共混改性5-填充与增强(7,8)
聚丙烯改性的主要的几种方法
聚丙烯改性的主要的几种方法聚丙烯(PP)是一种重要的塑料,具有较高的力学性能、耐化学腐蚀性和隔热性能,广泛应用于包装、电器、纺织、建筑等领域。
然而,PP在一些方面的性能仍然有待改善,这就要求对PP进行适当的改性。
以下是聚丙烯改性的几种主要方法。
1.添加剂改性:添加剂改性是通过向聚丙烯中添加各种添加剂,如增塑剂、抗氧剂、阻燃剂、光稳定剂等,来改善聚丙烯的性能。
添加剂可以提高聚丙烯的柔软度、耐热性、阻燃性等,从而扩展了聚丙烯的应用范围。
2.共混改性:共混改性是将聚丙烯与其他聚合物进行物理混合,在共混体系中形成相容相并形成新的材料。
常用的共混改性体系包括聚丙烯/聚乙烯、聚丙烯/ABS共混体系等。
共混改性可以综合利用不同聚合物的优点,改善聚丙烯的力学性能、热稳定性、耐冲击性等。
3.界面改性:界面改性是通过在聚丙烯和填充剂之间插入界面剂,来增强聚丙烯与填充剂之间的相容性。
常用的界面改性剂有硅烷偶联剂、聚合物接枝剂等。
界面改性可以改善聚丙烯的强度、韧性、耐冲击性和耐热性等性能。
4.离子辐射改性:离子辐射改性是通过辐射聚丙烯,引入交联结构或引发化学反应,改善聚丙烯的性能。
辐射改性可以显著提高聚丙烯的强度、热稳定性、抗老化性能等。
5.高分子改性:高分子改性是将聚丙烯与其他高分子化合物进行共聚或接枝反应,形成新的共聚物或共聚物接枝聚合物。
常用的高分子改性剂有聚苯乙烯、聚氨酯、聚酯等。
高分子改性可以改善聚丙烯的强度、韧性、耐热性和低温性能。
总之,聚丙烯改性的方法有很多种,可以通过添加剂、共混、界面、辐射和高分子改性等不同途径来改善聚丙烯的性能。
这些改性方法可以提高聚丙烯的力学性能、耐热性、耐化学腐蚀性和耐冲击性等,从而满足不同应用领域对材料性能的需求。
PPS的8种改性方式和应用!
聚苯硫醚(PPS)具有机械强度高、耐高温、高阻燃、耐化学药品性能强等优点;具有硬而脆、结晶度高、难燃、热稳定性好、机械强度较高、电性能优良等优点。
聚苯硫醚PPS是工程塑料中耐热性最好的品种之一,一般大于260度,其流动性仅次于尼龙。
PPS 分子结构此外,它还具有成型收缩率小(约0.8%),防火性好,耐震动疲乏性好等优点。
PPS的发展成熟,全球产能达5万吨/年以上,其价格相对较低,相比于动辄数百元每公斤的其他特种工程塑料,性价比高,常作为结构性高分子材料使用,并应用于不同领域。
聚苯硫醚(PPS)与聚醚醚酮(PEEK),聚砜(PSF),聚酰亚胺(PI),聚芳酯(PAR),液晶聚合物(LCP)一起被称为6大特种工程塑料。
PPS的软化点为277~282℃,Tg为85~93℃。
PPS性能优良,尤其通过增强、改性、共混合金化及原位复合技术制成了用途广泛的各种复合材料。
PPS改性和应用实例根据结构不同,PPS分为交联型与直链型两种。
直链型有优良的韧性和延伸性;交联型在氧气存在的情况下能加热固化,超过200℃热处理时熔融指数急剧下降,利用该性能可将聚合终了的低黏度PPS通过热处理制造适合注塑、挤出任意黏度的聚合物。
但是,PPS具有耐冲击性能差、性脆的致命缺点。
未改性的PPS较脆、热变形温度低,影响其应用领域和范围。
为了进一步改善PPS的性能,扩大适用范围,须对其进行改性,改性方向主要有:•提高强度;•提高冲击性能;•提高润滑性;•改善电性能以及研制具有特殊性能的共混材料;•合金化新型材料。
研究表明,PPS添加无机填料后仍能与其他聚合物有良好的相容性,这为其合金化和复合改性创造了有利条件。
最早开发成功的是PPS与氟塑料共混合金,此后形成了合金系列。
PPS 合金化后拉伸强度、弯曲强度、抗冲击性能、耐热性能大幅提高,为进一步的挤出、吹塑成型工艺的实施提供了可能。
目前,全世界销售的PPS复合改性品种多达200余种,主要有玻纤GF增强、碳纤维CF增强、无机填料填充、GF和填料共同填充增强等共混改性。
聚合物共混知识点总结
1.聚合物共混:共混改性包括物理共混、化学共混和物理/化学共混三大类型。
其中,物理共混就是通常意义上的“混合”。
如果把聚合物共混的涵义限定在物理共混的范畴之内,则聚合物共混是指两种或两种以上聚合物经混合制成宏观均匀物质的过程。
2.分布混合,又称分配混合。
是混合体系在应变作用下置换流动单元位置而实现的。
3.分散混合是指既增加分散相空间分布的随机性,又减少分散相粒径,改变分散相粒径分布的工程。
分布混合和分散混合在实际的共混工程中是共生共存的,分布混合和分散混合的驱动力都是外界施加的作用力。
4.总体均匀性是指分散相颗粒在连续相中分布的均匀性,即分散相浓度的起伏大小。
