确定二次函数的表达式
已知三点确定二次函数的表达式

解法一: 设所求二次函数关系式为:y = ax2+bx+c.
又抛物线过点(1,0),(3,0),(2,-1),
依题意得: a+b+c=0
a 1
9a+3b+c = 0 解得 b 4
4a + 2b + c=-1
c3
∴所求的函数关系式为
y x2 。4x 3
解法二 ∵点(1,0)和(3,0)是抛 物线与x轴的两个交点, ∴设二次函数关系式为:y=a(x-1)(x-3), 又抛物线过点(2,-1), ∴ -1=a(2-1)(2-3) 解得a 1
确定二次函数的关系式
①设 设二次函数的关系式 ②代 将相关数值代入关系式得到方程或
方程组 ③解 解方程或方程组得出待定系数的值 ④写 写出该二次函数的关系式
例1:已知抛物线图象上三个点的坐标(1,0), (3,0),(2,-1)求二次函数关系式。
例1:已知抛物线图象上三个点的坐标(1,0), (3,0),(2,-1),求二次函数关系式。
小 结:
如何选择不同形式的二次函数的关系式?
1.一般式:y ax2 bx c(a 0)
(已知抛物线上三点或三对x、y的值,用一般式.)
2.顶点式: y a x h2 k(a 0)
(已知抛物线的顶点或对称轴或最值,用顶点式.)
3.交点式 : y a(x x1)(x x2 )(a 0)
求c的值
∴设二次函数的关系式为y=a(x-1)2+2
∵图象经过点(3,-6)
∴-6=a (3-1)2+2 ∴a=-2 ∴二次函数的关系式为y=-2(x-1)2+2
即: y=-2x2+4x
已知三点确定二次函数解析式

例题3.已知二次函数与X轴交与(-1,0),(3,0), 且与y轴交与(0,6)求二次函数解析式
• 解:设二次函数解析式为y=a(x-x1)(x-x2), 因为与X轴 交 与(-1,0),(3,0)则x1=-1,x2=3,所以可得: y=a(x+1)(x-3) 把点(0,6)代入得6=a(0+1)(0-3) 得a=-2 所以二次函数解析式为y=-2(x+1)(x-3) 即y=-2x2+4x+6
议一议 一个二次函数的图象经过A(0,1),B(1,2),C(2,1),你能确定这个二 次函数的表达式吗?你有几种方法?与同伴进行交流。
做一做 1.已知二次函数的图象经过(0,2),(1,0)和(-2,3),求这个二次函数 的表达式。
2.已知二次函数的图像经过(2,0)(-3,0)和(4,6),求这 个二次函数的表达式。
a-b+c=10 a+b+c=4 4a+2b+c=7
2
a=2 解这个方程组得:b=-3 c=5
∴抛物线的解析式是 y=2x2-3x+5 3 2 31 ∵y=2x -3x+5=2(x- ) + 4 8 3 3 31 ∴抛物线的对称轴是 x= ,顶点坐标是( , ) 4 4 8
例1.已知:抛物线y=ax2+bx+c过点(2,1)、(1,-2 )(0, 5)三点,求抛物线的解析式.
解:把(2,1)、(1,-2)、(0,5)分别代 2 入抛物线 y=ax +bx+c 得:
4a+2b+c=1 a+b+c=-2 c=5 a=2 解这个方程组得:b=-12 c=5
已知三点确定二次
用顶点式确定二次函数表达式

(2,5) (0,1)
知识迁移
抛物线 y 2 x bx c(a≠0),经过向左平移 3个单位,向下平移2个单位,得到新的顶点为 (-2,3);求抛物线原解析式。
2
知识迁移
已知抛物线C1的解析式为 y 2 x 4 x 5
2
抛物线C2与抛物线C1关于x轴对称,则抛物线C2的解 析式为:_________________ _; 若抛物线C3关于抛物线C1 y轴对称,则抛2 9 8
知识迁移
1.已知二次函数的对称轴为直线x=2,函数的最小值 是-3,且过(0,1),求二次函数解析式?
