒级配。

粒径大于等于0.075mm 的颗粒可采用筛分法来区分。

1.3<<重力密度γ:单位体积土的重量 常见值:土粒密度ρs :土中固体颗粒单位体积的质量土粒相对密度ds :土颗粒重量与同体积4°C 时纯水的重量比。

常见值:砂土——26.5~26.9粉土——27.0~27.1粘性土——27.2~27.4sss V m =ρ(%)100⨯=wm ω常见值:砂土——(0~4)% ; 粘性土——(20~60)%土的六个导出指标1、孔隙比e :土中孔隙体积与土颗粒体积之比 常见值:砂土——0.5~1.0,e < 0.6时呈密实状态,为良好地基;粘性土——0.5~1.2,e > 1.0时,为软弱地基2、孔隙率n :土中孔隙体积与土总体积之比 常见值:n=(30~50)%第三章 饱和度s r :水在空隙中充满的程度w V常见值:0~15 6e 1.2.3.液性指数I L ——粘性土的天然含水量与塑限的差值和塑性指数之比,记为I L 。

稠度指标,反映粘性土的软、硬程度ppL I W I -=ω即pL pL W W W I --=ω当天然含水量ω小于等于塑限Wp 时,土体处于固态或者是半固态,此时I L 小于或等于零;当天然含水量ω大于等于液限W L 时,土体处于流塑状态,此时I L 大于或等于1.0;当天然含水量在液限WL 和塑限Wp 之间变化时,I L 值处于0~1.0之间,此时粘性土处于可塑状态。

各类规范根据IL 值的大小,将粘性土的s vV V e =(%)100⨯=V V n v )3液、塑限的测定1.液限测定:国家标准:锥式液限仪。

土力学课件(清华大学)-3变形与强度(工管)

土力学课件(清华大学)-3变形与强度(工管)

σzH=(2×0.2350- 2×0.1350 )×131=26.2(kPa)
土力学与地基基础
3 土的压缩性与地基沉降计算
3.5.4.3 三角形分布矩形荷载作用下的附加应力
z t1p0
z t2p0
土力学与地基基础
3 土的压缩性与地基沉降计算
3.5.4.4 均布条形荷载作用下的附加应力
z zs p0
2
F2 z2
1 z2
n
i Fi
i1
n
Fn z2
土力学与地基基础
3 土的压缩性与地基沉降计算
3.5.4.2 均布矩形荷载作用下的附加应力 (1)均布矩形荷载角点下的附加应力
dz23 (x2yp20z3z2)5/2dxdy
z cp0
c
f
l b
,
z b
土力学与地基基础
3 土的压缩性与地基沉降计算
3 土的压缩性与地基沉降计算
p 0 p c p m d
土力学与地基基础
3.5.4 地基中的附加应力 (1)假设
●地基为半无限空间弹性体 ●地基土是连续均匀的 ●地基土是各向同性的
(2)附加应力分布规律 ——附加应力的扩散作用
●在同一水平面上,集中力 作用线上的附加应力最大, 向两侧逐渐增大。
●距离地面越远,附加应力 分布范围越广,随深度增 大附加应力减小。
土力学与地基基础
3 土的压缩性与地基沉降计算
3.5.1 土层自重应力 ——在未修建建筑物之前,由土体本 身自重引起的应力。
(1)均质地基: cz z
cxcyK 0 cz
xyyzzx0
(2)成层地基:
n
cz i hi i 1
注:注意地下水位线,地 下水位以下用浮重度。

土力学课件(清华大学)

土力学课件(清华大学)
SPT用测得的标准贯入垂击数N,判定砂土的 密实度或粘性土的密度,确定地基和单桩的承
载力;还可评定砂土的震动液化势。标准贯 入试验适用于砂性土与粘性土。
第十二页,共102页。
地基4勘触探 探 动力触探和静力触探
(1) 动力触探
管状探头 标准贯入试验SPT, 63.5 kg, 76cm距,贯入深度
30cm的击数, N 63.5
(1) 动力触探Dynamic Penetration
管状探头 标准贯入试验SPT, 63.5 kg, 76cm距, 贯入深度30cm的击数, N 63.5
锥状探头
轻型10 kg, 50cm落距,贯入深度30cm
中型 28kg 重型 63.5kg 碎石,砾石地层
特重型 120kg
第九页,共102页。
• 单桥探头 端部Ps=Q/A 比贯入阻力
双桥探头 端部和侧壁
• 土的密实度
• 压缩性
• 强度
• 桩和地基的承载力
电缆 传感器
传感器 传感器
单桥探头
第十五页,共102页。
双桥探头
地基勘探
示意图
静力触探是可以迅速、连续的反映土质变化 划分土层, 承载力、 压缩性、不排水抗剪强度、砂土密实度等 静力触探适用于粘性土和砂类土
第十六页,共102页。
地基勘探
5 现场试验 In situ testing
十字板 Vane Shear-饱和软粘土 载荷板试验Loading Plate-深浅均可 旁压仪 Pressuremeter -较深地基
第十七页,共102页。
地基勘探
十字板
F
F Mmax=F×D
f
Mmax D2 D
H
2. 极限承载力pu