5.分散度则是指分散相颗粒的破碎程度。
对于总体均匀性,则采用数理统计的方法进行定量表征。
分散度则以分散相平均粒径来表征。
6.分散相的平衡粒径:在分散混合中,由于分散相大粒子更容易破碎,所以共混过程是分散相粒径自动均化的过程,这一自动均化的过程的结果,是使分散相例子达到一个最终的粒径。
即“平衡粒径”。
7.高分子合金:(塑料合金)指含多种组分的聚合物均相或多相体系,常具有较高的力学性能,作工程塑料。
8.熔融共混:将聚合物组分加热到熔融状态后进行共混(应用广泛)。
采用的设备-----密炼机、开炼机、挤出机等。
本方法最具有工业价值。
9.溶液共混:将聚合物组分溶于溶剂后,进行共混。
本方法主要用于基础研究领域10.乳液共混:将不同聚合物乳液共混方法。
本法可用于橡胶共混改性中;以乳液应用的产品可乳液共混改性等。
11.分散度:反映分散相物料的破碎程度;(分散相的平均粒径和分布表征)12.均一性:反映分散相分散的均匀程度(分散相浓度起伏大小,用统计法)13.相界面:连续相与分散相之间的交界面。
(界面结合好坏对共混物性能有重大影响)14. 所谓聚合物之间的相容性(Miscibility),从热力学角度而言,是指在任何比例混合时,都能形成分子分散的、热力学稳定的均相体系,即在平衡态下聚合物大分子达到分子水平或链段水平的均匀分散。
共混改性5-填充与增强(7,8)
浅蓝、浅灰等,有珍珠或脂肪光泽。 • 在380~500℃时可失去缔合水,800℃以上时则失去结晶水。滑石在水中略 呈碱性,pH值为9.0~9.5。 • 滑石具有层状结构,相邻的两层靠微弱的范德华力结合。在外力作用时, 相邻两层之间极易产生滑移或相互脱离。因此滑石颗粒结构基本形状是片 状或鳞片状。
17
•
晶须既有硼纤维的高弹性模量(400~700GPa)和强度,又具有玻璃纤维的伸 长率(3~4%)。缺点是价格昂贵,使应用受限。
•
晶须对塑料的增强效果十分显著,通常如果晶须能被塑料熔体充分润湿并 合理取向,塑料的抗拉强度可提高10~20倍。从价格和性能两方面考虑, 晶须目前主要还是应用于航空航天、航海、军工等高技术领域。
6
填料的分类
• 填料的分类方法很多,一般可分为无机填料和有机填料
两大类。常见的无机填料包括碳酸钙、滑石粉、云母、 高岭土、二氧化硅、炭黑等,有机填料包括木粉、棉短 绒、麦秆等。也可根据化学组成将填料分为氧化物、盐、
单质和有机物四大类,或根据填料的几何形状分为球形、 无定形、片状、纤维状等。
7
填料的性质
27
主要的阻燃性填料品种
(1)有机阻燃填料
• 氯系阻燃剂 • 溴系阻燃剂
• 氮系阻燃剂
28
溴系阻燃剂
• 溴系阻燃剂是目前世界上产量最大的有机阻燃剂之一。据统计, 1998年全球溴系阻燃剂的用量已超过200 kt,约占阻燃剂总用 量的约23%,有机阻燃剂总用量的约40%。
29
阻燃剂作用机理
• 含卤阻燃剂通过阻止发生在气相中的自由基链机理实现阻燃。 可燃性气体和氧气的反应:
32
主要品种
十溴二苯醚是用途最广泛的阻燃剂。
共混改性
1 2 ——组分1及2的体积分数;
R —— 气体常数; —— Huggins—Flory相互作用参数
χ12
聚合物共混改性原理
根据上式可以看出, 12 是非负的。按Huggins—Flory理论,仅由于混合
熵的作用才能达到聚合物之间的相互混溶。 这一理论仅对特殊的碳氢化合物才有限度的适用,它难于解释某些聚合
聚合物共混改性原理
聚合物共混的目的
采用共混方法获得的多组分聚合物材料兼具各组分 的优点,取长补短,可以表现出良好的综合性能,扩大 了高分子材料的应用领域。
橡胶填充塑料: HIPS、超韧尼龙、增韧PP 塑料填充橡胶: 增强橡胶
聚合物共混改性原理
聚合物共混的意义
(1)聚合物共混物可以消除和弥补单一聚合物性能 上的弱点,取长补短,得到综合性能优良、均衡 的理想聚合物材料; (2)使用少量的某一聚合物可以作为另一聚合物的 改性剂,改性效果明显; (3)改善聚合物的加工性能; (4)可以制备一系列具有崭新性能的聚合物材料。
聚合物共混改性原理
非晶态高聚物-高聚物 共混物的动态力学性能 温度谱随组元高聚物混 溶性的变化示意图
聚合物共混改性原理
2、示差扫描量热法(DSC) DSC法是测量样品的热焓随温度而变化的情况。 在玻璃化温度附近,聚合物的比热有急剧变化,据 此即可测定聚合韧的玻璃化温度。DSC法所用试样
量很少,测量快,灵敏度较高,所以使用极广泛。
1949年, Huggins和Flory从液-液相平衡的晶格理论出发,导出了 △Hm和△Sm的表达式,得出聚合物二元混合物的热力学表达式:
Gm RT (n1 ln 1 n2 ln 2 12n12 )
第8章-聚合物填充体系与短纤维增强体系分析
内容提要:首先介绍填充剂与增强纤维的种类、性能, 填充剂的表面改性与界面特性,然后分别介绍聚合物增强体 系、填充阻燃体系和天然材料/聚合物复合体系。
聚合物的填充体系,是指在聚合物基体中添加与基体在 组成和结构上不同的固体添加物制备的复合体系。这样的添
加物称为填充剂,也称为填料。“填充”一词有增量的含义。 某些填充剂,确实是主要作为增量剂使用的。但随着材料科 学的发展,越来越多的具有改性作用或特殊功能的填充剂被 开发出来。
云母粉呈鳞片状形态,在其长度与厚度之比为100以上时, 具有较好的改善塑料力学性能的作用。在PET中添加30%的云母 粉,拉伸强度可由55MPa提高到76MPa,热变形温度也有大幅度 提高。
云母粉在橡胶制品中应用,主要用于制造耐热、耐酸碱及电
绝缘制品。
8
(5) 二氧化硅(白炭黑)
用作填充剂的二氧化硅大多为化学合成产物,其合成方 法有沉淀法和气相法。二氧化硅为白色微粉,用于橡胶可具 有类似炭黑的补强作用,故被称为“白炭黑”。白炭黑是硅 橡胶的专用补强剂,在硅橡胶中加入适量的白炭黑,其硫化 胶的拉伸强度可提高l0~30倍。白炭黑还常用作白色或浅色 橡胶的补强剂,对NBR和氯丁胶的补强作用尤佳。气相法白 炭黑的补强效果较好,沉淀法则较差。
粒度较细的滑石粉可用作橡胶的补强填充剂。超细滑石 粉的补强效果可更好一些。
7
(4) 云母
云母是多种铝硅酸盐矿物的总称,主要品种有白云母和金云 母。云母为鳞片状结构,具有玻璃般光泽。云母经加工成粉末, 可用作聚合物填充剂。云母粉易于与塑料树脂混合,加工性能良 好。
云母粉可用于填充PE、PP、PVC、PA、PET、ABS等多种塑 料,可提高塑料基体的拉伸强度、模量,还可提高耐热性,降低 成型收缩率,防止制品翘曲。云母粉还具有良好的电绝缘性能。
共混改性名词解释
名词解释1、聚合物共混与聚合物共混物——聚合物共混是指两种或两种以上均聚物或共聚物的经混合制成宏观均匀的材料的过程。
聚合物共混物是指两种或两种以上均聚物或共聚物的经混合制成宏观上均匀的高分子聚合物的混合物。
2、相容性与混溶性——相容性是指满足热力学相容条件,在任何比例混合时,都能形成分子分散的、热力学稳定的均相体系。
即在平衡态下聚合物大分子达到分子水平或链段水平的均匀分散。
混溶性,是指共混物各组分之间彼此相互容纳的能力。
表示了共混组分在共混中相互扩散的分散能力和稳定状态,是指非相容聚合物共混物中各成分物质的界面结合能力。
3、NG机理和SD机理——处于介稳定的体系,相分离不能自发进行,需要成核作用,包含核的形成和核的增长两个阶段,这样的相分离过程机理称为成核-增长分离过程机理即NG机理。
处于不稳定的体系,在相分离过程中,物质向浓度较大的方向扩散,即反向扩散来完成的,称为旋节分离,即为SD机理。
4、分散相与相畴——在共混物中两个或多个相中只有一个连续相,此连续相为分散介质,称之为基体,其他分散于连续相中的相是分散相。
在复相聚合物体系中,每一相都以一定的聚集态存在,因为相之间的交错,所以连续性较小的相或不连续的相就被分成很多的微小区域,这种微小区域称为相畴。
5、银纹与银纹化、剪切与剪切带——玻璃态聚合物在应力作用下会产生发白现象,这种现象叫应力发白现象,亦称银纹现象,这种产生银纹的现象也叫银纹化。
聚合物中产生银纹的部位称为银纹体或简称银纹。
聚合物在一定的剪切应力作用下,可产生明显的局部的形变,这种形变称为剪切形变,由剪切形变所构成的形变区域称为剪切带。
6、应变软化与应变硬化——应变软化就是材料对应变的阻力随应变的增加而减小,是由于在较大应变时大分子链各物理交联点发生重新组合形成有利于形变发展的超分子结构的缘故。
当形变值很大时,这种大形变能导致大分子链的明显取向,造成应变硬化现象。
7、热塑性弹性体:在常温下显示橡胶状弹性、在高温下能够塑化成型的一类新型高分子材料,是一类介于橡胶和塑料之间的弹性体材料,如SBS,SIS等。
聚合物共混改性原理要点整理
名词解释1.【聚合物共混】:是指两种或两种以上聚合物经过混合制成宏观均匀物质的过程,能增加体系的均匀性。
2.【高分子合金】:是指含多种组分的聚合物均相或多相体系,包括聚合物共混物和嵌段、接枝共聚物,一般为具有较高力学性能的工程塑料。
3.【复合材料】:是指由两个或两个以上独立的物理相组成的固体产物,其组成包括基体和增强材料两部分。
4.【杂化材料】:两种以上不同种类的有机、无机、金属材料,在原子、分子水平上杂化,产生具有新型原子、分子集合结构的物质,含有这种结构要素的物质为杂化材料。
