桥梁结构设计外文文献翻译
桥梁毕业设计外文翻译5
附录附录A 外文翻译第一部分英文原文4.2.2 Model that Failed in Punching ShearIt was realized that complete restraint in both the longitudinal and transversedirections is necessary for the development of the internal arching system in the deck slab. With this realization,another half-scale model of a two-girder bridge was built. This model also had a deck slab reinforced only by polypropylene fibres, and was very similar to the previous one, the main difference being that the top flangesof the girders were now interconnected by transverse steel straps lying outside the deck slab. A view of the steel work of this model can be seen in Fig. 4.7.These straps were provided so as to serve as transverse ties to the internal arch in the slab.The 100 mm thick slab of the model with transverse straps failed under a central load of 418 kN in a punching-shear failure mode. As can be seen in Fig. 4.8, the damaged area of the slab was highly localized. It can be appreciated that with such a high failure load, the thin deck slab of the half-scale model could have easily withstood the weights of even the heaviest wheel load of commercial vehicles.The model tests described above and in sub-section 4.2.1 clearly demonstrate that an internal arching action will indeed develop in a deck slab, but only if it is suitably restrained.4.2.3 Edge StiffeningA further appreciation of the deck slab arching action is provided by tests on a scale model of a skew slab-on-girder bridge. As will be discussed in sub-section 4.4.2, one transverse free edge of the deck slab of this model was stiffened by a composite steel channel with its web in the vertical plane. The other free edge was stiffened by a steel channel diaphragm with its web horizontal and connected to the deck slab through shear connectors. The deck slab near the former transverse edge failed in a mode that was a hybrid between punching shear and flexure. Tests near the composite diaphragm led to failure at a much higher load in punching shear (Bakht and Agarwal, 1993).The above tests confirmed yet again that the presence of the internal arching action in deck slabs induces high in-plane force effects which in turn demand stiffer restraint in the plane of the deck than in the out-of-plane direction.4.3 INTERNALLY RESTRAINED DECK SLABSDeck slabs which require embedded reinforcement for strength will now be referred to as internally restrained deck slabs. The state-of-art up to 1986 relating to the quantification and utilization of the beneficial internal arching action in deck slabs with steel reinforcement has been provided by Bakht and Markovic (1986). Their conclusions complemented with up-to-date information are presented in this chapter in a generally chronological order which, however, cannot be adhered to rigidlybecause of the simultaneous occurrence of some developments.4.3.1 Static Tests on Scale ModelsAbout three decades ago, the Structures Research Office of the Ministry of Transportation of Ontario (MTO), Canada, sponsored an extensive laboratory-based research program into the load carrying capacity of deck slabs; this research program was carried out at Queen's University, Kingston, Ontario. Most of this research was conducted through static tests on scale models of slab-on-girder bridges. This pioneering work is reported by Hewitt and Batchelor (1975) and later by Batchelor et al. (1985), and is summarized in the following.The inability of the concrete to sustain tensile strains, which leads to cracking, has been shown to be the main attribute which causes the compressive membrane forces to develop. This phenomenon is illustrated in Fig. 4.9 (a) which shows the part cross-section of slab-on-girder bridge under the action of a concentrated load.The cracking of the concrete, as shown in the figure, results in a net compressive force near the bottom face of the slab at each of the two girder locations. Midway between the girders, the net compressive force moves towards the top of the slab. It can be readily visualized that the transition of the net compressive force from near the top in the middle region, to near the bottom at the supports corresponds to the familiar arching action. Because of this internal arching action, the failure mode of a deck slab under a concentrated load becomes that of punching shear.If the material of the deck slab has the same stress-strain characteristics in both tension and compression, the slab will not crack and, as shown in Fig. 4.9 (b), will not develop the net compressive force and hence the arching action.In the punching shear type of failure, a frustum separates from the rest of the slab, as shown in schematically in Fig. 4.10. It is noted that in most failure tests, the diameter of the lower end of the frustrum extends to the vicinity of the girders.From analytical and confirmatory laboratory studies, it was established that the most significant factor influencing the failure load of a concrete deck slab is the confinement of the panel under consideration. It was concluded that this confinement is provided by the expanse of the slab beyond the loaded area; its degree was founddifficult to assess analytically. A restraint factor, η, was used as an empirical measure of the confinement; its value is equal to zero for the case of no confinement and 1.0 for full confinement.The effect of various parameters on the failure load can be seen in Table 4.1, which lists the theoretical failure loads for various cases. It can be seen that an increase of the restraint factor from 0.0 to 0.5 results in a very large increase in the failure load. The table also emphasizes the fact that neglect of the restraint factor causes a gross underestimation of the failure load.It was concluded that design for flexure leads to the inclusion of large amounts of unnecessary steel reinforcement in the deck slabs, and that even the minimum amount of steel required for crack control against volumetric changes in concrete is adequate to sustain modern-day, and even future, highway vehicles of North America.It was recommended that for new construction, the reinforcement in a deck slab should be in two layers, with each layer consisting of an orthogonal mesh having the same area of reinforcement in each direction. The area of steel reinforcement in each direction of a mesh was suggested to be 0.2% of the effective area of cross-section of the slab. This empirical method of design was recommended for deck slabs with certain constraints.4.3.2 Pulsating Load Tests on Scale ModelsTo study the fatigue strength of deck slabs with reduced reinforcement, five small scale models with different reinforcement ratios in different panels were tested at the Queen's University at Kingston. Details of this study are reported by Batchelor et al. (1978).Experimental investigation confirmed that for loads normally encountered in North America deck slabs with both conventional and recommended reducedreinforcement have large reserve strengths against failure by fatigue. It was confirmed that the reinforcement in the deck slab should be as noted in sub-section 4.3.1. It is recalled that the 0.2% reinforcement requires that the deck slab must have a minimum restraint factor of 0.5.The work of Okada, et al. (1978) also deals with fatigue tests on full scale models of deck slabs and segments of severely cracked slab removed from eight to ten year old bridges. The application of these test results to deck slabs of actual bridges is open to question because test specimens were removed from the original structures in such a way that they did not retain the confinement necessary for the development of the arching action.4.3.3 Field TestingAlong with the studies described in the preceding sub-section, a program of field testing of the deck slabs of in-service bridges was undertaken by the Structures Research Office of the MTO. The testing consisted of subjecting deck slabs to single concentrated loads, simulating wheel loads, and monitoring the load-deflection characteristics of the slab. The testing is reported by Csagoly et al. (1978) and details of the testing equipment are given by Bakht and Csagoly (1979).Values of the restraint factor, η, were back-calculated from measured deflections.A summary of test results, given in Table 4.2, shows that the average value of η in composite bridges is greater than 0.75, while that for non-composite bridges is 0.42. It was concluded that for new construction, the restraint factor, η, can be assumed to have a minimum value of 0.5.Bakht (1981) reports that after the first application of a test load of high magnitude on deck slabs of existing bridges, a small residual deflection was observed in most cases. Subsequent applications of the same load did not result in further residual deflections. It is postulated that the residual deflections are caused by cracking of the concrete which, as discussed earlier, accompanies the development of the internal arching action. The residual deflections after the first cycle of loading suggest that either the slab was never subjected to loads high enough to cause cracking, or the cracks have 'healed' with time.第二部分汉语翻译4.2.2 在冲切剪应力下的实效模型我们已经知道在桥面板内部拱形系统的形成中,不仅纵向而且横向也被完全约束限制是完全必要的。
钢结构桥梁中英文对照外文翻译文献
中英文对照外文翻译文献(文档含英文原文和中文翻译)Recent Research and Design Developments in Steel and Composite Steel-concrete Structures in USAThe paper will conclude with a look toward the future of structural steel research.1. Research on steel bridgesThe American Association of State Transportation and Highway Officials (AASTHO) is the authority that promulgates design standards for bridges in the US. In 1994 it has issued a new design specification which is a Limit States Design standard that is based on the principles of reliability theory. A great deal of work went into the development of this code in the past decade, especially on calibration and on the probabilistic evaluation of the previous specification. The code is now being implemented in the design office, together with the introduction of the SystemeInternationale units. Many questions remain open about the new method of design, and there are many new projects that deal with the reliability studies of the bridge as a system. One such current project is a study to develop probabilistic models, load factors, and rational load-combination rules for the combined effects of live-load and wind; live-load and earthquake; live-load, wind and ship collision; and ship collision, wind, and scour. There are also many field measurements of bridge behavior, using modern tools of inspection and monitoring such as acoustic emission techniques and other means of non-destructive evaluation. Such fieldwork necessitates parallel studies in the laboratory, and the evolution of ever more sophisticated high-technology data transmission methods.America has an aging steel bridge population and many problems arise from fatigue and corrosion. Fatigue studies on full-scale components of the Williamsburg Bridge in New York have recently been completed at Lehigh University. A probabilistic AASTHO bridge evaluation regulation has been in effect since 1989, and it is employed to assess the future useful life of structures using rational methods that include field observation and measurement together with probabilistic analysis. Such an activity also fosters additional research because many issues are still unresolved. One such area is the study of the shakedown of shear connectors in composite bridges. This work has been recently completed at the University of Missouri.In addition to fatigue and corrosion, the major danger to bridges is the possibility of earthquake induced damage. This also has spawned many research projects on the repair and retrofit of steel superstructures and the supporting concrete piers. Many bridges in the country are being strengthened for earthquake resistance. One area that is receiving much research attention is the strengthening of concrete piers by "jacketing" them by sheets of high-performance reinforced plastic.The previously described research deals mainly with the behavior of existing structures and the design of new bridges. However, there is also a vigorous activity on novel bridge systems. This research is centered on the application of high-performance steels for the design of innovative plate and box-girder bridges, such as corrugated webs, combinations of open and closed shapes, and longer spansfor truss bridges. It should be mentioned here that, in addition to work on steel bridges, there is also very active research going on in the study of the behavior of prestressed concrete girders made from very high strength concrete. The performance and design of smaller bridges using pultruded high-performance plastic composite members is also being studied extensively at present. New continuous bridge systems with steel concrete composite segments in both the positive moment and the negative moment regions are being considered. Several researchers have developed strong capabilities to model the three-dimensional non-linear behavior of individual plate girders, and many studies are being performed on the buckling and post-buckling characteristics of such panion experimental studies are also made,especially on members built from high-performance steels. A full-scale bridge of such steel has been designed, and will soon be constructed and then tested under traffic loading. Research efforts are also underway on the study of the fatigue of large expansion joint elements and on the fatigue of highway sign structures.The final subject to be mentioned is the resurgence of studies of composite steel concrete horizontally curved steel girder bridges. A just completed project at the University of Minnesota monitored the stresses and the deflections in a skewed and curved bridge during all phases of construction, starting from the fabrication yard to the completed bridge.~ Excellent correlation was found to exist between the measured stresses and deformations and the calculated values. The stresses and deflections during construction were found to be relatively small, that is, the construction process did not cause severe trauma to the system. The bridge has now been tested under service loading, using fully loaded gravel trucks, for two years, and it will continue to be studied for further years to measure changes in performance under service over time. A major testing project is being conducted at the Federal Highway Administration laboratory in Washington, DC, where a half-scale curved composite girder bridge is currently being tested to determine its limit states. The test-bridge was designed to act as its own test-frame, where various portions can be replaced after testing. Multiple flexure tests, shear tests, and tests under combined bending and shear, are thus performed with realistic end-conditions and restraints. The experiments arealso modeled by finite element analysis to check conformance between reality and prediction. Finally design standards will be evolved from the knowledge gained. This last project is the largest bridge research project in the USA at the present time.From the discussion above it can be seen that even though there is no large expansion of the nation's highway and railroad system, there is extensive work going on in bridge research. The major challenge facing both the researcher and the transportation engineer is the maintenance of a healthy but aging system, seeing to its gradual replacement while keeping it safe and serviceable.2. Research on steel members and framesThere are many research studies on the strength and behavior of steel building structures. The most important of these have to do with the behavior and design of steel structures under severe seismic events. This topic will be discussed later in this paper. The most significant trends of the non-seismic research are the following: "Advanced" methods of structural analysis and design are actively studied at many Universities, notably at Cornell, Purdue, Stanford, and Georgia Tech Universities. Such analysis methods are meant to determine the load-deformation behavior of frames up to and beyond failure, including inelastic behavior, force redistribution, plastic hinge formation, second-order effects and frame instability. When these methods are fully operational, the structure will not have to undergo a member check, because the finite element analysis of the frame automatically performs this job. In addition to the research on the best approaches to do this advanced analysis, there are also many studies on simplifications that can be easily utilized in the design office while still maintaining the advantages of a more complex analysis. The advanced analysis method is well developed for in-plane behavior, but much work is yet to be done on the cases where bi-axial bending or lateraltorsional buckling must be considered. Some successes have been achieved, but the research is far from complete.Another aspect of the frame behavior work is the study of the frames with semirigid joints. The American Institute of Steel Construction (AISC) has published design methods for office use. Current research is concentrating on the behavior ofsuch structures under seismic loading. It appears that it is possible to use such frames in some seismic situations, that is, frames under about 8 to 10 stories in height under moderate earthquake loads. The future of structures with semi-rigid frames looks very promising, mainly because of the efforts of researchers such as Leon at Georgia Tech University, and many others.Research on member behavior is concerned with studying the buckling and post buckling behavior of compact angle and wide-flange beam members by advanced commercial finite element programs. Such research is going back to examine the assumptions made in the 1950s and 1960s when the plastic design compactness and bracing requirements were first formulated on a semi-empirical basis. The non-linear finite element computations permit the "re-testing" of the old experiments and the performing of new computer experiments to study new types of members and new types of steels. White of Georgia Tech is one of the pioneers in this work. Some current research at the US military Academy and at the University of Minnesota by Earls is discussed later in this report. The significance of this type of research is that the phenomena of extreme yielding and distortion can be efficiently examined in parameter studies performed on the computer. The computer results can be verified with old experiments, or a small number of new experiments. These studies show a good prospect fornew insights into old problems that heretofore were never fully solved.3. Research on cold-formed steel structuresNext to seismic work, the most active part of research in the US is on cold-formed steel structures. The reason for this is that the supporting industry is expanding, especially in the area of individual family dwellings. As the cost of wood goes up, steel framed houses become more and more economical. The intellectual problems of thin-walled structures buckling in multiple modes under very large deformations have attracted some of the best minds in stability research. As a consequence, many new problems have been solved: complex member stiffening systems, stability and bracing of C and Z beams, composite slabs, perforated columns, standing-seam roof systems, bracing and stability of beams with very complicatedshapes, cold-formed members with steels of high yield stress-to-tensile strength ratio, and many other interesting applications. The American Iron and Steel Institute (AISI) has issued a new expanded standard in 1996 that brought many of these research results into the hands of the designer.4. Research on steel-concrete composite structuresAlmost all structural steel bridges and buildings in the US are built with composite beams or girders. In contrast, very few columns are built as composite members. The area of composite Column research is very active presently to fill up the gap of technical information on the behavior of such members. The subject of steel tubes filled with high-strength concrete is especially active. One of the aims of research performed by Hajjar at the University of Minnesota is to develop a fundamental understanding of the various interacting phenomena that occur in concrete-filled columns and beam-columns under monotonic and cyclic load. The other aim is to obtain a basic understanding of the behavior of connections of wide-flange beams to concrete filled tubes.Other major research work concerns the behavior and design of built-up composite wide-flange bridge girders under both positive and negative bending. This work is performed by Frank at the University of Texas at Austin and by White of Georgia Tech, and it involves extensive studies of the buckling and post-buckling of thin stiffened webs. Already mentioned is the examination of the shakedown of composite bridges. The question to be answered is whether a composite bridge girder loses composite action under repeated cycles of loads which are greater than the elastic limit load and less than the plastic mechanism load. A new study has been initiated at the University of Minnesota on the interaction between a semi-rigid steel frame system and a concrete shear wall connected by stud shear connectors.5. Research on connectionsConnection research continues to interest researchers because of the great variety of joint types. The majority of the connection work is currently related to the seismic problems that will be discussed in the next section of this paper. The most interest in non-seismic connections is the characterization of the monotonic moment-rotationbehavior of various types of semi-rigid joints.6. Research on structures and connections subject to seismic forcesThe most compelling driving force for the present structural steel research effort in the US was the January 17, 1994 earthquake in Northridge, California, North of Los Angeles. The major problem for steel structures was the extensive failure of prequalified welded rigid joints by brittle fracture. In over 150 buildings of one to 26 stories high there were over a thousand fractured joints. The buildings did not collapse, nor did they show any external signs of distress, and there were no human injuries or deaths. A typical joint is shown in Fig. 2.2.1.In this connection the flanges of the beams are welded to the flanges of the column by full-penetration butt welds. The webs are bolted to the beams and welded to the columns. The characteristic features of this type of connection are the backing bars at the bottom of the beam flange, and the cope-holes left open to facilitate the field welding of the beam flanges. Fractures occurred in the welds, in the beam flanges, and/or in the column flanges, sometimes penetrating into the webs.Once the problem was discovered several large research projects were initiated at various university laboratories, such as The University of California at San Diego, the University of Washington in Seattle, the University of Texas at Austin, Lehigh University at Bethlehem, Pennsylvania, and at other places. The US Government under the leadership of the Federal Emergency Management Agency (FEMA) instituted a major national research effort. The needed work was deemed so extensivethat no single research agency could hope to cope with it. Consequently three California groups formed a consortium which manages the work:(1) Structural Engineering Association of California.(2) Applied Technology Council.(3) California Universities for Research in Earthquake Engineering.The first letters in the name of each agency were combined to form the acronym SAC, which is the name of the joint venture that manages the research. We shall read much from this agency as the results of the massive amounts of research performed under its aegis are being published in the next few years.The goals of the program are to develop reliable, practical and cost-effective guidelines for the identification and inspection of at-risk steel moment frame buildings, the repair or upgrading of damaged buildings, the design of new construction, and the rehabilitation of undamaged buildings.~ As can be seen, the scope far exceeds the narrow look at the connections only. The first phase of the research was completed at the end of 1996, and its main aim was to arrive at interim guidelines so that design work could proceed. It consisted of the following components:~ A state-of-the-art assessment of knowledge on steel connections.~ A survey of building damage.~ The evaluation of ground motion.~ Detailed building analyses and case studies.~ A preliminary experimental program.~ Professional training and quality assurance programs.