清华大学版土力学(课堂PPT)

清华大学版土力学(课堂PPT)

u(tz )4 ,πp i 1si n m 2πH π ex p m 2 π 4 2 T v m=1,3,5,7······
Tv
Cv H2
t
时间因数
反映孔隙水压力的消散程度-固结程度
固结度
固结度
0.0 0.2 0.4
1
0.6 0.8 1.0
0.001
2
3 透水边界
渗 流
不透水边界
孔压系数
土体在不排水和不排气条件下,由外荷载 引起的孔隙压力增量与应力增最的比值。
固结过程孔压系数的变化
外荷载 附加应力σz
土骨架:有效应力
孔隙水:孔隙水压力
应力历史
土在其形成的地质年代中所经受的应力变 化情况称为应力历史。
土的压缩性的地基沉降计算
固结
饱和土压缩的全过程叫做土的固结
土的固结状态
土力学重点知识点
土的三相性
土的物理性质指标
1)土的密度、重度 2)土粒的比重 3)土的饱和度 4)土的含水量 5)土的孔隙比和空隙率
土的结构与构造
(1)单粒结构;(2)蜂窝结构;(3)絮 状结构
(1)层状构造;(2)分散构造;(3)裂 隙构造(4)结核状构造
土的结构与构造
(1)单粒结构;(2)蜂窝结构;(3)絮 状结构
2
2
1f
450+/2
450+/2
c O 3
1f
图5-7 土的破裂面确定
挡土结构物上土压力
三种土压力的大小关系
静止土压力对应于图中A点,墙位移为0,墙后土体处于弹性 平衡状态 主动土压力对应于图中B点,墙向离开填土的方向位移,墙 后土体处于主动极限平衡状态 被动土压力对应于图中C点,墙向填土的方向位移,墙后土 体处于被动极限平衡状态

清华大学土力学

清华大学土力学
• 土分布在地壳的表面,其工程性质相差极大。因此,进行工 程建设时,必须结合土的实际工程性质进行设计。
• 土力学研究的对象是分散土,它与岩石、土壤既有联系又有 区别。土的主要特征是分散性、复杂性和易变性,其性质将 随外界环境(如温度、湿度)的变化而发生显著的变化。
• 岩石与土是有差别的,岩石中虽然有孔隙和裂隙,但可近似 看成是连续介质。岩石主要是岩石力学(或隧道力学)的研 究对象。
• 土壤属农业学科,是土壤学研究的对象。土壤的主要特征是 具有肥力,能够提供植物生长过程中所需要的养料。人类对 土壤的认识和利用比土要丰富的多,土壤学的发展也比土力 学要早得多。
• 但应该指出,学科之间都是相互交叉,相互渗透的,岩石力 学、土壤学与土力学是密切联系的,土力学在发展过程中, 也利用了许多岩石力学和土壤学的成就。
(3)挡土墙设计的主要外荷载-土压力的取用,需借助于土压力理 论计算。
(4)随着我国高速公路、高速铁路的大量修建,对路基的沉降计 算与控制提出了更高的要求,而解决沉降问题需要对土的压 缩特性进行深人的研究。
(5)软土地基的加固技术,需要对软土进行大量的试验研究和现 场监测。
(6)在路面工程中,土基的冻胀与翻浆在我国北方地区是非常突 出的问题,防治冻害的有效措施是以土力学的原理为基础的。
(1)土的物理、力学、物理化学性质; (2)宏观与微观结构; (3)土的压缩性; (4)强度特性; (5)渗透性; (6)动力特性等。 • 为各类土木工程的稳定和安全提供科学的对策。
三、土力学发展概况(自学) 四、本学科与土木工程专业的关系
• 在土木工程设计与施工中,将会遇到大量的与土有关的工程 技术问题。
三、剥蚀
• 风化后的岩石产物在冰川、风、水和重力作用下,从母岩分离 的现象称为剥蚀。