5.【分布混合】:又称分配混合,是混合体系在应变作用下置换流动单元位置而实现的。
指分散相粒子不发生破碎,只改变分散相的空间分布、增加随机性的混合过程。
6.【分散混合】:是指既增加分散相空间分布的随机性,又减少分散相粒径,改变分散相粒径分布的工程。
7.【总体均匀性】:是指分散相颗粒在连续相中分布的均匀性,即分散相浓度的起伏大小,一般采用数理统计的方法进行定量表征。
8.【分散度】:是指分散相颗粒的破碎程度,一般以分散相平均粒径来表征。
9.【平衡粒径】:在分散混合中,由于分散相大粒子更容易破碎,所以共混过程是分散相粒径自动均化的过程,这一自动均化的过程的结果,是使分散相例子达到一个最终的粒径。
即“平衡粒径”。
10.【相逆转】:聚合物共混物可在一定的组成范围内发生相的逆转,原来是分散相的组分变成连续相,而原来是连续相的组分变成分散相。
在相逆转的组成范围内,常可形成两相交错、互锁的共连续形态结构,使共混物的力学性能提高。
1简答题1.试述共混物形态结构形态的3种基本类型?并简述其特点。
答:主要分为(1)均相体系,共混物中只有一个连续相;(2)两相体系,且一相为连续相,一相为分散相,分散相分散在连续相中;(3)两相体系,两相都为连续相,相互贯穿。
2.试述均相体系的判定方法?答:可以利用玻璃化转变温度(T g)作为判定标准。
如果两种聚合物共混后,形成的共混物具有单一的T g,则就可以认为该共混体系为均相体系;如果形成的共混物具有两个T g,则就可以认为该共混物为两相体系。
塑料共混改性工艺--涉及挤出机、螺杆元件排布
塑料共混改性工艺---涉及挤出机、螺杆元件排布塑料混合是一种有效的将多种组分的原料加工成更均匀、更实用的产品过程。
这一过程中主要发生的是物理反应,当然也存在少量的化学反应。
特殊的,例如反应挤出,我们所期望的更多是化学反应而非物理反应。
而无论是物理还是化学反应,都要求材料的充分混合辊炼,因此就有了共混设备这一有力的加工手段执行者。
先确认几个概念:1.预处理:我们通常说的预处理很多时候是指材料的水分预处理。
由于聚合物和添加剂都具有吸水性,而温度波动和仓库的潮湿都有可能是原材料吸湿,而这正是我们所不希望看到的。
熔融聚合物,如尼龙,聚酯等对水分极其敏感的材料,水分的存在将导致他们的降解,从而导致了各项性能指标的恶化甚至是导致加工失败。
目前比较实用的干燥方式多为热风循环干燥形式。
2.预混合:对于单螺杆而言,吃料能力很大程度上影响了混合效果,很多时候即使是单纯的颜色处理都会因为混合的不均匀而导致材料同批次的前后色差以及后期加工的颜色不均一性;而对于双螺杆,虽然吃料能力基本上不影响混合效果,而且为了计量精确,理论上是应该所有组分在喂料口单独计量、单独喂入。
但是这就意味着需要多个精确喂料器,而这对共混厂家而言是非常的不经济的,因此我们在加工双组分及多组分的材料前,大多都进行预混合。
目前的混合设备多为立式高速搅拌机。
3.分散混合:分散混合是将组分的粒度尺寸减小,将固体块或者聚集体破碎成微粒,或者是不相容的聚合物的分散相尺寸达到所要求的范围。
这一过程通常是依靠大厚度大角度的捏合盘来实现。
4.分配混合:分配混合是使个组分的空间分布达到均匀。
形象点说也就是“平均主义”,保证混合设备内通过分配元件的熔体中各组分的分布均匀。
这个通常是靠窄片小角度捏合盘来实现。
极端的情况先会采取齿轮分配元件来实现。
5.停留时间分布:同批次物料在通过喂料口后通过分散,分布混合最终挤出离开混合设备的时候长短的分布。
这一指标最主要的意义在于评估设备的自洁能力。
共混改性理论5
2、组分配比的影响
• 分散相的体积分数增大可以使平衡粒径增 大。 • 当组分配比发生变化时,很有可能会影响 到共混体系的其它特性。如果出现这样的 情况,分散相含量增大就不一定总是使分 散相粒径增大了。
3、相容性的影响
• 共混物的形态,可作为共混组分之间的相 容性的一种表征。完全相容的聚合物对可 形成均相共混体系;部分相容的聚合物对 可形成两相体系。对于部分相容聚合物形 成的两相体系,共混物的形态可体现组分 之间相容性。相容性较好的聚合物对,易 于形成分散相分散较好的共混物。 • 对于相容性不好的聚合物对,可以采取措 施使之相容化。常用的改善相容性的方法 是添加相容剂。添加适当品种的相容剂, 可以使共混体系分散相尺寸明显变小。
1、共混组分配比的影响