知识迁移
2.已知抛物线对称轴是直线x=2,且经过(3,1) 和(0,-5)两点,求二次函数的关系式。
知识迁移
3.抛物线如图所示,请求出抛物线的解析式。
综合应用
要修建一个圆形喷水池,在池中心竖直安 装一根水管.在水管的顶端安装一个喷水 头,使喷出的抛物线形水柱在与池中心的 水平距离为1m处达到最高,高度为3m,水柱 落地处离池中心3m,水管应多长?
解:由题可得, 点(1,3)是图中这段抛 y B(1,3) 物线的顶点.因此可设这段抛物线 3 对应的函数是 A 2 y=a(x-1)2+3 (0≤x≤3) ∵这段抛物线经过点(3,0) 3 1 2 a= - ∴ 0=a(3-1) +3 解得: 4 因此抛物线的解析式为: 2 1 3 O y=-4(x-1)2+3 (0≤x≤3) 当x=0时,y=2.25 答:水管长应为2.25m.
数形结合 双壁辉映
曾鹏志
顶点式确定二次函数
知识回顾
用待定系数法求二次函数的解析式 常见类型
本节重点 运用
1.顶点式:y a( x h) k (a 0)
二次函数的表达式常见的三种形式

二次函数的表达式常见的三种形式:
1、一般式:)0,,(2≠++=a c b a c bx ax y 为常数,且,
当已知抛物线上任意三点坐标时,通常设其函数表达式为一般式,然后列出关于c b a ,,的三元一次方程组求解;
2、顶点式:)0,,(2≠++=a k h a k h x a y 为常数,且)(,当已知抛物线的顶点坐标和抛
物线上另一点的坐标时,通常先设函数的表达式为顶点式,然后将另一点的坐标带入,解关于a 的一元一次方程;
3、交点式(拓展):)0,,)()((2121≠--=a x x a x x x x a y 为常数,且,其中21,x x 是抛物线与x 轴两交点的横坐标.当已知抛物线与x 轴的交点及抛物线上另一点坐标时,通常先设其函数表达式为))((21x x x x a y --=,然后将另一点的坐标带入求出待定系数a .。
2.3 二次函数表达式的三种形式 课件(共21张PPT)

轴(交其点中的x1横, 坐x2标是)抛,物选线交与点x式轴:交y 点 (的x 横x坐1)(标x )x2 )
但不论何种形式,最后都化为一般形x1 式。
2.抛物线y=ax²+bx+c的顶点为(2,4),且过(1,2)点, 求抛物线的解析式.
3.二次函数y=ax²+bx+c的图象过点A(-2,5),且当 x=2时,y=-3,求这个二次函数的解析式,并 判断点B(0,3)是否在这个函数的图象上.
4.抛物线y=ax²+bx+c经过(0,0),(12,0)两点,其 顶点的纵坐标是3,求这个抛物线的解x1 析式.(要 求用多种方法)
• 求二次函数表达式的方法有很多,今 天主要学习用待定系数法来求二次函 数的表达式(解析式)
• 2015已知二次函数的图象与y轴的交点为C, 与x轴正半轴的交点为A.且.tan ACO 1
4
• (1)求二次函数的解析式;
课后练习
1.抛物线y=ax²+bx+c过(-3,0),(1,0)两点,与y 轴的交点为(0,4)过(-3,0),(1,0)两点,与y 轴的交点为(0,4),求抛物线的解析式
• 3.交点式:y a(x x1)(x x2 ) (a 0)
一般式 y ax2 bx c(a )
例题1 (1) 已知二次函数图象经过点A(-1,0), B(4,5),C(0,-3),求该二次函
数的表达式.
(2) (2015牡丹江)抛物线y=x²+bx+c经过 点A(1,-4),B(3,0).求此抛物线的解析式.