清华大学版土力学ppt课件

清华大学版土力学ppt课件
土力学重点知识点
土的三相性
土的物理性质指标
1)土的密度、重度 2)土粒的比重 3)土的饱和度 4)土的含水量 5)土的孔隙比和空隙率
土的结构与构造
(1)单粒结构;(2)蜂窝结构;(3)絮 状结构
(1)层状构造;(2)分散构造;(3)裂 隙构造(4)结核状构造
土的结构与构造
(1)单粒结构;(2)蜂窝结构;(3)絮 状结构
时间因数
曲线1 曲线2 曲线3
1
沉降与时间的关系
t
Tv
Cv H2
t
U t=1
8
2
e
4
2
Tv
( 1)
St UtS
沉降与时间的关系
Ut
St S
从 Ut 查表(计算)确定 Tv
t Tv H 2 Cv
土的抗剪强度
莫尔库伦破坏理论要点
1.破坏面上,材料的抗剪强度是法向应力的函数。
f f ( )
流砂与管涌
当动水力足够大时,会将土体冲起,造成 破坏。当动水力梯度大于土的浮重度时, 土体被水冲起的现象,称为流土
当土体颗粒级配不连续时,水流可将土体 粗粒孔隙中充填的细粒土冲走,破坏土的 结构,这种作用称作管涌。
流土与管涌的区别
土体中的应力计算
地基中的自重应力及分布规律
地面
z
σsz=γz
地面
(d)确定计算深度zn
自重应力
(e)地基分层Hi
(f)计算每层沉降量Si
p
d p0
szi zi
d
基底
Hi
附加应力
(g) 各层沉降量叠加
沉降计算深度
30
用e-p曲线计算
地面
p

最新清华大学版土力学课后答案资料

最新清华大学版土力学课后答案资料

第一章1-1:* r m 心 r :g g =v “ m s 121.5 “ 3V s s 45cm s 心 2.7“':i sat - w=20.6 -10 =10.6KN /m 3 斗 m s 121.5 3d s g *10=16.9KN/mV 72则 sat •d1-2:已知:G s =2.72设 V s =1cm 3,s =2.72g/cm 3m s = 2.72gd = 'd g =匹 g 二272*® =16KN / m 3d dV 1.7贝U =- w =20.1-10 = 10.1KN /m 3当0二75%时,m w = :W V V S -1.0*0.7*75% -0.525gm wm s 0.525 2.72 = 19.3%=:?gV0.525 2.72*10 -19.1KN /m 31.7已知: 3 V=72cm 3m=129.1g m s =121.5g G s =2.70则: m _m s wm s129f6.3% 121.5129 1 *10 =17.9KN /72 V/ 二v -V s = 72-45 = 27cm 3sat = '"satg1.0*27 121.5*10 二 20.6KN / m 372V 1.7 *10 =20.1KN /m 31-3:347mu = 6V =1.70*10 *8*10=13.6*10 kgm w =m s w =13.6*107 *20% =2.72*107 kg1-4: 甲:I p = W[_ —Wp = 40 —25 = 15 设V s =1则 m s 「「V s =2.7gm w =2.7*30% -0.81g 又因为S r =100% VV 4。

