球化剂在铸铁中的作用

合集下载

喂丝球化工艺在球墨铸铁生产线上的应用

喂丝球化工艺在球墨铸铁生产线上的应用

喂丝球化工艺在球墨铸铁生产线上的应用张 军1,解戈奇2,权国英1,薛 挺1,秦 剑1(1. 陕西金鼎铸造有限公司,陕西宝鸡 722405;2. 陕西远大新材料技术有限公司,陕西咸阳 713800)摘要:通过控制原铁液中反球化元素的含量,尤其是S、Ti含量,并辅以优质包芯线,分别采用双线喂丝球化、单线喂丝球化处理及含钡孕育剂,有效防止了球化衰退,而且提高了铸件综合性能,改善了铸造环境,简化了操作流程,节约了生产成本。

关键词:球墨铸铁;双线喂丝工艺;单线球化处理;包芯线;成本控制作者简介:张军(1988-),男,助理工程师,学士,主要从事铸造熔炼工艺制定工作。

E-mail: zhangjun@ 中图分类号:TG 255文献标识码:A文章编号:1001-4977 (2019)02-0128-04收稿日期:2018-09-13收到初稿,2018-12-29收到修订稿。

近年来,随着球墨铸铁件在制造业中越来越广泛的应用,球墨铸铁的生产技术也在不断提高,以满足国内外用户对球墨铸铁件提出的高标准高要求。

在球墨铸铁的生产过程中,球化处理是生产球墨铸铁的关键。

国内外部分大型企业都在进行喂丝法处理球墨铸铁的技术研究、开发和应用,喂丝法生产球墨铸铁的技术也日渐成熟,并取得了不错的成绩,其经济性与球化品质的可靠性及可控性已为愈来愈多的企业所重视。

1 喂丝法处理球墨铸铁的工艺及质量控制要点喂丝法的原理:将一定成分、一定粒度的球化剂,经卷线设备包裹在一定厚度、宽度的钢皮内,形成适当强度、填充率的电缆状包芯线卷,利用自动化喂丝装置,以一定速度喂入带有包盖的处理包中,实现球化处理的工艺。

其实质是以喂丝的方式,以钢带作为载体将球化剂以一定的速度送入处理包底,实现球化剂的加入过程[1]。

喂丝球化处理流程见图1。

根据镁在包芯线中的不同形态,市场上有两种包芯线。

一种是物理混合法配制,就是将经过特殊处理的纯镁颗粒和其他合金材料机械混合而成,其优点是成本低,氧化镁含量低,球化反应迅速,镁吸收率能够保证;缺点是成分均匀性难控制,镁是以单质形式进入铁液中,爆发剧烈。

球墨铸铁铸造成本-概述说明以及解释

球墨铸铁铸造成本-概述说明以及解释

球墨铸铁铸造成本-概述说明以及解释1.引言1.1 概述概述本文将深入探讨球墨铸铁铸造的成本问题。

球墨铸铁是一种重要的工程材料,广泛应用于汽车、机械设备、建筑等领域。

而球墨铸铁的成本是影响其应用范围和市场竞争力的重要因素之一。

球墨铸铁铸造的成本主要包括原材料、能源消耗、人工成本等多个方面。

在球墨铸铁生产过程中,原材料的选择对产品质量和成本起着关键作用。

同时,铸造过程中的耗能问题也需要引起重视,尤其是在当今提倡节能减排的社会环境下。

此外,人工成本也是影响成本的重要因素之一,包括生产工人的工资待遇、培训成本等。

文章将从球墨铸铁铸造的基本过程入手,详细介绍球墨铸铁的成本因素。

首先,我们将阐述球墨铸铁铸造的基本过程,包括模具制作、熔铁、注液、凝固、清理等环节。

然后,我们将着重分析球墨铸铁铸造的成本因素,包括原材料成本、能源消耗、人工成本等。

通过对球墨铸铁铸造成本的深入了解,我们可以更好地把握其成本控制的关键点,提高生产效率,降低成本。

而对于企业来说,控制成本意味着提升市场竞争力,实现可持续发展。

本文旨在通过对球墨铸铁铸造成本的研究,为相关行业提供有益的参考,帮助企业更好地管理和控制成本,提高产品质量和市场竞争力。

同时,也是对球墨铸铁铸造成本问题的一次深入剖析和总结。

希望本文对读者能够有所启发,并为相关研究提供一定的参考价值。

文章结构部分的内容可以从以下几个方面进行撰写:文章结构的重要性:在撰写一篇长文之前,建立清晰且有组织的文章结构非常重要。

良好的文章结构可以帮助读者更好地理解文章的脉络,使文章更易于阅读和理解。

同时,清晰的结构还可以使作者更有条理地表达观点,使文章更具说服力。

文章结构的要素:一个良好的文章结构通常包含以下要素:1. 引言部分(Introduction):引言部分主要介绍文章的背景和主题,概述文章的目的和重要性,并引起读者的兴趣和注意。

2. 正文部分(Main Body):正文部分是文章的核心部分,包含作者要表达的主要观点、论据和证据。

球墨铸铁的一关键环节--球化处理工艺(热加工行业论坛)

球墨铸铁的一关键环节--球化处理工艺(热加工行业论坛)

