数学人教版六年级下册鸽巢问题例1、例2教学设计

合集下载

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】一、教材分析“鸽巢问题”是六年级下册教学内容,“鸽巢原理”又称“抽屉原理”,是组合教学中最基本最简单的原理之一,灵活多变,应用广泛。

教学“鸽巢问题”,教材安排了两个例题。

这节课教学内容是例1。

例1把4支铅笔放进3个笔筒中的操作情景,介绍“鸽巢原理”的最基本形式。

初步接触“鸽巢问题”对于学生来说,有一定的难度。

教学时,应放手让学生自主探索。

教师要引导学生对教材上提供的两种方法进行比较,思考枚举的方法有什么优越性和局限性,假设的方法有什么独特的优点,使学生逐步学会运用一般性的数学方法来思考问题。

二、教学内容教材第68页例1及“做一做”第1、2题。

三、教学目标1.让学生经历“鸽巢问题”的探究过程,通过数学活动理解“鸽巢原理”,学会简单的“鸽巢问题”分析方法,并解决一些简单问题。

2.结合具体的实际问题,通过实验、观察、分析、归纳等数学活动使学生经历“鸽巢原理”的形成过程,体会和掌握逻辑推理思想和模型思想,提高解决实际问题的能力。

3.在主动参与数学活动的过程中,让学生感受到数学的魅力,提高学习数学的兴趣。

四、教学重难点教学重点:能用“鸽巢原理”解决最基本的相关实际问题。

教学难点:初步理解“鸽巢原理”,能口头表达推理过程。

五、教学准备一副扑克牌、课件等。

六、教学过程(一)引入新知1.抢凳子游戏。

2.抽扑克牌游戏。

教师:这类问题在数学上称为鸽巢问题(板书)。

因为52张扑克牌数量较大,为了方便研究,我们先来玩数量较小的抢凳子游戏。

【设计意图】从学生喜欢的“抢凳子”“魔术”入手,设置悬念,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。

(二)探究新知1.教学例1。

(1)把3枝铅笔放进2个笔筒中。

想一想:可以怎样放?有几种不同的放法?(不考虑笔筒摆放顺序,学生可用笔盒当笔筒)摆一摆:先用来学具摆一摆,然后用自己喜欢的方法表示出来,如画一画,写一写。

六年级下册数学人教版鸽巢问题(例1)教学设计

六年级下册数学人教版鸽巢问题(例1)教学设计
3.合作交流:学生在合作交流中,需要学会倾听、表达、讨论,以提高团队协作能力。
4.学习兴趣:部分学生对数学学习兴趣不足,需要通过生动有趣的情境和实际问题,激发他们的学习兴趣。
针对以上学情,教师在教学过程中应关注学生的个体差异,因材施教,创设有趣的学习情境,引导学生主动参与,培养他们的抽象思维、问题解决能力和合作精神,提高学生的数学素养。同时,关注学生的学习情感,激发学习兴趣,使他们在轻松愉快的氛围中学习数学。
6.课后作业,分层设计
根据学生的个体差异,设计不同难度的课后作业,使学生在课后能够有针对性地巩固所学知识。
7.教学评价,关注成长
采用多元化评价方式,关注学生在知识掌握、能力提升、情感态度等方面的全面发展。
四、教学内容与过程
(一)导入新课,500字
1.教师出示一张图片,展示一群鸽子飞入鸽巢的场景,并提出问题:“同学们,你们观察这张图片,如果每个鸽巢里只能住一只鸽子,那么这群鸽子都能找到自己的家吗?”
1.必做题:
a.请学生运用鸽巢原理,解决以下问题:一个班级有25名学生,每位学生都要参加至少一项体育项目,如果共有4项体育项目,证明至少有一项体育项目有7名或以上的学生参加。
b.设计一个生活中的鸽巢问题,并运用鸽巢原理给出解决方案。
2.选做题(任选一题):
a.如果有10个苹果要分给4个小朋友,每个小朋友至少要分到2个苹果,那么最多有多少个苹果可以分给其中一个小朋友?
(二)过程与方法
在教学过程中,采用以下方法:
1.创设情境:通过生活中的实例,引导学生发现鸽巢原理的实际意义。
2.探究式学习:鼓励学生独立思考,合作交流,通过实践操作,发现并验证鸽巢原理。
3.问题驱动:设置一系列有层次、有挑战性的问题,激发学生的学习兴趣,培养学生解决问题的能力。