81w= 19.4KN /m 3d =讥=14.8 KN /m 3十0.81乙:m sd _V s V w 1.812.7 31.48g / cmm s m w P13.6*107 2.72*1071.92*103 85000m 3P =V s 叫斗2^!伽V w1 0.81则(1)、(4)正确 1-5:G P打二注亠则1 e所以该料场的土料不适合筑坝,建议翻晒,使其含水率降低 1-6:式中 D r =0.7 'dmax^1.96g / cm 「dmin =1 .4© dm则可得:订=1.78g/cm 31-7:设 S=1,则 V s 二 Sh = h 则压缩后:I p = W L — W p = 8设V s =1 贝ym s 」s V s =2.68gm w = m s w = 2.68*22% = 0.4796 g则 V V = 0.4796cm 3?dm s +m w 2.68 +0.4796 3- - 2.14g /cmV s V V 1 0.47963巾=2.14*10 -21.4KN /m2.6831.84g / cm m s V s V w1.47963d = 6g =1.84*10 =18.4KN /m V Ve = = 0.4796d 甲:::d 乙ep- e 乙G s;wPd2.7*1 1.70一1 =0.59wG s S r se22%*2.7 0.59 =1 85% D r'd'd min 'dmax-:dminV sm s =V s G s =2.7h m w =ms W =2 . 7 * 2 8% 贝U V w 二导=2.7h*28%wV s V w =2.7h*28% h =1.95 贝U 1.11cm .h v =2.0 -1.11 =0.89cm e巴上二哎j.8V s h 1.111-8:甲:I L二WE 45-25 =1.33 流塑状态W[_ _W p40-25W_W p 乙:1 L 20-25二-0.33坚硬(半固态)W L—W p40-251 p = W L - W p =15 属于粉质粘土(中液限粘质土)乙土较适合作天然地基1-9:…1囲53 -360.31 ::属非活性粘土R1002 甲55A乙70 -351.3 1.25 属活性粘土P0.002乙27乙土活动性高,可能为伊利石,及少量的高岭石,工程性质乙土的可能较第二章2-1 解:根据渗流连续原理,流经三种土样的渗透速度 V 应相等,即V A =V B =V C根据达西定律,得: R A 戲A =弘卫B = RC 玉L AL B L C二 h A :=h B : -h C =1: 2 : 4又:• :h A 亠:、h B 亠;h C =35cm ..■: h A =5cm, -:h B =10cm, . :h C= 20cm也 h A-3V =k A A =1*10 cm/s20-0.667 30Ti < icr 则土体处于稳定状态,不会发生流土现象h L* i cr =30*1.055 =31.65cm水头差值为32cm 时就可使土样发生流土破坏 2-4 解:(1) h A =6m,h C =7.5m, h B =也 hc = 6.75m2r * A hj =r w *iw3.675kN/m 3(2) 若要保持水深1m ,i h =0.625L而 Q =Akv =20*10*1.5*10 ‘*0.625 =1.875*10 ^m 3/s(3)当i • i cr 时,会发生流土破坏,即h i cr 时V 加水 =V * A*t=0.1cm2-2 解:crG s -1 2.70 -11 e " 1 0.58=1.0762-3 解:(1) 土样单位体积所受的渗透力△h 20 “1*「w!-1*9.8* 3T 6.53N(2)i crG s -11 e 2.72 -11 0.63 =1.055故单位时间内抽水量为1.875*10 J m 3/s3G 二爲粘土-1 =2.04-1 =1.04g/cmh 7.5-(h 3) 4.5-h乂 * i cr 'L 3 3则h _1.38故开挖深度为6m时,基坑中水深至少 1.38m才能防止发生流土现象2-6 :解:(1)地基中渗透流速最大的不为在等势线最密集处,故在第二根流线上v 二ki =1T03*0.4 =4*10 4cm/s则i均< icr故地基土处于稳定状态(3) q =M =Mk :h =5*1*10 *0.267 -1.335*10 ^m2 /s2-7 :解:(1) :H =3.6m, :h H=^=0.257m14 14q 二M :q 二Mk 巾=6*1.8*10 '*0.257 =2.776*10 4m3 / ^ 1.666*10 ^m3/min(2)i cr r 18 5-1 1 =0.8889.8:h _ 0.257 L 0.5 =0.514,故i ::i cr ,不可能发生流土破坏i cr 0.888 i 0.514 = 1.732-5: 解:?sat GseIG s e而i crG s —1-i crG s e-(1 e) G s又* ■' sat粘土■ i sat砂层,故只考虑?sa粘土就可以■ :h 0.267L _ 0.667(5 -1)m16 -1= 0.267m = 0.4(2)0.2672.5= 0.1068cr 「sat -1=2 -1=1:h第三章 土体中的应力计算3-1:解:41.0m :;「s1 = 1H 1 =1.70*10*3 =51kpa40.0m : 二 s2 =:;s1 2H 2 =51 (1.90—1.0)*10*1二 60kpa 38.0m: 二s3 -;「s2 3H 3=60 (1.85—1.0)*10*2=77kpa 35.0m:64 =;「s3 4H 4 =77 (2.0 -1.0)*10*3=107kpa水位降低到35.0m41.0m :二si =51kpa 40.0m :二S 2 Y 「s12H 2 =51 1.90*10*1 = 70kpa38.0m :二s3 =;:「s2 3H 3 = 70 1.85*10*1 = 88.5kpa 35.0m :二s4 -;「s3 4H 4=88.5 1.82*10*3 -143.1kpa 3-2:解: 偏心受压:e 二 0.2m 700 6*0.2(1 ) = 78.4kN 10 10pmin=61.6kN由于是中点,故 H sin 一:匚-1.097P max p 6e料1『3-3:解:(1)可将矩形分为上下两部分,则为2者叠加m =L,n Z,查表得K,匚zo =2K*;「B B(2)可将该题视为求解条形基础中线下附加应力分布,上部荷载为50kN/m2的均布荷载与100 kN/m 2的三角形荷载叠加而成。