损严重、吸收率、低球化剂消耗量大劳动 环境差等缺点.多年来人们一直在利用盖包 法的优点进行球铁生产,同时也在不断地努 力克服工艺在使用中的不足之处: (1)包盖起吊困难,操作难度大;(2)在使用冲 天炉连续出铁时,铁液重量难以精确量化.
盖包法可以大大减少球化剂与空气中 氧的接触几率,从而可以减少镁的氧化烧 损,提高镁元素的吸收率,能有效提高和稳 定球化效果及球铁性能;减少球化剂的加 入量,降低生成本;减少球化时的闪光和烟 尘,降低对环境的污染.由冲入法改为加盖 法时,只需在冲入法球化包上添加一个包 盖,其它和产结构和原料基本不用做任何 调整,符合我国国情,容易在工厂推广.
另一种是利用镁蒸气 在铁液包中自建压力的方 法,球化处理时,通过钟罩 把纯镁加入密封铁液包下 部,镁在包内立即气化,迅 速产生大量的镁蒸气.此蒸 气通过铁液时,一部分被铁 液吸收,另一部分逸出并迅 速在包内上部间隙建立起 与铁液温度相应的饱和蒸 气压(一般0.6~0.8MPa).这 时镁就不再因沸腾汽化而 损失了.
提高时,含镁合金的熔点就会降低,这样包芯线 粉料层的“过程汽化层” 产生镁蒸汽的时间提 前,形成使钢带失效的镁蒸汽量的时间就会提前, 从而导致钢带失效的时间提前,因此,当包芯线 含镁合金的百分比提高时,包芯线喂入包底的喂 线速度就需要相应提高。 (4)包芯线芯剂中镁所处形态的影响:当其 它条件不变时,如果包芯线中的含镁材料由硅镁 合金颗粒变成纯镁颗粒与硅基合金颗粒的混合物, 虽然,包芯线在铁水中各层物料的温度分布没有 发生改变,但由于纯镁颗粒的熔点仅为650℃左 右,包芯线粉料层的“过程汽化层”达到纯镁颗 粒熔点的时间就会大幅度提前,一旦纯镁颗粒熔 化变为镁液,就会迅速向其周围的合金颗粒间隙 中渗透,合金颗粒层的导热能力就会迅速