• 共混组分之间的配比,是影响共混物形态的一个重要因素, 亦是决定哪一相为连续相,哪一相为分散相的重要因素。 • 在实际共混物中,组分含量多的一相未必就一定是连续相; 组分含量少的一相未必就一定是分散相。 • 基于粒径相等和六方紧密填充建设,推导得最大填充分数 (体积分数)为 74 %。由此可以推论,某一组分含量(体 积分数)大于 74 %时,这一组分就不可能再是分散相,而 将是连续相。同样,当某一组分含量(体积分数)小于 26 %时,这一组分不可能再是连续相,而将是分散相。当组分 含量介于 26 %与 74 %之间时,哪一组分为连续相,将不仅 取决于组分含量之比,而且还要取决于其它因素,主要是两 个组分的熔体黏度。 • 在熔融共混制备的两相共混体系中,随着组分含量的变化, 在某一组分的形态由分散相转变为连续相的时候,或反之, 由连续相转变为分散相的时候,会出现一个两相连续(“海 一海”结构)的过渡形态。而产生这一“海一海”结构形态 的组分含量,则与共混体系组分的特性有关,并不一定都发 生在体积比为 50 / 50 时。
PPO的改性与应用
PPO的特点、改性方法与应用高分子09-1班姓名:管永学号:07摘要未经改性的聚苯醚(PPO) 树脂具有良好的力学性能、电性能、耐热性、阻燃性以及化学稳定性等,但是它的耐溶剂性差、制品容易发生应力开裂、缺口冲击强度低,另外它存在一个致命的弱点----熔体粘度高,加工成型性极差,纯PPO 树脂不能采用注射方法成型,这样大大限制了它的应用。
为了克服这些缺点,或赋予其新的性能,人们对PPO进行了多种改性。
本文主要介绍了PPO的改性方法:有物理(填充、共混、增强和微发泡等) 和化学(聚苯醚的端基改性、共聚、嵌段、接枝和网化等) 改性两种。
关键词:PPO改性;物理改性;化学改性;正文聚苯醚,别名聚2,6-二甲基-1,4-苯醚;聚亚苯基氧,英文名Poly-phenylene oxide 简称PPO。
它是一种耐较高温度的工程塑料。
聚苯醚及改性聚苯醚以其优良的性能和众多品种,很快发展成为当今世界五大工程塑料之一。
1 聚苯醚的优点和缺点优点[1](l) 物理机械性能聚苯醚分子链中含有大量的苯环结构,分子链刚性较强,机械强度高,具有较高的硬度和韧性;蠕变小,尺寸稳定性优良。
(2) 热性能聚苯醚具有较高的耐热性,玻璃化温度达211℃,熔点为268℃,热分解温度为330℃。
(3) 电性能聚苯醚分子结构中无强极性基团,在很宽的温度及频率范围内,能保持良好的电性能,其介电常数和介电损耗角正切在工程塑料中最小,且不受温度、湿度及频率的影响。
(4 )化学性能聚苯醚为非结晶树脂,分子结构中无可水解的基团,耐水性好,制品在高压蒸汽中反复使用其性能变化不大,但能溶于卤代脂肪烃和芳烃中。
缺点( 1) 极易流动,单纯树脂难以注射成型;( 2) 玻璃纤维增强及填充后制品表面粗糙,光泽度差;( 3) 成本高,与通用工程塑料相比价格高出两倍;( 4) 冲击强度差,制品发脆,熔接强度也不好;( 5) 由于PPS具有优异的耐化学药品性,所以其涂装性与着色性不理想。
第二章 共混改性
2.1概述
2.1.1共混改性的目的与作用
④利用共混法可以制备一系列具有崭新性能的新型高 聚物材料。 例1 将聚烯烃与壳聚糖共混可以获得具有抗菌功能的材 料,将硅树脂加入聚烯烃等聚合物材料可以获得自 润滑性良好的聚合物材料,将导电性聚苯胺聚乙烯 或聚酰胺共混可以获得导电性的聚乙烯和聚酰胺。
10
2.1概述
2.1概述
2.1.1共混改性的目的与作用
例2 另一个典型例子是在PA中添加PTFE提高其滑动性, 据资料介绍,当PTFE填充量大于10%时候,PA的减摩 耐磨性明显得到提高. 例3 POM具有极好的力学、化学和电性能,广泛应用于汽 车、电子、精密机械和建材。 国内采用冷压-热烧结工艺研制出一系列不同PTFE含 量的的POM/PTFE的共混物,可以明显改善摩擦磨损 性能、韧性、抗蠕变性和外观。 6
2.1概述
2.改性应追溯到1846年,当时,Hancock (汉考克)将天然橡胶与古塔波胶混合制成了雨衣, 这可谓是人类对聚合物共混的初步尝试。 大约一百年后,第一例成功的聚合物共混物PVC/ NBR在美国投产并申请了专利 1942年,聚合物共混物--聚氯乙烯(PVC)与丁腈橡 胶(NBR)的共混物首先投入工业化生产,揭开了聚 合物共混物的序幕。 1942年,NBR与苯乙烯-丙烯睛共聚物(SAN)的机械 共混物(即A型ABS树脂)的问世更引起人们极大的 关注并开拓了聚合物共混改性这一领域。 18
2.1概述
2.1.1共混改性的目的与作用
例2 超聚合物量聚乙烯(Ultra-high molecular weight polyethylene)是一种线性结构的具有优异综合性 能的热塑性工程材料。 具有很好的抗冲击性、耐磨损性、耐化学腐蚀性、 耐应力开裂、优良的电绝缘性、安全卫生、自身润 滑性等特性。 但其流动性极差,难以加工成型,而将低密度聚乙 烯或高密度聚乙烯与超聚合物量聚乙烯共混可以大 9 大改善其可加工性。
