8皇后问题matlab算法

8皇后问题matlab算法
8皇后问题matlab算法

M文件

function PlaceQueen(row,matrix,N)%回溯法放置皇后

if row>N

PrintQueen(N,matrix);%打印棋盘

else

for col=1:N

matrix(row,col)=1;

if row==1||Conflict(row,col,N,matrix)%检测是否冲突

PlaceQueen(row+1,matrix,N);

end

matrix(row,col)=0;

end

end

%子函数:检测冲突

function result=Conflict(row,col,N,matrix)%检测是否冲突

result=1;

for i=1:row-1

for j=1:N

if matrix(i,j)==1

if ((j==col)||(abs(row-i)==abs(col-j)))%是否产生冲突:在同一直线,斜线上

result=0;

break;

end

end

end

if result==0

break;

end

end

%子函数:打印棋盘信息

function PrintQueen(N,matrix)

global solutionNum; %定义全局变量,来累积方法数 solutionNum=solutionNum+1;

disp(['第',num2str(solutionNum),'种方法:'])

disp(matrix)

脚本文件

clear all

clc

global solutionNum;

solutionNum=0;%全局变量记录方法数

N=8;%皇后个数

matrix=zeros(N);%存储皇后位置信息

PlaceQueen(1,matrix,N)%调用放置方法

matlab课后答案完整版

ones表示1矩阵 zeros表示0矩阵 ones(4)表示4x4的1矩阵 zeros(4)表示4x4的0矩阵 zeros(4,5)表示4x5的矩阵 eye(10,10)表示10x10的单位矩阵rand(4,5)表示4x5的伴随矩阵 det(a)表示计算a的行列式 inv(a)表示计算a的逆矩阵 Jordan(a)表示求a矩阵的约当标准块rank(a)表示求矩阵a的秩 [v,d]=eig(a)对角矩阵 b=a’表示求a矩阵的转置矩阵 sqrt表示求平方根 exp表示自然指数函数 log自然对数函数 abs绝对值 第一章 一、5(1) b=[97 67 34 10;-78 75 65 5;32 5 -23 -59]; >> c=[97 67;-78 75;32 5;0 -12]; >> d=[65 5;-23 -59;54 7]; >> e=b*c e = 5271 11574 -11336 664 1978 3112 (2)a=50:1:100 二、1 、x=-74; y=-27; z=(sin(x.^2+y.^2))/(sqrt(tan(abs(x+y)))+pi) z = 2、a=::; >> b=exp*a).*sin(a+ 3、x=[2 4; 5]; y=log(x+sqrt(1+x.^2))/2 y =4、a*b表示a矩阵和b矩阵相乘 a.*b表示a矩阵和b矩阵单个元素相乘A(m,n)表示取a矩阵第m行,第n列 A(m,:)表示取a矩阵第m行的全部元素 A(:,n)表示取a矩阵的第n列全部元素 A./B表示a矩阵除以b矩阵的对应元素, B.\A等价于A./B A.^B表示两个矩阵对应元素进行乘方运算A.^2表示a中的每个元素的平方 A^2表示A*A 例:x=[1,2,3]; y=[4,5,6]; z=x.^y z= 1 3 2 729 指数可以是标量(如y=2).底数也可以是标量(如x=2) 5、a=1+2i; >> b=3+4i; >> c=exp((pi*i)/6) c = + d=c+a*b/(a+b) d = + 第二章 二、4、(1) y=0;k=0; >> while y<3 k=k+1; y=y+1/(2*k-1); end >> display([k-1,y-1/(2*k-1)]) ans = 第三章 二1(1)

模拟退火算法(MATLAB实现)