球墨铸铁用冶金球化剂

球墨铸铁用冶金球化剂

球墨铸铁用冶金球化剂球墨铸铁是一种性能优异的铸铁材料,具有优良的韧性、较高的延展性和强度,广泛应用于各个领域。

球墨铸铁的制备过程中,球化剂是不可缺少的一种关键材料,其作用是促进铸铁中的铁素体向球墨体转变,从而提高铸铁材料的强度和韧性。

本文将对球墨铸铁用冶金球化剂进行详细介绍。

一、冶金球化剂的种类球化剂是由一系列化合物组成的复合物,可分为很多类别,包括鉴别球化剂、稳定球化剂、促进剂等。

根据球化剂的化学成分和结构特点,还可将其归为铁素体稳定球化剂和珠光体化合物球化剂两种类型。

1. 铁素体稳定球化剂铁素体稳定球化剂是一种将铁素体固定在铸铁中的化合物。

它们通过减缓铁素体的晶体生长速度来提高铸铁材料的韧性和强度。

常见的铁素体稳定球化剂包括钙、硅、镁、铝等元素,它们都是铸铁凝固过程中的不活性元素。

2. 珠光体化合物球化剂珠光体化合物球化剂是一种对铸铁中的珠光体有特殊作用的化合物。

在珠光体球化阶段,这些化合物的分解产物可以作为晶核使珠光体生成,在珠光体转变为铁素体的过程中,它们还可以起到固定铁素体结晶核的作用。

珠光体化合物球化剂常见的有稀土元素、铬、锆等。

冶金球化剂的配比是球墨铸铁制备过程中至关重要的一环。

不同种类、不同品牌的球化剂与不同的铸铁基体有所不同,因此,必须根据具体情况设计球化剂的配比。

通常情况下,球化剂配比的设计取决于以下几个因素:1. 铸铁基体的成分。

铸铁的成分是决定球化剂配比的主要因素。

不同成分的铸铁在球化剂配比上差别较大,如灰铸铁和球墨铸铁所需的球化剂配比是不同的。

2. 球化效果。

球化效果的好坏直接影响球墨铸铁的质量。

为获得最佳的球化效果,必须根据铸铁的成分和工艺要求来计算球化剂的配比。

3. 球化剂的品质。

球化剂的品质也是影响球化效果的重要因素。

一般来说,球化剂的品质越好,球化效果越好,因此需要选择优质的球化剂。

1. 促进铁素体向球墨体转变。

冶金球化剂是一种能够促进铁素体向球墨体转变的材料。

球墨铸铁用球化剂

球墨铸铁用球化剂

球墨铸铁用球化剂
球墨铸铁是一种具有优异性能的铸铁,其强度和延展性能相对于普通铸铁更出色,这得益于它所使用的球化剂。

球化剂是一种能够促进球墨铸铁球化反应的添加剂。

通过球化剂的作用,将铸铁中的碳以球状分布,从而使合金铸铁增加韧性、塑性和强度,降低铸铁的脆性,提高其机械性能。

球化剂种类繁多,每种球化剂所发挥的作用也各有不同。

其中几种常见的球化剂包括钉形铁素体晶核剂、钒铁铝、锰硅合金等。

这些球化剂大都含有一定量的铝、钛、锰、硅、钒等元素,这些元素通常能够形成稳定的化合物,促进碳的球化反应。

在使用球化剂时,还需要控制其加入时机、用量和温度等因素,以确保其球化效果达到最佳。

同时,在球化剂的选择上,还要根据不同铸铁的特点和使用要求进行选择。

总之,球化剂在球墨铸铁生产过程中起着非常重要的作用。

它们能够大大提高合金铸铁的机械性能和使用寿命,同时使得球墨铸铁在机械制造、汽车制造等领域得到广泛应用。

球墨铸铁铸造工艺流程

球墨铸铁铸造工艺流程

球墨铸铁铸造工艺流程
《球墨铸铁铸造工艺流程》
球墨铸铁是一种高性能铸铁材料,具有很高的强度和耐磨性,常用于制造汽车发动机缸体、机床床身等重要零部件。

球墨铸铁的制造工艺流程具有一定的复杂性,需要经过多道工序才能得到优质的铸件。

首先,球墨铸铁铸造的原料主要包括融化铁水、球化剂和稀土镁合金。

在铸造过程中,首先将合格的铁水装入球墨铸铁模具中,然后加入球化剂和稀土镁合金。

球化剂的作用是使铁水中的石墨颗粒球化,提高铸件的韧性和强度;而稀土镁合金则可以进一步改善铁水的流动性和润湿性,提高铸件的表面质量。

随后,通过震动、振动或压力等方法,让铁水在模具中充分填充并冷却固化,形成球墨铸铁铸件。

在这个过程中,需要控制好铁水的温度、流动速度和填充压力,确保铸件的密实性和表面质量。

最后,还需要对球墨铸铁铸件进行去毛刺、修磨、热处理等后续工艺处理,以提高铸件的机械性能和表面光洁度。

整个球墨铸铁铸造工艺流程是一个相当复杂的过程,需要严格控制各道工序的参数和质量,才能保证最终铸件的质量。

同时,还需要使用先进的铸造设备和工艺技术,以确保球墨铸铁铸件具有均匀的组织结构和优异的性能。

球墨铸铁介绍

球墨铸铁介绍
球墨铸铁基础知识
目录
球墨铸铁优点及应用
球墨铸铁制取பைடு நூலகம்理
球墨铸铁工艺简介 球墨铸铁主要缺陷
球墨铸铁是指铁液在凝固过程中碳以球型石墨析出的铸铁。不灰 铸铁相比,其最大丌同是石墨形状的改变,避免了灰铸铁中尖锐石墨 存在,使得石墨对金属基体的切口作用大为减少,基本消除了片状石 墨引起的应力集中现象,使金属基体的强度利用率达到70~90%,使 金属基体的性能得到很大程度的发挥。 球墨铸铁可以像钢一样,通过热处理和合金化等措施来进一步提 高其使用性能。比如,处理过的球墨铸铁可以取得很好的韧性,延伸 率高达24%;抗拉强度可以高达 1400MPa ,基本接近钢材。 不钢材相比,球墨铸铁成本相对较低。 由于球墨铸铁产量的丌断 增加,性能丌断开 发,现已成功部分取代了锻钢和铸钢,成为前景广 阔的金属结构材料。
3.2球墨铸铁工艺简介
型砂制备 型腔制作 造型 制芯
入库 沙箱 旧砂 合 箱 浇注 倒包孕育
冷却 落砂 清理 浇冒口 合格 检验 废品
芯盒制作
芯砂制备
球化 熔炼 金属炉料 回炉料
球墨铸铁主要缺陷
4.1球墨铸铁主要缺陷 胀砂 气孔 缩孔、疏松 裂纹
飞边 球化丌良 和球化衰退
主要缺陷
砂眼
偏芯
冷隔
4.2 球墨铸铁主要缺陷特征
对球化起干扰的元素
如:铅、铝等
元素 残留量过低 镁 ①石墨丌球化 戒球化丌良; ②球化衰退过 快
残留量过高 ①白口倾向增加; ②缩孔、缩松增加; ③夹杂物增加,尤其促进 黑渣形成; ④促进生成皮下气孔
残留量 0.03~0 .06%
①中和干扰元 ①增加白口倾向; 素的作用丌足, ②促进碳化物在晶界偏析; 稀土 影响球化等级; ③增加珠光体量,丌利于 0.01~0 ②孕育衰退不 铸态铁素体球铁的生产; .03% 球化衰退过快 ④石墨圆整度差; ⑤夹杂物增加

球墨铸铁的焊接

球墨铸铁的焊接

球墨铸铁是在熔炼过程中加入一定量的球化剂,使石墨以球状存在,从而使力学性能明显提高。

1. 球墨铸铁的焊接性球墨铸铁焊接性与灰铸铁有相同的一面,但又有其自身的一些特点。

这主要表现在两方面。

(1)球墨铸铁的白口化倾向及淬硬倾向比灰铸铁大,这是因为球化剂(当其加入量已可稳定获得球状石墨时)有阻碍石墨化及提高淬硬临界冷却速度的作用,所以,在焊接球墨铸铁时,同质焊缝及半熔化区更易形成白口,奥氏体区更易出现马氏体组织。