二、顶点式 y a(x h)2 k
例题1 (1)(2013绥化)若二次函数图像的顶点坐 标为(-2,3),且过点(-3,5),求此二次 函数的解析式。
初中数学_确定二次函数的表达式教学设计学情分析教材分析课后反思

2.3(1)确定二次函数的表达式教学设计一、教学目标经历用待定系数法求二次函数关系式的过程,加深对二次函数的理解,二、教学重点和难点重点:根据问题灵活选用二次函数表达式的不同形式,用待定系数法确定二次函数表达式. 难点:根据问题灵活选用二次函数表达式的不同形式,用待定系数法确定二次函数表达式.三、教学过程(一)复习回顾:1.二次函数表达式的一般形式是什么?2.二次函数表达式的顶点式是什么?3.若二次函数y=ax ²+bx+c(a ≠0)与x 轴两交点为(1x ,0),( 2x ,0)则其函数表达式可以表示成什么形式?4.我们在用待定系数法确定一次函数y=kx+b (k,b 为常数,k ≠0)的关系式时,通常需要 个独立的条件;确定反比例函数xk y =(k ≠0)的关系式时,通常只需要 个条件. 如果要确定二次函数的关系式y=ax ²+bx+c (a,b,c 为常数,a ≠0),通常又需要几个条件 ?(二)初步探索1、已知二次函数2ax y =的图象经过点A (2,-3)、B (3,m )(1)求a 与m 的值;(2)写出该图象上点B 的对称点的坐标:_________(3)当x_________时,y 随x 的增大而减小(4)当x_________时,y 有最_________值,是_________。
2.已知二次函数c ax y +=2的图象经过点(2,3)和(-1,-3),求二次函数的表达式3.已知二次函数bx ax y +=2的图象经过点(1,2)、(2,3),求二次函数的表达式.4.已知二次函数c bx x y ++=2图象经过点M (1,—2)、N(—1,6),求二次函数的表达式.探索1:在什么情况下,一个二次函数只知道其中两点就可以确定它的表达式?小结:用一般式y=ax ²+bx+c 确定二次函数时,如果系数a,b,c 中有两个是未知的,知道图象上两个点的坐标,也可以确定二次函数的表达式.如果系数a,b,c 中三个都是未知的,这个我们将在下节课中进行研究.(三)深入探索5.如图是一名学生推铅球时,铅球行进高度y(m)与水平距离x(m)的图象,你能求出其 表达式吗?6.已知二次函数的图象与y 轴的交点的横纵坐标是为1,且经过点M(2,5)、N(-2,13),(1)求这个二次函数的解析式;(2)写出抛物线的开口方向,对称轴和顶点坐标.(3)求这个二次函数的最大值或最小值。
北师版九年级数学下册_2.3确定二次函数的表达式

抛物线于点 H,则 yH=-530×72+6= 3.06>3.所以其中的一侧行车道能并排
行驶宽 2 m、高 3 m 的三辆卡车.
课堂小结
确定二次函数的 表达式
确定二次函 数的表达式
一般式 顶点式 交点式
关键 已知条件的 呈现方式
知2-练
感悟新知
知2-练
(3)拱桥下地平面是双向行车道(正中间是一条宽2 m 的隔 离带),其中的一侧行车道能否并排行驶宽2 m、高3 m 的三辆卡车(卡车间的间隔忽略不计)?请说说你的理由.
感悟新知
解:能. 理由如下:
知2-练
如图所示,设 DE 是隔离带的宽,EG 是三辆卡车的宽
度和,则点 G 的坐标是(7,0).过点 G 作 HG⊥AB,交
4-1. 一座拱桥的轮廓是抛物线型(如图所示),拱高6 m,跨 度是20 m,相邻两支柱间的距离均为5 m.
感悟新知
知2-练
(1)将抛物线放在直角坐标系中,并根据所给数据求出抛物 线的函数表达式. 解:(答案不唯一)将抛物线放在 如图所示的直角坐标系中,根 据已知条件,知A,B,C三点 的坐标分别是(-10,0),(10, 0),(0,6).