实验用例: 用模拟退火算法解决如下10个城市的TSP 问题,该问题最优解为691.2 opt f 。 表1 10个城市的坐标 城市 X 坐标 Y 坐标 城市 X 坐标 Y 坐标 3 0.4000 0.4439 8 0.8732 0.6536 编程实现 用MATLAB 实现模拟退火算法时,共编制了5个m 文件,分别如下 1、swap.m function [ newpath , position ] = swap( oldpath , number ) % 对 oldpath 进 行 互 换 操 作 % number 为 产 生 的 新 路 径 的 个 数 % position 为 对 应 newpath 互 换 的 位 置 m = length( oldpath ) ; % 城 市 的 个 数 newpath = zeros( number , m ) ; position = sort( randi( m , number , 2 ) , 2 ); % 随 机 产 生 交 换 的 位 置 for i = 1 : number newpath( i , : ) = oldpath ; % 交 换 路 径 中 选 中 的 城 市 newpath( i , position( i , 1 ) ) = oldpath( position( i , 2 ) ) ; newpath( i , position( i , 2 ) ) = oldpath( position( i , 1 ) ) ; end 2、pathfare.m function [ objval ] = pathfare( fare , path ) % 计 算 路 径 path 的 代 价 objval % path 为 1 到 n 的 排 列 ,代 表 城 市 的 访 问 顺 序 ; % fare 为 代 价 矩 阵 , 且 为 方 阵 。 [ m , n ] = size( path ) ; objval = zeros( 1 , m ) ; for i = 1 : m for j = 2 : n objval( i ) = objval( i ) + fare( path( i , j - 1 ) , path( i , j ) ) ; end objval( i ) = objval( i ) + fare( path( i , n ) , path( i , 1 ) ) ; end

matlab第八章

第8章M文件函数 使用MATLAB函数时,例如inv, abs, angle和sqrt,MATLAB获取传递给它的变量,利用所给的输入,计算所要求的结果。然后,把这些结果返回。由函数执行的命令,以及由这些命令所创建的中间变量,都是隐含的。所有可见的东西是输入和输出,也就是说函数是一个黑箱。 这些属性使得函数成为强有力的工具,用以计算命令。这些命令包括在求解一些大的问题时,经常出现的有用的数学函数或命令序列。由于这个强大的功能,MATLAB提供了一个创建用户函数的结构,并以M文件的文本形式存储在计算机上。MATLAB函数fliplr 是一个M文件函数良好的例子。 function y = fliplr(x) % FLIPLR Flip matrix in the left/right direction. % FLIPLR(X) returns X with row preserved and columns flipped % in the left/right direction. % % X = 1 2 3 becomes 3 2 1 % 4 5 6 6 5 4 % % See also FLIPUD, ROT90. % Copyright (c) 1984-94 by The MathWorks, Inc. [m, n] = size(x); y = x(: , n : -1 : 1); 一个函数M文件与脚本文件类似之处在于它们都是一个有.m扩展名的文本文件。如同脚本M文件一样,函数M文件不进入命令窗口,而是由文本编辑器所创建的外部文本文件。一个函数的M文件与脚本文件在通信方面是不同的。函数与MATLAB工作空间之间的通信,只通过传递给它的变量和通过它所创建的输出变量。在函数内中间变量不出现在MATLAB工作空间,或与MATLAB工作空间不交互。正如上面的例子所看到的,一个函数的M文件的第一行把M文件定义为一个函数,并指定它的名字。它与文件名相同,但没有.m扩展名。它也定义了它的输入和输出变量。接下来的注释行是所展示的文本,它与帮助命令:? help fliplr相对应。第一行帮助行称为H1 行,是由lookfor命令所搜索的行。最后,M文件的其余部分包含了MATLAB创建输出变量的命令。 8.1 规则和属性

MATLAB基础教程 薛山第二版 课后习题答案

《MATLAB及应用》实验指导书《MATLAB及应用》实验指导书 班级:T1243-7 姓名:柏元强 学号:20120430724 总评成绩: 汽车工程学院 电测与汽车数字应用中心

目录 实验04051001 MATLAB语言基础 (1) 实验04051002 MATLAB科学计算及绘图 (18) 实验04051003 MATLAB综合实例编程 (31)

实验04051001 MATLAB语言基础 1实验目的 1)熟悉MATLAB的运行环境 2)掌握MATLAB的矩阵和数组的运算 3)掌握MATLAB符号表达式的创建 4)熟悉符号方程的求解 2实验内容 第二章 1.创建double的变量,并进行计算。 (1)a=87,b=190,计算 a+b、a-b、a*b。 clear,clc a=double(87); b=double(190); a+b,a-b,a*b (2)创建 uint8 类型的变量,数值与(1)中相同,进行相同的计算。 clear,clc a=uint8(87); b=uint8(190); a+b,a-b,a*b 2.计算:

(1) () sin 60 (2) e3 (3) 3cos 4??π ??? clear,clc a=sind(60) b=exp(3) c=cos(3*pi/4) 3.设2u =,3v =,计算: (1) 4 log uv v (2) () 2 2 e u v v u +- (3) clear,clc u=2;v=3; a=(4*u*v)/log(v) b=((exp(u)+v)^2)/(v^2-u) c=(sqrt(u-3*v))/(u*v) 4.计算如下表达式: (1) ()() 3542i i -+ (2) () sin 28i - clear,clc (3-5*i)*(4+2*i) sin(2-8*i)

模拟退火算法Matlab源程序

MCM战备历程3(模拟退火算法Matlab源程序)For glory 2007-02-03 11:20:04| 分类:数学建模 | 标签:学习|字号订阅 %模拟退火算法程序 T_max=input('please input the start temprature'); T_min=input('please input the end temprature'); iter_max=input('please input the most interp steps on the fit temp'); s_max=input('please input the most steady steps ont the fit temp'); T=T_max; load d:\address.txt; order1=randperm(size(address,1))';%生成初始解。 plot(address(order1,1),address(order1,2),'*r-') totaldis1=distance(address,order1); while T>=T_min iter_num=1; s_num=1; plot(T,totaldis1) hold on while iter_numR) order1=order2; totaldis1=totaldis2; else s_num=s_num+1;

算法实验 递归回溯解八皇后问题

深圳大学实验报告 课程名称:算法分析与复杂性理论 实验项目名称:八皇后问题 学院:计算机与软件学院 专业:软件工程 指导教师:杨烜 报告人:学号:班级:15级软工学术型实验时间:2015-12-08 实验报告提交时间:2015-12-09 教务部制

一.实验目的 1.掌握选回溯法设计思想。 2.掌握八皇后问题的回溯法解法。 二.实验步骤与结果 实验总体思路: 根据实验要求,通过switch选择八皇后求解模块以及测试数据模块操作,其中八皇后模块调用摆放皇后函数模块,摆放皇后模块中调用判断模块。测试数据模块主要调用判断模块进行判断,完成测试。用一维数组保存每行摆放皇后的位置,根据回溯法的思想递归讨论该行的列位置上能否放置皇后,由判断函数Judge()判断,若不能放置则检查该行下一个位置。相应结果和过程如下所示(代码和结果如下图所示)。 回溯法的实现及实验结果: 1、判断函数 代码1: procedure BTrack_Queen(n) //如果一个皇后能放在第K行和X(k)列,则返回true,否则返回false。 global X(1:k);integer i,k i←1 while i0 do X(k)←X(k)+1 //移到下一个位置 while X(k)<=n and not Judge(k) do //判断能否放置皇后 X(k)←X(k)+1 repeat if X(k)<=n //找到一个位置 then if k=n //是一个完整的解吗

模拟退火算法原理及matlab源代码

模拟退火算法模拟退火算法是一种通用的随机搜索算法,是局部搜索算法的扩展。它的思想是再1953 年由metropolis 提出来的,到1983 年由kirkpatrick 等人成功地应用在组合优化问题中。 模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis 准则,粒子在温度T 时趋于平衡的概率为e- △ E/(kT),其中E为温度T时的内能,AE为其改变量,k 为Boltzmann 常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f ,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解-计算目标函数差T接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火过程由冷却进度表(Cooli ng Schedule)控制,包括控制参数的初值t 及其衰减因子△ t、每个t值时的迭代次数L和停止条件S。 模拟退火算法新解的产生和接受可分为如下四个步骤:第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。 第二步是计算与新解所对应的目标函数差。因为目标函数差仅由变换部分产生,所以目标函数差的计算最好按增量计算。事实表明,对大多数应用而言,这是计算目标函数差的最快方法。 第三步是判断新解是否被接受,判断的依据是一个接受准则,最常用的接受准则是Metropo1is准则:若厶t‘ <0 则接受S'作为新的当前解S,否则以概率exp(- △ t‘ /T) 接受S'作为新的当前解S。 第四步是当新解被确定接受时,用新解代替当前解,这只需将当前解中对应于产生新解时的变换部分予以实现,同时修正目标函数值即可。此时,当前解实现了一次迭代。 可在此基础上开始下一轮试验。而当新解被判定为舍弃时,