人教版小学数学六下第五单元《鸽巢问题》教学设计(2课时)

人教版小学数学六下第五单元《鸽巢问题》教学设计(2课时)

— 1 —— 2 — 题。

设计意图:教师抓住学生“好玩”的心理特征,选择有悬念感的“魔术”为导入载体,通过师生、生生互动、调动课堂氛围,学生在游戏中感悟“魔”的魅力,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。

环节二:自主操作,探究新知。

教师活动师:52张牌实在是太多了,为了更好的研究,我们化繁为简,从小的数据开始研究,请同学们看大屏幕,自己默读屏幕内容。

(一)初步感知 课件出示课本例题1 把4支铅笔放进3个笔筒中,猜猜看,会有什么结果? 师:谁来跟我们分享一下你的想法? 师:“总有”一个笔筒是什么意思? (总有就是一定有的意思)。

师:“至少”有2支是什么意思?(至少就是最少的意思)学生活动学生通过读题,明确要求: 猜想把4支笔放入3个笔筒的结果 学生分享猜想结果:总有一个笔筒里至少有2支铅笔。

交流理解“总有”和“至少”的意思。

(二)实践操作,验证猜想。

师:行是知之始,知是行之成。

下面请大家自己动手操作,验证我们的猜想是否正确。

(教师巡视指导) 师:谁想分享自己的操作方法? 1.列举法 第1种分法: 第2种分法: 第3种分法: 第4种分法:师总结:你的动手能力很强,通过实际操 作列举的方法发现了这个结论。

(板书:列举法)师:还有不同的分法吗?师:谁还用不同的方法进行研究验证?(鼓励学生方法的多样性)画图展示:自主选择探究方法,通过实操验证猜想 学生上台展示操作方法,生生质疑、交流、评价。

预设: 分法①:一个笔筒放4支铅笔,剩下2个笔筒不放。

分法②:一个笔筒放3支,另一个笔筒放一支,最后一个笔筒不放。

分法③:两个笔筒分别放2支,另一个笔筒不放。

分法④:一个笔筒放2支,剩下2个笔筒各放一支。

学生深度全面思考,确定只有4种分法。

预设:学生运用画图策略解决实际问题师评价:你很了不起,在数学中,借助画图解决问题是一种很有效的手段,那同学思考一下,这位同学的画图思路核心是什么?师总结:他利用了数的分解法来研究这个问题,很会动脑。

2024年人教版数学六年级下册鸽巢问题教学设计推荐3篇

2024年人教版数学六年级下册鸽巢问题教学设计推荐3篇

人教版数学六年级下册鸽巢问题教学设计推荐3篇〖人教版数学六年级下册鸽巢问题教学设计第【1】篇〗第五单元数学广角——鸽巢问题第一课时课题:鸽巢问题教学内容:教材第68-70页例1、例22,及“做一做”的第1题,及第71页练习十三的1-2题。

教学目标:1、知识与技能:理解“鸽巢问题”的特点,理解“鸽巢原理”的含义。

使学生学会用此原理解决简单的实际问题。

2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜想、实验、推理等活动的学习方法,渗透数形结合的思想。

3、情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。

教学重难点:重点:引导学生把具体问题转化成“鸽巢问题”。

难点:找出“鸽巢问题”解决的窍门实行反复推理。

教学准备:课件。

教学过程:一.情境导入二、探究新知1.教学例1.(课件出例如题1情境图)思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。