土力学中的孔压系数

土力学中的孔压系数

1 应力球张量和应力偏张量
文献 [ 3 ] P103 有轴对称三维应力状态 :
σ 1
0
0
σ 2
0
σ 3
0
0
=
0
σ 3
0
σ 1
-
σ 3
0
0
0+ 0 00
0
0
σ 3
0
0
σ 3
0 00
(1)
文献 [ 3 ]称 :“第一项表示土样上三个方向受相同的
主应力压缩 , 称为等向压缩应力状态 , 或球应力状
态 ;第二项称为偏差应力状态 ”。在土体中增加的
此次展会主要内容涉及 :与隧道及地下工程专 业相关的建设 、科研 、设计 、施工 、设备制造 、材料生 产 、媒体等单位隧道桥梁建设重大成果 、勘查测量仪
器 、建设施工 、隧道掘进设备 、防排水设备和材料 、隧 桥照明 、隧桥建设设备 、通风除尘设备和材料 、隧桥 景观设计 、岩石破碎设备 、隧桥抗震隧桥配套产品 、 桩基施工设备工程防腐 、隧桥机电设备 、非开挖设备 和技术 、特种化工材料隧桥运营管理 、混凝土设备和 材料 、地质勘察 、供电和通信信号 、地下装运设备 、市 政规划 、检验和安全防护 、牵引提升设备 、民防和地 下空间开发 、防灾救灾 、锚喷支护设备 、工程设计咨 询 、地铁相关产品 。
Δu =AB (Δσ1 + 2Δσ3 )
(9)
如果不分开求 , 而直接求三向轴对称应力状态
的有效应力增量 ,根据文献 [ 3 ]的方法有
Δσ 1
′=Δσ1
- Δu
Δσ 2
′=Δσ3
′=Δσ3
- Δu
( 10)
代入物理方程有
ε v

(完整版)土力学1-第三章-清华大学

(完整版)土力学1-第三章-清华大学
《土力学1》之第三章
土体中的应力计算
张丙印
清华大学土木水利学院 岩土工程研究所
10月29日习题讨论课
范围:第一、二章
内容: 小测验 习题讨论、方法讨论 难点讨论、其它讨论
答疑
时间:10月17日晚8:00 – 10:00 地点:新水利馆227
(从正门进,上2楼,两个左拐,右手)
第三章:土体中的应力计算
应力状态及应力应变关系 ✓
自重应力 附加应力 基底压力计算 有效应力原理
• 水平地基中的 自重应力
• 土石坝的自重 应力(自学)
常规三轴压缩试验
§3.2 自重应力
仁者乐山 智者乐水
定义:在修建建筑物以前,地基中由土体本身 的有效重量而产生的应力
目的:确定土体的初始应力状态
假定:水平地基 半无限空间体 半无限弹性体 有侧限应变条件 一维问题
仁者乐山 智者乐水
侧限应力状态:指侧向应变为零的一种应力状态
• 水平地基半无限空间体
• 半无限弹性地基内的自重 应力只与Z有关
o
x
• 土质点或土单元不可能有
y
侧向位移侧限应变条件
z
• 任何竖直面都是对称面
应变条件
y x 0 xy yz zx 0
地基中的应力状态(3)
§3.1 应力状态及应力应变关系
K0
1
地面
1 H1
2 H2 地下水 z
3 H3 sy
sz sx
容重: 地下水位以上用天然容重
地下水位以下用浮容重
土体的自重应力
§3.2 自重应力
仁者乐山 智者乐水
分布规律
地面
1 H1
2 H2 地下水 z
2 H3 sy

清华土力学第三版教材

清华土力学第三版教材

清华土力学第三版教材
清华土力学第三版教材是清华大学土木工程系编写的一本土力学教材。

该教材主要面向土木工程专业的本科生和研究生,旨在系统地介绍土壤力学与基础工程的理论与应用。

该教材内容包括土壤物理性质、固结与压缩、孔隙水流动、渗透压与水平衡、土的弹性力学性质、土的塑性力学性质、土的破坏与强度、岩土体的渗流与变形、岩土工程中的迁移力学、固结与压缩问题的应用等内容。