(2) 由于球铁的强度、塑性与韧性比灰铸铁高,故对焊接接头的力学性能要求也相应提高,常要求与各强度等级球墨铸铁母材相匹配。

2. 球墨铸铁电弧补焊球墨铸铁电弧补焊采用同质及异质焊条,同质焊条又有钢芯与铸芯之别。

异质焊条则采用镍基焊条(Z408)及高钒焊条,对于不重要的部位也可以采用低碳钢焊条,如J506、J422等。

球墨铸铁通常应用于比较重要的场合,采用同质焊条焊接时应保证焊缝球化,力学性能达到规定的指标,应尽量降低白口倾向,提高抗裂性。

(1) Z238焊条电弧热焊。

Z238焊条为低碳钢焊芯,药皮中加入球化剂及石墨化剂,在一定工艺条件下,焊缝中的石墨可成为球状,能够得到较好的力学性能。

由于电弧温度较高,球化元素氧化、蒸发严重,给焊缝的稳定球化带来困难,力学性能很难达到指标。

采用Z238焊条,白口倾向较大,因此,焊接时通常进行400~700℃预热,必要时焊后要进行退火或正火处理。

(2)钢芯石墨球化通用铸铁焊条补焊。

该种类焊条采用钢芯,药皮中加入脱氧元素、孕育剂及少量的球化剂。

这种焊条对水分、空气、铁锈等不敏感,球化稳定性很高,白口倾向低,焊缝的塑性及抗裂性都较好。

对于刚性较小的部位,可以采用冷焊工艺补焊较长的焊缝或较大的面积,但是,刚性较大的部位应进行预热或采用加热减应区法,焊缝的力学性能较好。

接头正火后,抗拉强度约为650MPa,伸长率约为5%。

接头退火后的抗拉强度一般大于420MPa,伸长率大于10%,最高可达20%以上。

球墨铸铁的组织和性能

球墨铸铁的组织和性能
当有稀土元素存在时,则 Mg 可低些。 根据基体组织的不同,常用的球墨铸铁分为三种类型:铁素体球铁、 铁素体― 珠光体球铁及珠光体球铁,其显微组织如图所示。
铁素体球墨铸铁
铁素体-珠光体球墨铸 铁
珠光体球墨铸铁
球墨铸铁的显微组织
球墨铸铁良好的机械性能是与其组织特点分不开的,在球铁中,石 墨结晶成球状,对基体的割裂作用大为减小,基体强度的利用率达(70~ 90)%,抗拉强度不仅高于铸铁,甚至还高于碳钢,σb=(400~600)MPa, σs=(300~400)MPa。屈强比σs/σb 为 0.7~0.8,比钢约高 40%左右。 塑性、韧性比灰口铸铁大大提高,δ=(1.5~10)%,经热处理最高可达
δ=(20~25)%。 球墨铸铁不仅具有远远超过灰铁的机械性能,而且同样也具有灰铁 的一系列优点。如良好的铸造性能、减摩性、切削加工性及低的缺口敏 感性等。甚至在某些性能方面可与锻钢相媲美,如疲劳强度大致与中碳 钢相似,耐磨性优于表面淬火钢等。此外,球铁还可适应各种热处理, 使其机械性能提高到更高的水平。因此。球铁一出现就得到迅速的发展。 它可代替部分钢作较重要的零件,对实现以铁代钢、以铸代锻起重要的 作用,具有较大的经济效益。例如,珠光体球铁常用于制造曲轴、连杆、 凸轮轴、机床主轴、水压机气缸、缸套、活塞等。铁素体球铁用于制造
盘铸件需进行退火处理。 2.正火
目的是增加基体组织中珠光体的含量,并使其细化,提高铸铁的强 度、硬度和耐磨性,如发动机的缸套、滑座和轴套等铸件均要进行正火。
此外,还能将铸态珠光体球铁进行调质和等温淬火,以获得高的强度和硬度,但是都只适宜 于小件。
并适合流水作业生产等优点。 因球化处理时铁水温度有所降低,为保证流动性,应使铁水的出炉
温度高些。 四、球墨铸铁的热处理 由于球铁基体组织与钢相同,球铁石墨又不易引起应力集中,因此 它具有较好的热处理工艺性能。凡是钢可以采用的热处理,在理论上对 球铁都适用。常用的热处理方法有以下几种:

球墨铸铁管安装规范

球墨铸铁管安装规范

每支ቤተ መጻሕፍቲ ባይዱ管容许的偏 向
6M直管 8M直管
接合间隙
1600 1°30¹ 13
14
43
1800 1°30¹ 13 14 48
2000 1°30¹ 13 14 53
2100 1°30¹ 13 14 55
2200 1°30¹ 13 14 58
2400 1°30¹ —— 14 63
2600 °30¹ —— 14 70
6.各规格T型螺栓扭矩参考数见表:
尺寸
扭矩
直管口径
把手长度
M16 6 75 15
M20 10 100-600 25
M24 14 700-800 35
M30 20 900-2600 45
7.正确T型螺栓安装位置与错误安装位置见图:
8. 大口径管理费用 借转角安装见图示及参数 表:
口径
偏向容许角 度
157
36
1400—1600(8米)
1.5
209
41
1800--2000 (8米)
1,5
209
52
注意:1.2管5 线安节角点小不于够 度一般不推荐 装管件,用4-5支管借 来完成如因距离
中间1可加1-2个双承短管来实现非标角度,特殊情况小管件设计不允许单独制作非标管
件..
2.大口径管件同样用上述方法,K型管件如遇非标可用标准管件拼对组合来完 成.
离心球铁管 420 10 7
管件、非离心球 铁管
420 5 5
注1:根据供需双方的协议,可检验屈服强度(σP 0.2)的值。其中 当 DN40~1000, δ5≥12%时,允许σP 0.2≥270MPa;或 当DN>DN1000,δ5≥10%时,允许σP 0.2≥270MPa。 其它情况下σP 0.2≥300MPa。

灰铸铁球墨铸铁可锻铸铁

灰铸铁球墨铸铁可锻铸铁

灰铸铁球墨铸铁可锻铸铁
灰铸铁、球墨铸铁和可锻铸铁都是铸铁的一种类型,它们在生产方法和组织性能上存在一些差异。

灰铸铁是最常见的铸铁类型,主要由铁、碳、硅、锰、硫、磷等元素组成。

根据石墨的形态,灰铸铁可分为普通灰铸铁、球墨铸铁、可锻铸铁和蠕墨铸铁。

灰铸铁主要用于制造承受压力的零件和耐磨件。

球墨铸铁是通过在浇铸前往铁液中加入一定量的球化剂和墨化剂,以促进呈球状石墨结晶而获得的。

它具有较高的强度、塑性和韧性,可以用来制造承受冲击载荷的铸件。

可锻铸铁是由一定成分的白口铸铁经石墨化退火而成,比灰铸铁具有较高的韧性,常用来制造承受冲击载荷的铸件。

它并不可以锻造,但常用来制造承受冲击载荷的铸件。

总之,不同的铸铁类型具有不同的特性和用途,需要根据具体的应用场景选择合适的材料。

铸铁球化剂

铸铁球化剂

铸铁球化剂
【原创实用版】
目录
1.铸铁球化剂的定义和作用
2.铸铁球化剂的种类和特点
3.铸铁球化剂的应用领域和效果
4.铸铁球化剂的发展前景和挑战
正文
铸铁球化剂是一种在铸铁生产中使用的重要添加剂,其主要作用是使铸铁中的石墨球化,从而改善铸铁的性能。