为什么呢?“总有”和“至少”是什么意思?学生通过操作发现规律→理解关键词的含义→探究证明→理解“鸽巢问题”的学习过程来解决问题。

(1)操作发现规律:通过吧4支铅笔放进3个笔筒中,能够发现:不管怎么放,总有1鸽笔筒里至少有2支铅笔。

(2)理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。

(3)探究证明。

方法一:用“枚举法”证明。

方法二:用“分解法”证明。

把4分解成3个数。

由图可知,把4分解3个数,与枚举法相似,也有4中情况,每一种情况分得的3个数中,至少有1个数是不小于2的数。

方法三:用“假设法”证明。

通过以上几种方法证明都能够发现:把4只铅笔放进3个笔筒中,无论怎么放,总有1个笔筒里至少放进2只铅笔。

(4)理解“鸽巢问题”像上面的问题就是“鸽巢问题”,也叫“抽屉问题”。

在这里,4支铅笔是要分放的物体,就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”或“抽屉”,把此问题用“鸽巢问题”的语言描绘就是把4只鸽子放进3个笼子,总有1个笼子里至少有2只鸽子。

2024年人教版数学六年级下册鸽巢问题说课稿推荐3篇

2024年人教版数学六年级下册鸽巢问题说课稿推荐3篇

人教版数学六年级下册鸽巢问题说课稿推荐3篇〖人教版数学六年级下册鸽巢问题说课稿第【1】篇〗说教学目标:1、引导学生经历鸽巢原理的探究过程,初步了解鸽巢原理,会运用鸽巢原理解决一些简单的实际问题。

2、通过操作、观察、比较、列举、假设、推理等活动发展学生的类推能力,形成比较抽象的数学思维。

3、使学生经历将具体问题“数学化”的过程,初步形成模型思想。

说教学重点:经历鸽巢原理的探究过程,初步了解鸽巢原理。

说教学难点:理解鸽巢原理,并对一些简单的实际问题加以模型化。

说教学过程:一、创设情境、导入新课1、师:同学们,你们玩过扑克牌吗?这里有一副牌,拿掉大小王后还剩52张,5位同学随意抽一张牌,猜一猜:至少有几张牌的花色是一样的?(指名回答)2、师:大家猜对了吗?其实这里面藏着一个非常有趣的数学问题,叫做“鸽巢问题”。

今天我们就一起来研究它。

二、合作探究、发现规律师:研究一个数学问题,我们通常从简单一点的情况开始入手研究。

请看大屏幕。

(生齐读题目)1、教学例1:把4支铅笔放进3个笔筒里,不管怎么放,总有一个笔筒里至少有2支铅笔。

(1)理解“总有”、“至少”的含义。

(PPT)总有:一定有至少:最少师:这个结论正确吗?我们要动手来验证一下。

(2)同学们的课桌上都有一张作业纸,请同桌两人合作探究:把4支铅笔放进3个笔筒里,有几种不同的摆法探究之前,老师有几个要求。

(一生读要求)(3)汇报展示方法,证明结论。

(展示两张作品,其中一张是重复摆的。

)第一张作品:谁看懂他是怎么摆的?(一生汇报,发现重复的摆法)第二张作品:他是怎么摆的?这4种摆法有没有重复的?还有其他的摆法吗?说板书:(3,1,0)、(4,0,0)、(2,2,0)、(1,1,2)师:我们要证明的是总有一个笔筒里至少有2支铅笔,这4种摆法都满足要求吗?(指名汇报:第一种摆法中哪个笔筒满足要求?只要发现有一个笔筒里至少有2支铅笔就行了。