教材注重理论与实践的结合,理论部分以数学工具为基础,深入浅出地解释土力学原理和方法,实践部分通过大量的例题和工程实例,帮助学生理解土力学的应用。

此外,教材还包括大量的习题和答案,供学生进行自主学习和练习。

清华土力学第三版教材是一本经典的土力学教材,被广泛应用于土木工程专业的教学和科研领域。

土力学(清华大学出版社)课后习题及答案

土力学(清华大学出版社)课后习题及答案

第一章1-1:已知:V=72cm 3 m=129.1g m s =121.5g G s =2.70 则: 129.1121.56.3%121.5s s m m w m --===3333129.1*1017.9/72121.5452.7724527 1.0*27121.5*1020.6/72s s s V s sat w V s sat sat m g g KN m v m V cm V V V cm m V m g g g KN m V V γρρργρ========-=-=++=====3320.61010.6/121.5*1016.9/72sat w s d sat d KN m m g KN m V γγγγγγγγ'=-=-===='>>>则 1-2:已知:G s =2.72 设V s =1cm 3则33332.72/2.72 2.72*1016/1.7 2.720.7*1*1020.1/1.720.11010.1/75% 1.0*0.7*75%0.5250.52519.3%2.720.525 2.721.s s s d d s V w w r w w V r w s w s g cm m gm g g KN m V m V g g KN m V KN m m V S g m w m m m g g V ργρργργγγργρ======++===='=-=-========++===当S 时,3*1019.1/7KN m =1-3:3477777331.70*10*8*1013.6*1013.6*10*20%2.72*1013.6*10 2.72*10850001.92*10s d w s s wm V kg m m w kg m m V mρρ======++==挖1-4:甲:33334025151* 2.72.7*30%0.81100%0.812.70.811.94/10.8119.4/2.71.48/1.8114.8/0.81p L P s s s s w r wV ws w s w s d s w d d vsI w w V m V g m g S m V m m g cm V V g KN m m g cm V V g KN m V e V ρρργρργρ=-=-=======∴==++===++=====+====设则又因为乙:3333381 2.682.68*22%0.47960.47962.680.47962.14/10.47962.14*1021.4/2.681.84/1.47961.84*1018.4/0.4796p L p s s s s w s V s w s V s d s w d d VsI w w V m V g m m w g V cm m m g cm V V g KN m m g cm V V g KN m V e V ρργρργρ=-========++===++======+=====设则则γγ∴<乙甲 d d γγ<乙甲 e e >乙甲 p p I I >乙甲则(1)、(4)正确 1-5:1s w d G eρρ=+ 则2.7*1110.591.7022%*2.7185%0.59s wds r G e wG S e ρρ=-=-====>所以该料场的土料不适合筑坝,建议翻晒,使其含水率降低。

土力学第三章-清华大学于玉贞-2015

土力学第三章-清华大学于玉贞-2015

zx
xy
x
o x z
y yz
y
x xy xz ij = yx y yz zx zy z
x xy xz ij = yx y yz zx zy z
9
§3 土体中的应力计算
二. 地基中常见的应力状态 2. 三轴应力状态 应变条件
17
1998年 九江大堤决口
“豆腐渣”工程 “三1八O” 工程
30公里
2000年 双钟圩堤身滑坡
《解放军报》 2000年08月14日
《九江大堤今年又见“豆腐渣”》
“豆腐脑”
《羊城晚报》2000年07月31日
18
鄱阳湖段的双钟圩: 全长1220米,总投资1550万元
最大移位:60多米 最大沉陷:约10米 滑塌面积:7800多平方米 塌方体积:7.7万立方米 完成投资:1295万元 圩堤高度:18.6米
sx
sy K 0 sz

成层地基
竖直向: s z
H
i
i
sz 1 H 1 2 H 2 3 H 3 ;
γ1
H1
水平向: s x s y K 0 s z K 0
H
i
i
Z
γ2
H2
H3
注意:上述水平向应力的计算仅适用于有效自重应力
sA sB
应变条件
y x 0;
xy yz z x 0
14
§3 土体中的应力计算 §3.1 应力状态
二. 地基中常见的应力状态 4.侧限应力状态——一维问题 应变条件 应力条件 独立变量
y x 0;
xy yz z x 0