~ Publishing of the Interim Design Guidelines.A number of reports were issued in this first phase of the work. A partial list of these is appended at the end of this paper.During the first phase of the SAC project a series of full-scale connection tests under static and, occasionally, dynamic cyclic tests were performed. Tests were of pre-Northridge-type connections (that is, connections as they existed at the time of the earthquake), of repaired and upgraded details, and of new recommendedconnection details. A schematic view of the testing program is illustrated in Fig.2.2.2 Some recommended strategies for new design are schematically shown in Fig. 2.2.3.Fig. 2.2.3 some recommended improvements in the interim guidelinesThe following possible causes, and their combinations, were found to have contributed to tile connection failures:~ Inadequate workmanship in the field welds.~ Insufficient notch-toughness of the weld metal.~ Stress raisers caused by the backing bars.~ Lack of complete fusion near the backing bar.~ Weld bead sizes were too big.~ Slag inclusion in the welds.While many of the failures can be directly attributed to the welding and thematerial of the joints, there are more serious questions relative to the structural system that had evolved over the years mainly based on economic considerations.' The structural system used relatively few rigid-frames of heavy members that were designed to absorb the seismic forces for large parts of the structure. These few lateral-force resistant frames provide insufficient redundancy. More rigid-frames with smaller members could have provided a tougher and more ductile structural system. There is a question of size effect: Test results from joints of smaller members were extrapolated to joints with larger members without adequate test verification. The effect of a large initial pulse may have triggered dynamic forces that could have caused brittle fracture in joints with fracture critical details and materials. Furthermore, the yield stress of the beams was about 30% to 40% larger than the minimum specified values assumed in design, and so the connection failed before the beams, which were supposed to form plastic hinges.As can be seen, there are many possible reasons for this massive failure rate, and there is blame to go around for everyone. No doubt, the discussion about why and how the joints failed will go on for many more years. The structural system just did not measure up to demands that were more severe than expected. What should be kept in mind, however, is that no structure collapsed or caused even superficial nonstructural damage, and no person was injured or killed. In the strictest sense the structure sacrificed itself so that no physical harm was done to its users. The economic harm, of course, was enormous.7. Future directions of structural steel research and conclusionThe future holds many challenges for structural steel research. The ongoing work necessitated by the two recent earthquakes that most affected conventional design methods, namely, the Northridge earthquake in the US and the Kobe earthquake in Japan, will continue well into the first decade of the next Century. It is very likely that future disasters of this type will bring yet other problems to the steel research community. There is a profound change in the philosophy of design for disasters: We can no longer be content with saving lives only, but we must also design structures which will not be so damaged as to require extensive repairs.Another major challenge will be the emergence of many new materials such as high-performance concrete and plastic composite structures. Steel structures will continually have to face the problem of having to demonstrate viability in the marketplace. This can only be accomplished by more innovative research. Furthermore, the new comprehensive limit-states design codes which are being implemented worldwide, need research to back up the assumptions used in the theories.Specifically, the following list highlights some of the needed research in steel structures:Systems reliability tools have been developed to a high degree of sophistication. These tools should be applied to the studies of bridge and building structures to define the optimal locations of monitoring instruments, to assess the condition and the remaining life of structures, and to intelligently design economic repair and retrofit operations.New developments in instrumentation, data transfer and large-scale computation will enable researchers to know more about the response of structures under severe actions, so that a better understanding of "real-life" behavior can be achieved.The state of knowledge about the strength of structures is well above the knowledge about serviceability and durability. Research is needed on detecting and preventing damage in service and from deterioration.The areas of fatigue and fracture mechanics on the one hand, and the fields of structural stability on the other hand, should converge into a more Unified conceptual entity.The problems resulting from the combination of inelastic stability and low-cycle fatigue in connections subject to severe cyclic loads due to seismic action will need to be solved.The performance of members, connections and connectors (e.g., shear connectors) under severe cyclic and dynamic loading requires extensive new research, including shakedown behavior.The list could go on, but one should never be too dogmatic about the future ofsuch a highly creative activity as research. Nature, society and economics will provide sufficient challenges for the future generation of structural engineers.近期美国在钢结构和钢筋混凝土结构研究和设计方面的发展这篇文章将总结对钢结构的研究展望.1.钢结构桥梁的研究美国国家运输和公路官员协会(AASTH0)是为美国桥梁发布设计标准的权威。
桥梁工程毕业设计外文翻译(箱梁)
西南交通大学本科毕业设计(论文)外文资料翻译年级:学号:姓名:专业:指导老师:2013年 6 月外文资料原文:13Box girders13.1 GeneralThe box girder is the most flexible bridge deck form。
It can cover a range of spans from25 m up to the largest non—suspended concrete decks built, of the order of 300 m。
Single box girders may also carry decks up to 30 m wide。
For the longer span beams, beyond about 50 m,they are practically the only feasible deck section. For the shorter spans they are in competition with most of the other deck types discussed in this book.The advantages of the box form are principally its high structural efficiency (5.4),which minimises the prestress force required to resist a given bending moment,and its great torsional strength with the capacity this gives to re—centre eccentric live loads,minimising the prestress required to carry them。
The box form lends itself to many of the highly productive methods of bridge construction that have been progressively refined over the last 50 years,such as precast segmental construction with or without epoxy resin in the joints,balanced cantilever erection either cast in—situ or coupled with precast segmental construction, and incremental launching (Chapter 15)。
道路桥梁专业 中英文对照---毕业设计论文 外文文献翻译
附录一英文翻译原文AUTOMATIC DEFLECTION AND TEMPERATURE MONITORING OFA BALANCED CANTILEVER CONCRETE BRIDGEby Olivier BURDET, Ph.D.Swiss Federal Institute of Technology, Lausanne, SwitzerlandInstitute of Reinforced and Prestressed Concrete SUMMARYThere is a need for reliable monitoring systems to follow the evolution of the behavior of structures over time.Deflections and rotations are values that reflect the overall structure behavior. This paper presents an innovative approach to the measurement of long-term deformations of bridges by use of inclinometers. High precision electronic inclinometers can be used to follow effectively long-term rotations without disruption of the traffic. In addition to their accuracy, these instruments have proven to be sufficiently stable over time and reliable for field conditions. The Mentue bridges are twin 565 m long box-girder post-tensioned concrete highway bridges under construction in Switzerland. The bridges are built by the balanced cantilever method over a deep valley. The piers are 100 m high and the main span is 150 m. A centralized data acquisition system was installed in one bridge during its construction in 1997. Every minute, the system records the rotation and temperature at a number of measuring points. The simultaneous measurement of rotations and concrete temperature at several locations gives a clear idea of the movements induced by thermal conditions. The system will be used in combination with a hydrostatic leveling setup to follow the long-term behavior of the bridge. Preliminary results show that the system performs reliably and that the accuracy of the sensors is excellent.Comparison of the evolution of rotations and temperature indicate that the structure responds to changes in air temperature rather quickly.1.BACKGROUNDAll over the world, the number of structures in service keeps increasing. With the development of traffic and the increased dependence on reliable transportation, it is becoming more and more necessary to foresee and anticipate the deterioration of structures. In particular,for structures that are part of major transportation systems, rehabilitation works need to be carefully planned in order to minimize disruptions of traffic. Automatic monitoring of structures is thus rapidly developing.Long-term monitoring of bridges is an important part of this overall effort to attempt to minimize both the impact and the cost of maintenance and rehabilitation work of major structures. By knowing the rate of deterioration of a given structure, the engineer is able to anticipate and adequately define the timing of required interventions. Conversely, interventions can be delayed until the condition of the structure requires them, without reducing the overall safety of the structure.The paper presents an innovative approach to the measurement of long-term bridge deformations. The use of high precision inclinometers permits an effective, accurate and unobtrusive following of the long-term rotations. The measurements can be performed under traffic conditions. Simultaneous measurement of the temperature at several locations gives a clear idea of the movements induced by thermal conditions and those induced by creep and shrinkage. The system presented is operational since August 1997 in the Mentue bridge, currently under construction in Switzerland. The structure has a main span of 150 m and piers 100 m high.2. LONG-TERM MONITORING OF BRIDGESAs part of its research and service activities within the Swiss Federal Institute of Technology in Lausanne (EPFL), IBAP - Reinforced and Prestressed Concrete has been involved in the monitoring of long-time deformations of bridges and other structures for over twenty-five years [1, 2, 3, 4]. In the past, IBAP has developed a system for the measurement of long-term deformations using hydrostatic leveling [5, 6]. This system has been in successful service in ten bridges in Switzerland for approximately ten years [5,7]. The system is robust, reliable and sufficiently accurate, but it requires human intervention for each measurement, and is not well suited for automatic data acquisition. One additional disadvantage of this system is that it is only easily applicable to box girder bridges with an accessible box.Occasional continuous measurements over periods of 24 hours have shown that the amplitude of daily movements is significant, usually amounting to several millimeters over a couple of hours. This is exemplified in figure 1, where measurements of the twin Lutrive bridges, taken over a period of several years before and after they were strengthened by post-tensioning, areshown along with measurements performed over a period of 24 hours. The scatter observed in the data is primarily caused by thermal effects on the bridges. In the case of these box-girder bridges built by the balanced cantilever method, with a main span of 143.5 m, the amplitude of deformations on a sunny day is of the same order of magnitude than the long term deformation over several years.Instantaneous measurements, as those made by hydrostatic leveling, are not necessarily representative of the mean position of the bridge. This occurs because the position of the bridge at the time of the measurement is influenced by the temperature history over the past several hours and days. Even if every care was taken to perform the measurements early in the morning and at the same period every year, it took a relatively long time before it was realized that the retrofit performed on the Lutrive bridges in 1988 by additional post-tensioning [3, 7,11] had not had the same effect on both of them.Figure 1: Long-term deflections of the Lutrive bridges, compared to deflections measured in a 24-hour period Automatic data acquisition, allowing frequent measurements to be performed at an acceptable cost, is thus highly desirable. A study of possible solutions including laser-based leveling, fiber optics sensors and GPS-positioning was performed, with the conclusion that, provided that their long-term stability can be demonstrated, current types of electronic inclinometers are suitable for automatic measurements of rotations in existing bridges [8].3. MENTUE BRIDGESThe Mentue bridges are twin box-girder bridges that will carry the future A1 motorway from Lausanne to Bern. Each bridge, similar in design, has an overall length of approximately 565 m, and a width of 13.46 m, designed to carry two lanes of traffic and an emergency lane. The bridges cross a deep valley with steep sides (fig. 2). The balanced cantilever design results from a bridge competition. The 100 m high concrete piers were built using climbing formwork, after which the construction of the balanced cantilever started (fig. 3).4. INCLINOMETERSStarting in 1995, IBAP initiated a research project with the goal of investigating the feasibility of a measurement system using inclinometers. Preliminary results indicated that inclinometers offer several advantages for the automatic monitoring of structures. Table 1 summarizes the main properties of the inclinometers selected for this study.One interesting property of measuring a structure’s rotations, is that, for a given ratio of maximum deflection to span length, the maximum rotation is essentially independent from its static system [8]. Since maximal allowable values of about 1/1,000 for long-term deflections under permanent loads are generally accepted values worldwide, developments made for box-girder bridges with long spans, as is the case for this research, are applicable to other bridges, for instance bridges with shorter spans and other types of cross-sections. This is significant because of the need to monitor smaller spans which constitute the majority of all bridges.The selected inclinometers are of type Wyler Zerotronic ±1°[9]. Their accuracy is 1 microradian (μrad), which corresponds to a rotation of one millimeter per kilometer, a very small value. For an intermediate span of a continuous beam with a constant depth, a mid-span deflection of 1/20,000 would induce a maximum rotation of about 150 μrad, or 0.15 milliradians (mrad).One potential problem with electronic instruments is that their measurements may drift overtime. To quantify and control this problem, a mechanical device was designed allowing the inclinometers to be precisely rotated of 180° in an horizontal plane (fig. 4). The drift of each inclinometer can be very simply obtained by comparing the values obtained in the initial and rotated position with previously obtained values. So far, it has been observed that the type of inclinometer used in this project is not very sensitive to drifting.5. INSTRUMENTATION OF THE MENTUE BRIDGESBecause a number of bridges built by the balanced cantilever method have shown an unsatisfactory behavior in service [2, 7,10], it was decided to carefully monitor the evolution of the deformations of the Mentue bridges. These bridges were designed taking into consideration recent recommendations for the choice of the amount of posttensioning [7,10,13]. Monitoring starting during the construction in 1997 and will be pursued after the bridges are opened to traffic in 2001. Deflection monitoring includes topographic leveling by the highway authorities, an hydrostatic leveling system over the entire length of both bridges and a network of inclinometers in the main span of the North bridge. Data collection iscoordinated by the engineer of record, to facilitate comparison of measured values. The information gained from these observations will be used to further enhance the design criteria for that type of bridge, especially with regard to the amount of post-tensioning [7, 10, 11, 12, 13].The automatic monitoring system is driven by a data acquisition program that gathers and stores the data. This system is able to control various types of sensors simultaneously, at the present time inclinometers and thermal sensors. The computer program driving all the instrumentation offers a flexible framework, allowing the later addition of new sensors or data acquisition systems. The use of the development environment LabView [14] allowed to leverage the large user base in the field of laboratory instrumentation and data analysis. The data acquisition system runs on a rather modest computer, with an Intel 486/66 Mhz processor, 16 MB of memory and a 500 MB hard disk, running Windows NT. All sensor data are gathered once per minute and stored in compressed form on the hard disk. The system is located in the box-girder on top of pier 3 (fig. 5). It can withstand severe weather conditions and will restart itself automatically after a power outage, which happened frequently during construction.6. SENSORSFigure 5(a) shows the location of the inclinometers in the main span of the North bridge. The sensors are placed at the axis of the supports (①an d⑤), at 1/4 and 3/4 (③an d④) of the span and at 1/8 of the span for②. In the cross section, the sensors are located on the North web, at a height corresponding to the center of gravity of the section (fig.5a). The sensors are all connected by a single RS-485 cable to the central data acquisition system located in the vicinity of inclinometer ①. Monitoring of the bridge started already during its construction. Inclinometers①,②and③were installed before the span was completed. The resulting measurement were difficult to interpret, however, because of the wide variations of angles induced by the various stages of this particular method of construction.The deflected shape will be determined by integrating the measured rotations along the length of the bridge (fig.5b). Although this integration is in principle straightforward, it has been shown [8, 16] that the type of loading and possible measurement errors need to be carefully taken into account.Thermal sensors were embedded in concrete so that temperature effects could be taken into account for the adjustment of the geometry of the formwork for subsequent casts. Figure 6 shows the layout of thermal sensors in the main span. The measurement sections are located at the same sections than the inclinometers (fig. 5). All sensors were placed in the formwork before concreting and were operational as soon as the formwork was removed, which was required for the needs of the construction. In each section, seven of the nine thermal sensor (indicated in solid black in fig. 6) are now automatically measured by the central data acquisition system.7. RESULTSFigure 7 shows the results of inclinometry measurements performed from the end ofSeptember to the third week of November 1997. All inclinometers performed well during that period. Occasional interruptions of measurement, as observed for example in early October are due to interruption of power to the system during construction operations. The overall symmetry of results from inclinometers seem to indicate that the instruments drift is not significant for that time period. The maximum amplitude of bridge deflection during the observed period, estimated on the basis of the inclinometers results, is around 40 mm. More accurate values will be computed when the method of determination ofdeflections will have been further calibrated with other measurements. Several periods of increase, respectively decrease, of deflections over several days can be observed in the graph. This further illustrates the need for continuous deformation monitoring to account for such effects. The measurement period was .busy. in terms of construction, and included the following operations: the final concrete pours in that span, horizontal jacking of the bridge to compensate some pier eccentricities, as well as the stressing of the continuity post-tensioning, and the de-tensioning of the guy cables (fig. 3). As a consequence, the interpretation of these measurements is quite difficult. It is expected that further measurements, made after the completion of the bridge, will be simpler to interpret.Figure 8 shows a detail of the measurements made in November, while figure.9 shows temperature measurements at the top and bottom of the section at mid-span made during that same period. It is clear that the measured deflections correspond to changes in the temperature. The temperature at the bottom of the section follows closely variations of the air temperature(measured in the shade near the north web of the girder). On the other hand, the temperature at the top of the cross section is less subject to rapid variations. This may be due to the high elevation of the bridge above ground, and also to the fact that, during the measuring period, there was little direct sunshine on the deck. The temperature gradient between top and bottom of the cross section has a direct relationship with short-term variations. It does not, however, appear to be related to the general tendency to decrease in rotations observed in fig. 8.8. FUTURE DEVELOPMENTSFuture developments will include algorithms to reconstruct deflections from measured rotations. To enhance the accuracy of the reconstruction of deflections, a 3D finite element model of the entire structure is in preparation [15]. This model will be used to identify the influence on rotations of various phenomena, such as creep of the piers and girder, differential settlements, horizontal and vertical temperature gradients or traffic loads.Much work will be devoted to the interpretation of the data gathered in the Mentue bridge. The final part of the research project work will focus on two aspects: understanding the very complex behavior of the structure, and determining the most important parameters, to allow a simple and effective monitoring of the bridges deflections.Finally, the research report will propose guidelines for determination of deflections from measured rotations and practical recommendations for the implementation of measurement systems using inclinometers. It is expected that within the coming year new sites will be equipped with inclinometers. Experiences made by using inclinometers to measure deflections during loading tests [16, 17] have shown that the method is very flexible and competitive with other high-tech methods.As an extension to the current research project, an innovative system for the measurement of bridge joint movement is being developed. This system integrates easily with the existing monitoring system, because it also uses inclinometers, although from a slightly different type.9. CONCLUSIONSAn innovative measurement system for deformations of structures using high precision inclinometers has been developed. This system combines a high accuracy with a relatively simple implementation. Preliminary results are very encouraging and indicate that the use of inclinometers to monitor bridge deformations is a feasible and offers advantages. The system is reliable, does not obstruct construction work or traffic and is very easily installed. Simultaneous temperature measurements have confirmed the importance of temperature variations on the behavior of structural concrete bridges.10. REFERENCES[1] ANDREY D., Maintenance des ouvrages d’art: méthodologie de surveillance, PhD Dissertation Nr 679, EPFL, Lausanne, Switzerland, 1987.[2] BURDET O., Load Testing and Monitoring of Swiss Bridges, CEB Information Bulletin Nr 219, Safety and Performance Concepts, Lausanne, Switzerland, 1993.[3] BURDET O., Critères pour le choix de la quantitéde précontrainte découlant de l.observation de ponts existants, CUST-COS 96, Clermont-Ferrand, France, 1996.[4] HASSAN M., BURDET O., FAVRE R., Combination of Ultrasonic Measurements and Load Tests in Bridge Evaluation, 5th International Conference on Structural Faults and Repair, Edinburgh, Scotland, UK, 1993.[5] FAVRE R., CHARIF H., MARKEY I., Observation à long terme de la déformation des ponts, Mandat de Recherche de l’OFR 86/88, Final Report, EPFL, Lausanne, Switzerland, 1990.[6] FAVRE R., MARKEY I., Long-term Monitoring of Bridge Deformation, NATO Research Workshop, Bridge Evaluation, Repair and Rehabilitation, NATO ASI series E: vol. 187, pp. 85-100, Baltimore, USA, 1990.[7] FAVRE R., BURDET O. et al., Enseignements tirés d’essais de charge et d’observations à long terme pour l’évaluation des ponts et le choix de la précontrainte, OFR Report, 83/90, Zürich, Switzerland, 1995.[8] DAVERIO R., Mesures des déformations des ponts par un système d’inclinométrie,Rapport de maîtrise EPFL-IBAP, Lausanne, Switzerland, 1995.[9] WYLER AG., Technical specifications for Zerotronic Inclinometers, Winterthur, Switzerland, 1996.[10] FAVRE R., MARKEY I., Generalization of the Load Balancing Method, 12th FIP Congress, Prestressed Concrete in Switzerland, pp. 32-37, Washington, USA, 1994.[11] FAVRE R., BURDET O., CHARIF H., Critères pour le choix d’une précontrainte: application au cas d’un renforcement, "Colloque International Gestion des Ouvrages d’Art: Quelle Stratégie pour Maintenir et Adapter le Patrimoine, pp. 197-208, Paris, France, 1994. [12] FAVRE R., BURDET O., Wahl einer geeigneten Vorspannung, Beton- und Stahlbetonbau, Beton- und Stahlbetonbau, 92/3, 67, Germany, 1997.[13] FAVRE R., BURDET O., Choix d’une quantité appropriée de précontrain te, SIA D0 129, Zürich, Switzerland, 1996.[14] NATIONAL INSTRUMENTS, LabView User.s Manual, Austin, USA, 1996.[15] BOUBERGUIG A., ROSSIER S., FAVRE R. et al, Calcul non linéaire du béton arméet précontraint, Revue Français du Génie Civil, vol. 1 n° 3, Hermes, Paris, France, 1997. [16] FEST E., Système de mesure par inclinométrie: développement d’un algorithme de calcul des flèches, Mémoire de maîtrise de DEA, Lausanne / Paris, Switzerland / France, 1997.[17] PERREGAUX N. et al., Vertical Displacement of Bridges using the SOFO System: a Fiber Optic Monitoring Method for Structures, 12th ASCE Engineering Mechanics Conference, San Diego, USA, to be published,1998.译文平衡悬臂施工混凝土桥挠度和温度的自动监测作者Olivier BURDET博士瑞士联邦理工学院,洛桑,瑞士钢筋和预应力混凝土研究所概要:我们想要跟踪结构行为随时间的演化,需要一种可靠的监测系统。