铸铁球化剂的种类繁多,常见的有硅铁、锰铁、铬铁等,它们各具特点,可以根据铸铁的具体需求进行选择。

铸铁球化剂的应用领域广泛,几乎涵盖了所有的铸铁生产领域。

通过添加铸铁球化剂,可以提高铸铁的强度、韧性和耐磨性,从而提高铸铁制品的使用寿命。

此外,铸铁球化剂还可以改善铸铁的铸造性能,减少铸铁的收缩和裂纹,提高铸铁的表面光洁度。

随着科技的发展,铸铁球化剂的发展前景广阔。

未来,铸铁球化剂将更加环保、高效,可以更好地满足铸铁生产的需求。

然而,铸铁球化剂也面临着一些挑战,如提高球化效果、降低生产成本等。

总的来说,铸铁球化剂是一种重要的铸铁添加剂,其作用是改善铸铁的性能,提高铸铁制品的使用寿命。

第1页共1页。

球墨铸铁棒料规格

球墨铸铁棒料规格

球墨铸铁棒料规格球墨铸铁是一种高强度、高韧性的铸铁材料,通过在铸铁中添加球化剂(一般是镁或镁合金)使其具有球状石墨微结构,从而提高了其机械性能。

球墨铸铁棒料作为球墨铸铁的一种形式,在工程和制造领域中得到了广泛应用。

本文将探讨球墨铸铁棒料的规格标准、物理性能、加工工艺以及主要应用领域。

2. 球墨铸铁棒料规格标准2.1 材料成分球墨铸铁棒料的规格标准通常包括其化学成分,其中主要包括铁、碳、硅、锰、磷、硫等元素的含量。

这些成分的合理控制对于确保球墨铸铁棒料的机械性能至关重要。

2.2 机械性能规格标准还包括球墨铸铁棒料的机械性能要求,如抗拉强度、屈服强度、断裂韧性等。

这些性能指标直接影响了球墨铸铁棒料在实际应用中的使用性能。

2.3 几何尺寸对于球墨铸铁棒料的规格标准还包括其几何尺寸,如直径、长度、形状等。

这有助于在制造和工程应用中确保材料符合预期的要求。

3. 物理性能与加工工艺3.1 物理性能球墨铸铁棒料具有优异的物理性能,包括高强度、高韧性、优良的耐磨性和抗压缩性能。

这使得球墨铸铁棒料在一些特殊工况下能够取代钢铁等材料。

3.2 加工工艺球墨铸铁棒料的加工工艺包括熔化、浇铸、球化处理等步骤。

球墨铸铁的制造需要精密的工艺控制,确保获得理想的微观组织和性能。

4. 应用领域4.1 机械零部件球墨铸铁棒料常被用于制造各类机械零部件,如轴承、轴瓦、齿轮等,其高强度和耐磨性使其在这些领域中表现出色。

4.2 建筑结构由于球墨铸铁棒料具有较好的韧性和承载能力,因此在一些建筑结构中,如桥梁、支架等,也得到了广泛的应用。

4.3 汽车工业在汽车制造中,球墨铸铁棒料通常被用于制造车轮、车架等部件,其高强度和耐磨性能满足了汽车对材料的高要求。

5. 质量控制与未来发展趋势5.1 质量控制制造球墨铸铁棒料时,质量控制是确保其性能和可靠性的关键。

严格的质量控制体系包括原材料检测、生产过程监控以及最终产品的性能检测。

5.2 未来发展趋势未来球墨铸铁棒料的发展趋势可能包括更高强度、更好的加工性能、更广泛的应用领域以及更环保的生产工艺等方面的改进。

球铁铸件缩孔、缩松的成因与防止

球铁铸件缩孔、缩松的成因与防止

球铁铸件缩孔、缩松的成因与防止球铁铸件缩孔、缩松的成因与防止摘要:球墨铸铁大多数是共晶或过共晶成分,其糊状凝固方式使铸件外壳没有抵抗石墨化膨胀能力,因而铸型产生型壁迁移,增大铸件体积,极易产生内部缩孔、缩松。

球墨铸铁凝固时,在枝晶和共晶团间的最后凝固区域,收缩的体积得不到完全补充,留下的空洞形成宏观及微观缩松。

La 有助于消除缩松倾向。

分析缩孔缩松形成原因并提出相应的防止办法,有助于减少由此产生的废品损失。

关键词:球墨铸铁、收缩、缩孔、缩松1 前言1.1 缺陷形成原因球墨铸铁生产技术日臻完善,多年技术服务的实践表明,生产中出现的铸造缺陷,完全可以用成熟的经验予以消除。

据介绍:工业发达国家的铸造废品率可以控制在1%以下[1],国内先进水平也在2%左右,提高企业铸造技术水平,对减少废品十分重要。

1。

显微缩松显微镜观察微细连续缺失空间多角形疏松枝晶间、共晶团边界间众所周知,灰铸铁是逐层凝固方式,球墨铸铁是糊状凝固方式。

逐层凝固可以使铸件凝固时形成一个坚实的封闭外壳,铸件全封闭外壳的体积收缩可以减小壳体内的缩孔容积。

糊状凝固的特点是金属凝固时晶粒在金属液内部整个容积内形核、生长,固相与液相混合存在有如粥糊。

大多数球墨铸铁是共晶或过共晶成分,其糊状凝固方式使铸件外壳没有抵抗石墨化膨胀的能力,铸型产生型壁迁移,增大铸件体积,极易产生内部缩孔、缩松缺陷。

铸型冷却能力强,有利于铸件的容积凝固转变成逐层凝固,使铸件的分散缩松转变成集中缩孔。

然而,批量生产中湿砂型铸造很难被金属型或干砂型取代。

球墨铸铁凝固有以下三个特点,决定球墨铸铁是糊状凝固方式:①球化和孕育处理显著增加异质核心,核心存在于整个熔体,有利于全截面同时结晶。

②石墨球在奥氏体壳包围下生长,生长速度慢,延缓铸件表层形成坚实外壳;而片状石墨的端部始终与铁液接触,生长速度快,凝固时间短,促使灰铁铸件快速形成坚实外壳。

③球墨铸铁比灰铸铁导热率小 20%-30%,散热慢,外壳生长速度降低[3]。

球墨铸铁熔炼与铸造工艺

球墨铸铁熔炼与铸造工艺

球墨铸铁是一种高强度、高韧性的铸铁材料,其熔炼与铸造工艺主要包括以下几个步骤。

原料准备:主要原料是铸铁和球化剂。

铸铁通常是废铁、废钢等回收材料,而球化剂则是一种能够使铸铁中的碳以球形形式存在的添加剂。

熔炼铸造:将原料放入高温熔炉中进行熔炼,熔炼温度通常在1400℃以上。

在熔炼过程中,加入球化剂,使铸铁中的碳以球形形式存在。

浇注铸造:将熔融的球墨铸铁液体倒入铸型中,待其冷却凝固后,取出铸件。

热处理:对铸件进行热处理,以提高其强度和韧性。

通常采用淬火和回火的方法进行热处理。

加工和表面处理:对铸件进行加工和表面处理,以达到所需的形状和表面质量。

在整个铸造过程中,还需要特别注意以下几点:
球墨铸铁铸造工艺比普通灰铁铸件造型更为严格,其缩量要大于普通灰铁铸件,因此在造型时要加大冒口尺寸,确保冒口内铁液能够完全补充需要的缩量。