我国聚甲醛生产和改性发展现状
我国聚甲醛生产和改性发展现状摘要:聚甲醛(POM),也称为聚甲醛,是五种通用塑料之一。
其年产量仅次于尼龙(PA)和聚碳酸酯(PC)。
POM的主要分子结构链为2CH2O)n-,没有侧链,具有高的结构规整性、高的碳氧键合能、高的相干能密度,是一种高度结晶流动的热塑性聚合物。
关键词:聚甲醛改性分子链聚甲醛在制造的技术上的表现相当突出,并且使用的范围也是相当的广阔的。
同时,聚甲醛对中国工艺品制造方面也有着一定的重要作用。
1聚甲醛用途1.1汽车行业聚甲醛在车辆制造业中的需求量很大。
采用聚甲醛所生产的汽车零件,有着降低润滑点、更加耐磨、方便维护、改善设备功能、增加制造质量、降低材料成本、节省铜材等的效果。
聚甲醛在汽油领域中,主要用于生产汽油泵、汽化器、汽车输油管、汽油驱动阀、汽车万向节轴承、汽油刹车外壳壳体、汽车车窗提升机、车辆安全带扣、汽车门把手、门锁座等。
而在重型发动机领域,聚甲醛则主要用来生产浮动块、压力传讯器外齿轮、钢板簧片减震外壳壳体、推力棒球座等。
1.2机械制造行业在机械生产中,POM可用于生产机床电机开关、通用润滑油导轨、研磨碗设计、圆柱形研磨机和液压套筒等。
农业机械:手动喷洒部件、与播种机的连接和联运部件、移动挤奶部件、排水和灌溉泵壳、进水阀座、接头和管道等。
此外,它还可用于气体载体、输送管道、浸在油脂中的机械部件和标准电阻板等的包装。
2我国聚甲醛产能现状在甲醇产能严重过剩的情况下,该国启动了大量聚甲醛项目,这大大促进了苯丙胺的消化和吸收。
目前,国内外使用的POM材料也主要来自英国富益国际工程有限公司和波兰ZAT有限公司。
3我国聚甲醛改性现状聚合物树脂改性技术包括物理改性(混合、填充、增强、微发泡)和化学改性(共聚、嵌段、接种、渗透网),聚甲醛也不例外。
然而,目前的改性技术仍然基于物理改性,相对困难、简单且易于实施。
目前,世界上生产的聚甲醛产品有四五百种,改性高级聚甲醛产品的市场使用率已达30%以上,而中国海外公司已开始缓慢专注于改性高级产品的生产。
PP改性知识大全
P是一种常用的塑料原料,也是常用的改性原料之一,对其改性方法可分为填充改性、增强增韧改性、共混改性及功能性改性四种,以下为您详细介绍。
填充改性无机填料:云母、碳酸钙、滑石粉、硅灰石、炭黑、石膏、赤泥、立德粉、硫酸钡等;有机填料:木粉、稻壳粉、花生壳粉等。
:云母的增加量为40%以下,粒径在300 目以上;钛酸酯偶联剂用量为云母的30%左右;硅烷偶联剂用量较少,假设用丙烯酸表面办理剂时,用量可加大到5-10%。
云母的长径比越大,增强收效越好。
采用静态混杂器、销钉型混炼螺杆、双螺杆挤出机等有助于提高填充收效。
硅灰石的用量在30-40%,粒径采用300-325 目,填充后的复合资料拉伸强度降低、缺口冲击强度提高。
其他滑石粉、赤泥、重质碳酸钙等填充PP时,粘度增加较大。
随切变速率增加,粘度增大现象逐渐减弱,一般可用表面办理剂如聚乙烯蜡、脂肪酸盐等及采用双螺杆挤出机。
用有机填料木粉、玉米棒芯时,应选择长径比大于15 的为好,可改进韧性和负荷畸变度。
低填充时:滑石粉含量10-20%时, PP复合资料可取代ABS或高抗冲聚苯乙烯;高填充时:滑石粉含量高出30%,只主要用于热变形温度、模量等性能要求较高的制品。
不相同粒度碳酸钙在HDPE中的临界值碳酸钙粒径临界值 /%碳酸钙粒径临界值/%无增韧作用增韧收效 : 随粒径的减小增韧收效越来越好增强增韧改性增强资料:玻璃纤维、石棉纤维、单晶纤维和铍、硼、碳化硅等,别的填料改性中的云母、滑石粉办理好时,也能作为增强资料用。
增韧配方设计本卷须知:1、弹性体与树脂的相容性要好塑料的极性大小为:纤维素塑料> PA> PF>EP>PVC>EVA>PS>PP/HDPE/LDPE/LLDPE;弹性体的极性大小为:丁晴胶>氯丁胶>丁苯胶>顺丁胶>天然胶>乙丙胶。
高极性树脂采用高极性弹性体,低极性树脂采用低极性弹性体。
2、相容剂:适合的相容剂,可提高两者的相容性。
常用的相容剂为树脂或增韧剂的马来酸酐或丙烯酸类接枝物。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分
类
(1) 轻质碳酸钙:这是用化学方法制造的碳酸钙,学名叫沉降性碳酸钙。 (2) 重质碳酸钙:是指由石灰石经选矿、粉碎、分级、表面处理而成的碳酸钙。 它不象轻质碳酸钙那样,经过化学反应制得。重质碳酸钙也叫三飞粉,是无味、 无嗅的白色粉末,几乎不溶于水。 (3) 胶质碳酸钙:又称为轻质活性碳酸钙,是一种白色细腻、软质粉末,与轻 质碳酸钙不同之处,是其粒子表面吸附一层脂肪酸皂,使碳酸钙具有胶体活化性