(完整版)桥梁毕业设计外文翻译
外文资料The Tenth East Asia-Pacific Conference on Structural Engineering and ConstructionAugust 3-5, 2006, Bangkok, ThailandStructural Rehabilitation of Concrete Bridges with CFRPComposites-Practical Details and ApplicationsRiyad S. ABOUTAHA1, and Nuttawat CHUTARAT2 ABSTRACT: Many old existing bridges are still active in the various highway transportation networks, carrying heavier and faster trucks, in all kinds of environments. Water, salt, and wind have caused damage to these old bridges, and scarcity of maintenance funds has aggravated their conditions. One attempt to restore the original condition; and to extend the service life of concrete bridges is by the use of carbon fiber reinforced polymer (CFRP) composites. There appear to be very limited guides on repair of deteriorated concrete bridges with CFRP composites. In this paper, guidelines for nondestructive evaluation (NDE), nondestructive testing (NDT), and rehabilitation of deteriorated concrete bridges with CFRP composites are presented. The effect of detailing on ductility and behavior of CFRP strengthened concrete bridges are also discussed and presented.KEYWORDS: Concrete deterioration, corrosion of steel, bridge rehabilitation, CFRP composites.1 IntroductionThere are several destructive external environmental factors that limit the service life of bridges. These factors include but not limited to chemical attacks, corrosion of reinforcing steel bars, carbonation of concrete, and chemical reaction of aggregate. If bridges were not well maintained, these factors may lead to a structural deficiency, which reduces the margin of safety, and may result in structural failure. In order to rehabilitate and/or strengthen deteriorated existing bridges, thorough evaluation should be conducted. The purpose of the evaluation is to assess the actual condition of any existing bridge, and generally to examine the remaining strength and load carry capacity of the bridge.1 Associate Professor, Syracuse University, U.S.A.2 Lecturer, Sripatum University, Thailand.One attempt to restore the original condition, and to extend the service life of concrete bridges is by the use of carbon fiber reinforced polymer (CFRP) composites.In North America, Europe and Japan, CFRP has been extensively investigated and applied. Several design guides have been developed for strengthening of concrete bridges with CFRP composites. However, there appear to be very limited guides on repair of deteriorated concrete bridges with CFRP composites. This paper presents guidelines for repair of deteriorated concrete bridges, along with proper detailing. Evaluation, nondestructive testing, and rehabilitation of deteriorated concrete bridges with CFRP composites are presented. Successful application of CFRP composites requires good detailing as the forces developed in the CFRP sheets are transferred by bond at the concrete-CFRP interface. The effect of detailing on ductility and behavior of CFRP strengthened concrete bridges will also be discussed and presented.2 Deteriorated Concrete BridgesDurability of bridges is of major concern. Increasing number of bridges are experiencing significant amounts of deterioration prior to reaching their design service life. This premature deterioration considered a problem in terms of the structural integrity and safety of the bridge. In addition, deterioration of a bridge has a considerable magnitude of costs associated with it. In many cases, the root of a deterioration problem is caused by corrosion of steel reinforcement in concrete structures. Concrete normally acts to provide a high degree of protection against corrosion of the embedded reinforcement. However, corrosion will result in those cases that typically experience poor concrete quality, inadequate design or construction, and harsh environmental conditions. If not treated a durability problem, e.g. corrosion, may turn into a strength problem leading to a structural deficiency, as shown in Figure1.Figure1 Corrosion of the steel bars is leading to a structural deficiency3 Non-destructive Testing of Deteriorated Concrete Bridge PiersIn order to design a successful retrofit system, the condition of the existing bridge should be thoroughly evaluated. Evaluation of existing bridge elements or systems involves review of the asbuilt drawings, as well as accurate estimate of the condition of the existing bridge, as shown in Figure2. Depending on the purpose of evaluation, non-destructive tests may involve estimation of strength, salt contents, corrosion rates, alkalinity in concrete, etc.Figure2 Visible concrete distress marked on an elevation of a concrete bridge pier Although most of the non-destructive tests do not cause any damage to existing bridges, some NDT may cause minor local damage (e.g. drilled holes & coring) that should be repaired right after the NDT. These tests are also referred to as partial destructive tests but fall under non-destructive testing.In order to select the most appropriate non-destructive test for a particular case, thepurpose of the test should be identified. In general, there are three types of NDT to investigate: (1) strength, (2) other structural properties, and (3) quality and durability. The strength methods may include; compressive test (e.g. core test/rebound hammer/ ultrasonic pulse velocity), surface hardness test (e.g. rebound hammer), penetration test (e.g. Windsor probe), and pullout test (anchor test).Other structural test methods may include; concrete cover thickness (cover-meter), locating rebars (rebar locator), rebar size (some rebar locators/rebar data scan), concrete moisture (acquameter/moisture meter), cracking (visual test/impact echo/ultrasonic pulse velocity), delamination (hammer test/ ultrasonic pulse velocity/impact echo), flaws and internal cracking (ultrasonic pulse velocity/impact echo), dynamic modulus of elasticity (ultrasonic pulse velocity), Possion’s ratio (ultrasonic pulse velocity), thickness of concrete slab or wall (ultrasonic pulse velocity), CFRP debonding (hammer test/infrared thermographic technique), and stain on concrete surface (visual inspection).Quality and durability test methods may include; rebar corrosion rate –field test, chloride profile field test, rebar corrosion analysis, rebar resistivity test, alkali-silica reactivity field test, concrete alkalinity test (carbonation field test), concrete permeability (field test for permeability).4 Non-destructive Evaluation of Deteriorated Concrete Bridge PiersThe process of evaluating the structural condition of an existing concrete bridge consists of collecting information, e.g. drawings and construction & inspection records, analyzing NDT data, and structural analysis of the bridge. The evaluation process can be summarized as follows: (1) Planning for the assessment, (2) Preliminary assessment, which involves examination of available documents, site inspection, materials assessment, and preliminary analysis, (3) Preliminary evaluation, this involves: examination phase, and judgmental phase, and finally (4) the cost-impact study.If the information is insufficient to conduct evaluation to a specific required level, then a detailed evaluation may be conducted following similar steps for the above-mentioned preliminary assessment, but in-depth assessment. Successful analytical evaluation of an existing deteriorated concrete bridge should consider the actual condition of the bridge and level of deterioration of various elements. Factors, e.g. actual concrete strength, level of damage/deterioration, actual size of corroded rebars, loss of bond between steel and concrete, etc. should be modeled into a detailed analysis. If such detailed analysis is difficult to accomplish within a reasonable period of time, thenevaluation by field load testing of the actual bridge in question may be required.5 Bridge Rehabilitation with CFRP CompositesApplication of CFRP composite materials is becoming increasingly attractive to extend the service life of existing concrete bridges. The technology of strengthening existing bridges with externally bonded CFRP composites was developed primarily in Japan (FRP sheets), and Europe (laminates). The use of these materials for strengthening existing concrete bridges started in the 1980s, first as a substitute to bonded steel plates, and then as a substitute for steel jackets for seismic retrofit of bridge columns. CFRP Composite materials are composed of fiber reinforcement bonded together with a resin matrix. The fibers provide the composite with its unique structural properties. The resin matrix supports the fibers, protect them, and transfer the applied load to the fibers through shearing stresses. Most of the commercially available CFRP systems in the construction market consist of uniaxial fibers embedded in a resin matrix, typically epoxy. Carbon fibers have limited ultimate strain, which may limit the deformability of strengthened members. However, under traffic loads, local debonding between FRP sheets and concrete substrate would allow for acceptable level of global deformations before failure.CFRP composites could be used to increase the flexural and shear strength of bridge girders including pier cap beams, as shown in Figure3. In order to increase the ductility of CFRP strengthened concrete girders, the longitudinal CFRP composite sheets used for flexural strengthening should be anchored with transverse/diagonal CFRP anchors to prevent premature delamination of the longitudinal sheets due to localized debonding at the concrete surface-CFRP sheet interface. In order to prevent stress concentration and premature fracture of the CFRP sheets at the corners of concrete members, the corners should be rounded at 50mm (2.0 inch) radius, as shown in Figure3.Deterioration of concrete bridge members due to corrosion of steel bars usually leads in loss of steel section and delamination of concrete cover. As a result, such deterioration may lead to structural deficiency that requires immediate attention. Figure4 shows rehabilitation of structurally deficient concrete bridge pier using CFRP composites.Figure3 Flexural and shear strengthening of concrete bridge pier with FRP compositesFigure4 Rehabilitation of deteriorated concrete bridge pier with CFRP composites6 Summary and ConclusionsEvaluation, non-destructive testing and rehabilitation of deteriorated concrete bridges were presented. Deterioration of concrete bridge components due to corrosion may lead to structural deficiencies, e.g. flexural and/or shear failures. Application of CFRP composite materials is becoming increasingly attractive solution to extend the service life of existing concrete bridges. CFRP composites could be utilized for flexural and shear strengthening, as well as for restoration of deteriorated concrete bridge components. The CFRP composite sheets should be well detailed to prevent stress concentration and premature fracture or delamination. For successful rehabilitation of concrete bridges in corrosive environments, a corrosion protection system should be used along with the CFRP system.第十届东亚太结构工程设计与施工会议2006年8月3-5号,曼谷,泰国碳纤维复合材料修复混凝土桥梁结构的详述及应用Riyad S. ABOUTAHA1, and Nuttawat CHUTARAT2摘要:在各式各样的公路交通网络中,许多现有的古老桥梁,在各种恶劣的环境下,如更重的荷载和更快的车辆等条件下,依然在被使用着。
土木工程桥梁方向毕业设计外文及翻译
土木工程桥梁方向毕业设计外文及翻译(总13页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--学生姓名:学号:班级:专业:土木工程(桥梁方向)指导教师:2010 年 3 月What is traffic engineeringTraffic engineering is still a relatively new discipline within the overall bounds of civil engineering. it has nevertheless already been partially planning. the disciplines are not synonymous though. transportation planning is concerned with the planning, functional design, operation and management of facilities for any mode of transportation in order to provide for the safe, rapid, comfortable, convenient, economical and enviromenally-comparible movement of people and goods. within that broad scope, traffic engineering deals with those functions in respect of roads, road networks, terminal points , about lands and their relationships with other modes of transportation.Those definitions, based on the 1976 ones of the of transportation engineers are complete than, the British instituting of civil engineering which deals with traffic planning and design of roads, of frontage development and of parking facilities and with the control of traffic to provide safe, convenient and economical movement of vehicles and pedestrians.The definitions of the disicipline are becoming clearer: the methodology is developing continuously and becoming increasingly scientific. the early rule-of-thumb techniques are disappearing.Traffic problemThe discipline is young: the problem is large and still growing. in 1920 the total number of motor vehicles, licensed in great Britain was,650, year later the comparable figure was 14,950,000-a growth factor of 23 times. in recent years the rate of growth has slackened somewhat, but it is still considerable: 1955 6,466,0001960 9,439,0001965 12,938,0001970 14,950,0001974 17,247,000In order to see the problem in every day terms ,consider high street. anywhere. assuming that present trends continue, it is expected that within the next fifteen years of so the traffic on this road will increase by around forty to fifty persent. if this increased volume of traffic were to be accommodated at the same standard as today, the road might need to be widened by a similar forty to fifty percent-perhaps extra lane of traffic for the pedestrian to cross. In man cases, to accommodate the foreseeable future demand would destroy the character of the whole urban environment, and is clearly unacceptable.the traffic problem is of world-wide concern, but different countries are obviously at different stages in the traffic escalation-with America in the lead, while a county has few roads and a relatively low problem, as soon as the country is opened up by a road system, the standard of living and the demand for motor transport both rise, gathering momentum rapidly. eventually-and the stage at which this happens is open to considerable debate-the demand for cars, buses and lorries become satiated. the stage is known as saturation level.For comparison ,car ownership figures in different countries in 1970 were:India cars/personIsrael personJapan cars/personIreland cars/personNetherlands cars/personGreat Britain cars/personWest Germany cars/personAustralia cars/personUSA cars/personBut the growth in vehicle ownership is only part of the overall traffic problem. obviously,if a country has unlimited roads of extreme width, the traffic problem would not rise. no country in the world could meet this requirement: apart from anything else, it would not make economic for each vehicle using the roads. This figure is decreasing steadily.Three possible solutionsThe basic problem of traffic is therefore simple-an ever-increasing number of vehicles seeking to use too little roade space. the solution to the problem-is else a not-too-difficult choice from three possiblilities:build, sufficient roads of sufficient size to cope with the demand.Restrict the demand for roads by restricting the numbers of licensed vehicles.A compromise between (a) and (b) build some extra roads, using the and the existing road network to their full potential, and at the same time apply some restraint measures, limiting, the increase in demand as far as possible.With no visible end to the demand yet in sight, and 216 with modern road-making costs ranging around £1 million per kilometer cost of building roads in Britain to cope with an unrestricted demand would be far too great. added to this, such clossal use of space in a crowed island cannot be, seriously considered. in Los Angeles, a city built around the parking space for, the automobile. our citie are already largely built-and no one would consider ruining their character by pulling them down and rebuilding around the car, thus the first possible soluting is rule out.Even today,in an age of at least semi-affluence in most of the Western World, the car is still to some extent a status symbol, a symbol of family wants to own one, and takes steps saving or borrowing-to get one. as incomes and standards rise thesecond car becomes the target. any move to restrict the acquisition of the private car would be most unpopular-and politically unlikely.For many purpose the flexibility of the private car-conceptually affording door-to-door personal transport is ideal, and its use can be accommodate. for the mass, movement of people along specific corridors within a limited period of .. particularly the journey to work it may be less easily accommodated. other transport mode may be more efficient. some sort of compromise solution is the inevitable answer to the basic traffic problem .it is in the execution of the compromise solution that, traffic engineering comes into its own. traffic engineering ensures that any new facilities are not over-deigned and are correctly located to meet the demand. it ensures that the existing facilities are fully used, in the most efficient manner. the fulfillment of these duties may entail the selective throttling of demand: making the use of the car less attractive in the peak periods in order that the limited road space can be more efficiently used by public transport.Such restraint measures will often be accompanied by improvements in the public transport services, to accommodate the extra demand for them.Prestressed Concrete BridgesPrestressed concrete has been used extensively in . bridge construction since its first Introduction from Europe in the late 1940s. Literally thousands of highway bridges of both precast, prestressed concrete and cast-in-place post-tensioned concrete has been constructed in the United States. Railroad bridges utilizing prastressed concrete have become common as well. The use and evolution of prastressed concrete bridges is expected to continue in the years ahead.Short-span BridgesShort-span bridges will be assumed to have a maximum of 45 ft .It should be understood that this is an arbitrary figure, and there is no definite line of demarcation between short, moderate, and long spans in highway bridges. Short-span bridges are most efficiently made of precast ,prestressed-concrete hollow slabs, I-beams, solid slabs or cast-place solid slabs. and T-beams of relatively generous proportions.Precast solid slabs are most economical when used on very short spans. The slabs can be made in any convenient width,but widths of 3 or 4 ft to have been frequently are cast in the longitudinal sides of the precast units. After the slabs have been erected and the joints between the slabs have been filled with concrete, the keys transfer live load shear forces between the adjacent slabs.Precast hollow slabs used in short-span bridges may have round or square voids. They too are generally made in units 3 to 4 ft to m) wide with thicknesses from 18 to 27 in to . Precast hollow slabs can be made in any convenient width and depth, and frequently are used in bridges having spans from 20 to 50 ft to . Longitudinal shear keys are used in the joints between adjacent hollow slabs in the same way as with solid slabs. Hollow slabs may or may not be used with a composite, cast-in-place concrete topping an accecptable appearance and levelness.Transverse reinforcement normally is provided in precast concrete bridge superstructures for the purpose of tying the structure together in the transverse direction. Well-designed ties ensure that the individual longitudinal members forming the superstructure will act as a unit under the effects of the live load. In slab bridge construction, transverse ties most frequently consist of threaded steel bars placed through small holes formed transversely through the member during fabrication. Nuts frequently are used as fasteners at each end of the bars. In some instances, the transverse ties consist of post tensionedtendons placed, stressed, and grouted after the slabs have been erected. The transverse tie usually extends from one side of the bridge to the other.The shear forces imposed on the stringers in short-span bridges frequently are too large to be resisted by the concrete alone. Hence, shear reinforcement normally is required. The amount of shear reinforcement required may be relatively large if the webs of the stringers are relatively thin.Concrete diaphragms, reinforced with post-tensioned reinforcement or nonprestressed reinforcement, normally are provided transversely at the ends and at intermediate locations along the span in stringer-type bridges. The disaphragms ensure the lateral-distribution of the live load to the various stringers and prevent individual stringers from displacing or rotating significantly with respect to the adjacent stringers.No generalities will be made here about the relative cost of each of the above types of construction; construction costs are a function of many variables which prohibit meaningful generalizations. However, it should be noted that the stringer type of construction requires a considerably greater construction depth that is required for solid, hollow, or channel slab bridge superstructures. Stringer construction does not require a separate wearing surface, as do the precast slab types of construction, unless precast slabs are used to span between the stringers in lieu of the more commonly used cast-in-place reinforced concrete deck. Stringer construction frequently requires smaller quantities of superstructure materials than do slab bridges (unless the spans are very short). The construction time needed to complete a bridge after the precast members have been erected is greater with stringer framing than with the slab type of framing.Bridges Of Moderate SpanAgain for the purpose of this discussion only, moderate spans for bridges of prestressed concrete are defined as beingfrom 45 to 80 ft to . Prestressed concrete bridges in this span range generally can be divided into two types: stringer-type bridges and slab-type bridges. The majority of the precast prestressed concrete bridges constructed in the United States have been stringer bridges using I-shaped stringers, but a large number of precast prestressed concrete bridges have been constructed with precast hollow-box girders (sometimes also called stringers). Cast-in-place post-tensioned concrete has been used extensively in the construction of hollow-box girder bridges-a form of construction that can be considered to be a slab bridge.Stringer bridges, which employ a composite, cast-in-place deck slab, have been used in virtually all parts of the United States. These stringers normally are used at spacing s of about 5 to 6 ft to . The cast-in-place deck is generally from to in to in thickness. This type of framing is very much the same as that used on composite-stringer construction for short-span bridges.Diaphram details in moderate-span bridges are generally similar to those of the short spans, with the exception that two or three interior diaphragms sometime are used, rather than just one at midspan as in the short-span bridge.As in the case of short-span bridges, the minimum depth of construction in bridges of moderate span is obtained by using slab construction, which may be either solid – or hollow – box in cross section. Average construction depths are requires when stringers with large flanges are used in composite construction, and large construction depths are required when stringers with small bottom flanges are used. Composite construction may be developed through the use of cast-in-place concrete decks or with precast concrete decks. Lower quantities of materials normally are required with composite construction , and the dead weight of the superstructure normally is less for stringer construction than for slab construction.Long-Span BridgesPrestressed concrete bridges having spans of the order of 100ft are of the same general types of construction as structures having moderate span lengths, with the single exception that solid slabs are not used for long spans. The stringer spacings are frequently greater (with stringers at 7 to 9 ft) as the span lengths of bridges increase. Because of dead weight considerations, precast hollow-box construction generally is employed for spans of this length only when the depth of construction must be minimized. Cast-in-place post-tensioned hollow-box bridges with simple and continuous spans frequently are used for spans on the order of 100 ft and longer.Simple, precast, prestressed stringer construction would be economical in the United States in the spans up to 300 ft under some conditions. However, only limited use has been made of this type of construction on spans greater than 100 ft. For very long simple spans, the advantage of precasting frequently is nullified by the difficulties involved in handling, transporting, and erecing the girders, which may have depths as great as 10 ft and weigh over 200 tons. The exceptions to this occur on large projects where all of the spans are over water of sufficient depth and character that precast beams can be handled with floating equipment, when custom girder launchers can be used, and when segmental construction techniques can be used.The use of cast-in-place , post-tensioned, box-girder bridges has been extensive. Although structures of these types occasionally are used for spans less than 100ft, they more often are used for spans in excess of 100 ft and have been used in structuresHaving spans in excess of 300 ft. Structurally efficient in flexure, especially for continuous bridges, the box girder is torsionally stiff and hence an excellent type of structure for use on bridges that have horizontal curvature. Some governmental agencies use this form of construction almost exclusively in urban areas where appearance from underneath the superstructure,as well as from the side, is considered important.交通工程介绍什么是交通工程交通工程仍然是在土木工程的总的界限内的一种相对新的训练。