造型用型砂不能使用水泥砂造型,而要选用树脂砂或水玻璃砂进行造型,且耐火涂料要选择高温耐火材料。

在熔炼过程中,要严格控制球墨铸铁的含量要求,如要求球墨铸件材质为QT450材质,就需要控制五大元素含量在特定范围内。

浇铸时要采用高温出炉低温浇铸的原则,开始浇铸后要保证每个冒口铁液都能浇满,并持续为冒口补充铁液直至冒口内铁液不再下沉减少为止。

球墨铸铁球化机理

球墨铸铁球化机理

球墨铸铁球化机理
球墨铸铁是一种高性能铸铁,其独特的球状石墨形态使其具有出色的韧性、强度和耐磨性,成为各种工业领域中的首选材料。

而球化是球墨铸铁制造过程中不可或缺的步骤,其目的是将灰口铸铁中的石墨球化成球墨石墨,以提高材料的力学性能。

球化机理主要包括两个方面,即球化剂的作用和铸造工艺的影响。

球化剂是实现球化的关键,其作用是在铁液中形成稳定的球墨石墨结构。

常用的球化剂有镁、稀土等元素。

镁作为球化剂时,可以在铁液中与硫、氧等元素反应,生成稳定的球墨石墨结构。

稀土元素可以通过改变石墨的形态和大小来促进球化。

除了球化剂的作用外,铸造工艺也对球化效果有重要影响。

铸造温度、浇注速度、浇注压力等因素都会影响球化效果。

一般来说,较高的铸造温度、合适的浇注速度和压力可以提高球化效果。

总之,球墨铸铁的球化机理是一个复杂的过程,需要综合考虑球化剂和铸造工艺等多种因素,才能获得优良的球墨铸铁材料。

- 1 -。

球墨铸铁的工艺原理

球墨铸铁的工艺原理

球墨铸铁的工艺原理
球墨铸铁(Ductile Iron)是一种重要的铸铁材料,具有高强度、良好的韧性和耐用性。

其工艺原理主要包括球化处理和铸造工艺两个方面。

1. 球化处理:球墨铸铁的主要特点就是球状石墨(球墨)的存在,球墨可以增加材料的韧性和塑性,使其具有较高的拉伸强度和冲击韧性。

球状石墨的形成是通过在铸造过程中添加球化剂(一般为钆或镧等稀土元素)来达到的。

球化剂的作用是在铸造过程中形成碳化物核,在高温下将镁中的氧原子还原为氧化镁(MgO),释放出活泼的镁原子,与碳原子结合形成石墨球。

球化剂的添加量和方式会影响球墨铸铁的球状石墨形态和数量,因此需要精确控制球化剂的添加。

2. 铸造工艺:球墨铸铁的铸造工艺与普通铸铁类似,但需要更高的浇注温度和降温速率。

在铸造过程中,为了防止铁水中的氧气和其他杂质对球化剂的妨碍,通常会采用滑进式浇注法,即先浇注一部分铁水,再通过浇注剂将剩余的铁水顺滑地倒入模型中。

这样可以保持较高的浇注温度和较快的浇注速度,有利于球化剂发挥作用。

总体而言,球墨铸铁的工艺原理是通过控制球化剂的添加量和方式,以及优化铸造工艺参数,实现球状石墨的形成和分布,从而提高球墨铸铁的力学性能和耐用性。

硬度与球墨化的关系

硬度与球墨化的关系

硬度与球墨化的关系
球墨铸铁是一种具有优良机械性能和高耐磨性能的铸铁材料,其硬度是衡量其强度和耐磨性的重要指标之一。

球墨化是球墨铸铁制造过程中的一种热处理工艺,通过在高温条件下加入球化剂,使铸铁中的碳以球状形式析出,从而提高其硬度和韧性。

球墨化的关键是在熔融状态下向铁液中加入球化剂。

球化剂的作用是通过催化作用使铁液中的碳以球状形式析出。

在球墨化的过程中,球化剂中的稀土元素与铁液中的碳结合形成球状的球墨石,从而改善铸铁的组织结构。

球墨化后的球墨铸铁具有更高的硬度和韧性,使其在使用过程中具有更好的耐磨性和抗压强度。

球墨化对球墨铸铁的硬度影响很大。

球化剂的添加可以改善铸铁的组织结构,使铸铁中的碳以球状分布,从而提高其硬度。

球墨化后的球墨铸铁硬度通常在200-300HB之间,硬度越高,铸铁的强度和耐磨性越好。

除了球墨化工艺外,球墨铸铁的硬度还与其化学成分和冷却速度有关。

球墨铸铁中的碳含量通常在 2.5-4.0%之间,碳含量越高,硬度越高。

同时,冷却速度也会影响球墨铸铁的硬度,快速冷却可以使铸铁中的碳以球状分布,提高其硬度。

球墨化是提高球墨铸铁硬度的重要工艺之一。

通过球化剂的添加,可以使铸铁中的碳以球状分布,改善其组织结构,从而提高其硬度
和韧性。

同时,球墨铸铁的硬度还与其化学成分和冷却速度有关。

通过合理控制这些因素,可以获得具有优良机械性能和高耐磨性能的球墨铸铁材料。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