土力学1-第三章-清华大学

土力学1-第三章-清华大学
《土力学1》之第三章
土体中的应力计算
张丙印
清华大学土木水利学院 岩土工程研究所
10月29日习题讨论课
范围:第一、二章
内容: 小测验 习题讨论、方法讨论 难点讨论、其它讨论
答疑
时间:10月17日晚8:00 – 10:00 地点:新水利馆227
(从正门进,上2楼,两个左拐,右手)
第三章:土体中的应力计算
垂直于y轴断面的几何形状与应力状态相同 沿y方向有足够长度,L/B≧10 在x, z平面内可以变形,但在y方向没有变形
y 0 yx yz 0
地基中的应力状态(2)
§3.1 应力状态及应力应变关系
仁者乐山 智者乐水
二维应力状态(平面应变状态)
应变条件 y 0
yx yz 0
x
ij


1 2
0 xz
0
0 0
1 2
xz 0

z

应力条件
y

y E

E
x
z
0
y x z
ij


x 0
zx
0 y 0
xz 0

z

独立变量 x ,z ,xz ; x ,z ,xz ; x ,z
y M
βz
z
M
x
z zx xy
yz x
y
z

3Ph 2
xz2 R5
集中荷载的附加应力
§3.3 附加应力
仁者乐山 智者乐水
矩形面积竖直均布荷载 角点下的垂直附加应力:B氏解的应用
dP pdxdy

清华大学版土力学课件

清华大学版土力学课件

t
Tv

Cv H2
t
U t=1
8
2
2
e 4
Tv
( 1)
St UtS
沉降与时间的关系
Ut

St S
从 Ut 查表(计算)确定 Tv
t Tv H 2 Cv
土的抗剪强度
莫尔库伦破坏理论要点
1.破坏面上,材料的抗剪强度是法向应力的函数。
f f ( )
2.当法向应力不很大时,抗剪强度可简化为法向应力的线性
函数
f c tg
3.土单元体中,任何一个面上的剪应力大于该面上土的抗剪度 ,土单元体即发生破坏,用破坏准则表示
41
库仑定律
f c tg
(1)单粒结构;(2)蜂窝结构;(3)絮状 结构
(1)层状构造;(2)分散构造;(3)裂隙 构造(4)结核状构造
土的工程特性
(1)压缩性高; (2)强度低; (3)透水 性大
土的渗透性和渗流问题
水力坡降 i
单位渗流长度上的水头损失
渗流压密
向下渗流使得有效应力增加,导致土层发生压 密变形,称渗流压密
z

v

e 1 e1

e1 e2 1 e1
S

zH

vH

e1 e2 1 e1
H
基本假定和基本原理
(a)假设基底压力为线性分布 (b)附加应力用弹性理论计算 (c)只发生单向沉降:侧限应力状态 (d)只计算固结沉降,不计瞬时沉降和次固结沉降 (e)将地基分成若干层,认为整个地基的最终沉降量为各层沉降量之和:
固结
饱和土压缩的全过程叫做土的固结
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应力应变关系-以某种粘土为例
u
§3 土体中的应力计算 §3.1 应力状态及应力应变关系
x
z
0
y x z
▪独立变量
x , z , xz ; x , z , xz ; F(x, z)
ij =
x 0xy xz 0yx 0 y 0 yz zx 0 zy z
ij=
x 0xy xz 0yx yy 0yz
zx 0zy z
§3 土体中的应力计算 §3.1 应力状态及应力应变关系
0zx 0zy z
§3 土体中的应力计算 §3.1 应力状态及应力应变关系
二. 地基中常见的应力状态 3. 平面应变条件——二维问题
垂直于y轴切出的任意断面的几 何形状均相同,其地基内的应力 状态也相同;
o x
沿长度方向有足够长度,
L/B≧10;
平面应变条件下,土体在x, z平 面内可以变形,但在y方向没有
zx zy z
§3 土体中的应力计算 §3.1 应力状态及应力应变关系
一. 土力学中应力符号的规定
摩尔圆应力分析
- zx
z
+
材料力学
xz
x
z
- zx +
土力学
xz
x
正应力
剪应力
拉为正 顺时针为正 压为负 逆时针为负
压为正 逆时针为正 拉为负 顺时针为负
§3 土体中的应力计算 §3.1 应力状态及应力应变关系
二. 地基中常见的应力状态
4.侧限应力状态——一维问题
o x
yz
•水平地基半无限空间体; •半无限弹性地基内的自重应力只与Z有关; •土质点或土单元不可能有侧向位移侧限应变条件; •任何竖直面都是对称面
A
B
sA sB
▪应变条件
y x 0; xy yz zx 0
§3 土体中的应力计算 §3.1 应力状态及应力应变关系
§3 土体中的应力计算
§3.1 应力状态及应力应变关系 §3.2 自重应力 §3.3 附加应力 §3.4 基底压力计算 §3.5 有效应力原理
§3 土体中的应力计算
z
§3.1 应力状态及应力应变关系
一. 土力学中应力符号的规定
zx