模拟退火算法(C++版)

/* * 使用模拟退火算法(SA)求解TSP问题(以中国TSP问题为例) * 参考自《Matlab 智能算法30个案例分析》 * 模拟退火的原理这里略去,可以参考上书或者相关论文 * update: 16/12/11 * author:lyrichu * email:919987476@https://www.360docs.net/doc/1713651753.html, */ #include #include #include #include #include #define T0 50000.0 // 初始温度 #define T_end (1e-8) #define q 0.98 // 退火系数 #define L 1000 // 每个温度时的迭代次数,即链长 #define N 27 // 城市数量 int city_list[N]; // 用于存放一个解 double city_pos[N][2] = {{41,94},{37,84},{53,67},{25,62},{7,64},{2,99},{68,58},{71,44},{54,62}, {83,69},{64,60},{18,54},{22,60},{83,46},{91,38},{25,38},{24,42},{58,69},{71,71}, {74,78},{87,76}, {18,40},{13,40},{82,7},{62,32},{58,35},{45,21}}; // 中国27个城市坐标 //41 94;37 84;53 67;25 62;7 64;2 99;68 58;71 44;54 62;83 69;64 60; 18 54;22 60; //83 46;91 38;25 38;24 42;58 69;71 71;74 78;87 76;18 40;13 40;82 7; 62 32;58 35;45 21

王能超 计算方法——算法设计及MATLAB实现课后代码

第一章插值方法 1.1Lagrange插值 1.2逐步插值 1.3分段三次Hermite插值 1.4分段三次样条插值 第二章数值积分 2.1 Simpson公式 2.2 变步长梯形法 2.3 Romberg加速算法 2.4 三点Gauss公式 第三章常微分方程德差分方法 3.1 改进的Euler方法 3.2 四阶Runge-Kutta方法 3.3 二阶Adams预报校正系统 3.4 改进的四阶Adams预报校正系统 第四章方程求根 4.1 二分法 4.2 开方法 4.3 Newton下山法 4.4 快速弦截法 第五章线性方程组的迭代法 5.1 Jacobi迭代 5.2 Gauss-Seidel迭代 5.3 超松弛迭代 5.4 对称超松弛迭代 第六章线性方程组的直接法 6.1 追赶法 6.2 Cholesky方法 6.3 矩阵分解方法 6.4 Gauss列主元消去法

第一章插值方法 1.1Lagrange插值 计算Lagrange插值多项式在x=x0处的值. MATLAB文件:(文件名:Lagrange_eval.m)function [y0,N]= Lagrange_eval(X,Y,x0) %X,Y是已知插值点坐标 %x0是插值点 %y0是Lagrange插值多项式在x0处的值 %N是Lagrange插值函数的权系数 m=length(X); N=zeros(m,1); y0=0; for i=1:m N(i)=1; for j=1:m if j~=i; N(i)=N(i)*(x0-X(j))/(X(i)-X(j)); end end y0=y0+Y(i)*N(i); end 用法》X=[…];Y=[…]; 》x0= ; 》[y0,N]= Lagrange_eval(X,Y,x0) 1.2逐步插值 计算逐步插值多项式在x=x0处的值. MATLAB文件:(文件名:Neville_eval.m)function y0=Neville_eval(X,Y,x0) %X,Y是已知插值点坐标 %x0是插值点 %y0是Neville逐步插值多项式在x0处的值 m=length(X); P=zeros(m,1); P1=zeros(m,1); P=Y; for i=1:m P1=P; k=1; for j=i+1:m k=k+1;

模拟退火算法算法的简介及程序

模拟退火算法 模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。 模拟退火算法的模型 模拟退火算法可以分解为解空间、目标函数和初始解三部分。 模拟退火的基本思想: (1)初始化:初始温度T(充分大),初始解状态S(是算法迭代的起 点),每个T值的迭代次数L (2) 对k=1,……,L做第(3)至第6步: (3) 产生新解S′ (4) 计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数 (5) 若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)