)总结:把4支铅笔放进3个笔筒中一共只有四种情况,在每一种情况中,都一定有一个笔筒中至少有2支铅笔。

人教版小学数学六年级下册《鸽巢问题》教学设计

人教版小学数学六年级下册《鸽巢问题》教学设计

人教版小学数学六年级下册《鸽巢问题》教学设计梅联小学陈华【教学内容】人教版六年级下册第68--69页«数学广角---鸽巢效果»例1、例2。

【教学目的】1.阅历鸽巢原理的探求进程,初步了解〝鸽巢原理〞,会用〝鸽巢原理〞处置复杂的实践效果。

2.经过操作、观察、比拟、罗列、假定、推理等活动开展先生的类推才干,构成比拟笼统的数学思想。

3.经过〝鸽巢原理〞的灵敏运用,提高先生处置数学效果的才干和兴味,感遭到数学文明及数学的魅力。

4.使先生阅历将详细效果〝数学化〞的进程,培育先生的〝建模〞思想。

【教学重点】阅历〝鸽巢原理〞的探求进程,初步了解〝鸽巢原理〞。

【教学难点】了解〝鸽巢原理〞,并对一些复杂实践效果加以〝模型化〞。

【教学进程】一、创设情境引入课题1.〝魔术〞扮演:规那么:一副牌,取出大小王,还剩52张,你们5人每人随意抽一张。

抽到牌后藏好,等教员来猜。

大家猜猜看至少有几个同窗的扑克牌花样是相反的?猜谜:教员一定的说:〝这5张牌中,至少有2张牌是同花样的。

教员猜的对不对?〞请5个同窗举起手中的牌让同窗们见证奇观。

大家表现这么好,我们再来玩游戏。

2.玩游戏游戏要求:教员喊〝一、二、三末尾〞以后,请你们5个都坐在椅子上,每团体必需都坐下。

3. 导入课题:刚才的〝魔术〞扮演和抢椅子游戏,这外面蕴藏着一个十分幽默的数学效果,这节课我们就一同来研讨这类效果,下面我们先从复杂的状况入手。

〝鸽巢效果〞。

〔板书课题〕二、协作探求发现规律〔一〕教学例1〔由枚举法引出假定法,初步〝建模〞——平均分。

〕出例如1把4支笔放进3个笔筒中,不论怎样放,总有一个笔筒里至少有2支笔。

1. 了解〝总有〞和〝至少〞的意思。

2.运用〝枚举法〞初步探求。

〔1〕把4支笔放进3个笔筒里,有几种不同的放法?自己入手在小组内摆一摆,画一画,说一说,把出现几种状况都记载上去。

〔2〕汇报展现不同的方法。

〔4〕解说:像这样逐一罗列出来的方法,在数学上叫枚举法。

数学人教版六年级下册鸽巢问题(例1、例2)说课及教学设计

数学人教版六年级下册鸽巢问题(例1、例2)说课及教学设计

《数学广角——鸽巢问题》说课稿伊宁市第十小学李芸一、说教材:本单元共有三个例题,例1、例2的内容,教材通过几个直观例子,借助实际操作向学生介绍鸽巢问题。

例3则是在学生理解鸽巢问题这一数学方法的基础上,会用这一原理解决简单的实际问题。

今天我讲的是例1和例2的内容,主要经历鸽巢问题的探究过程,重在引导学生通过实际操作发现、总结规律,这一内容为后面进一步学习鸽巢问题及利用这一原理解决问题做了有力的铺垫。