地基:半无限空间
o
y z

xy
x
y yz

x
ij=
x xy xz yx y yz
§3 土体中的应力计算 §3.1 应力状态及应力应变关系
三. 土的应力-应变关系的假定 1、室内测定方法及一般规律 (1)常规三轴试验 a) 固结排水试验
应力应变关系-以某种粘土为例
•与围压有关
•非线性
•剪胀性
v
§3 土体中的应力计算 §3.1 应力状态及应力应变关系
三. 土的应力-应变关系的假定 1、室内测定方法及一般规律 (1)常规三轴试验 a) 固结排水试验
二. 地基中常见的应力状态 1.一般应力状态——三维问题
z
zx
xy
x
y yz
o x
z y
ij=
x xy xz yx y yz
zx zy z
ij =
x xy xz yx y yz
zx zy z
§3 土体中的应力计算 §3.1 应力状态及应力应变关系
二. 地基中常见的应力状态 2. 轴对称三维问题
应力应变关系-以某种粘土为例
1 3
1
1
Et
Ei
p e
变形模量:
E z z
≠弹性模 量
1
泊松比:
x 3 z 1
•弹塑性
§3 土体中的应力计算 §3.1 应力状态及应力应变关系
三. 土的应力-应变关系的假定 1、室内测定方法及一般规律
(1)常规三轴试验 b) 固结不排水试验
施加围压充分固结 施加(1 -)时,阀门关
闭,可连接孔压传感器, 量测剪切过程中产生的超 静孔隙水压力 u
轴向加压杆 顶帽
有机玻璃罩
压力室
测定: 轴向应变 轴向应力 孔隙水压力
橡皮膜 压力水


透水石
排水管 阀门
量测孔隙水压力
§3 土体中的应力计算 §3.1 应力状态及应力应变关系
三. 土的应力-应变关系的假定 1、室内测定方法及一般规律 (1)常规三轴试验 a) 固结不排水试验
y
z z
变形。
y 0;
yx yz 0;
zx z
zx
xy
x
zx 0
x y yz xz
§3 土体中的应力计算 §3.1 应力状态及应力应变关系
二. 地基中常见的应力状态 3. 平面应变条件——二维问题
▪应变条件
y 0; xy yz 0; zx 0
▪应力条件
y
y E
Hale Waihona Puke E0zx 0 zy z
ij=
xx 0xy 0xz 0yx yy 0yz
0zx 0zy z
§3 土体中的应力计算 §3.1 应力状态及应力应变关系
三. 土的应力-应变关系的假定
1、室内测定方法及一般规律
轴对称问题
特殊应力状态
一维问题
常规三轴试验 侧限压缩试验
2、应力计算时的基本假定
§3 土体中的应力计算 §3.1 应力状态及应力应变关系
第三章
土体中的应力计算
§3 土体中的应力计算
地基中的应力状态 应力应变关系 土力学中应力符号的规定
强度问题 变形问题
应力状态及应力应变关系
自重应力 附加应力
建筑物修建以前,地基 中由土体本身的有效重 量所产生的应力。
基底压力计算 有效应力原理
建筑物修建以后,建筑物 重量等外荷载在地基中引 起的应力,所谓的“附加” 是指在原来自重应力基础 上增加的压力。
三. 土的应力-应变关系的假定 1、室内测定方法及一般规律 (1)常规三轴试验 a) 固结排水试验
施加围压,排水阀门始终打开, 充分固结
施加(1 -)时,排水阀门始终 打开,速度慢足以使孔压消散
测定: 轴向应变 轴向应力 体积应变
有机玻璃罩
橡皮膜 压力水
轴向加压杆
顶帽
压力室


透水石
排水管 阀门
二. 地基中常见的应力状态 4.侧限应力状态——一维问题
▪应变条件
y x 0;
xy yz zx 0
▪应力条件
xy yz zx 0;
x y;
x
x E
E
y z
0;
x y 1 z K0z;
▪独立变量 z , z F(z)
K0:侧压力系数
ij =
0 x 0xy 0xz 0yx 0 y 0yz
▪应变条件
▪应力条件
z
x y; z xy , yz , zx 0
x y; z xy , yz , zx 0
zx
▪独立变量:x y , z ; x y , z
xy
x
y yz
ij =
x 0xy 0xz 0yx y 0yz 0zx 0 zy z
ij=
x 0xy 0xz 0yx yy 0yz
相关文档
最新文档