1
标-2∵为x)-分3+517别(.-x722<为+172(01xx,4)2+.-则∴2xxl当=,)=Ax-0D=),+7722D(Cx时12+4+,C-2Bxlx+=有,1(4最--=-大177 值72xx22+(+,x22-x最x ))72大+,)(值+1(x432,-5 .
2
感悟新知
知2-练
得5a=5,解得a=1,
∴y=x(x-4)=x2-4x,
二次函数的图像及其三种表达式

二次函数的图像及其三种表达式之答禄夫天创作学生:时间:学习目标1、熟悉罕见的二次函数的图像;2、理解二次函数的三种表达式知识点分析1、.二次函数的三种表达式一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)]交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线]2、一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
例题精讲例题1已知函数y=x2+bx+1的图象经过点(3,2).(1)求这个函数的表达式;(2)画出它的图象,并指出图象的顶点坐标;(3)当x>0时,求使y≥2的x的取值范围.例题2、一次函数y=2x +3,与二次函数y=ax 2+bx +c 的图象交于A (m ,5)和B (3,n )两点,且当x=3时,抛物线取得最值为9.(1)求二次函数的表达式;(2)在同一坐标系中画出两个函数的图象;(3)从图象上观察,x 为何值时,一次函数与二次函数的值都随x 的增大而增大.(4)当x 为何值时,一次函数值大于二次函数值? 随堂练习1.已知函数y=ax 2+bx +c (a ≠0)的图象,如图①所示,则下列关系式中成立的是()A .0<-ab 2<1 B .0<-ab 2<2 C .1<-ab 2<2D .-a b2=1图①图②y =21x 2+2x +1写成y =a (x -h)2+k 的形式是A.y =21(x -1)2+2B.y =21(x -1)2+21 C.y =21(x -1)2-3D.y =21(x +2)2-1y =-2x 2-x +1的顶点在第_____象限m 取任何实数,抛物线y =a (x +m )2+m (a ≠0)的顶点都y =xy =-x 上 xy 轴上n ,得到分歧的抛物线y =2x 2+n ,如当n =0,±2时,关于这些抛物线有以下结论:①开口方向都相同;②对称轴都相同;③形状都相同;④都有最低点,其中判断正确的个数是y =x 2+p x +q 中,若p+q=0,则它的图象必经过下列四点中A.(-1,1)B.(1,-1)C.(-1,-1)D.(1,1)图37.下列说法错误的是y =-2x 2中,当x =0时,y 有最大值是0 y =4x 2中,当x >0时,y 随x 的增大而增大y =2x 2,yx 2,y =-x 2中,y =2x 2的图象开口最大,y =-x 2的图象开口最小a 是正数还是负数,抛物线y =ax 2(a ≠0)的顶点一定是坐标原点8.已知二次函数y =x 2+(2k +1)x +k 2-1的最小值是0,则k 的值是A.43 B.-43C.45D.-45 9.小颖在二次函数y =2x 2+4x +5的图象上,依横坐标找到三点(-1,y 1),(21,y 2), (-321,y 3),则你认为y 1,y 2,y 3的大小关系应为A.y 1>y 2>y 3B.y 2>y 3>y 1C.y 3>y 1>y 2D.y 3>y 2>y 110.抛物线y =21(x +3)2的顶点坐标是______.11.将抛物线y =3x 2向上平移3个单位后,所得抛物线的顶点坐标是______.12.函数y =34x -2-3x 2有最_____值为_____.13.已知抛物线y =ax 2+bx +c 的图象顶点为(-2,3),且过(-1,5),则抛物线的表达式为______.14.二次函数y =mx 2+2x +m -4m 2的图象过原点,则此抛物线的顶点坐标是______.15.