桥梁设计外文翻译
中文4840字附录 2 外文资料翻译原文11.7.4 Deflection11.7.4.1 Dead Load and Creep DeflectionGlobal vertical deflections of segmental box-girder bridges due to the effects of dead load and post-tensioning as well as the long-term effect of creep are normally predicted during the design process by the use of a computer analysis program. The deflections are dependent, to a large extent, on the method of construction of the structure, the age of the segments when post-tensioned, and the age of the structure when other loads are applied. It can be expected, therefore, that the actual deflections of the structure would be different from that predicted during design due to changed assumptions.The deflections are usually recalculated by the contractor’s engineer, based on the actual construction sequence.11.7.4.2 Camber RequirementsThe permanent deflection of the structure after all creep deflections have occurred, normally 10 to 15 years after construction, may be objectionable from the perspective of riding comf ort for the users or for the confidence of the general public. Even if there is no structural problem with a span with noticeable sag, it will not inspire public confidence. For these reasons, a camber will normally be cast into the structure so that the p ermanent deflection of the bridge is nearly zero. It may be preferable to ignore the camber, if it is otherwise necessary to cast a sag in the structure during onstruction.11.7.4.3 Global Deflection Due to Live LoadMost design codes have a lim it on the allowable global deflection of a bridge span due to the effects of live load. The purpose of this limit is to avoid the noticeable vibration for the user and minimize the effects of moving load iMPact. When structures are used by pedestrians as well as motorists,the limits are further tightened.11.7.4.4 Local Deflection Due to Live LoadSimilar to the limits of global deflection of bridge spans, there are also limitations on the deflection of the local elements of the box-girder cross section. For example, the AASHTO Specifications limit the deflection of cantilever arms due to service live load plus iMPact to ¹⁄₃of the cantilever length,except where there is pedestrian use [1].11.7.5 Post-Tensioning Layout11.7.5.1 Exter nal Post-TensioningWhile most concrete bridges cast on falsework or precast beam bridges have utilized post-tensioning in ducts which are fully encased in the concrete section, other innovations have been made in precast segmental construction.Especially prevalent in structures constructed using the span-by-span method, post-tensioning has been placed inside the hollow cell of the box girder but not encased in concrete along its length. This is know as external post-tensioning. External post-tensioning is easily inspected at any time during the life of the structure, eliminates the problems associated with internal tendons, and eliminates the need for using expensive epoxy adhesive between precastsegments. The problems associated with internal tendons are (1) misalignment of the tendons at segment joints, which causes spalling; (2) lack of sheathing at segment joints; and (3) tendon pull-through on spans with tight curvature (see Figure 11.39). External prestressing has been used on many projects in Europe, the United States, and Asia and has performed well.11.7.5The provision for the addition of post-tensioning in the future in order to correct unacceptable creep deflections or to strengthen the structure for additional dead load, i.e., future wearing surface, is now required by many codes. Of the positive and negative moment post-tensioning, 10% is reasonable. Provisions should be made for access, anchorage attachment, and deviation of these additional tendons. External, unbonded tendons are used so that ungrouted ducts in the concrete are not left open. 11.8 Seismic Considerations11.8.1 Design Aspects and Design CodesDue to typical vibration characteristics of bridges, it is generally accepted that under seismic loads,some portion of the structure will be allowed to yield, to dissipate energy, and to increase the period of vibration of the system. This yielding is usually achieved by either allowing the columns to yield plastically (monolithic deck/superstructure connection), or by providing a yielding or a soft bearing system [6].The same principles also apply to segmental structures, i.e., the segmental superstructureneeds to resist the demands imposed by the substructure. Very few implementations of segmental struc-tures are found in seismically active California, where most of the research on earthquake-resistant bridges is conducted in the United States. The Pine Valley Creek Bridge, Parrots Ferry Bridge, and Norwalk/El Segundo Line Overcrossing, all of them being in California, are examples of segmental structures; however, these bridges are all segmentally cast in place, with mild reinforcement crossing the segment joints.Some guidance for the seismic design of segmental structures is provided in the latest edition of the AASHTO Guide Specifications for Design and Construction of Segmental Concrete Bridges [2], which now contains a chapter dedicated to seismic design. The guide allows precast-segmental construction without reinforcement across the joint, but specifies the following additional require-ments for these structures:•For Seismic Zones C and D [1], either cast-in-place or epoxied joints are required.•At least 50% of the prestress force should be provided by internal tendons.•The internal tendons alone should be able to carry 130% of the dead load.For other seismic design and detailing issues, the reader is referred to the design literature providedby the California Department of Transportation, Caltrans, for cast-in-place structures [5-8].11.8.2 Deck/Superstructure ConnectionRegardless of the design approach adopted (ductility through plastic hinging of the column or through bearings), the deck/superstructure connection is a critical element in the seismic resistant system. A brief description of the different possibilities follows.11.8.2.1 Monolithic Deck/Superstructure ConnectionFor the longitudinal direction, plastic hinging will form at the top and bottom of the columns. Since most of the testing has been conducted on cast-in-place joints, this continues to be the preferred option for these cases. For short columns and for solid columns, the detailing in this area can be readily adapted from standard Caltrans practice for cast-in-place structures, as shown on Figure 11.40. The joint area is then essentially detailed so it is no different from that of a fully cast-in-place bridge. In particular, a Caltrans requirement for positive moment reinforcement over the pier can be detailed with prestressing strand, as shown below. For large spans and tall columns, hollow column sections would be more appropriate. In these cases, care should be taken to confine the main column bars with closely spaced ties, and joint shear reinforcement should be provided according to Reference [3 or 7]. The use of fully precast pier segments in segmental superstructures would probably require special approval of the regulating government agency, since such a solution has not yet been tested for bridges and is not codified. Nevertheless, based upon first principles, and with the help of strut–tiemodels, it is possible to design systems that would work in practice [6]. The segmental superstructure should be designed to resist at least 130%of the column nominal moment using the strength reduction factors prescribed in Ref. [2]. Of further interest may be a combination of precast and cast-in-place joint as shown in Figure 11.41, which was adapted from Ref.[8]. Here, the precast segment serves as a form for the cast-in-place portion that fills up the remainder of the solid pier cap. Other ideas can also be derived from the building industry where some model testing has been performed. Of particular interest for bridges could be a system that works by leaving dowels in the columns and supplying the precast segment with matching formed holes, which are grouted after the segment is slipped over the reinforcement [9]11.8.2.2Deck/Superstructure Connection via BearingsTypically, for spans up to 45 m erected with the span-by-span method, the superstructure will be supported on bearings. For action in the longitudinal direction, elastomeric or isolation bearings are preferred to a fixed-end/expansion-end arrangement, since these better distribute the load between the bearings. Furthermore, these bearings will increase the period of the structure, which results in an overall lower induced force level (beneficial for higher-frequency structures), and isolation bearings will provide some structural damping as well.In the transverse direction, the bearings may be able to transfer load between super- and sub-structure by shear deformation; however, for the cases where this is not possible, shear keys can be provided as is shown in Figure 11.42. It should be noted that in regions of high seismicity,for structures with tall piers or soft substructures, the bearing demands may become excessive and a monolithic deck–superstructure connection may become necessary.For the structure-on-bearings approach, the force level for the superstructure can be readily,determined, since once the bearing demands are obtained from the analysis, they can be applied to the superstructure and substructure. The superstructure should resist the resulting forces at ultimate (using the applicable code force-reduction factors), whereas the substructure can be allowed to yield plastically if necessary.11.8.2.3 Expansion HingesFrom the seismic point of view, it is desirable to reduce the number of expansion hinges (EH)to a minimum. If EHs are needed, the most beneficial location from the seismic point of view is at midspan. This can be explained by observing Figure 11.43, where the superstructure bending midspan and for an EH at quarterspan. For the latter, it can be seen that the moment at the face The location of expansion hinges within a span, and its characteristics, depends also on the stiffness of the substructure and the type of connection of the superstructure to the piers. presents general guidelines intended to assist in the selection of location of expansion hinges.11.8.2.4 Precast Segmental PiersPrecast segmental piers are usually hollow cross section to save weight. From research inother areas it can be extrapolated that the precast segments of the pier would be joined by means of unbonded prestressing tendons anchored in the footing. The advantage of unbonded over bonded tendons is that for the former, the prestress force would not increase signi ficantly under high column displace-ment demands, and would therefore not cause inelastic yielding of the strand, which would other-wise lead to a loss of prestress.The detail of the connection to the superstructure and foundation would require some insight into the dynamic characteristics of such a connection, which entails joint opening and closing providing that dry joints are used between segments. This effect is similar to footing rocking, which is well known to be bene ficial to the response of a structure in an earthquake. This is due to the period shift and the damping of the soil. The latter effect is clearly not available to the precast columns, but the period shift is. Details need to be developed for the bearing areas at the end of the columns, as well as the provision for clearance of the tendons to move relative to the pier during the event.If the upper column segment is designed to be connected monolithically to the superstructure, yielding of the reinforcement should be expected. In this case, the expected plastic hinge length should be detailed ductile, using closely spaced ties [3,5].11.9 Casting and Erection11.9.1 CastingThere are obvious major differences in casting and erection when working with cast-in-placecantilever in travelers or in handling precast segments. There are also common features, which must be kept in mind in the design stages to keep the projects simple and thereby economic and ef ficient,such as• Keeping the length of segments equal and segments straight, even in curved bridges; • Maintaining constant cross section dimensions as much as possible;• Minimizing the number of diaphragms and stiffeners, and avoiding dowels through form- work.11.9.1.1 Cast-in-Place CantileversThe conventional form traveler supports the weight of the fresh concrete of the new segment by means of longitudinal beams or frames extending out in cantilever from the last segment. These beams are tied down to the previous segment. A counterweight is used when launching the traveler forward. The main beams are subjected to some de flections, which may produce cracks in the joint between the old and new segments. Jacking of the form during casting is sometimes needed to avoid these cracks. The weight of a traveler is about 60% of the weight of the segment.The rate of construction is typically one segment per traveler per week. Precast concrete anchor blocks are used to speed up post-tensioning operations. In cold climates, Conventional Travelers Construction Camber Controlcuring can be accelerated by various heating processes.The most critical practical problem of cast-in-place construction is deflection control. There are five categories of deflections during and after construction:•Deflection of traveler frame under the weight of the concrete segment;•Deflection of the concrete cantilever arm during construction under the weight of segment plus post-tensioning;•Deflection of cantilever arms after construction and before continuity;•Short- and long-term deflections of the continuous structure;•Short- and long-term pier shortenings and foundation settlements.The sum of the various deflection values for the successive sections of the deck allows the construc-tion of a camber diagram to be added to the theoretical profile of the bridge. A construction camber for setting the elevation of the traveler at each joint must also be developed.11.9.1.2 Precast SegmentsOpposite to the precast girder concept where the bridge is cut longitudinally in the precast segmental methods, the bridge is cut transversally, each slice being a segment. Segments are cast in a casting yard one at a time. Furthermore, the new segment is cast against the previously cast segment so that the faces in contact match perfectly. This is the match-cast principle. When the segments are reassembled at the bridge site, they will take the same relative position with regard to the adjacent segments that they had when they were cast. Accuracy of segment geometry is an absolute priority, and adequate surveying methods must be used to ensure follow-up of the geometry.Match casting of the segments is a prerequisite for the application of glued joints, achieved by covering the end face of one or both of the meeting segments with epoxy at the erection. The epoxy serves as a lubricant during the assembly of the segments, and it ensures a watertight joint in thefinished structure. Full watertightness is needed for corrosion protection of internal tendons (ten-dons inside the concrete). The tensile strength of the epoxy material is higher than that of the concrete, but, even so, the strength of the epoxy is not considered in the structural behavior of the joint. The required shear capacity is generally provided by shear keys, single or multiple, in com-bination with longitudinal post-tensioning.With the introduction of external post-tensioning, where the tendons are installed in PE ducts,outside the concrete but inside the box girder, the joints are relieved of the traditional requirement of watertightness and are left dry. The introduction of external tendons in connection with dry joints greatly enhanced the efficiency of precasting.11.9.1.3 Casting MethodsThere are two methods for casting segments. The first one is the long-line method, where all the segments are cast in their correct position on a casting bed that reproduces the span. The second method, used most of the time, is the short-line method, where all segments are cast in the same place in a stationary form, and against the previously cast segment. After casting and initial curing, the previously cast segment isremoved for storage, and the freshly cast segment is moved into place.11.9.1.4 Geometry ControlA pure translation of each segment between cast and match-cast position results in a straight bridge(Figure 11.45). To obtain a bridge with a vertical curve, the match-cast segment must first be translated and given a rotation in the vertical plane (Figure 11.46). Practically, the bulkhead is left fixed and the mold bottom under the conjugate unit adjusted. To obtain a horizontal curvature, the conjugate unit is given a rotation in the horizontal plane (see Figure 11.47). To obtain a variable superelevation, the conjugate unit is rotated around a horizontal axis located in the middle of the top slab (Figure 11.48).All these adjustments of the conjugate unit can be combined to obtain the desired geometry of the bridge.11.9.2 ErectionThe type of erection equipment depends upon the erection scheme contemplated during the design process; the local conditions, either over water or land; the speed of erection and overall construction schedule. It falls into three categories, independent lifting equipment such as cranes,deck-mounted lifting equipment such as beam and winch or swivel crane, and launching girder equipment.The principle of the method is to erect or cast the pier segment first, then to place typical segments one by one from each side of the pier, or in pairs simultaneously from both sides. Each newly placed precast segment is fixed to the previous one with temporary PT bars, until the cantilever tendons are installed and stressed. The closure joint between cantilever tips is poured in place and continuity tendons installed and stressed.In order to carry out this erection scheme, segments must be lifted and installed at the proper location. The simplest way is to use a crane, either on land or barge mounted. Many bridges have Bridge with superelevation.been erected with cranes as they do not require an investment in special lifting equipment. This method is slow. Typically, two to four segments per day are placed. It is used on relatively short bridges. An alternative is to have a winch on the last segment erected. The winch is mounted on a beam fixed to the segment. It picks up segments from below, directly from truck or barge. After placing the segment, the beam and winch system is moved forward to pick up the next segment and so on. Usually, a beam-and-winch system is placed on each cantilever tip. This method is also slow; however, it does not require a heavy crane on the site, which is always very expensive, especially if the segments are heavy.When bridges are long and the erection schedule short, the best method is the use of launching girders, which then take full advantage of the precast segmental concept for speed of erection.There are two essential types of self-launching gantries developed for this erection method. The first type is a gantry with a length slightly longer than the typical span (see Figure 11.49). During erection of the cantilever, the center leg rests on the pier while the rear leg rests on the cantilever tip of the previously erected span, which must resist the corresponding reaction. Prior to launching,the back spans must be made continuous. Then, the center leg is moved to the forward cantilever tip, which must resist the weight of the gantry plus the weight of the pier segment.This stage controls the design of the gantry, which must be made as light as possible, and of the cantilever.The second type of gantry has a length that is twice that of the typical span (see Figure 11.50).The reaction from the legs during the erection and launching of the next span is always applied on the piers, so there is no concentrated erection load on the cantilever tip. Each erection cycle consists of the erection of all typical segments of the cantilever and then the placement of the pier segment for the next cantilever, without changing the position of the truss.The gantries can be categorized by their cross section: single truss, with portal-type legs, and two launching trusses with a gantry across. The twin box girders of the bridge in Hawaii were built with two parallel, but independent trusses (see Figure 11.51), with a typical span of 100.0 m, segmentweights of 70 tons; the two bridge structures are 27.5 m apart with different elevations and longi-tudinal slopes. This system is a refinement of the first type of gantry applied to twin decks with variable geometry.Normally, the balanced cantilever method is used for spans from 60 to 110 m, with a launching girder. One full, typical cycle of erection is placing segments, installing and stressing post-tensioning tendons, and launching the truss to its next position. It takes about 7 to 10 days, but may vary greatly according to the specifics of a project and the sophistication of the launching girder. With proper equipment and planning, erection of 16 segments per day has been achieved.译文11.7.4 挠度11.7.4.1 恒载和徐变部分箱梁的整体变形是由恒载和后加张力造成的,也包括在设计过程中用电脑分析软件正常算出的徐变的长期影响。
桥梁毕业设计外文原文及翻译