接受S′作为新的当前解. (6) 如果满足终止条件则输出当前解作为最优解,结束程序。终止条件通常取为连续若干个新解都没有被接受时终止算法。 (7) T逐渐减少,且T->0,然后转第2步。 算法对应动态演示图: 模拟退火算法新解的产生和接受可分为如下四个步骤: 第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。 第二步是计算与新解所对应的目标函数差。因为目标函数差仅由变换部分产生,所以目标函数差的计算最好按增量计算。事实表明,对大多数应用而言,这是计算目标函数差的最快方法。 第三步是判断新解是否被接受,判断的依据是一个接受准则,最常用的接受准则是Metropo1is准则: 若Δt′<0则接受S′作为新的当前解S,否则以概率exp(-Δt′/T)接受S′作为新的当前解S。 第四步是当新解被确定接受时,用新解代替当前解,这只需将当前解中对应于产生新解时的变换部分予以实现,同时修正目标函数值即可。此时,当前解实现了一次迭代。可在此基础上开始下一轮试验。而当新解被判定为舍弃时,则

八皇后问题及解答

八皇后问题 问题描述: 在一个8×8的棋盘里放置8个皇后,要求每个皇后两两之间不相冲突 (在每一横列,竖列,斜列只有一个皇后)。 求解: 标题: 八皇后问题的解(回溯法程序代码) 发信站: 网易虚拟社区(Fri Jul 14 10:06:52 2000),站内信件 以前上学的时候,写8皇后程序的时候偷懒用最笨的算法,在8086上计算十皇后的时候,我放了张纸条,说明计算机正在运行,然后去吃饭,吃完以后,才看到结果。前几天,刚好有空,所以重写了一次,以补当年的遗憾。 #include "stdio.h" int attacked(int *array,int position){ int flag=-1; float step; if(position==1) return flag; for(step= 1.00;step

(array+(int)step)-*(array+position))/(step-position))==-1){ flag=1; break;}} return flag;}void main(void){ int countSum,queenSum,printCount,*queenArray,queenPosition=0; int tempArray[20]={66,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; countSum=1; queenArray=tempArray; printf("input you queenSum here: "); scanf("%d",&queenSum); fflush(stdin); if(queenSum<4){ printf("the %d queen's sum is 0\n",queenSum); return;}for(;;){ if(countSum=queenSum){ if(*(queenArray+countSum-1)

模拟退火算法及其Matlab实现

模拟退火算法及其Matlab 实现 模拟退火算法(Simulated Annealing algorithm ,简称SA )是柯克帕垂克(S. Kirkpatrick )于1982年受热力学中的固体退火过程与组合优化问题求解之间的某种“相似性”所启发而提出的,用于求解大规模组合优化问题的一种具有全局搜索 功能的随机性近似算法。与求解线性规划的单纯形法、Karmarkar 投影尺度法,求 解非线性规划的最速下降法、Newton 法、共轭梯度法,求解整数规划的分支定界法、割平面法等经典的优化算法相比,模拟退火算法在很大程度上不受制于优化问 题的具体形式和结构,具有很强的适应性和鲁棒性,因而也具有广泛的应用价值。 模拟退火算法源于对固体退火过程的模拟;采用Metropolis 接受准则;并用 一组称为冷却进度表的参数来控制算法进程,使得算法在多项式时间里给出一个近 似最优解。固体退火过程的物理现象和统计性质是模拟退火算法的物理背 景;Metropolis 接受准则使算法能够跳离局部最优的“陷阱”,是模拟退火算法能 够获得整体最优解的关键;而冷却进度表的合理选择是算法应用的关键。 1 物理退火过程 物理中的固体退火是先将固体加热至熔化,再徐徐冷却,使之凝固成规整晶体 的热力学过程。在加热固体时,固体粒子的热运动不断增加,随着温度的升高,粒子 与其平衡位置的偏离越来越大,当温度升至溶解温度后,固体的规则性被彻底破坏, 固体溶解为液体,粒子排列从较有序的结晶态转变为无序的液态,这个过程称为溶解。溶解过程的目的是消除系统中原先可能存在的非均匀状态,使随后进行的冷却 过程以某一平衡态为始点。溶解过程与系统的熵增过程相联系,系统能量也随温度 的升高而增大。 冷却时,液体粒子的热运动渐渐减弱,随着温度的徐徐降低,粒子运动渐趋有 序。当温度降至结晶温度后,粒子运动变为围绕晶体格点的微小振动,液体凝固成固体的晶态,这个过程称为退火。退火过程之所以必须“徐徐”进行,是为了使系统在每一温度下都达到平衡态,最终达到固体的基态(图1-1)。退火过程中系统的熵值