抛物线y=ax 2+bx +c (c ≠0)如图②所示,回答:(1)这个二次函数的表达式是; (2)当x=时,y=3;16.抛物线y=ax 2+bx +c (c ≠0)如图②所示,回答:(1)这个二次函数的表达式是; (2)当x=时,y=3;(3)根据图象回答:当x 时,y >0.17.已知抛物线y=-x 2+(6-2k )x +2k -1与y 轴的交点位于(0,5)上方,则k 的取值范围是.18.一根长为100m 的铁丝围成一个矩形的框子,要想使铁丝框的面积最大,边长分别为.19.若两个数的差为3,若其中较大的数为x ,则它们的积y 与x 的函数表达式为,它有最值,即当x=时,y=.20.边长为12cm 的正方形铁片,中间剪去一个边长为x 的小正方形铁片,剩下的四方框铁片的面积y (cm 2)与x (cm )之间的函数表达式为.21.等边三角形的边长2x 与面积y 之间的函数表达式为.22.抛物线y=x 2+kx -2k 通过一个定点,这个定点的坐标为. 23.已知抛物线y=x 2+x +b 2经过点(a ,-41)和(-a ,y 1),则y 1的值是.24.如图,图①是棱长为a 的小正方体,②、③是由这样的小正方体摆放而成,依照这样的方法继续摆放,由上而下分别叫第一层、第二层……第n 层,第n 层的小正方体的个数记为S ,解答下列问题:(1)依照要求填表:n 1 2 3 4 …s 1 3 6 …(2)写出当n=10时,S=.(3)根据上表中的数据,把S作为纵坐标,n作为横坐标,在平面直角坐标系中描出相应的点.(4)请你猜一猜上述各点会在某一函数图象上吗?如果在某一函数的图象上,求出该函数的表达式.25.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程.图中二次函数图象(部分)刻画了该公司年初以来累积利润S(万元)与销售时间t(月)之间的关系(即前t个月的利润总和S与t之间的关系).根据图象提供的信息,解答下列问题:(1)由已知图象上的三点坐标,求累积利润S(万元)与时间t(月)之间的函数表达式;(2)求截止到几月末公司累积利润可达到30万元;(3)求第8个月公司所获利润是多少万元?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)求抛物线的函数表达式. (2)求抛物线的顶点坐标和对称轴. (3)把抛物线向上平移,使得顶点落在x轴上,求出两条抛物线、 对称轴和y轴围成的图形的面积S(图②中阴影部分).
【思路点拨】(1)把点A,B,C的坐标代入抛物线表达式 y=ax2+bx+c,利用待定系数法求解即可. (2)把抛物线表达式整理成顶点式形式,然后写出顶点坐标与对 称轴即可. (3)根据顶点坐标求出向上平移的距离,再根据阴影部分的面积 等于平行四边形的面积,列式进行计算即可得解.
2.5 用三种方式表示二次函数
确定二次函数表达式的一般方法:
已知条件 顶点和另一点的坐标 二次函数各项系数中的
一个和两点的坐标
三个点的坐标
选用表达式的形式 _顶__点__式__
_一__般__式__
_一__般__式__
【思维诊断】(打“√”或“×”) 1.确定二次函数的表达式需要三个条件.( √ ) 2.知道二次函数的顶点和另一点的坐标,只能用顶点式确定其 表达式.( × ) 3.在实际问题中,二次函数的图象一定不是一条完整的抛物 线.( × ) 4.要确定二次函数的表达式一定要知道其图象上三个点的坐 标.( × )
【备选例题】已知抛物线y=ax2+bx+c(a≠0)与x轴的两交点的
横坐标分别是-1和3,与y轴交点的纵坐标是- 3 .
2
(1)确定抛物线的表达式.
(2)求出抛物线的开口方向,对称轴和顶点坐标.
【解析】(1)依题意抛物线的表达式可以转化为
y=a(x+1)(x-3),
将点 ( 0 , 3 ) 代入,得-3a=- 3 , 解得a= 1 ,
【自主解答】(1)∵抛物线y=ax2+bx+c经过点
A(0,3),B(3,0),C(4,3),
c3,
a1,
9a3bc0, 解得b4,
16a4bc3, c3,
所以抛物线的函数表达式为y=x2-4x+3.