球化剂在铸铁中起什么作用球化剂在铸铁中起什么作用球墨铸铁问世至今已有52年,其发展迅速之快令人惊讶,即使在经济不景气的情况下,球铁仍然有所发展,有人称球墨铸铁为不适当退却中的胜利者,指出:球墨铸铁由于其高强度、高韧性和低价格,所以在材料市场上仍占有重要的地位,尽管几年来钢铁铸造总产量有所下降,但球铁产量并未下降,奥——贝球铁的出现增强了球铁的竞争地位。

1.球铁的生产和研究现状1. 1常规球铁目前常规球铁——即以铁素体和珠光体为基体的球铁仍占球铁产量中的绝大部分比例,因此注意提高常规球铁的性能和质量,在保持球铁的竞争地位中起了重要的作用。

1.1.1对影响球铁质量的因素加强控制球铁的组织与性能取决于铸铁的成份和结晶条件以及所用球化剂的质量,研究认为为了确保球铁的机械性能,必须针对铸件具体壁厚、浇注温度、所用球化剂、球化处理工艺、冷却参数的优化以及有效的排渣措施进行严格控制,而适当的降低碳当量,合金化和热处理是改善球铁的有效措施。

1.1.2有效控制铁素体球铁和球光体球铁的生产[2]控制球铁基体的主要因素有铸铁的成份、所用球化剂、孕育剂的类型,加入方法以及冷却条件等。

铸态铁素体球铁的成份控制微过共晶成份,其中碳稍高,但不出现石墨漂浮,含硅稍低,孕育剂硅量应少于3%,锰越低越好,应使Mn<0.04%,硫、磷应低,使S≤0.02%、P≤0.02%,这是因为硅可改善球铁组织和相应的塑性,Si=3.0~3.5%可得到全部铁素体组织。

有研究指出,Si=2.6~2.8%时,铸铁具有最高的延伸率和冲击韧性,但硅在铁中的显微偏析随着含磷量的增加,这种偏析越严重,并对机械性能有不良影响,特别是当温度低于零度时影响更大,而含硫低可以选用低镁低稀土球化剂球化,并减少“黑斑”缺陷的产生,而“黑斑”主要是镁、铈硫化物和氧化物的聚集物,此外也要用低硅球化剂以保证可以进行多次孕育。

对珠光体球铁而言,在生产时铸铁成份中锰可提高至0.8~1.0%,有些铸件如果是用作耐磨性曲轴时,锰可提高至 1.2~1.35%,生产铸态珠光体元素铜。

加入量大于1.8%时,它阻碍石墨球化,但促进基体完全珠光体化,一般球铁中铜含量应小于1.5%,锡是强烈的珠光体化元素,其对硬度的影响大于铜和锰,但Sn≥1.0%时使石墨畸变,因此其含量应限制在0.08%以下。

1.1.3 稀土在球铁中的作用稀土能促进镁合金的球化效果(球化率和球的圆整度),它对壁厚球铁件中防止球状石墨畸变的效果受到了重视,这也是国内外球化剂中都包含稀土的主要原因之一。

在铸件中有些元素能破坏和阻碍石墨球化,这些元素即所谓的球化干扰元素,干扰元素分为两类,一是消耗球化元素型干扰元素,它们与镁、稀土生成MgS、MgO、MgSe、RE2O3、RE2S3、RE2Te3等,使球化元素降低从而破坏了球状石墨形成;另一类是晶间偏析型干扰元素,包括锡、锑、砷、铜、钛、铝等在共晶结晶时,这些元素富集在晶界,促进使碳在共晶后期形成畸形的枝晶状石墨,球化干扰元素原子量越大,其干扰作用越强,现在许多研究都已找到了干扰元素在铸铁中的临界含量,当这些元素含量小于临界含量时,并不能形成畸变石墨。

在有干扰元素的铸铁中,加入稀土可消除其干扰作用,有研究报告指出在铸铁中干扰元素之和应小于0.10%即z=Ti+Cr+Sb+V+As+Pb+Zn+…<0.10%有研究指出,中和铁水中的Al、Sb、TI、Pb、Bi、等只要分别加入0.005~0.04%Ce即可,例如,中和Ti、Pb、Sb、Al等只要分别加入0.005~0.007%、0.014%、0.15%和0.008%的Ce即可。

干扰元素在铸件壁厚,冷却速度慢的情况下破坏作用更大。

干扰元素对球铁基体也有影响,Te、B强烈促进白口形成,Cr、As、Sn、Sb、Pb、Bi稳定珠光体,Al、Zr促进铁素体。

值得注意的是,目前正在发展一些球化元素与干扰元素复合球化剂,以改善大断面球铁的处理效果及石墨球的圆整度。

1.1. 4球铁检测加强球铁检测是保证其质量的重要措施,目前正在研究发展线分析,即产品在生产过程中进行分析,以确定其质量,已有不少单位在大批量生产条件下利用超声波对铸件质量进行分析。

在利用超声波测定铸铁组织时,片状石墨的声速为4500m/s、蠕墨铸铁为5400m/s、球墨铸铁5600m/s,此外在铸铁中高频衰减率的变化也可判断铸铁类型,球铁中心频率为5MHz而片状铸铁仅为1.5MHz。

目前还有单位正在用超声波作球化级别的测定,已可测定合格的球化级别和不合格的产品(3级和4级之间),但还不能进行更细分级测定,此方法正在完善中。

1.2奥——贝球铁20世纪70年代,荷兰、中国、美国彼此独立地,几乎是同时宣布各自研究成功了贝氏体球铁,中国研究成功的是下贝氏体,美国为下贝氏体+马氏体,荷兰为上贝氏体+奥氏体,荷兰成果最具代表性,即现在所称的奥——贝球铁。

1977年M.Jokason宣布荷兰的Kgmi Kgmmene公司所属的karkkila铸造厂开发了一种特性优异的新型铸铁,即奥——贝球铁,并在1978年召开第45届国际年会上宣读了有关论文,此一发明在美、英、法、加等13个国家申请了专利(美国专利号:3860457,荷兰专利1996/72,原西德专利2852870),引起了各国重视,被誉为近几十年来铸铁冶金中的重大成就之一。