八皇后问题讲解

计算机科学与技术专业 数据结构课程设计报告设计题目:八皇后问题

目录 1需求分析 (3) 1.1功能分析 (3) 1.2设计平台 (4) 2概要设计 (4) 2.1算法描述 (5) 2.2算法思想 (6) 2.3数据类型的定义 (6) 3详细设计和实现 (7) 3.1算法流程图 (7) 3.2 主程序 (7) 3.3 回溯算法程序 (8) 4调试与操作说明 (10) 4.1调试情况 (10) 4.2操作说明 (10) 5设计总结 (12) 参考文献 (13) 附录 (13)

1需求分析 1.1功能分析 八皇后问题是一个古老而著名的问题,该问题是十九世纪著名的数学家高斯1850年提出的,并作了部分解答。高斯在棋盘上放下了八个互不攻击的皇后,他还认为可能有76种不同的放法,这就是有名的“八皇后”问题。 在国际象棋中,皇后是最有权利的一个棋子;只要别的棋子在它的同一行或同一列或同一斜线(正斜线或反斜线)上时,它就能把对方棋子吃掉。所以高斯提出了一个问题:在8*8的格的国际象棋上摆放八个皇后,使其不能相互攻击,即任意两个皇后都不能处于同一列、同一行、或同一条斜线上面,问共有多少种解法。现在我们已经知道八皇后问题有92个解答。 1、本演示程序中,利用选择进行。程序运行后,首先要求用户选择模式,然后进入模式。皇后个数设0

模拟退火算法和禁忌搜索算法的matlab源程序

%%% 模拟退火算法源程序 % 此题以中国31省会城市的最短旅行路径为例: % clear;clc; function [MinD,BestPath]=MainAneal(pn) % CityPosition存储的为每个城市的二维坐标x和y; CityPosition=[1304 2312;3639 1315;4177 2244;3712 1399;3488 1535;3326 1556;3238 1229;... 4196 1044;4312 790;4386 570;3007 1970;2562 1756;2788 1491;2381 1676;... 1332 695;3715 1678;3918 2179;4061 2370;3780 2212;3676 2578;4029 2838;... 4263 2931;3429 1908;3507 2376;3394 2643;3439 3201;2935 3240;3140 3550;... 2545 2357;2778 2826;2370 2975]; figure(1); plot(CityPosition(:,1),CityPosition(:,2),'o') m=size(CityPosition,1);%城市的数目 % D = sqrt((CityPosition(:,ones(1,m)) - CityPosition(:,ones(1,m))').^2 + ... (CityPosition(:,2*ones(1,m)) - CityPosition(:,2*ones(1,m))').^2); path=zeros(pn,m); for i=1:pn path(i,:)=randperm(m); end iter_max=100;%i m_max=5;% Len1=zeros(1,pn);Len2=zeros(1,pn);path2=zeros(pn,m); t=zeros(1,pn); T=1e5; tau=1e-5; N=1; while T>=tau iter_num=1; m_num=1; while m_num

0计算方法及MATLAB实现简明讲义课件PPS8-1欧拉龙格法

第8章 常微分方程初值问题数值解法 8.1 引言 8.2 欧拉方法 8.3 龙格-库塔方法 8.4 单步法的收敛性与稳定性 8.5 线性多步法

8.1 引 言 考虑一阶常微分方程的初值问题 00(,),[,],(). y f x y x a b y x y '=∈=(1.1) (1.2) 如果存在实数 ,使得 121212(,)(,).,R f x y f x y L y y y y -≤-?∈(1.3) 则称 关于 满足李普希茨(Lipschitz )条件, 称为 的李普希茨常数(简称Lips.常数). 0>L f y L f (参阅教材386页)