外文文献翻译BRIDGE ENGINEERING AND AESTHETICSEvolvement of bridge Engineering,brief reviewAmong the early documented reviews of construction materials and structure types are the books of Marcus Vitruvios Pollio in the first century B.C.The basic principles of statics were developed by the Greeks , and were exemplified in works and applications by Leonardo da Vinci,Cardeno,and Galileo.In the fifteenth and sixteenth century, engineers seemed to be unaware of this record , and relied solely on experience and tradition for building bridges and aqueducts .The state of the art changed rapidly toward the end of the seventeenth century when Leibnitz, Newton, and Bernoulli introduced mathematical formulations. Published works by Lahire (1695)and Belidor (1792) about the theoretical analysis of structures provided the basis in the field of mechanics of materials .Kuzmanovic(1977) focuses on stone and wood as the first bridge-building materials. Iron was introduced during the transitional period from wood to steel .According to recent records , concrete was used in France as early as 1840 for a bridge 39 feet (12 m) long to span the Garoyne Canal at Grisoles, but reinforced concrete was not introduced in bridge construction until the beginning of this century . Prestressed concrete was first used in 1927.Stone bridges of the arch type (integrated superstructure and substructure) were constructed in Rome and other European cities in the middle ages . These arches were half-circular , with flat arches beginning to dominate bridge work during the Renaissance period. This concept was markedly improved at the end of the eighteenth century and found structurally adequate to accommodate future railroad loads . In terms of analysis and use of materials , stone bridges have not changed much ,but the theoretical treatment was improved by introducing the pressure-line concept in the early 1670s(Lahire, 1695) . The arch theory was documented in model tests where typical failure modes were considered (Frezier,1739).Culmann(1851) introduced the elastic center method for fixed-end arches, and showed that three redundant parameters can be found by the use of three equations of coMPatibility.Wooden trusses were used in bridges during the sixteenth century when Palladio built triangular frames for bridge spans 10 feet long . This effort also focused on the three basic principles og bridge design : convenience(serviceability) ,appearance , and endurance(strength) . several timber truss bridges were constructed in western Europe beginning in the 1750s with spans up to 200 feet (61m) supported on stone substructures .Significant progress was possible in the United States and Russia during the nineteenth century ,prompted by the need to cross major rivers and by an abundance of suitable timber . Favorable economic considerations included initial low cost and fast construction .The transition from wooden bridges to steel types probably did not begin until about 1840 ,although the first documented use of iron in bridges was the chain bridge built in 1734 across the Oder River in Prussia . The first truss completely made of iron was in 1840 in the United States , followed by England in 1845 , Germany in 1853 , and Russia in 1857 . In 1840 , the first iron arch truss bridge was built across the Erie Canal at Utica .The Impetus of AnalysisThe theory of structuresThe theory of structures ,developed mainly in the ninetheenth century,focused on truss analysis, with the first book on bridges written in 1811. The Warren triangular truss was introduced in 1846 ,supplemented by a method for calculating the correcet forces .I-beams fabricated from plates became popular in England and were used in short-span bridges.In 1866, Culmann explained the principles of cantilever truss bridges, and one year later the first cantilever bridge was built across the Main River in Hassfurt, Germany, with a center span of 425 feet (130m) . The first cantilever bridge in the United States was built in 1875 across the Kentucky River.A most impressive railway cantilever bridge in the nineteenth century was the First of Forth bridge , built between 1883 and 1893 , with span magnitudes of 1711 feet (521.5m). At about the same time , structural steel was introduced as a prime material in bridge work , although its quality was often poor . Several early examples are the Eads bridge in St.Louis ; the Brooklyn bridge in New York ; and the Glasgow bridge in Missouri , all completed between 1874 and 1883.Among the analytical and design progress to be mentioned are the contributions of Maxwell , particularly for certain statically indeterminate trusses ; the books by Cremona (1872) on graphical statics; the force method redefined by Mohr; and the works by Clapeyron who introduced the three-moment equations.The Impetus of New MaterialsSince the beginning of the twentieth century , concrete has taken its place as one of the most useful and important structural materials . Because of the coMParative ease with which it can be molded into any desired shape , its structural uses are almost unlimited . Wherever Portland cement and suitable aggregates are available , it can replace other materials for certain types of structures, such as bridge substructure and foundation elements .In addition , the introduction of reinforced concrete in multispan frames at the beginning of this century imposed new analytical requirements . Structures of a high order of redundancy could not be analyzed with the classical methods of the nineteenth century .The importance of joint rotation was already demonstrated by Manderla (1880) and Bendixen (1914) , who developed relationships between joint moments and angular rotations from which the unknown moments can be obtained ,the so called slope-deflection method .More simplifications in frame analysis were made possible by the work of Calisev (1923) , who used successive approximations to reduce the system of equations to one simple expression for each iteration step . This approach was further refined and integrated by Cross (1930) in what is known as the method of moment distribution .One of the most import important recent developments in the area of analytical procedures is the extension of design to cover the elastic-plastic range , also known as load factor or ultimate design. Plastic analysis was introduced with some practical observations by Tresca (1846) ; and was formulated by Saint-Venant (1870) , The concept of plasticity attracted researchers and engineers after World War Ⅰ, mainly in Germany , with the center of activity shifting to England and the United States after World War Ⅱ.The probabilistic approach is a new design concept that is expected to replace the classical deterministic methodology.A main step forward was the 1969 addition of the Federal Highway Adiministration (FHWA)”Criteria for Reinforced Concrete Bridge Members “ that covers strength and serviceability at ultimate design . This was prepared for use in conjunction with the 1969 American Association of State Highway Offficials (AASHO) Standard Specification, and was presented in a format that is readily adaptable to the development of ultimate design specifications .According to this document , the proportioning of reinforced concrete members ( including columns ) may be limited by various stages of behavior : elastic , cracked , andultimate . Design axial loads , or design shears . Structural capacity is the reaction phase , and all calculated modified strength values derived from theoretical strengths are the capacity values , such as moment capacity ,axial load capacity ,or shear capacity .At serviceability states , investigations may also be necessary for deflections , maximum crack width , and fatigue . Bridge TypesA notable bridge type is the suspension bridge , with the first example built in the United States in 1796. Problems of dynamic stability were investigated after the Tacoma bridge collapse , and this work led to significant theoretical contributions Steinman ( 1929 ) summarizes about 250 suspension bridges built throughout the world between 1741 and 1928 .With the introduction of the interstate system and the need to provide structures at grade separations , certain bridge types have taken a strong place in bridge practice. These include concrete superstructures (slab ,T-beams,concrete box girders ), steel beam and plate girders , steel box girders , composite construction , orthotropic plates , segmental construction , curved girders ,and cable-stayed bridges . Prefabricated members are given serious consideration , while interest in box sections remains strong .Bridge Appearance and AestheticsGrimm ( 1975 ) documents the first recorded legislative effort to control the appearance of the built environment . This occurred in 1647 when the Council of New Amsterdam appointed three officials . In 1954 , the Supreme Court of the United States held that it is within the power of the legislature to determine that communities should be attractive as well as healthy , spacious as well as clean , and balanced as well as patrolled . The Environmental Policy Act of 1969 directs all agencies of the federal government to identify and develop methods and procedures to ensure that presently unquantified environmental amentities and values are given appropriate consideration in decision making along with economic and technical aspects .Although in many civil engineering works aesthetics has been practiced almost intuitively , particularly in the past , bridge engineers have not ignored or neglected the aesthetic disciplines .Recent research on the subject appears to lead to a rationalized aesthetic design methodology (Grimm and Preiser , 1976 ) .Work has been done on the aesthetics of color ,light ,texture , shape , and proportions , as well as other perceptual modalities , and this direction is both theoretically and empirically oriented .Aesthetic control mechanisms are commonly integrated into the land-use regulations and design standards . In addition to concern for aesthetics at the state level , federal concern focuses also on the effects of man-constructed environment on human life , with guidelines and criteria directed toward improving quality and appearance in the design process . Good potential for the upgrading of aesthetic quality in bridge superstructures and substructures can be seen in the evaluation structure types aimed at improving overall appearance .LOADS AND LOADING GROUPSThe loads to be considered in the design of substructures and bridge foundations include loads and forces transmitted from the superstructure, and those acting directly on the substructure and foundation .AASHTO loads . Section 3 of AASHTO specifications summarizes the loads and forces to be considered in the design of bridges (superstructure and substructure ) . Briefly , these are dead load ,live load , iMPact or dynamic effect of live load , wind load , and other forces such as longitudinal forces , centrifugal force ,thermal forces , earth pressure , buoyancy , shrinkage andlong term creep , rib shortening , erection stresses , ice and current pressure , collision force , and earthquake stresses .Besides these conventional loads that are generally quantified , AASHTO also recognizes indirect load effects such as friction at expansion bearings and stresses associated with differential settlement of bridge components .The LRFD specifications divide loads into two distinct categories : permanent and transient .Permanent loadsDead Load : this includes the weight DC of all bridge components , appurtenances and utilities, wearing surface DW and future overlays , and earth fill EV. Both AASHTO and LRFD specifications give tables summarizing the unit weights of materials commonly used in bridge work .Transient LoadsVehicular Live Load (LL)Vehicle loading for short-span bridges :considerable effort has been made in the United States and Canada to develop a live load model that can represent the highway loading more realistically than the H or the HS AASHTO models . The current AASHTO model is still the applicable loading.桥梁工程和桥梁美学桥梁工程的发展概况早在公元前1世纪,Marcus Vitrucios Pollio 的著作中就有关于建筑材料和结构类型的记载和评述。
桥梁设计外文翻译资料
Long and light——《Bridge design & engineering》Closure of the main span on the Sundoya Bridge in Norway is expected to take place in the first week after Easter. This graceful crossing, the second longest of its type in the world, is being built in situ using high performance concreteSundoya Bridge is situated in one of Norway's most scenic areas, only 100km south of the Arctic Circle. The 538m-long bridge spans Sundet, and when it is complete will provide a ferry-free road connection between Sundoya and the mainland. It is located some 35km west of the city of Mosjoen, close to highway 78 between Mosjoen and Sandnessjoen.It will be the second large bridge project connecting Alstenoya to the mainland, coming more than 12 years after the Helgeland Bridge was opened. The region is no stranger to world-record scale bridges ?the Helgeland Bridge's 425m long main span was the longest cable-stayed span in the world when it opened in 1992.Sundoya Bridge is divided into three spans; it has a main span of 298m and two side spans of 120m. The main span will be the second longest span in the world for a continuous post-tensioned cast in place box section concrete bridge.In terms of its design, consultant Dr Ing Aas-Jakobsen has followed a similar approach to that taken for the Raftsundet Bridge, opened in 1998, to which the Sundoya Bridge will almost be a twin. The two bridges have identical main spans, but Raftsundet has four spans as opposed to Sundoya's three. Contractor AS Anlegg, which is part of the joint venture building Sundoya, was also the contractor on the Raftsundet Bridge, and architect Boarch Arkitekter has also worked on the two schemes.In January 2001 the joint venture company AF Sundoybrua won the contract from client Statens Vegvesen to build the Sundoya Bridge. This joint venture consisted of the contractors Reinertsen Anlegg and NCC Construction.High performance concrete is central to the design of the bridge ?both normal weight HPC and lightweight HPC. Normal weight concrete, at approximately 2500kg/m3, is used for the 120m side spans, while lightweight concrete, which weighs in at about 1970kg/m3, is used for construction of the 298m main span. This enables construction to proceed using the balanced cantilever method.Local rock from Norway is used as the aggregate for the normal weight concrete, but the lightweight concrete required an imported solution. Normally the aggregate used for lightweight concrete in Europe is expanded clay or shale, but this material has high levels of absorption and for this reason, regulations prevent such concrete from being pumped.In order to address this, the contractor adopted a similar solution to that used on RaftsundetBridge ?importing Stalite aggregate from South Carolina in the USA. Stalite is produced through thermal expansion of high quality slate, and results in a lightweight aggregate that gives concrete of very high strength at low unit weights. Its low absorption of approximately 6% and high particle strength are two of the factors that allow Stalite to achieve high strength concrete in excess of 82.7MPa, the manufacturer says. The bondand compatibility of the aggregate with cement paste reduce micro-cracking and enhance durability, and its low absorption makes it easy to mix and pump.According to AF Sundoybrua quality manager Jan-Eirik Nilsskog, this material has given a very good result. It produces concrete that is easy to pour into the formwork and it gives a good surface finish, he says. It is being pumped some 120m along the bridge deck to the concreting position. Concrete is produced by a transportable mobile plant located only 1km from the bridge site. Constant monitoring of the concrete weight is necessary to ensure that the cantilevers are properly balanced. This is tested for each pour.The project began in January 2001 at Aker Verdal with the production of caissons for the pier bases. In May 2001 the two caissons were towed 500km north to the bridge site.The bridge is being poured in situ using special mobile construction equipment developed by NRS. The cycle for construction of each 5m wide bridge segment is a week, and two mobile units are being used on the Sundoya Bridge. These particular units were built for AS Anlegg to use on the Varodden Bridge in Kristiansand in Norway, and they have also been used by the same contractor on the Rafsundet Bridge. The design of the central part of the main span of the bridge is based on the use of lightweight concrete LC60 while other parts of the structure use the more standard type C65. Because of the aggressive marine environment, the quality of the concrete must be particularly good.The structure is a single cell, prestressed rectangular box girder, largely built using the travelling formwork system from NRS. The box width is 7m and its depth varies from 3m at the centre of the span to 14.5m over the piers. Close to the abutments, concrete of quality C25 will be used inside the box girder as ballast. In addition, the designers have included the necessary elements inside the box girder in order to allow the possible addition of post-tensioning cables in the future. The long-term behaviour of such large spans is not fully known, so the possibility that the main span may sag over time has to be taken into account. The width of the road is a constant 7.5m from the barrier on one side to that on the other, and the total width of the bridge is some 10.3m. There is a 2m wide footway included in the width of the structure.The pier shaft is formed with twin legs, which are hollow inside. The pier shafts incorporate permanent prestressing cables and they have a constant wall thickness and a width that varies parabolically over their height.Temporary tie-down piers are used to construct the bridge - they are located 35m into each 120m-long side span from the main piers. Each consists of an I-shaped shaft, which is tied down to the ground using rock anchors and connected to the box girder by means of prestressing cables. The purpose of these structural elements is to support the cantilever and prevent rotation in strong winds. Once the bridge superstructure is complete and the main pier prestressing is fully tensioned, the temporary tie-down pierswill be removed piece by piece.The location of the bridge, only about 100km south of the Arctic Circle, has meant that special measures have to be introduced to allow construction work to continue all year round. Apart from the obvious need to provide site lighting for much of the wintertime, the challenge of concreting in temperatures which can be as low as 0 C has to be overcome. Hot concrete is produced for the bridge ?sometimes up to 30 C and the formwork has to be insulated to keep the concrete warm. Electric heating cables are also used on the end of the previous pour to warm up the concrete before casting.Construction of the new bridge began in January 2000 and is expected to be complete in September this year. The construction of the cantilever started in summer last year and is due to be finished in April. When Bd&e went to press, the project was on schedule for opening to traffic in late autumn.Project TeamClient: Statens VegvesenContractor: AF Sundoybrua (AS Anlegg, NCC Construction)Consultant: Dr Ing Aas-JakobsenArchitect: Boarch Arkitekter超轻大跨度桥——Sundoya挪威的在Sundoya 桥上的主跨有望在复活节的后第一个星期望合龙. 它是一座大跨度的,在世界的它的同类型中第二长,建造在situ 的长大桥。
桥梁文献中英文翻译(中文)Quick fix
桥梁的快速修复——圣彼得堡一座旧木桥的更换工作在今年年初完成在俄罗斯的圣彼得堡,崛起的交通水平和发展要求促使一个旧的电车轨道桥被改造为一个斜拉桥。
新的Lazarevsky大桥横跨马来亚内芙卡,并与今年早些时候建成通车,取代了一座本来供有轨电车通行但是现在只供行人行走的旧木质桥。
这座桥坐落于彼得格勒区,并且沿着Pionerskaya和Sportivnaya街道将Krestovsky和Petrogradsky群岛连接了起来,这两者都是当地的交通枢纽。
它始建于1949年,当时被称为Koltovsky桥,相邻马来亚内芙卡河堤。
但在1952年,为了纪念传说中的俄罗斯海军上将米哈伊尔拉扎列夫,路堤及桥梁被易名为拉扎列夫海军上将路堤和Lazarevsky桥。
这座桥由VV Blazhevich工程师设计,最初桥有11跨,中央一个是单叶。
它最初是设计用于电车,并且是当时该市唯一的一座电车轨道桥。
总长度为141m,总宽度为11m,层面由金属和木质材料组成。
木材支柱支撑的码头建在钢管桩基础上。
但是在2002年时,电车轨道被关闭,从那时起,这座桥只供行人使用。
这座桥梁的位置就意味着它服务这座城市的西部——包括Krestovsky岛的彼得格勒区。
所有到Krestovsky岛的车辆都用主要这个岛的Krestovsky桥,这自然导致该桥大大超载。
由于Lazarevsky桥并没有承受车辆荷载,所以它不被认为是彼得格勒区的交通网络的一部分。
但是,Krestovsky岛上计划在victory 公园里兴建一个体育场,离海边仅有3公里,这意味着城市的其余部分需要一个可靠的连接方式。
当地政府认为解决这个问题最好的办法就是重建Lazarevsky 桥。
新桥的规模取决于现有交通水平,并且考虑到了该地区未来的发展。
据预测,到2025年,Lazarevsky桥的全年平均日交通量将上升至16000车次。
车流高峰发生在体育场馆举行重大赛事时,此时该桥须能在一小时内纾缓这个地段的交通。
桥梁文献中英文翻译(英文原文)Quick fix
Quick fix: replacement of an old wooden bridge in St Petersburg was completed earlier this year.Rising traffic levels and development demands led to an old tramway bridge being rebuilt as a cable-stayed crossing in the Russian city of St Petersburg. The new Lazarevsky Bridge across the Malaya Nevka was opened to traffic earlier this year, replacing an old wooden structure which was built for trams but recently had only been used by pedestrians.The bridge is located in Petrograd district and connects Krestovsky and Petrogradsky Islands along Pionerskaya and Sportivnaya Streets, both of which are importanat links for local traffic. When it was built in 1949, the crossing was called the Koltovsky Bridge, after the adjacent Malaya Nevka river embankment. But in 1952, it was renamed to commemorate the legendary Russian admiral Mikhail Lazarev. The embankment and the bridge were redesignated the Admiral Lazarev Embankment and Lazarevsky Bridge respectively.Built to the design of engineer VV Blazhevich, the original bridge had 11 spans, the central one being a single-leaf drawspan. It was originally designed for trams and was the only tramway bridge in the city at that time. Its total length was 141m and its width was 11m, the deck consisting of metal baulks and wooden plank flooring. The timber post piers rested on piled foundations of steel pipes. But in 2002 the tramway was closed and since then, the bridge has only been used by pedestrians.Its location meant that Lazarevsky Bridge served the western part of the city--the Petrograd districts including Krestovsky island. All the road traffic to Krestovsky island used the main Krestovsky Bridge which as a consequence was considerably overloaded. Since the Lazarevsky Bridge carried no vehicular traffic it was not considered part of the road network of the district. But plans to build a new stadium at the Seaside Victory Park on Krestovsky Island just 3km from the bridge site meant that a reliable transport connection to the rest of the city was required. The local authority decided that reconstruction of the Lazarevsky Bridge was the best way to provide this.The size of new bridge was determined based on the predicted traffic levels, taking into account the prospective development of the district. According to the forecast, the annual average daily traffic intensity on Lazarevsky Bridge will rise to 16,000 vehicles per day by 2025. Peak loads occur during major sporting events at the stadium when the bridge will be required to help relieve the area of traffic within one hour. This traffic flow includes 4,500 to 5,000 cars, so even if the Petrovsky Bridge were to be rebuilt, the Lazarevsky Bridge needed two lanes of traffic in both directions in order to do this.Taking into consideration the fact that the timber structures of the bridge had been in use for more than 55 years, if the bridge reconstruction had been restricted to the widening and strengthening of the existing superstructure and piers, it would not have ensured the longevity of the fixed bridge and might have led to high operation costs. Another consideration was that the appearance of a multi-span structure with bulky piers would not have fitted into the architectural style that is emerging with construction of modern buildings on Krestovsky Island and the adjacentembankments.As a result, the decision was taken to completely demolish the existing bridge and replace it with a new structure on the same alignment. As part of the project, some of Sportivnaya Street on the right bank had to be widened, and improvement of the adjacent area was also included.The history of the project dates back more than a decade to 1998, when JSC Institute Strojproect won the tender to carry out a feasibility study into the reconstruction of Lazarevsky Bridge and its approaches.Even at this time, the architect Igor Serebrennikov had developed an original architectural concept of the bridge which involved use of a cable-stayed system. This concept was approved by the city's committee for development but financial problems meant that the design was suspended for seven years before it resumed.In 2003, the project was included in the target programme of design and survey works, and the tender for design development was officially announced. Again these works were awarded to JSC Institute Strojproect. The reconstruction design was completed in 2007 and was received positively by the State Expert Review Board; construction began at the end of that year.The structural concept of the bridge was approved based on the comparison of technical and economical options. One of the main restrictions was the strict limitation on the superstructure construction depth. On the one hand, it was limited by the need to maintain underbridge clearance for navigation, while on the other hand the deck level was governed by the height of Admiral Lazarev Embankment, which could not be raised, according to the requirements of the committee for protection of monuments.To meet these almost incompatible conditions it was necessary to make the longitudinal profile of the deck with a vertical curve of radius 1,000m, a radius which is allowable only for very constrained conditions. But even with this minimum vertical curve radius, the limitation for the deck construction depth remained fairly strict--it had to be 1.4m at the maximum. This condition could be met either by a classic five-span continuous beam scheme or by a cable-stayed system. The costs of both options are practically the same but the cable-stayed option was preferred as it was considered more