奥——贝球铁兼备高强度、高韧性和高耐磨性。

如英国的标准有NE-GJS-800-8,EN-GJS-1000-5,EN-GJS-1400-1。

奥——贝球铁成份与常规球铁成份相同,球化剂和处理工艺也相同,其差别是必须进行等温淬火处理,等温淬火温度不同时可分别获得上贝氏体+奥氏体,下贝氏+奥氏体,下贝氏+马氏体等不同基体。

这种铸铁成本高、生产难度较大,目前应用面虽在不断扩大,但其总量并不大,被人们称之为21世纪材料。

2.球化剂的现状球化剂是目前获得球铁的主要手段之一,在志包钢稀土一厂共同完成国家攻关课题“稀土三剂系列化”时,我校课题组对世界上100多个球化剂生产厂,国内主要合金生产进行调研,取得了英、美、法、德、日、前苏联、印度等十几个国家50多家合金生产厂的产品样本及国内主要球化剂生产厂的产品样本,为对比国内外球化剂性能及今后球化剂生产改进提供了依据。

2.1球化剂的类型按生产方式分有下述几种(1)球化剂的类型包括镁硅系合金、稀土镁硅系合金、钙系合金(日本用的较多),镍镁系合金、纯镁合金、稀土合金。

上述合金中目前世界上用的最为广泛的是稀土镁硅铁合金,但中国合金中RE/Mg的比值范围大(0.5~2.2),国外的合金RE/Mg的比值范围小(0.1~0.3)。

中国合金中稀土大于等于镁含量的占多数,小于镁含量的占少数,而国外(除前苏联一些合金外)球化剂合金中的稀土含量几乎都小于镁含量,因此稀土三剂系列化课题组建议除保留FeSlMg8E18外(此合金是效果优良的蠕化剂),其它全部球化剂中RE/Mg≤1,随后修订的国家标准中采纳了这个建议。

钙镁球化剂主要是日本生产和应用,如日本信越(SHIN—ETSU)生产的钙系合金NC5、NCl0、NCl5、NC20、NC25中镁含量从4~28%变动,但钙含量变化较小,其变化范围为20~31%;此类合金白口倾向小,但要求处理温度高,处理后渣量大。

镍镁合金在美洲、欧洲均有应用,美国国际镍公司生产的镍镁合金最高达82~85%,其中Mg、Ca分别为13~16,及20,镍最低的57~61%(其中Mg4.0~4.5%,Ca<2.5,Fe32~36)。

德国金属化学公司生产的镍镁合金中Ni47~51%,Mgl5~17%,C1.0%Si28~32%,RE1.0%余Fe。

这些合金的优点是比重大,反映平稳,镍可起合金化作用,其特点是价格贵,这种合金在中国基本没有应用。

镍硅系合金目前在中国基本上已不用。

纯镁合金处理时要用专用的压力加镁包,镁的吸收率高,但处理安全措施要极为严格,生产中应用比例较小。

稀土是发明球铁时使用的球化剂,它的发现推进了球铁工业应用的进程。

但价格高,白口倾向大,过量会使石墨变态,现在己不作为球化剂单独使用,仅作为辅助球化元素。

(2)压块状球化剂用镁粉和铁粉及所设计的硅含量直接加压成型,这种球化剂中含硅很低,通常称为低硅压块状球化剂,因而为后续的孕育提供了大的余地,有利于生产铸态球铁,但这种合金易漂浮,处理效果波动大,处理时最好跟块状球化剂混合使用。

(3)包芯线型球化剂将镁粉、铁粉包覆在薄钢板或钢板中,将其快速送入铁水中达到球化目的,这种球化剂较贵,且设备投资大,但处理时合金吸收率高,因此处理球铁的总成本几乎没有提高。

(4)粉状球化剂这种球化剂是俄罗斯的一个专利,使用时将镁粉与抑制剂混合放入包内,并使铁水从合金表面上流过,逐层与合金反映达到球化效果,这种专门工艺称之为MC。

2.2球化剂的应用目前国内外在球铁生产中主要应用火法冶炼的合金,压块球化剂、包芯线球化剂、粉状球化剂应用的很少,火法冶炼的球化剂在生产中应用占90%以上,目前这类合金中增加Ba、Ca、Cu、Ni等以达到控制基体目的,对合金中的氧化镁含量已有限量指标。

现对中国33个典型工厂和美国77个工厂生产球铁工厂进行对比分析。

中国33个工厂的基本情况是:33个工厂总计有36个熔炉,其中电炉(中频、工频、电弧炉)9个占25%,冲天炉22个占61%,冲天炉一电炉双联熔炼厂4个占11%,高炉1个占3%,球铁处理温度大于1500℃,4个占11%,1450~1500℃,20个占56%,1350~1400℃,6个占16.7%,1300~1350℃,2个占5.6%;大于1270℃1个占2.7%;铁水含硫量小于等于0.03%占20%;处理方法中冲入法占94%,喷吹法占3%,压力加镁法3%,用量最大的6#合金Mg8RE8占46%,其次为Mg8RE5占37%,Mg9RE5占11%。

美国77个工厂的基本情况是:熔化设备冲天炉占30%,感应电炉占63%,球化处理温度1482~1538℃占75%;原铁水在球化处理前有50%工厂采用预脱硫工艺,有90%的工厂S 小于0.025%,球化处理方法中在美国大工厂中冲入法占36%,而小厂(小于200吨/周)冲入法仅占22%,压入法、多孔塞法、型内处理法、Tundish盖包法、压力加镁法则占绝大部分比重,使用的球化剂中含镁大于%的占8.2%Mg4~6%占63.3,含镁小于4%占16.4%纯镁占5%,其它的镁合金占8.2%。

资料表明中国生产球铁方面还有不小的差距,美国生产的电炉可保证球化处理所需要的高温,一般经预脱硫,含硫量低,质量要优于我国处理球铁的质量,因此处理球铁可用低镁、低稀土球化剂,而且质量控制也严格,包括使用衰退时间控制器。

相关文档
最新文档