计算方法及MATLAB 实现 所谓数值解法,就是寻求解 在一系列离散节点 )(x y <<<<<+121n n x x x x 上的近似值 . ,,,,,121+n n y y y y 相邻两个节点的间距 称为步长. n n n x x h -=+1 如不特别说明,总是假定 为定数, ),2,1( ==i h h i 这时节点为 . ) ,2,1,0(0 =+=i nh x x n 初值问题(1.1),(1.2)的数值解法的基本特点是采取 “步进式”. 即求解过程顺着节点排列的次序一步一步地向前推进. 00(,),[,], (). y f x y x a b y x y '=∈=

描述这类算法,只要给出用已知信息 ,,,21--n n n y y y 计算 的递推公式. 1+n y 一类是计算 时只用到前一点的值 ,称为单步法. 1+n y n y 另一类是用到 前面 点的值 , 1+n y k 11,,,+--k n n n y y y 称为 步法. k 其次,要研究公式的局部截断误差和阶,数值解 与 精确解 的误差估计及收敛性,还有递推公式的计算 稳定性等问题. n y )(n x y 首先对方程 离散化,建立求数值解的递推 公式. ),(y x f y ='

回溯法解八皇后问题

回溯法解八皇后问题 在N * N 格的棋盘上放置彼此不受攻击的N 个皇后。N个皇后问题等价于在N * N 格的棋盘上放置N 个皇后,任何2个皇后不在同一行或同一列或同一斜线上。当N等于8,就是著名的八皇后问题。 此问题是通过C语言程序编写的,在Turboc环境下完成实现的。输出结果见(输出结果。TXT文件) 详细代码为: /*///////////////////////////////////////////////////////////////////// /// /////The programming is a complex problem about the ways of queens./////// /////Programmer: Luo Xiaochun /////// /////Completed date: 2007.12 //////// /////V ersion number: Turboc 2.0 //////// /////////////////////////////////////////////////////////////////////// /*/ #include #include #define false 0 #define true 1 #define quesize 8 int gx[quesize+1]; int sum=0; int place( int k ); void print( int a[] ); void nqueens( int n ); FILE *fp; int main( ) { system("cls"); fp = fopen("outfile.txt", "w");

模拟退火算法求解TSP问题Matlab源码

function [f,T]=TSPSA(d,t0,tf) %TSP问题(货郎担问题,旅行商问题)的模拟退火算法通用malab源程序% f目标最优值,T最优路线,d距离矩阵,t0初始温度,tf结束温度 [m,n]=size(d); L=100*n; t=t0; pi0=1:n; min_f=0; for k=1:n-1 min_f=min_f+d(pi0(k),pi0(k+1)); end min_f=min_f+d(pi0(n),pi0(1)); p_min=pi0; while t>tf for k=1:L; kk=rand; [d_f,pi_1]=exchange_2(pi0,d); r_r=rand; if d_f<0 pi0=pi_1; elseif exp(d_f/t)>r_r pi0=pi_1; else pi0=pi0; end end f_temp=0; for k=1:n-1 f_temp=f_temp+d(pi0(k),pi0(k+1)); end f_temp=f_temp+d(pi0(n),pi0(1)); if min_f>f_temp min_f=f_temp; p_min=pi0; end t=0.87*t; end f=min_f; T=p_min; %aiwa要调用的子程序,用于产生新解 function [d_f,pi_r]=exchange_2(pi0,d) [m,n]=size(d); clear m; u=rand;

u=u*(n-2); u=round(u); if u<2 u=2; end if u>n-2 u=n-2; end v=rand; v=v*(n-u+1); v=round(v); if v<1 v=1; end v=u+v; if v>n v=n; end pi_1(u)=pi0(v); pi_1(v)=pi0(u); if u>1 for k=1:u-1 pi_1(k)=pi0(k); end end if v>(u+1) for k=1:v-u-1 pi_1(u+k)=pi0(v-k); end end if v

用MATLAB实现结构可靠度计算.