attractive from the architectural point of view. Another benefit was that it would take less time for construction as there was no need for intermediate piers to be built in the river bed.The unconventional appearance of the structure, particularly the shape of the tower and its asymmetric arrangement with its single span, put demands on the design abilities of the engineers from JSC Institute Strojproect, requiring them to cope with non-standard problems. One such problem was the need to provide the required rigidity to the deck while at the same time minimising its weight in order to decrease the moments in the tower elements and balance the system. Hence a single-span cable-stayed bridge with steel deck, orthotropic carriageway slab and a steel tower was selected for construction. The deck is supported by two rows of stays, with five stays in each row. The cable stays pass through the tower and are anchored in the reinforced concrete slab of the counterweight which is located beyond the bridgeabutment on Krestovsky Island. The front arch of the tower, which is inclined towards the riverbed, carries the dead anchorages by which means the cable stays and backstays are secured. Tensioning of both sets of cables was carried out by means of active anchors located at the deck and in the counterweight slab. To minimise the total width of the deck, the anchorages are removed to the front surfaces of the main beams. The optimum force distribution in the tower elements was obtained by means of the arch shape that became sharper and elongated in the transverse section of the bridge.The deck consists of a system of longitudinal and transverse H-beams connected via the orthotropic slab with its U-shape stiffeners. The anchorages are located along the transverse beams. At the tower, the deck is rigidly fixed and at pier one it rests on Maurer spherical bearings. The steel part of the deck is made of low-alloy steel grade 10 and 15 and the tower of steel grade 10 (400MPa).The cable stays are VSL standard monostrands and each one is made up of from 50 to 73 strands. The total length of strand used in the bridge is about 31km. Meanwhile the bridge deck pavement consists of two layers of asphalt/concrete 40mm and 50mm placed over the Technoelastomost-S membrane waterproofing layer.The pier foundations are formed of high pile caps resting on bored piles driven deep into the bearing stratum of firm clay. Above the foundation top, the piers are made of cast in situ concrete and faced with granite.Construction was carried out by Mostootryad No 75, a branch of OAO Mostotrest No 6, while the steel deck structure was manufactured by JSC Zavod Metallokonstruktsiy and the steel tower structure was manufactured by NPO Mostovik.For development of the detail design the specialists of automation division of the Institute prepared complex 3-D models of the tower and cable stay anchorages in PRO-E software which were used for analysis and as a basis for the fabrication of the structures by NPO Mostovik. The use of this successful PRO-E modelling enabled the complicated tower structures to be manufactured within a relatively short time.Taking into consideration the constraints imposed on the bridge construction, JSC Institute Strojproect suggested some modifications to the detailed design. One such proposal was to replace the cable backstays of the tower with rigid ties made of low-alloy steel grade 10 which would be fixed rigidly at the tower arches and counterweight. Temporary supports would be installed under the deck anchorages These modifications allowed the erection of the back-stays to be considerably simplified, and would also eliminate the need to tension the backstays, cutting in half the time for the cable-stay installation.In addition it meant that the cable-stays supporting the deck could be tensioned in a single operation, once the asphalt and concrete pavement had been installed on the bridge. Analysis included successive tensioning of cable-stay pairs from the longest pair down to the shortest pair with the subsequent final tensioning of the two longest pairs. Apart from the forces, the vertical displacements of the deck at the 'breakaway' points on the temporary supports had to be controlled. The actual tensioning works were carried out in compliance with the design solutions. The data on the forces and displacements at each stage were handed over by the general contractor to thedesigners, and if necessary, the required corrections were introduced to the design. On the whole, the calculated data showed a high correlation with the actual parameters.In fact it took the general contractor only 17 months to complete construction of all the works involved in the bridge construction. The new cable-stayed bridge has fitted harmoniously into the surrounding landscape. By avoiding placement of intermediate piers in the riverbed it was possible to open up views along the Malaya Nevka. The arch tower acts as a symbolic gateway to the island and stands out distinctly against its background of sky and trees. The architectural expressiveness of the bridge is determined by the general asymmetrical composition and the dynamic shape of the tower formed by two inclined arches, a light and gently-curved deck, and the elegant outline of the cable stay arrangement. At night time, the appearance of the bridge is highlighted by architectural lighting.Tatiana Gurevich is project manager and Yuri Krylov is head of the structural steel department at JSC Institute Strojproect。
桥梁工程毕业设计外文翻译
Review of assessment and repair of fire-damaged RChighway bridgesAbstract:This paper presents a review of the progress of the research and engineering practice of assessment and repair of fire-damaged RC highway bridges,based on which existing and pressing problems of the evaluation method are pointed out.At last,Prospect for the development of assessment and repair of fire-damaged highway bridges is also proposed.Key words:fire damage;assessment;repair techniques;RC structure;bridge 1 PrefaceFires can cause great structural damage to bridges and major disruption to highway operations.These incidents stem primarily from vehicle accident (often oil tanker) fires,bridges might also be damaged by fires in adjacent facilities and from other causes.Quite a few of them,though rarely happened,lead to severe structural damage or collapse and casualty.On June 2,2008,fire disaster broke out under the 18th span of Nanjing Yangtze River Bridge and lasted for approximate 75min.During the fire’s development and extinguishment,the structure experienced the sharp rise and fall in temperature causing severe damage to fire- stricken segments.On April 29,2007,a gasoline tanker overturned on the connector from Interstate 8O to Interstate 880 in California.The intense heat from the subsequent fuel spill and fire weakened the stee1 underbelly of the elevated roadway ,collapsing approximately 165 feet of this elevated roadway onto a section of I—880below.On March 25,2004,Connecticut,United States,a tanker truck carrying fuel swerved to avoid a car and overturned,dumping 8000 gallons of home heating oil onto the Howard Avenue overpass.The consequent towering inferno melted the bridge structure and caused the southbound lanes to sag several feetUndocumented number of bridge fires occurring throughout the world each year cause varying degrees of disruption,repair actions,and maintenance cost.Althoughfires caused damage to the bridge structures ,some bridges continue to function after proper repair and retrofit.Still in some situations they have to be repaired for the cause of traffic pressure even though supposed to be dismantled and reconstructed.However ,in other cases,structures are severely damaged in the fire disaster and fail to function even after repair,or the costs of repair and retrofit overweigh their reconstruction costs overwhelmingly even if they are repairable,under which situation reconstruction serves as a preferable option.Therefore in—situ investigation and necessary tests and analyses should be conducted to make comprehensive assessment of the residual mechanical properties and working statuses after fire and to evaluate the degrees of damage of members and structures , in reference to which decisions are made to determine whether Fire damaged structures should be repaired or dismantled and reconstructed.Urgent need from engineering practice highlighted the necessity to understand the susceptibility and severity of these incidents as wel1 as to review available information on mitigation strategies,damage assessments,and repair techniques.2 Progress in Research and Engineering Practice2.1 Processes of Assessment and Repair of Fire damaged BridgeStructureIn China and most countries in the world,most highway bridges are built in RC structure.And the practice of the assessment and repair techniques of bridge structure after fire directly refer to that of RC structure,which,to date,domestic and foreign scholars have made great amount of research on,with their theories and practices being increasingly mature .As for the assessment and repair of fire-damaged reinforced concrete structures,there are two mainstream assessment processes in world.Countries including United States,United Kingdom and Japan adopt the assessment process stipulated by The British Concrete Society .This process grates the severity of fire damage of concrete structure into four degrees according to thedeflection,damage depth,cracking width, color,and loading capacity variation of fire-damaged structures and adopt four corresponding strategies (including demolish,strengthen after safety measures,strengthen. and strengthen in damaged segments) to deal with them accordingly.In general,this process is a qualitative method and considered,however,not quantity enough.In Chinese Mainland and Taiwan ,the prevailing as assessment and repair process of fire damaged incorporates following steps:In comparison this process is more detailed.(1)Conduct In-situ inspections,measurements,and tests including color observation,concrete observation,degree of rebar exposure observation,cracking measurement,deflection measurement,various destructive and nondestructive test methods as grounds for assessment of fire—damaged structures.In assessment of the post -fire mechanical properties of fire—damaged structures,historical highest temperature and temperature distribution of structure during the fire serve as decisive factors.The common methods to determine them incorporate petrographic analysis,ultrasonic method,Rebound method,Ignition Loss method,core test,and color observation method(2)calculate to determine whether the fire-damaged structure can meet the demand of strength and deflection under working loads after fire using mechanical properties of rebar and concrete before and after fire based on the historical highest and temperature distribution of structures obtained from step one.There are two main methods to evaluate the post -fire performance of fire-damaged structures:FEM method and Revised Classic Method.(3)On the basis of test and calculation results obtained from step two,take corresponding repair strategies and particular methods to strengthen the fire-damaged structures.2.2 Repair TechniquesFor the repair of fire—damaged bridge,proper repair methods should be taken according to the degree and range of the structure’s damage.Meanwhile the safetyand economy of the repair methods should be concerned with by avoiding destructing the original structure,preserving the valuable structural members,and minimizing unnecessary demolishment and reconstruction。
桥梁设计外文翻译文献
桥梁设计外文翻译文献(文档含中英文对照即英文原文和中文翻译) 原文:A Bridge For All CenturiesAn extremely long-and record setting-main span was designed for the second bridge to across the Panama Canal in order to meet the owner’s requirement that no piers be placed in the water.Because no disruption of canal traffic was permitted at any time,the cable-stayed bridge of cast-in-place cancrete was carefully constructed using the balanced-cantilever method.In 1962 ,the Bridge of Americas(Puente de las America) opened to traffic,serving as the only fixed link across the Panama Canal .The bridge was designed to carry 60,000 vehicles per day on four lanes, but it has beenoperating above its capacity for many years.Toalleviate bottlenecks on the route that the bridge carries over the canal-the Pan-AmericanHighway(Inter-American Highway)-and promotegrowth on the western side of Panama,the country’s Ministry of Public Works(Ministerio de Obras Publicas,or MOP )decided to build a new highway systerm linking the northern part of Panama City,on the eastern side of the canal, to the town of Arraijan,located on the western side of the canal.The Centennial Bridge –named to commemorate 100 years of Panamanian independence-has noe been constructed and, when opend, will carry six lanes of traffic. This cable-stayed bridge of cast-in-place cancrete features a main span of 420m,the longest such span for this type of bridge in the Western Hemisphere.In 200 the MOP invited international bridge design firms to compete for the design of the crossing, requesting a two-package proposal:one techinical, the other financial. A total of eight proposals were received by December 2000 from established bridge design firms all over the world. After short-listing three firms on the basis of the technical merits of their proposals, the MOP selected T.Y.Lin International, of San Francisco, to prepare the bridge design and provide field construction support based on the firm’s financial package.The Centennial Bridge desige process was unique and aggressive,incorporating concepts from the traditional design/build/bid method, the design/build method , and the sa-called fast-track design process.To complete the construction on time-that is ,within just 27 months-the design of the bridge was carried out to a level of 30 percent before construction bidding began, in December 2001.The selected contractor-the Wiesbaden,Germany,office of Bilfinger Berger,AG-was brought on board immediately after being selected by the MOP ,just as would be the case in a fast-track approach. The desige of the bridge was then completed in conjunction with construction , a process that id similan to desige/build.The design selected by the client features two single-mast towers,each supporting two sets of stay cables that align in one vertical plane.Concrete was used to construct both the towers and the box girder deck,as well as the approach structures.The MOP , in conjunction with the Panama Canal Authority,established the following requirements for the bridge design :A 420m,the minimum length for the main span to accommodate the recently widened Gaillard Cut,a narrow portion of the canal crossing the Continental Divide that was straightened and widened to 275m in 2002;A navigational envelope consisting of 80m of vertical clearance and 70mof horizontal clearance to accommodate the safe passage of a crane of World War 11 vintage-a gift from the ernment that is used by the Panama Canal Authority to maintain the canal gates and facilities;A roadway wide enough to carry six lanes of traffic, three in each direction;A deck able to accommodate a 1.5m wide pedestrian walkway;A design that would adhere to the American Association of State Highway and Transportation Official standard for a 100-year service life and offer HS-25 truck loading;A structure that could carry two 0.6m dianeter water lines;A construction method that would not cross the canal at any time or interrupt canal operationa in any way.Because of the bridge’s long main span and the potential for strong seismic activity in the area,no single building code covered all aspects of the project.Therefore the team from T.Y. Lin International determinded which portions of several standard bridge specifications were applicable and which were not.The following design codes were used in developing the design criteria for the bridge,it is standard specifications for highway bridge ,16th ed,1996It was paramount that the towers of the cable-stayed structucture be erected on land to avoid potential ship collision and the need to construct expensive deep foundation in water. However, geological maps and boring logs produced during the preliminary design phrase revealed that the east and west banks of the canal, where the towers were to be located, featured vastly different geologicaland soil conditions. On the east side of the canal, beneath shallow layers of overburden that rangs in consistency from soft to hard, lies a block of basalt ranging from medium hard to hard with very closely spaced joint.The engineers determined that the basalt would provide a competent platform for the construction of shallow foundation for tower, piers, and approach structures on this side of bridge.The west side, however,featured the infamous Cucaracha Formation, which is a heterogeneous conglomerate of clay shale with inclusions of sandstone, basalt,and ash that is prone to landslide. As a sudsurface stratum the Cucaracha Formation is quite stable,but it quickly erodes when exposed to the elements. The engineers determined that deep foundations would therefore be needed for the western approach structure,the west tower,and the western piers.Before a detailed design of the foundationa could be developed,a thorough analysis of the seismic hazards at the site was required,The design seismic load for the project was developed on the basis of a probabilistic seismic hazard assessment that considered the conditions at the site.Such an assessment establishes the return period for a given earthquake and the corresponding intensity of ground shaking in the horizontal directtion in terms of an acceleration response spectrum.The PSHA determined two dominant seismic sources: a subduction source zone associated with the North Panama Deformed Belt capable of producing a seimic event as strong as 7.7MW,and the Rio Gatun Fault, capable of producing an event as strong as 6.5MW.The 7.7MW NPDB event was used as the safety evluation earthquake,that is,the maximum earthquake that could strike without putting the bridge out of service.The damage to the bridge would be minor but would require some closures of the bridge.The 6.5MWRio Gatun Fault event was used as the foundational evaluation earthquake,a lower-level temblor that would cause minimal damage to the bridge and would not require closures.For the FEE load case,the SEE loading was scaled back by two-thirds.The FEE is assumed to have a peak acceleration of 0.21g and a return period of 500 years; the probability that it will be exceeded within 50 years is 10 pencent and within 100 years,18 persent.The SEE is assumed to have a peak acceleration of 1.33g and a return period of 2,500 years;the probability that it will be exceeded within 50 years is 2 pencent and within 100 years,4 persent.Because of uncertainty about the direction from which the seismic waves would approach the site, a single response spectrum-a curve showing the mathematically computed maximum response of a set of simple damped harmonic oscillators of different natural frequencies to a particular earthquake ground acceleration-was used to characterize mitions in two mutually orthogonal directions in the horizontal plane.To conduct a time-history analysis of the bridge’s multiple supports,a set of synthetic motions with three components-longitudinal,transverse,and vertical-was developd using an iterative technique.Recorded ground motions from an earthquake in Chile in 1985 were used as “seed”motions for the sythesis process.A time delay estimate-that is,an estimate of the time it would take for the motions generated by the SEEand FEE earthquakes to travel from one point to the next-was create using the assumed seismic wave velocity and the distance between the piers of the ing an assumed was velocity of approximately 2.5km/s,a delay on the order of half a second to a secondis appropriate for a bridge 1 to 2km long.Soil-foundation interaction studies were performed to determine the stiffness of the soil and foundation as well as the seismic excitation measurement that would be used in the dynamic analyses.The studieswere conducted by means of soil-pile models using linear and nonlinear soil layera of varying depths.The equivalent pile lengths in the studies-that is, the lengths representing the portions of a given pile that would actually be affected by a given earthquake-induced ground motion-ranged from2to10m.In such a three-dimensional model,there are six ways in which the soil can resist the movement of the lpile because of its stiffness:throngh axial force in the three directions and through bending moments in three directions.Because the bridge site contains so many layers of varying soil types,each layer had to be represented by a different stiffness matrix and then analyzed.Once the above analyses were completed,the T.Y.Lin International engineers-taking into consideration the project requirements developedby the owener-evaluated several different concrete cable-stayed designs.A number of structural systems were investigated,the main variables,superstructure cross sections,and the varying support conditions described above.The requirement that the evevation of the deck be quite high strongly influenced the tower configuration.For the proposed deck elevation of more than 80m,the most economical tower shapes included single-and dual-mast towers as well as “goal post”towers-that is,a design in which the two masts would be linked to each other by crossbeams.Ultimately the engineers designd the bridge to be 34.3m wide with a 420mlong cable-stayd main span,two 200mlong side spans-one on each side of the main span-and approach structures at the ends of the side spans.On the east side there is one 46m long concrete approach structure,while on the west side there are three,measuring 60,60,and 66m,for a total bridge length of 1,052m.The side spans are supported by four piers,referred to,from west to east,as P1.P2,P3,and P4.The bridge deck is a continuous single-cell box girder from abutment to abutment; the expansion joints are located at the abutments only. Deck movements on the order of 400 mm are expected at these modular expansion joints Multidirectional pot bearings are used at the piers and at the abutments to accommodate these movements.The deck was fixed to the two towers to facilitate the balanced-cantilevermethod of construction and to provide torsional rigidity and lateral restraint to the deck.. Transverse live loads, seismic loads, and wind loads are proportionally distributed to the towers and the piers by the fixity of the deck to the towers and by reinforced-concrete shear keys located at the top of P1, P3, and P4. The deck is allowed to move longitudinally over the abutments and piers. The longitudinal, seismic, live, and temperature loads are absorbed by what is known as portal frame structural behavior, whereby the towers and the deck form a portal-much like the frame of a door in a building-that acts in proportion to the relative stiffness of the two towers.As previously mentioned, the presence of competent basalt on the east side of the site meant that shallow foundations could be used there; in particular, spread footings were designed for the east tower, the east approach structure, and the east abutment. The west tower, the west approach structure, and the western piers (P2 and P3), however, had to be founded deep within the Cucaracha Formation. A total of 48 cast-in-drilled-hole (CIDH) shafts with 2 m outer diameters and lengths ranging from 25 to 35 m were required. A moment curvature analysis was performed to determine the capacity of the shafts with different amounts of longitudinal steel rebar. The results were plotted against the demands, and on the basis of the results the amount of required longitudinal reinforcing steel was determined to be 1 percent of the amount of concrete used in the shafts. The distribution of the longitudinal reinforcing steel was established by following code requirements, with consideration also given to the limitations of constructing CIDH piles with the contractor’s preferred method, which is the water or slurry displacement method.A minimum amount of transverse steel had to be determined for use in the plastic regions of the shaft-that is, those at the top one-eighth of eighth of each shaft and within the shaft caps, which would absorb the highest seismic demands. Once this amount was determined, it was used as the minimum for areas of the shafts above their points of fixity where large lateral displacements were expected to occur. The locations of the transverse steel were then established by following code requirements and by considering the construction limitations of CIDH piles. The transverse steel was spiral shaped.Even though thief foundation designs differed, the towers themselves were designed to be identical. Each measures 185.5 m from the top of its pile cap and