(2)∵y=x2-4x+3=(x-2)2-1,∴抛物线的顶点坐标为(2,-1),对
称轴为直线x=2.
(3)如图,∵抛物线的顶点坐标为(2,-1),∴PP′=1, 阴影部分的面积等于平行四边形A′APP′的面积, 平行四边形A′APP′的面积=1×2=2,∴S阴影=2.
【想一想】 示范题2中能否用顶点式求抛物线的表达式?表达式应该怎样设? 代入时要注意什么问题? 提示:能用顶点式求抛物线的表达式. ∵抛物线经过点A(0,3)和C(4,3),∴其对称轴是直线x=2,∴抛 物线的表达式可设为y=a(x-2)2+k,代入时要把A,B两点或B,C两 点代入,代入A,C两点无法求出a和k.
点D的坐标为(4,5),
∴S△ABD=
1 2
AB·5=10.
【方法一点通】 由两个点的坐标确定二次函数的表达式的两种常见形式 1.已知顶点和另一点的坐标,可用顶点式求二次函数的表达式. 2.已知二次函数各项系数中的一个和任意两点的坐标,可用一 般式求二次函数的表达式.
知识点二 由三个点的坐标确定二次函数的表达式 【示范题2】(2013·佛山中考)如图①,已知抛物线y=ax2+bx+c 经过点A(0,3),B(3,0),C(4,3).
知识点一 由两个点的坐标确定二次函数的表达式 【示范题1】(2013·黑龙江中考)如图,抛物 线y=x2+bx+c与x轴交于A(-1,0)和B(3,0)两 点,交y轴于点E. (1)求此抛物线的表达式. (2)若直线y=x+1与抛物线交于A,D两点,与y轴交于点F,连接DE, 求△DEF的面积.
【解题探究】(1)已知抛物线的二次项系数a=1,如何求出b,c的 值? 提示:把点A和点B的坐标代入二次函数的表达式,得到关于b,c 的方程组,解方程组即可求出b,c的值. (2)如果我们把EF作为底,如何作辅助线?再求出哪些条件就可 以求出△DEF的面积. 提示:过点D作DM⊥y轴于点M,先求出点D,E,F的坐标,再确定EF 和DM的长,即可求出△DEF的面积.
【尝试解答】(1)∵抛物线经过A(-1,0),B(3,0),
1 9- 3 bbcc00 ,,解 得 cb - - 3 2,,
∴抛物线的表达式为y=x2-2x-3.
(2)过点D作DM⊥y轴于点M,
根据题意得:
y
x2-2x-3,,
y x 1,
解得
xy11
-1, 0,
xy22
4, 5,
∴D(4,5),∴DM=4,
对于直线y=x+1,当x=0时,y=1,∴F(0,1);对于y=x2-2x-3,
当x=0时,y=-3,∴E(0,-3),∴EF=4,∴S△DEF=
1 2Байду номын сангаас
EF·DM=8.
【想一想】
示范题1中△ABD的面积是多少?
提示:∵AB=3-(-1)=4,
2
2
2
故y= 1 (x+1)(x-3),即y= 1 x2-x- 3 .
2
2
2
(2)因为y= 1 x2-x- 3 = 1 (x-1)2-2.
2
22
所以抛物线开口向上,对称轴是直线x=1,顶点坐标为(1,-2).
【方法一点通】 “三式”巧定表达式 1.一般式:所给的条件能够确定抛物线上三个不同点的坐标时, 可设表达式为y=ax2+bx+c(一般式). 2.顶点式:所给条件能够确定抛物线的顶点坐标时,可设表达式 为y=a(x-h)2+k(顶点式). 3.交点式:所给条件能够确定抛物线与x轴的两个交点坐标时, 则可设表达式为y=a(x-x1)(x-x2)(交点式).