5
填料的种类及特性
• 填料也称为填充剂,是高分子材料中的重要固体添加剂
之一,将其添加入聚合物中可增加体积、降低成本,同 时还能改善聚合物某些方面性能如强度、刚度、热稳定 性等。尤其是一些功能性填料还可赋予高分子材料特殊
的电、磁、阻燃、耐磨、耐辐射等性能,拓宽其应用领 域,填料已被认为是一种功能性添加剂。
21
单质
• 炭黑与碳纤维 • 金属粉末及纤维
22
主要的有机填料
• 木粉 • 淀粉 • 合成纤维
23
工业废渣
• • • • 粉煤灰玻璃微珠 白泥 红泥 其它
24
晶 须
• 晶须是单丝形式的小单晶体,可用于制备具有优良物理力学性能的复合材 料。 • 用作晶须的材料可以是单质如C、Fe、Ni、Cu等,也可以是无机化合物如 Al2O3、SiC、BC等。大多数晶须是由气相反应生产的。
18
其他硅酸盐填料
• • • • • 粘土 云母 硅灰石 玻璃纤维 石棉
19
硫酸盐
• 天然硫酸钡矿称为重晶石,通过化学方法制成的称之为沉淀硫酸钡。硫 酸钡的分子式为BaSO4。重晶石属斜方晶系,其密度为4.25~4.5g/cm3, 莫氏硬度为3.0~3.5,一般为白色或灰色,而沉淀硫酸钡的白度可达到
•
溴化合物制造工艺成熟,溴的来源充足,生产成本较低,就性能价格比而言, 溴系阻燃剂是其他阻燃剂难以抗衡的。
•
由于易产生二噁英等致癌物质,目前应用已收到限制。
31
•
溴系阻燃剂的严重缺点是降低被阻燃基材的抗紫外线稳定性,燃烧时生 成较多的烟、腐蚀性气体和有毒气体。
•
应用最广泛的多溴二苯醚及用其阻燃的高聚物的热裂解和燃烧产物中含 有毒物多溴代二苯并二嗯烷及多溴代二苯并呋喃 。
一﹑填料的几何形态
部分矿物颗粒的几何形状与尺寸对比特征
8
• 对于片状填料,表征其几何形态的重要参数是径厚比,即片状颗粒的 平均直径与厚度之比。 • 对于纤维状填料,往往采用长径比的概念,即纤维状颗粒的长度与平 均直径之比。 • 粒径是表征填料颗粒粗细程度的主要参数。一般来说填料的颗粒粒径 越小,假如它能分散均匀,则填充材料的力学性能越好,但同时颗粒 的粒径越小,要实现其均匀分散就越困难,需要更多的助剂和更好的 加工设备,而且颗粒越细所需要的加工费用越高,因此要根据使用需 要选择适当粒径的填料。
27
主要的阻燃性填料品种
(1)有机阻燃填料
• 氯系阻燃剂 • 溴系阻燃剂
• 氮系阻燃剂
28
溴系阻燃剂
• 溴系阻燃剂是目前世界上产量最大的有机阻燃剂之一。据统计, 1998年全球溴系阻燃剂的用量已超过200 kt,约占阻燃剂总用 量的约23%,有机阻燃剂总用量的约40%。
29
阻燃剂作用机理
• 含卤阻燃剂通过阻止发生在气相中的自由基链机理实现阻燃。 可燃性气体和氧气的反应:
32
主要品种
十溴二苯醚是用途最广泛的阻燃剂。
• 其他惰性溴系阻燃剂还有六溴苯、乙撑双(四溴邻苯二甲酰亚 胺) 、1,2-双(二溴降冰片基二碳酰亚胺)乙烷、2-双(四溴邻苯二 甲酰亚胺)乙烷、十四溴二苯氧基苯、五溴甲苯、1,2-双(五溴苯 氧基)乙烷等 。
行测定。
• 表面自由能
填料颗粒表面自由能大小关系到填料在基体树脂中分散的难易,当比表面积一定时, 表面自由能越大,颗粒相互之间越容易凝聚,越不易分散。在填料表面处理时,降低其 表面自由能是主要目标之一。
10
填料的物理化学性质
1.密度 2.吸油值 3.硬度
4.颜色及光学特性 5.热性能 6.电性能 7.磁性能 8.阻燃性能
阻燃剂首先分解为自由基,卤素自由基从基质RH夺取氢形成卤化氢。
通过与高能自由基H· 和OH· 反应并以低能自由基X· 进行取代,即阻止了自 由基链反应机理。
30
•
溴系阻燃剂的效率高,材料中所需阻燃剂用量较低,从而不致过多恶化基材
的物理-机械性能及电气性能。
•
由于C-Br键的键能较低,大部分溴系阻燃剂在200~300℃下分解,此温度范 围与很多常用聚合物的分解温度重叠;而且,很多溴化合物可在相应于火灾 早期材料温度下快速分解,所以火灾一发生,气相中的HBr浓度即比较高,这 赋予溴系阻燃剂比大多数氯系阻燃剂更高的阻燃效率。
16
滑石粉
• 滑石是一种含水的、具有层状结构的硅酸盐矿物,英文名Talc,化学式: Mg3(Si4O10)(OH)2。其化学组成:MgO为31.8%,SiO2为63.37%,H2O为4.7 %,常含少量的Fe、Al等元素。 • 滑石的密度为2.7~2.8g/cm3,吸油值20%~40%。硬度是矿物填料中最小 的一种,莫氏硬度为1,有柔软滑腻感。其颜色有白、灰绿、奶白、淡红、