is designed as a hollow reinforced-concrete shaft with a truncated elliptical cross section (see figure opposite). Each tower’s width in plan varies along its height, narrowing uniformly from 9.5 m at the base of the tower to 6 m at the top. In the longitudinal direction, each pylon tapers from 9.5 m at the base to about 8 m right below the deck level,which is about 87 m above the tower base. Above the deck level the tower’s sections vary from 4.6 m just above the deck to 4.5 m at the top. Each tower was designed with a 2 by 4 m opening for pedestrian passage along the deck, a design challenge requiring careful detailing.The towers were designed in a accordance with the latest provisions of the ATC earthquake design manual mentioned previously (ATC-32). Owing to the portal frame action along the bridge’s longitudinal axis, special seismic detailing was implemented in regions with the potential to develop plastic hinges in the event of seismic activity-specifically, just below the deck and above the footing. Special confining forces and alternating open stirrups-with 90 and 135 degree hooks-within the perimeter of the tower shaft.In the transverse direction, the tower behaves like a cantilever, requiring concrete-confining steel at its base. Special attention was needed at the joint between the tower and the deck because of the central-plane stay-cable arrangement, it was necessary to provide sufficient torsional stiffness and special detailing at the pier-to-deck intersection. This intersection is highly congested with vertical reinforcing steel, the closely spaced confining stirrups of the tower shaft, and the deck prestressing and reinforcement.The approach structures on either side of the main span are supported on hollow reinforced-concrete piers that measure 8.28 by 5 m in plan. The design and detailing of the piers are consistent with the latest versions of the ATC and AASHTO specifications for seismic design. Capacity design concepts were applied to the design of the piers. This approach required the use of seismic modeling with moment curvature elements to capture the inelastic behavior of elements during seismic excitation. Pushover analyses of the piers were performed to calculate the displacement capacity of the piers and to compare them with the deformations computed in the seismic time-history analyses. To ensure an adequate ductility of the piers-an essential feature of the capacity design approach-it was necessary to provide adequate concrete-confining steel at those locations within the pier bases where plastic hinges are expected to form.The deck of the cable-stayed main span is composed of single-cell box girders of cast-in-place concrete with internal, inclined steel struts and transverse posttensioned ribs, or stiffening beams, toward the tops. Each box girder segment is 4.5 m deep and 6 m long. To facilitate construction and enhance the bridge’s elegant design, similar sizes were used for the other bridge spans. An integral concrete overlay with a thickness of 350 mm was installed instead of an applied concrete overlayon the deck. In contrast to an applied overlay, the integral overlay was cast along with each segment during the deck erection. Diamond grinding equipment was used to obtain the desired surface profile and required smoothness. The minimum grinding depth was 5 mm.A total of 128 stay cables were used, the largest comprising 83 monostrands. All cables with a length of more than 80 m were equipped at their lower ends with internal hydraulic dampers. Corrosion protection for the monostrands involved galvanization of the wires through hot dipping, a tight high-density polyethylene (HDPE) sheath extruded onto each strand, and a special type of petroleum wax that fills all of the voids between the wires.The stays are spaecd every 6 m and are arranged in a fan pattern.They are designed to be stressed from the tower only and are anchored in line with a continuous stiffening beam at the centerline of the deck.The deck anchorage system is actually a composite steel frame that encapsulates two continous steel plates that anchor the stays and transfer the stay forces in a continuous and repetitive system-via shear studs-throuthout the extent of the cable-supported deck (see figure above).A steel frame was designed to transfer the stays’horizontal forces to the box girders through concrete-embedded longitudinal steel plates and to transfer the boxes’ vertical forces directly through the internal steel struts.This innovative and elegant load transfer system made rapid construction of the concrete deck segments-in cycles of three to five days-possible.In addition to the geotechnical and seismic analyses,several structural analyses were performed to accurately capture the behavior of this complex bridge.For the service-load analysis,which includes live,temperature,and wind loads,the engineers used SAP2000, a computer program created and maintained by Computers &Structrures,Inc.(CSI), of Berkeley, California.This program was selected for its ability to easily model the service loads and to account for tridimensional effects.For correct SAP2000 modeling, it was necessary to define a set of initial stresses on the cables, deck, and tower elements to capture the state of the structure at the end of construction.For the calculation of those initial stresses, a series of iterations on the basic model were performed to obtain the stay forces in the structure that balance both the bridges’s self-weight and the superimposed dead loads. Once the correct cable stiffness and stress distribution were obtained, all subsequent service-load analyses were performed to account for the geometric stiffness and P-deltaeffects, which consider the magnitude of an applied load (P) versus the displacement(delta).The seismic analysis of the structure was conducted using the SADSAP structural analysis program, also a CSI product, based on the differences in seismic motions that will be experienced at the different piers based on their distance from one another.This sophisticated program has the capability to model inelastic behavior in that flexural plastic hinges can readily be simulated.Plastic hinge elements were modeled at varous locations along the structure where the results from a preliminary response spectrum analysis in SAP2000 indicated that inelastic behavior might be expected.The time-history records pertaining to the site were used in conjunction with the SADSAP model to botain a performace-based design of the piers and towers and to verifh the design of several deck stctions.As previously mentioned,the construction contractor was brought on board early in the process;the company’s bid of $93 million was accepted and the project was awarded in March 2002.To guarantee unimpeded canal traffic,the bridge had to be constructed without the use of the canal waters.To accomplish this, the cast-in-place main-pain superstructure was erected using the balanced-cantilever method.Form travelers were used to accomplish this, and they were designed in such a way that they could be used as an integral part of the pier tables’falsework.After assembly on the ground, two 380 Mg form travelers were raised independently into the pier table casting position and connected to each other.After an initial learning period, the contractor was able to achieve a four-day cycle for the casting of the cantilevered deck segments, an achievement that greatly enhanced the ability of the team to construct the project on time.Once the side-span and mai-span closures were cast, the travelers had to be removed from locations adjacent to the towers rather than over water so as to avoid any influence on canal traffic.To save time, the towers approach structure, and piers were built simultaneously.The approach viaducts were designed and built using the span-by-span erection method by means of an underslung suupport truss.The east viaduct span was built first and the support truss was then removed and transferred to the west side so that it could be used to build the three spans of the west viaduct, one span at a time.The bridge construction was completeed in Auguse 2004 at a cost of approximately $2,780 per square meter.Its opening awaits the completion of the rest of the highway it serves.跨越世纪之桥1962年,横跨巴拿马运河的美国大桥作为仅有的固定连接开放交通车。
外文文献翻译 中英文对照 桥梁工程 混凝土桥梁的结构形式
本科毕业设计外文翻译混凝土桥梁的结构形式The Structure of Concrete BridgePre-stressed concrete has proved to be technically advantageous, economically competitive, and esthetically superior bridges, from very short span structures using standard components to cable-stayed girders and continuous box girders with clear spans of nearly 100aft .Nearly all concrete bridges, even those of relatively short span, are now pre-stressed. Pre-casting, cast-in-place construction, or a combination of the two methods may be used .Both pre-tensioning and post tensioning are employed, often on the same project.In the United States, highway bridges generally must-meet loading ,design ,and construction requirements of the AASHTO Specification .Design requirements for pedestrian crossings and bridges serving other purposes may be established by local or regional codes and specifications .ACI Code provisions are often incorporated by reference .Bridges spans to about 100ft often consist of pre-cast integral-deck units ,which offer low initial cost ,minimum ,maintenance ,and fast easy construction ,with minimum traffic interruption .Such girders are generally pre-tensioned .The units are placed side by side ,and are often post-tensioned laterally at intermediate diaphragm locations ,after which shear keys between adjacent units are filled with non-shrinking mortar .For highway spans ,an asphalt wearing surface may be applied directly to the top of the pre-cast concrete .In some cases ,a cast-in-place slab is placed to provide composite action .The voided slabs are commonly available in depths from 15 to 21 in .and widths of 3 to 4 ft .For a standard highway HS20 loading, they are suitable for spans to about 50 ft, Standard channel sections are available in depths from 21 to 35 in a variety of widths, and are used for spans between about 20 and 60 ft .The hollow box beams-and single-tee girders are intended for longer spans up to about 100 ft.For medium-span highway bridges ,to about 120 ft ,AASHTO standard I beams are generally used .They are intended for use with a composite cast-in-place roadway slab .Such girders often combine pre-tensioning of the pre-cast member with post-tensioning of the composite beam after the deck is placed .In an effort to obtain improved economy ,some states have adopted more refined designs ,such as the State of Washington standard girders.The specially designed pre-cast girders may be used to carry a monorail transit system .The finished guide way of Walt Disney World Monorail features a series of segments, each consisting of six simply supported pre-tensioned beams ,together to from a continuous structure .Typical spans are 100 to 110 ft . Approximately half of the 337 beams used have some combination of vertical and horizontal curvatures and variable super elevation .Allbeams are hollow, a feature achieved by inserting a styro-foam void in the curved beams and by a moving mandrel in straight beam production.Pre-cast girders may not be used for spans much in excess of 120 ft because of the problems of transporting and erecting large, heavy units.On the other hand ,there is a clear trend toward the use of longer spans for bridges .For elevated urban expressways ,long spans facilitate access and minimize obstruction to activities below .Concern for environmental damage has led to the choice of long spans for continuous viaducts . For river crossings, intermediate piers may be impossible because of requirements of navigational clearance.In typical construction of this type, piers are cast-in-place, often using the slip-forming technique .A ―hammerhead‖ section of box girder is often cast at the top of the pier, and construction proceeds in each direction by the balanced cantilever method. Finally, after the closing cast-in-place joint is made at mid-span, the structure is further post-tensioned for full continuity .Shear keys may be used on the vertical faces between segments, and pre-cast are glued with epoxy resin.The imaginative engineering demonstrated by many special techniques has extended the range of concrete construction for bridges far beyond anything that could be conceived just a few years ago .In the United States, twin curved cast-in –place segmental box girders have recently been completed for of span of 310 ft over the Eel River in northern California .Preliminary design has been completed for twin continuous box girders consisting of central 550 ft spans flanked by 390 ft side spans.Another form of pre-stressed concrete bridge well suited to long spans is the cable-stayed box girder .A notable example is the Chaco-Corrientes Bridge in Argentina .The bridges main span of 804 ft is supported by two A-frame towers, with cable stays stretching from tower tops to points along the deck .The deck itself consists of two parallel box girders made of pre-cast sections erected using the cantilever method .The tensioned cables not only provide a vertical reaction component to support the deck ,but also introduce horizontal compression to the box girders ,adding to the post-tensioning force in those members .Stress-ribbon Bridge pioneered many years ago by the German engineer Ulrich Finsterwalder. The stress-ribbon bridge carries a pipeline and pedestrians over the Rhine River with a span of 446 ft .The superstructure erection sequence was to (a) erect two pairs of cables, (b) place pre-cast slabs forming a sidewalk deck and a U under each of the sets of cables, and (c) cast-in-place concrete within the two Us. The pipeline is placed atop supports at railing height, off to one side, which greatly increases the wind speed of the structure.It is appropriate in discussing bridge forms to mention structural esthetics .The time ispast when structures could be designed on the basis of minimum cost and technical advantages alone .Bridge structures in particular are exposed for all to see .To produce a structure that is visually offensive ,as has occurred all too often in the past, is an act professional irresponsibility .Particularly for major spans ,but also for more ordinary structures ,architectural advice should be sought early in conceptual stage of the design process.混凝土梁桥的结构形式事实证明,预应力混凝土结构是在技术上先进、经济上有竞争力、符合审美学的一种先进技术。
桥梁建设外文翻译参考文献
桥梁建设外文翻译参考文献1. NCHRP Report 724: Guidelines for Vegetation Management on Low-Volume Roads- 作者:Graham, Melinda S.; Miller, Nathan W.- 出版年份:2012年- 主题:该研究报告提供了低交通量道路上植被管理的指导方针,以帮助道路管理者有效管理植被并确保道路安全。
2. ASCE Journal of Bridge Engineering: Long-Term Performance Monitoring of Bridges- 作者:Steen, Ryan R.; DeWolf, Ronald J.; Cerato, Amy B.- 出版年份:2018年- 主题:该期刊文章介绍了监测桥梁长期性能的方法和技术,以评估桥梁结构的强度和安全性,并提出了预防维护的建议。
3. TRB Special Report 233: Bridge and Infrastructure Financing- 作者:National Research Council- 出版年份:2018年- 主题:该专题报告讨论了桥梁和基础设施融资的问题,包括不同的融资模式、可持续融资策略以及政府和私有部门之间的合作机制。
4. Journal of Bridge Structures: Innovative Materials for Bridge Construction- 作者:Ozyildirim, Celal; Ilki, Alper- 出版年份:2015年- 主题:该期刊文章介绍了用于桥梁建设的创新材料,包括纤维增强复合材料、高性能混凝土和聚合物改性材料等,以提高桥梁的性能和耐久性。
5. FHWA Report FHWA-IF-12-052: Bridge Design for Service Life Beyond 100 Years- 作者:Federal Highway Administration- 出版年份:2012年- 主题:该报告提供了设计具有100年以上使用寿命的桥梁的指南和方法,包括结构耐久性、材料选用、预防性维护等方面的考虑。
桥梁结构设计外文文献翻译
桥梁结构设计外文文献翻译(文档含中英文对照即英文原文和中文翻译)结构设计Augustine J.Fredrich摘要:结构设计是选择材料和构件类型,大小和形状以安全有用的样式承担荷载。
一般说来,结构设计暗指结构物如建筑物和桥或是可移动但有刚性外壳如船体和飞机框架的工厂稳定性。
设计的移动时彼此相连的设备(连接件),一般被安排在机械设计领域。
关键词:结构设计结构分析结构方案工程要求Abstract: Structure design is the selection of materials and member type ,size, and configuration to carry loads in a safe and serviceable fashion .In general ,structural design implies the engineering of stationary objects such as buildings and bridges ,or objects that maybe mobile but have a rigid shape such as ship hulls and aircraft frames. Devices with parts planned to move with relation to each other(linkages) are generally assigned to the area of mechanical .Key words: Structure Design Structural analysis structural scheme Project requirementsStructure DesignStructural design involved at least five distinct phases of work: project requirements, materials, structural scheme, analysis, and design.For unusual structures or materials a six phase, testing, should be included. These phases do not proceed in a rigid progression , since different materials can be most effective in different schemes , testing can result in change to a design , and a final design is often reached by starting with a rough estimated design , then looping through several cycles of analysis and redesign . Often, several alternative designs will prove quite close in cost, strength, and serviceability. The structural engineer, owner, or end user would then make a selection based on other considerations.Project requirements. Before starting design, the structural engineer must determine the criteria for acceptable performance. The loads or forces to be resisted must be provided. For specialized structures, this may be given directly, as when supporting a known piece of machinery, or a crane of known capacity. For conventional buildings, buildings codes adopted on a municipal, county , or , state level provide minimum design requirements for live loads (occupants and furnishings , snow on roofs , and so on ). The engineer will calculate dead loads (structural and known, permanent installations ) during the design process.For the structural to be serviceable or useful , deflections must also be kept within limits ,since it is possible for safe structural to be uncomfortable “bounce”Very tight deflection limits are set on supportsfor machinery , since beam sag can cause drive shafts to bend , bearing to burn out , parts to misalign , and overhead cranes to stall . Limitations of sag less than span /1000 ( 1/1000 of the beam length ) are not uncommon . In conventional buildings, beams supporting ceilings often have sag limits of span /360 to avoid plaster cracking, or span /240 to avoid occupant concern (keep visual perception limited ). Beam stiffness also affects floor “bounciness,”which can be annoying if not controlled. In addition , lateral deflection , sway , or drift of tall buildings is often held within approximately height /500 (1/500 of the building height ) to minimize the likelihood of motion discomfort in occupants of upper floors on windy days .Member size limitations often have a major effect on the structural design. For example, a certain type of bridge may be unacceptable because of insufficient under clearance for river traffic, or excessive height endangering aircraft. In building design, ceiling heights and floor-to-floor heights affect the choice of floor framing. Wall thicknesses and column sizes and spacing may also affect the serviceability of various framing schemes.Materials selection. Technological advances have created many novel materials such as carbon fiber and boron fiber-reinforced composites, which have excellent strength, stiffness, and strength-to-weight properties. However, because of the high cost anddifficult or unusual fabrication techniques required , they are used only in very limited and specialized applications . Glass-reinforced composites such as fiberglass are more common, but are limited to lightly loaded applications. The main materials used in structural design are more prosaic and include steel, aluminum, reinforced concrete, wood , and masonry .Structural schemes. In an actual structural, various forces are experienced by structural members , including tension , compression , flexure (bending ), shear ,and torsion (twist) . However, the structural scheme selected will influence which of these forces occurs most frequently, and this will influence the process of materials selection.Tension is the most efficient way to resist applied loads ,since the entire member cross section is acting to full capacity and bucking is not a concern . Any tension scheme must also included anchorages for the tension members . In a suspension bridge , for example ,the anchorages are usually massive dead weights at the ends of the main cables . To avoid undesirable changes in geometry under moving or varying loads , tension schemes also generally require stiffening beams or trusses.Compression is the next most efficient method for carrying loads . The full member cross section is used ,but must be designed to avoid bucking ,either by making the member stocky or by adding supplementary bracing . Domed and arched buildings ,arch bridges andcolumns in buildings frames are common schemes . Arches create lateral outward thrusts which must be resisted . This can be done by designing appropriate foundations or , where the arch occurs above the roadway or floor line , by using tension members along the roadway to tie the arch ends together ,keeping them from spreading . Compression members weaken drastically when loads are not applied along the member axis , so moving , variable , and unbalanced loads must be carefully considered.Schemes based on flexure are less efficient than tension and compression ,since the flexure or bending is resisted by one side of the member acting in tension while the other side acts in compression . Flexural schemes such as beams , girders , rigid frames , and moment (bending ) connected frames have advantages in requiring no external anchorages or thrust restrains other than normal foundations ,and inherent stiffness and resistance to moving ,variable , and unbalanced loads .Trusses are an interesting hybrid of the above schemes . They are designed to resist loads by spanning in the manner of a flexural member, but act to break up the load into a series of tension and compression forces which are resisted by individually designed tension and have excellent stiffness and resistance to moving and variable loads . Numerous member-to-member connections, supplementary compression braces ,and a somewhat cluttered appearance are truss disadvantages .Plates and shells include domes ,arched vaults ,saw tooth roofs ,hyperbolic paraboloids , and saddle shapes .Such schemes attempt to direct all force along the plane of the surface ,and act largely in shear . While potentially very efficient ,such schemes have very strict limitations on geometry and are poor in resisting point ,moving , and unbalanced loads perpendicular to the surface.Stressed-skin and monologue construction uses the skin between stiffening ribs ,spars ,or columns to resist shear or axial forces . Such design is common in airframes for planes and rockets, and in ship hulls . it has also been used to advantage in buildings. Such a design is practical only when the skin is a logical part of the design and is never to be altered or removed .For bridges , short spans are commonly girders in flexure . As spans increase and girder depth becomes unwieldy , trusses are often used ,as well as cablestayed schemes .Longer spans may use arches where foundation conditions ,under clearance ,or headroom requirements are favorable .The longest spans are handled exclusively by suspension schemes ,since these minimize the crucial dead weight and can be erected wire by wire .For buildings, short spans are handled by slabs in flexure .As spans increase, beams and girders in flexure are used . Longer spans require trusses ,especially in industrial buildings with possible hung loads . Domes ,arches , and cable-suspended and air –supported roofs can beused over convention halls and arenas to achieve clear areas .Structural analysis . Analysis of structures is required to ensure stability (static equilibrium ) ,find the member forces to be resisted ,and determine deflections . It requires that member configuration , approximate member sizes ,and elastic modulus ; linearity ; and curvature and plane sections . Various methods are used to complete the analysis .Final design .once a structural has been analyzed (by using geometry alone if the analysis is determinate , or geometry plus assumed member sizes and materials if indeterminate ), final design can proceed . Deflections and allowable stresses or ultimate strength must be checked against criteria provided either by the owner or by the governing building codes . Safety at working loads must be calculated . Several methods are available ,and the choice depends on the types of materials that will be used .Pure tension members are checked by dividing load by cross-section area .Local stresses at connections ,such as bolt holes or welds ,require special attention . Where axial tension is combined with bending moment ,the sum of stresses is compared to allowance levels . Allowable : stresses in compression members are dependent on the strength of material, elastic modulus ,member slenderness ,and length between bracing points . Stocky members are limited by materials strength ,while slender members are limited by elastic bucking .Design of beams can be checked by comparing a maximum bending stress to an allowable stress , which is generally controlled by the strength of the material, but may be limited if the compression side of the beam is not well braced against bucking .Design of beam-columns ,or compression members with bending moment ,must consider two items . First ,when a member is bowed due to an applied moment ,adding axial compression will cause the bow to increase .In effect ,the axial load has magnified the original moment .Second ,allowable stresses for columns and those for beams are often quite different .Members that are loaded perpendicular to their long axis, such as beams and beam-columns, also must carry shear. Shear stresses will occur in a direction to oppose the applied load and also at right angles to it to tie the various elements of the beam together. They are compared to an allowable shear stress. These procedures can also be used to design trusses, which are assemblies of tension and compression members. Lastly, deflections are checked against the project criteria using final member sizes.Once a satisfactory scheme has been analyzed and designed to be within project criteria, the information must be presented for fabrication and construction. This is commonly done through drawings, which indicate all basic dimensions, materials, member sizes, the anticipatedloads used in design, and anticipated forces to be carried through connections.结构设计结构设计包含至少5个不同方面的工作:工程要求,材料,结构方案,分析和设计。