因此,这节课在本单元起着引领指航的重要作用。

二、说教学内容:本课时的教学内容为例1和例2。

例1介绍了较简单的“鸽巢问题”:只要鸽子数比鸽巢数多,总有一个鸽巢里至少放进2只鸽子。

它意图让学生发现这样的一种存在现象:不管怎样放,总有一个笔筒里至少放进2支铅笔。

例1呈现的是2种思维方法:一是枚举法,罗列了摆放的所有情况。

二是假设法,用平均分的方法直接考虑“至少”的情况。

通过例1两个层次的探究,让学生理解“平均分”的方法能保证“至少”的情况,能用这种方法在简单的具体问题中解释证明。

例2在例1的基础上说明:只要鸽子数比鸽巢数多,总有一个鸽巢里至少放进(商+1)个物体。

三、说教学目标:根据《数学课程标准》和教材内容,我确定本节课学习目标如下:知识与技能:初步了解鸽巢问题,会用鸽巢问题解决简单的实际问题。

过程与方法:经历鸽巢问题的探究过程,通过摆一摆、分一分等实践操作,发现、归纳、总结原理。

情感态度与价值观:通过鸽巢问题的灵活应用,感受数学的魅力。

教学重点:经历鸽巢问题的探究过程,发现、总结并理解鸽巢问题。

教学难点:理解鸽巢问题中“至少”的含义。

四、说教法、学法:教法上本节课主要采用了设疑激趣法、讲授法、实践操作法。

学法上学生主要采用了自主、合作、探究式的学习方式。

五、说教学流程:(一)、游戏激趣,初步体验。

今天在学习新课之前,老师先和大家玩一个“猜一猜”游戏。

(下面有3只鸽子,2个鸽巢,让3只鸽子回到家,学生帮鸽子找家,老师猜)通过游戏让学生初步的感知生活中的“鸽巢问题”。

人教版小学数学六年级下册《鸽巢问题》教学设计

人教版小学数学六年级下册《鸽巢问题》教学设计

人教版小学数学六年级下册《鸽巢问题》教学设计【教学内容】人教版六年级下册第68--69页《数学广角---鸽巢问题》例1、例2。

【教学目标】1.经历鸽巢原理的探究过程,初步理解“鸽巢原理”,会用“鸽巢原理”解决简单的实际问题。

2.通过操作、观察、比较、列举、假设、推理等活动发展学生的类推能力,形成比较抽象的数学思维。

3.通过“鸽巢原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。

4.使学生经历将具体问题“数学化”的过程,培养学生的“建模”思想。

【教学重点】经历“鸽巢原理”的探究过程,初步了解“鸽巢原理”。

【教学难点】理解“鸽巢原理”,并对一些简单实际问题加以“模型化”。

【教学过程】一、激趣导入引入课题1.抢凳子游戏游戏要求:老师喊“一、二、三开始”以后,请你们5个都坐在椅子上,每个人必须都坐下。

2. 导入课题:刚才的“魔术”表演和抢椅子游戏,这里面蕴藏着一个非常有趣的数学问题,这节课我们就一起来研究这类问题,下面我们先从简单的情况入手。

“鸽巢问题”。

(板书课题)二、合作探究发现规律(一)教学例1(由枚举法引出假设法,初步“建模”——平均分。

)出示例1把4支笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支笔。

1. 理解“总有”和“至少”的意思。

2.运用“枚举法”初步探究。

(1)把4支笔放进3个笔筒里,有几种不同的放法?自己动手在小组内摆一摆,画一画,说一说,把出现几种情况都记录下来。

(2)汇报展示不同的方法。

(4)讲解:像这样一一列举出来的方法,在数学上叫枚举法。

(板书:枚举法)3.通过比较,引导“假设法”。

启发:能不能找到一种更为直接的方法,只摆一种情况也能得到这个结论?4. 初步“建模”---- 平均分。

引导:运用“假设法”先在每个笔筒里分1支,这种均等的分法,又叫什么分?用什么方法计算?你能列式表示吗?板书: 4÷3=1……1 1+1=25. 概括“鸽巢原理”的一般规律。

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】教学内容:人教版小学数学六年级下册教材第68~69页。

教材分析:鸽巢问题又称抽屉原理或鞋盒原理,它是组合数学中最简单也是最基本的原理之一,从这个原理出发,可以得出许多有趣的结果。

这部分教材通过几个直观的例子,借助实际操作,向学生介绍了“鸽巢问题”。

学生在理解这一数学方法的基础上,对一些简单的实际问题“模型化”,会用“鸽巢问题”解决问题,促进逻辑推理能力的发展。

学情分析:“鸽巢问题”的理论本身并不复杂,对于学生来说是很容易的。

但“鸽巢问题”的应用却是千变万化的,尤其是“鸽巢问题”的逆用,学生对进行逆向思维的思考可能会感到困难,也缺乏思考的方向,很难找到切入点。

设计理念:在教学中,让学生经历将具体问题“数学化”的过程,初步形成模型思想,体会和理解数学与外部世界的紧密联系,发展抽象能力、推理能力和应用能力,这是《标准》的重要要求,也是本课的编排意图和价值取向。

教学目标:1、知识与技能:通过操作、观察、比较、推理等活动,初步了解鸽巢原理,学会简单的鸽巢原理分析方法,运用鸽巢原理的知识解决简单的实际问题。

2、过程与方法:在鸽巢原理的探究过程中,使学生逐步理解和掌握鸽巢原理,经历将具体问题数学化的过程,培养学生的模型思想。

3、情感态度:通过对鸽巢原理的灵活运用,感受数学的魅力,体会数学的价值,提高学生解决问题的能力和兴趣。

教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。

教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1”。

教学准备:多媒体课件、微视频、合作探究作业纸。

教学过程:一、谈话引入:1、谈话:你们知道“料事如神”这个词是什么意思吗?今天老师也能做到“料事如神”,你们信不信?现在老师任意点13位同学,我就可以肯定,至少有2个同学的生日在同一个月。