用MATLAB实现结构可靠度计算 口徐华…朝泽刚‘u刘勇‘21 。 (【l】中国地质大学(武汉工程学院湖北?武汉430074; 12】河海大学土木工程学院江苏?南京210098 摘要:Matlab提供了各种矩阵的运算和操作,其中包含结构可靠度计算中常用的各种数值计算方法工具箱,本文从基本原理和相关算例分析两方面,阐述利用Matlab,编制了计算结构可靠度Matlab程.序,使得Matlab-语言在可靠度计算中得到应用。 关键词:结构可靠度Matlab软件最优化法 中图分类号:TP39文献标识码:A文章编号:1007-3973(200902-095-Ol 1结构可靠度的计算方法 当川概率描述结构的可靠性时,计算结构可靠度就是计算结构在规定时问内、规定条件F结构能够完成预定功能的概率。 从简单到复杂或精确稃度的不同,先后提出的可靠度计算方法有一次二阶矩方法、二次二阶矩方法、蒙特卡洛方法以及其他方法。一次■阶矩方法又分为。I-心点法和验算点法,其中验算点法足H前可靠度分析最常川的方法。 2最优化方法计算可靠度指标数学模型 由结构111n个任意分布的独立随机变量一,x:…以表示的结构极限状态方程为:Z=g(■.托…t=0,采用R-F将非正念变量当罱正态化,得到等效正态分布的均值o:和标准差虹及可靠度指标B,由可靠度指标B的几何意义知。o;辟

开始时验算点未知,把6看成极限状态曲面上点P(■,爿:---37,的函数,通过优化求解,找到B最小值。求解可靠皮指标aJ以归结为以下约束优化模型: rain睁喜t华,2 s.,.Z=g(工i,x2’,…,工:=0 如极限状态方栉巾某个变最(X。可用其他变量表示,则上述模型jfIJ‘转化为无约束优化模型: 。。B!:手f生丛r+阻:坚:坠:盐尘}二剐 t∞oY?’【叫,J 3用MATLAB实现结构可靠度计算 3.1Matlab简介 Matlab是++种功能强、效率高、便.丁.进行科学和工程计算的交互式软件包,汇集了人量数学、统计、科学和工程所需的函数,MATI.AB具有编程简甲直观、用户界mf友善、开放性强等特点。将MATLAB用于蒙特卡罗法的一个显著优点是它拥有功能强大的随机数发生器指令。 3.2算例 3.2.I例:已知非线形极限状态方程z=g(t r'H=567f r-0.5H2=0’f、r服从正态分布。IIf=0.6,o r=0.0786;la|_ 2.18,o r_0.0654;H服从对数正态分布。u H= 3218,O。 =0.984。f、r、H相互独立,求可靠度指标B及验算点(,,r’,H‘。 解:先将H当量正念化:h=ln H服从正态分布,且 ,‘-““了:等专虿’=,。49?口二-、『五ir面_。。3

八皇后问题(回溯法)

八皇后问题(回溯法)2009-08-11 12:03问题描述: 求出在一个n×n的棋盘上,放置n个不能互相捕捉的国际象棋“皇后”的所有布局,这是来源于国际象棋的一个问题。皇后可以沿着纵横和两条斜线4个方向互相捕捉。 解题思路: 总体思想为回溯法。 求解过程从空配置开始。在第1列~的m列为合理配置的基础上,再配置第m+1列,直至第n列也是合理时,就找到了一个解。在每列上,顺次从第一行到第n行配置,当第n行也找不到一个合理的配置时,就要回溯,去改变前一列的配置。 为使在检查皇后配置的合理性方面简易方便,引入一下4个工作数组: ?数组col[i],表示在棋盘第i列,col[i]行有一个皇后; ?数组a[],a[k]表示第k行上还没有皇后; ?数组b[],b[k]表示第k列右高左低斜线上没有皇后; ?数组c[],c[k]表示第k列左高右低斜线上没有皇后; 代码: #include #include void queen(int N) { //初始化N+1个元素,第一个元素不使用int col[N+1]; //col[m]=n表示第m列,第n行放置皇后 int a[N+1]; //a[k]=1表示第k行没有皇后 int b[2*N+1]; //b[k]=1表示第k条主对角线上没有皇后 int c[2*N+1]; //c[k]=1表示第k条次对角线上没有皇后 int j,m=1,good=1;char awn; for(j=0;j<=N;j++) {a[j]=1;} for(j=0;j<=2*N;j++) {b[j]=c[j]=1;} col[1]=1;col[0]=0; do { if(good) { if(m==N) //已经找到一个解

相关文档
最新文档