桥梁工程中英文对照外文翻译文献
桥梁工程中英文对照外文翻译文献(文档含英文原文和中文翻译)BRIDGE ENGINEERING AND AESTHETICSEvolvement of bridge Engineering,brief reviewAmong the early documented reviews of construction materials and structu re types are the books of Marcus Vitruvios Pollio in the first century B.C.The basic principles of statics were developed by the Greeks , and were exemplifi ed in works and applications by Leonardo da Vinci,Cardeno,and Galileo.In the fifteenth and sixteenth century, engineers seemed to be unaware of this record , and relied solely on experience and tradition for building bridges and aqueduc ts .The state of the art changed rapidly toward the end of the seventeenth cent ury when Leibnitz, Newton, and Bernoulli introduced mathematical formulatio ns. Published works by Lahire (1695)and Belidor (1792) about the theoretical a nalysis of structures provided the basis in the field of mechanics of materials .Kuzmanovic(1977) focuses on stone and wood as the first bridge-building materials. Iron was introduced during the transitional period from wood to steel .According to recent records , concrete was used in France as early as 1840 for a bridge 39 feet (12 m) long to span the Garoyne Canal at Grisoles, but r einforced concrete was not introduced in bridge construction until the beginnin g of this century . Prestressed concrete was first used in 1927.Stone bridges of the arch type (integrated superstructure and substructure) were constructed in Rome and other European cities in the middle ages . Thes e arches were half-circular , with flat arches beginning to dominate bridge wor k during the Renaissance period. This concept was markedly improved at the e nd of the eighteenth century and found structurally adequate to accommodate f uture railroad loads . In terms of analysis and use of materials , stone bridges have not changed much ,but the theoretical treatment was improved by introd ucing the pressure-line concept in the early 1670s(Lahire, 1695) . The arch the ory was documented in model tests where typical failure modes were considered (Frezier,1739).Culmann(1851) introduced the elastic center method for fixed-e nd arches, and showed that three redundant parameters can be found by the us e of three equations of coMPatibility.Wooden trusses were used in bridges during the sixteenth century when P alladio built triangular frames for bridge spans 10 feet long . This effort also f ocused on the three basic principles og bridge design : convenience(serviceabili ty) ,appearance , and endurance(strength) . several timber truss bridges were co nstructed in western Europe beginning in the 1750s with spans up to 200 feet (61m) supported on stone substructures .Significant progress was possible in t he United States and Russia during the nineteenth century ,prompted by the ne ed to cross major rivers and by an abundance of suitable timber . Favorable e conomic considerations included initial low cost and fast construction .The transition from wooden bridges to steel types probably did not begin until about 1840 ,although the first documented use of iron in bridges was the chain bridge built in 1734 across the Oder River in Prussia . The first truss completely made of iron was in 1840 in the United States , followed by Eng land in 1845 , Germany in 1853 , and Russia in 1857 . In 1840 , the first ir on arch truss bridge was built across the Erie Canal at Utica .The Impetus of AnalysisThe theory of structures ,developed mainly in the ninetheenth century,foc used on truss analysis, with the first book on bridges written in 1811. The Wa rren triangular truss was introduced in 1846 , supplemented by a method for c alculating the correcet forces .I-beams fabricated from plates became popular in England and were used in short-span bridges.In 1866, Culmann explained the principles of cantilever truss bridges, an d one year later the first cantilever bridge was built across the Main River in Hassfurt, Germany, with a center span of 425 feet (130m) . The first cantileve r bridge in the United States was built in 1875 across the Kentucky River.A most impressive railway cantilever bridge in the nineteenth century was the Fir st of Forth bridge , built between 1883 and 1893 , with span magnitudes of 1711 feet (521.5m).At about the same time , structural steel was introduced as a prime mater ial in bridge work , although its quality was often poor . Several early exampl es are the Eads bridge in St.Louis ; the Brooklyn bridge in New York ; and t he Glasgow bridge in Missouri , all completed between 1874 and 1883.Among the analytical and design progress to be mentioned are the contrib utions of Maxwell , particularly for certain statically indeterminate trusses ; the books by Cremona (1872) on graphical statics; the force method redefined by Mohr; and the works by Clapeyron who introduced the three-moment equation s.The Impetus of New MaterialsSince the beginning of the twentieth century , concrete has taken its place as one of the most useful and important structural materials . Because of the coMParative ease with which it can be molded into any desired shape , its st ructural uses are almost unlimited . Wherever Portland cement and suitable agg regates are available , it can replace other materials for certain types of structu res, such as bridge substructure and foundation elements .In addition , the introduction of reinforced concrete in multispan frames at the beginning of this century imposed new analytical requirements . Structures of a high order of redundancy could not be analyzed with the classical metho ds of the nineteenth century .The importance of joint rotation was already dem onstrated by Manderla (1880) and Bendixen (1914) , who developed relationshi ps between joint moments and angular rotations from which the unknown mom ents can be obtained ,the so called slope-deflection method .More simplification s in frame analysis were made possible by the work of Calisev (1923) , who used successive approximations to reduce the system of equations to one simpl e expression for each iteration step . This approach was further refined and int egrated by Cross (1930) in what is known as the method of moment distributi on .One of the most import important recent developments in the area of analytical procedures is the extension of design to cover the elastic-plastic range , also known as load factor or ultimate design. Plastic analysis was introduced with some practical observations by Tresca (1846) ; and was formulated by Sa int-Venant (1870) , The concept of plasticity attracted researchers and engineers after World War Ⅰ, mainly in Germany , with the center of activity shifting to England and the United States after World War Ⅱ.The probabilistic approa ch is a new design concept that is expected to replace the classical determinist ic methodology.A main step forward was the 1969 addition of the Federal Highway Adim inistration (F HWA)”Criteria for Reinforced Concrete Bridge Members “ that co vers strength and serviceability at ultimate design . This was prepared for use in conjunction with the 1969 American Association of State Highway Offficials (AASHO) Standard Specification, and was presented in a format that is readil y adaptable to the development of ultimate design specifications .According to this document , the proportioning of reinforced concrete members ( including c olumns ) may be limited by various stages of behavior : elastic , cracked , an d ultimate . Design axial loads , or design shears . Structural capacity is the r eaction phase , and all calculated modified strength values derived from theoret ical strengths are the capacity values , such as moment capacity ,axial load ca pacity ,or shear capacity .At serviceability states , investigations may also be n ecessary for deflections , maximum crack width , and fatigue .Bridge TypesA notable bridge type is the suspension bridge , with the first example bu ilt in the United States in 1796. Problems of dynamic stability were investigate d after the Tacoma bridge collapse , and this work led to significant theoretica l contributions Steinman ( 1929 ) summarizes about 250 suspension bridges bu ilt throughout the world between 1741 and 1928 .With the introduction of the interstate system and the need to provide stru ctures at grade separations , certain bridge types have taken a strong place in bridge practice. These include concrete superstructures (slab ,T-beams,concrete box girders ), steel beam and plate girders , steel box girders , composite const ruction , orthotropic plates , segmental construction , curved girders ,and cable-stayed bridges . Prefabricated members are given serious consideration , while interest in box sections remains strong .Bridge Appearance and AestheticsGrimm ( 1975 ) documents the first recorded legislative effort to control t he appearance of the built environment . This occurred in 1647 when the Cou ncil of New Amsterdam appointed three officials . In 1954 , the Supreme Cou rt of the United States held that it is within the power of the legislature to de termine that communities should be attractive as well as healthy , spacious as well as clean , and balanced as well as patrolled . The Environmental Policy Act of 1969 directs all agencies of the federal government to identify and dev elop methods and procedures to ensure that presently unquantified environmenta l amentities and values are given appropriate consideration in decision making along with economic and technical aspects .Although in many civil engineering works aesthetics has been practiced al most intuitively , particularly in the past , bridge engineers have not ignored o r neglected the aesthetic disciplines .Recent research on the subject appears to lead to a rationalized aesthetic design methodology (Grimm and Preiser , 1976 ) .Work has been done on the aesthetics of color ,light ,texture , shape , and proportions , as well as other perceptual modalities , and this direction is bot h theoretically and empirically oriented .Aesthetic control mechanisms are commonly integrated into the land-use re gulations and design standards . In addition to concern for aesthetics at the sta te level , federal concern focuses also on the effects of man-constructed enviro nment on human life , with guidelines and criteria directed toward improving quality and appearance in the design process . Good potential for the upgradin g of aesthetic quality in bridge superstructures and substructures can be seen in the evaluation structure types aimed at improving overall appearance .Lords and lording groupsThe loads to be considered in the design of substructures and bridge foun dations include loads and forces transmitted from the superstructure, and those acting directly on the substructure and foundation .AASHTO loads . Section 3 of AASHTO specifications summarizes the loa ds and forces to be considered in the design of bridges (superstructure and sub structure ) . Briefly , these are dead load ,live load , iMPact or dynamic effec t of live load , wind load , and other forces such as longitudinal forces , cent rifugal force ,thermal forces , earth pressure , buoyancy , shrinkage and long t erm creep , rib shortening , erection stresses , ice and current pressure , collisi on force , and earthquake stresses .Besides these conventional loads that are ge nerally quantified , AASHTO also recognizes indirect load effects such as fricti on at expansion bearings and stresses associated with differential settlement of bridge components .The LRFD specifications divide loads into two distinct cate gories : permanent and transient .Permanent loadsDead Load : this includes the weight DC of all bridge components , appu rtenances and utilities, wearing surface DW nd future overlays , and earth fill EV. Both AASHTO and LRFD specifications give tables summarizing the unit weights of materials commonly used in bridge work .Transient LoadsVehicular Live Load (LL) Vehicle loading for short-span bridges :considera ble effort has been made in the United States and Canada to develop a live lo ad model that can represent the highway loading more realistically than the H or the HS AASHTO models . The current AASHTO model is still the applica ble loading.桥梁工程和桥梁美学桥梁工程的发展概况早在公元前1世纪,Marcus Vitrucios Pollio 的著作中就有关于建筑材料和结构类型的记载和评述。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
桥梁结构设计外文文献翻译(文档含中英文对照即英文原文和中文翻译)结构设计Augustine J.Fredrich摘要:结构设计是选择材料和构件类型,大小和形状以安全有用的样式承担荷载。
一般说来,结构设计暗指结构物如建筑物和桥或是可移动但有刚性外壳如船体和飞机框架的工厂稳定性。
设计的移动时彼此相连的设备(连接件),一般被安排在机械设计领域。
关键词:结构设计结构分析结构方案工程要求Abstract: Structure design is the selection of materials and member type ,size, and configuration to carry loads in a safe and serviceable fashion .In general ,structural design implies the engineering of stationary objects such as buildings and bridges ,or objects that maybe mobile but have a rigid shape such as ship hulls and aircraft frames. Devices with parts planned to move with relation to each other(linkages) are generally assigned to the area of mechanical .Key words: Structure Design Structural analysis structural scheme Project requirementsStructure DesignStructural design involved at least five distinct phases of work: project requirements, materials, structural scheme, analysis, and design.For unusual structures or materials a six phase, testing, should be included. These phases do not proceed in a rigid progression , since different materials can be most effective in different schemes , testing can result in change to a design , and a final design is often reached by starting with a rough estimated design , then looping through several cycles of analysis and redesign . Often, several alternative designs will prove quite close in cost, strength, and serviceability. The structural engineer, owner, or end user would then make a selection based on other considerations.Project requirements. Before starting design, the structural engineer must determine the criteria for acceptable performance. The loads or forces to be resisted must be provided. For specialized structures, this may be given directly, as when supporting a known piece of machinery, or a crane of known capacity. For conventional buildings, buildings codes adopted on a municipal, county , or , state level provide minimum design requirements for live loads (occupants and furnishings , snow on roofs , and so on ). The engineer will calculate dead loads (structural and known, permanent installations ) during the design process.For the structural to be serviceable or useful , deflections must also be kept within limits ,since it is possible for safe structural to be uncomfortable “bounce”Very tight deflection limits are set on supportsfor machinery , since beam sag can cause drive shafts to bend , bearing to burn out , parts to misalign , and overhead cranes to stall . Limitations of sag less than span /1000 ( 1/1000 of the beam length ) are not uncommon . In conventional buildings, beams supporting ceilings often have sag limits of span /360 to avoid plaster cracking, or span /240 to avoid occupant concern (keep visual perception limited ). Beam stiffness also affects floor “bounciness,”which can be annoying if not controlled. In addition , lateral deflection , sway , or drift of tall buildings is often held within approximately height /500 (1/500 of the building height ) to minimize the likelihood of motion discomfort in occupants of upper floors on windy days .Member size limitations often have a major effect on the structural design. For example, a certain type of bridge may be unacceptable because of insufficient under clearance for river traffic, or excessive height endangering aircraft. In building design, ceiling heights and floor-to-floor heights affect the choice of floor framing. Wall thicknesses and column sizes and spacing may also affect the serviceability of various framing schemes.Materials selection. Technological advances have created many novel materials such as carbon fiber and boron fiber-reinforced composites, which have excellent strength, stiffness, and strength-to-weight properties. However, because of the high cost anddifficult or unusual fabrication techniques required , they are used only in very limited and specialized applications . Glass-reinforced composites such as fiberglass are more common, but are limited to lightly loaded applications. The main materials used in structural design are more prosaic and include steel, aluminum, reinforced concrete, wood , and masonry .Structural schemes. In an actual structural, various forces are experienced by structural members , including tension , compression , flexure (bending ), shear ,and torsion (twist) . However, the structural scheme selected will influence which of these forces occurs most frequently, and this will influence the process of materials selection.Tension is the most efficient way to resist applied loads ,since the entire member cross section is acting to full capacity and bucking is not a concern . Any tension scheme must also included anchorages for the tension members . In a suspension bridge , for example ,the anchorages are usually massive dead weights at the ends of the main cables . To avoid undesirable changes in geometry under moving or varying loads , tension schemes also generally require stiffening beams or trusses.Compression is the next most efficient method for carrying loads . The full member cross section is used ,but must be designed to avoid bucking ,either by making the member stocky or by adding supplementary bracing . Domed and arched buildings ,arch bridges andcolumns in buildings frames are common schemes . Arches create lateral outward thrusts which must be resisted . This can be done by designing appropriate foundations or , where the arch occurs above the roadway or floor line , by using tension members along the roadway to tie the arch ends together ,keeping them from spreading . Compression members weaken drastically when loads are not applied along the member axis , so moving , variable , and unbalanced loads must be carefully considered.Schemes based on flexure are less efficient than tension and compression ,since the flexure or bending is resisted by one side of the member acting in tension while the other side acts in compression . Flexural schemes such as beams , girders , rigid frames , and moment (bending ) connected frames have advantages in requiring no external anchorages or thrust restrains other than normal foundations ,and inherent stiffness and resistance to moving ,variable , and unbalanced loads .Trusses are an interesting hybrid of the above schemes . They are designed to resist loads by spanning in the manner of a flexural member, but act to break up the load into a series of tension and compression forces which are resisted by individually designed tension and have excellent stiffness and resistance to moving and variable loads . Numerous member-to-member connections, supplementary compression braces ,and a somewhat cluttered appearance are truss disadvantages .Plates and shells include domes ,arched vaults ,saw tooth roofs ,hyperbolic paraboloids , and saddle shapes .Such schemes attempt to direct all force along the plane of the surface ,and act largely in shear . While potentially very efficient ,such schemes have very strict limitations on geometry and are poor in resisting point ,moving , and unbalanced loads perpendicular to the surface.Stressed-skin and monologue construction uses the skin between stiffening ribs ,spars ,or columns to resist shear or axial forces . Such design is common in airframes for planes and rockets, and in ship hulls . it has also been used to advantage in buildings. Such a design is practical only when the skin is a logical part of the design and is never to be altered or removed .For bridges , short spans are commonly girders in flexure . As spans increase and girder depth becomes unwieldy , trusses are often used ,as well as cablestayed schemes .Longer spans may use arches where foundation conditions ,under clearance ,or headroom requirements are favorable .The longest spans are handled exclusively by suspension schemes ,since these minimize the crucial dead weight and can be erected wire by wire .For buildings, short spans are handled by slabs in flexure .As spans increase, beams and girders in flexure are used . Longer spans require trusses ,especially in industrial buildings with possible hung loads . Domes ,arches , and cable-suspended and air –supported roofs can beused over convention halls and arenas to achieve clear areas .Structural analysis . Analysis of structures is required to ensure stability (static equilibrium ) ,find the member forces to be resisted ,and determine deflections . It requires that member configuration , approximate member sizes ,and elastic modulus ; linearity ; and curvature and plane sections . Various methods are used to complete the analysis .Final design .once a structural has been analyzed (by using geometry alone if the analysis is determinate , or geometry plus assumed member sizes and materials if indeterminate ), final design can proceed . Deflections and allowable stresses or ultimate strength must be checked against criteria provided either by the owner or by the governing building codes . Safety at working loads must be calculated . Several methods are available ,and the choice depends on the types of materials that will be used .Pure tension members are checked by dividing load by cross-section area .Local stresses at connections ,such as bolt holes or welds ,require special attention . Where axial tension is combined with bending moment ,the sum of stresses is compared to allowance levels . Allowable : stresses in compression members are dependent on the strength of material, elastic modulus ,member slenderness ,and length between bracing points . Stocky members are limited by materials strength ,while slender members are limited by elastic bucking .Design of beams can be checked by comparing a maximum bending stress to an allowable stress , which is generally controlled by the strength of the material, but may be limited if the compression side of the beam is not well braced against bucking .Design of beam-columns ,or compression members with bending moment ,must consider two items . First ,when a member is bowed due to an applied moment ,adding axial compression will cause the bow to increase .In effect ,the axial load has magnified the original moment .Second ,allowable stresses for columns and those for beams are often quite different .Members that are loaded perpendicular to their long axis, such as beams and beam-columns, also must carry shear. Shear stresses will occur in a direction to oppose the applied load and also at right angles to it to tie the various elements of the beam together. They are compared to an allowable shear stress. These procedures can also be used to design trusses, which are assemblies of tension and compression members. Lastly, deflections are checked against the project criteria using final member sizes.Once a satisfactory scheme has been analyzed and designed to be within project criteria, the information must be presented for fabrication and construction. This is commonly done through drawings, which indicate all basic dimensions, materials, member sizes, the anticipatedloads used in design, and anticipated forces to be carried through connections.结构设计结构设计包含至少5个不同方面的工作:工程要求,材料,结构方案,分析和设计。