浅蓝、浅灰等,有珍珠或脂肪光泽。 • 在380~500℃时可失去缔合水,800℃以上时则失去结晶水。滑石在水中略 呈碱性,pH值为9.0~9.5。 • 滑石具有层状结构,相邻的两层靠微弱的范德华力结合。在外力作用时, 相邻两层之间极易产生滑移或相互脱离。因此滑石颗粒结构基本形状是片 状或鳞片状。
17
• 它是提高产品技术含量,增加其附加值的最适宜的途径。
4
塑料填充改性技术进展
• 工业矿物填料的细化和微细化 • 复合材料界面工程和填料的表面处理 • 混合与混炼设备及工艺 • 刚性粒子增韧
• 光钙型环境友好塑料材料 • 煅烧煤系高岭土在农用塑料薄膜中的应用 • 抗菌塑料 • 新型增强、阻燃纤维——镁盐晶须(M-HOS)
石粉碎、分级、精制或用化学反应合成的二氧化硅都可作为塑料填料。一般 天然硅石价廉、粒径较大,而合成出来的二氧化硅价格较高、粒径小,是一 种超微细粒子填料。 • 合成出来的二氧化硅呈白色无定形微细粉状、质轻,其原始粒子在0.3微米以 下,吸潮后聚合成细颗粒,有很高的绝缘性,不溶于水和酸,溶于苛性钠及
氢氟酸。在高温下不分解,多孔,有吸水性,比表面积很大,具有类似碳黑 的补强作用。所以也把这种合成出来的二氧化硅叫做白炭黑。 • 二氧化硅密度为2.65 g/cm3,莫氏硬度为7,在热塑性塑料中起到了增强、提 高硬度、降低制品成型收缩率、改善制品尺寸稳定性,改善电性能;在橡胶 工业中是一种主要的补强剂。
6
填料的分类
• 填料的分类方法很多,一般可分为无机填料和有机填料
两大类。常见的无机填料包括碳酸钙、滑石粉、云母、 高岭土、二氧化硅、炭黑等,有机填料包括木粉、棉短 绒、麦秆等。也可根据化学组成将填料分为氧化物、盐、
单质和有机物四大类,或Байду номын сангаас据填料的几何形状分为球形、 无定形、片状、纤维状等。
7
填料的性质
11
常用填料品种及特性
一﹑碳酸盐
• 碳酸盐类型的填料是塑料填料中最重要的一类。它以碳酸钙为主, 分子式为CaCO3。 • 碳酸钙分为天然矿石磨碎而成的重质碳酸钙和用化学法生产的沉
淀碳酸钙又称轻质碳酸钙。 • 两种天然碳酸钙矿石来源于石灰岩。 • 重质碳酸钙密度为2.6~2.94g/cm3,轻质碳酸钙密度为2.4~2.6g /cm3。
• • 还有一部分特殊无机填料具有独特的阻燃效果。 目前聚合物阻燃改性使用的阻燃剂主要是有机阻燃剂,其中有相当数量的有机阻 燃剂熔点高、热分解温度高、化学稳定性好、在聚合物成型加工过程中不发生相 变,也不同其他添加剂或聚合物基体树脂发生任何化学反应,因此这类有机阻燃 剂也可以被视为一种惰性有机填料,制备含有这类阻燃剂的聚合物的过程及方法 同于其他方式的聚合物填充改性。
90%以上。 • 硫酸钡能吸收X射线和γ射线,可用于防护高能辐射的塑料材料。由于其 密度高,适用于要求高密度的填充塑料材料,如音响材料、鱼网网坠等, 此外由于硫酸钡粒子球形度高,填充硫酸钡的塑料的表面光泽要优于使 用同等份数的其它无机矿物填料的填充塑料。
20
氧化物—二氧化硅
• 二氧化硅在地壳中分布最多,占地壳氧化物的60%左右,大部分形成硅酸盐 矿物岩石,一部分是以石英、硅石、硅砂、无定形硅石堆积而成。将这些岩
•
晶须既有硼纤维的高弹性模量(400~700GPa)和强度,又具有玻璃纤维的伸 长率(3~4%)。缺点是价格昂贵,使应用受限。
•
晶须对塑料的增强效果十分显著,通常如果晶须能被塑料熔体充分润湿并 合理取向,塑料的抗拉强度可提高10~20倍。从价格和性能两方面考虑, 晶须目前主要还是应用于航空航天、航海、军工等高技术领域。
填料加入到塑料中后对材料的力学性能和耐热性能有显著 贡献。
2
填充及增强改性的意义
• 填料不仅具有降低聚合物材料的成本的作用,更重要 的是改善聚合物的某些性能,甚至赋予聚合物材料某 些特殊功能,从而拓展聚合物的应用领域。同时,某
些填料的应用使聚合物材料的环保性增强。
3
填充增强改性的重要性
• 它是获得具有独特功能新型高分子化合物最便宜的途径。 • 它是在保证使用性能要求的前提下降低塑料制品成本最有 效的途径。
第五章 热塑性聚合物的填充与 增强改性
1
• 填充改性就是在塑料成型加工过程中加入无机填料或有机
填料,使塑料制品的原料成本降低达到增量目的,或使塑 料制品的性能有明显改变,即在牺牲某些方面性能的同时,
使人们所希望的另一些方面的性能得到明显的提高。 • 增强改性往往是通过使用玻璃纤维、碳纤维、金属纤维以 及云母、硅灰石等具有特大长径比或径厚比的填料,这些