你们信吗?2、验证:学生报出生月份。

根据所报的月份,统计13人中生日在同一个月的学生人数。

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】一、教学三维目标1.知识与技能目标:初步理解鸽巢原理;2.过程与方法目标:经历鸽巢原理的的探究过程,培养学生的模型思想;3.情感态度与价值观目标:感受数学的魅力,提高学习数学的兴趣。

二、教学重点经历探究过程,初步了解鸽巢原理;三、教学难点理解鸽巢原理;四、教学过程1.游戏引入教师提问:你们玩过“抢椅子”的游戏吗?谁能说说游戏规则呢?学生回答后,组织学生进行几次“抢椅子”的游戏。

请学生注意观察,提问:一个简单的游戏里,蕴含着什么数学知识呢?顺势引入课题。

2.讲授新知活动一:初步认识鸽巢原理出示例1:把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。

提问:你得到了什么数学信息?至少和总有是什么意思?总结:总有就是一定存在的意思,至少表示最低限度,有最少的意思。

再提问:这句话对吗?组织小组活动,进行验证。

总结:学生探究出两种方法,方法一是枚举法,将可能的情况都列出进行观察;方法二是假设法。

两种方法都能验证这句话是正确的。

在此基础上,教师把铅笔换成鸽子,笔筒换成鸽笼,介绍鸽巢问题。

活动二:探究一般形式出示例2:把7本书放进3个抽屉,不管怎么放,总有一个抽屉里至少放进3本书。

提问:这句话对吗?为什么?组织小组活动,进行探究。

总结:用枚举法和假设法都能证明这句话是对的,教师利用除法算式7÷3=21,引导理解用“平均分”的思维来理解假设法。

追问:如果有8本书会怎样?10本呢?组织同桌交流,指名学生回答。

学生回答时继续用除法表示,最后提问:观察算式,你发现了什么?师生总结:观察3个算式,发现至少放的本数是商+1,而不是商+余数。

引出鸽巢问题又叫抽屉问题。

3.巩固练习完成做一做4.课堂小结教师提问:你有什么收获?学生回答后教师总结完善。

5.布置作业课后习题1、2题,将今天学到的整理成数学日记人教版数学六年级下册鸽巢问题优秀教案【第2篇】《鸽巢问题》就是以前奥数的教学内容《抽屉原理》,兴趣是学习最好的老师。

六年级下册数学教学设计-5《鸽巢原理例1、例2》人教新课标

六年级下册数学教学设计-5《鸽巢原理例1、例2》人教新课标

六年级下册数学教学设计5《鸽巢原理例1、例2》人教新课标在教学设计中,我以六年级下册《鸽巢原理例1、例2》为例,详细描述了教学内容、教学目标、教学难点与重点、教具与学具准备、教学过程、板书设计、作业设计以及课后反思和拓展延伸。

一、教学内容:本节课的教学内容选自人教新课标六年级下册数学教材,主要涉及鸽巢原理的应用。

具体包括两个例题:例1是关于将一些物品放入鸽巢中的问题,例2是关于将一些人分配到不同组别的问题。

通过这两个例题,学生可以理解并掌握鸽巢原理的基本概念和应用方法。

二、教学目标:本节课的教学目标有三个:一是让学生理解鸽巢原理的概念,二是培养学生运用鸽巢原理解决实际问题的能力,三是培养学生的逻辑思维和解决问题的能力。

三、教学难点与重点:本节课的重点是让学生掌握鸽巢原理的基本概念和应用方法。

难点是让学生能够灵活运用鸽巢原理解决实际问题。

四、教具与学具准备:为了更好地进行教学,我准备了一些教具和学具,包括黑板、粉笔、多媒体教具以及一些与鸽巢原理相关的图片和实例。

五、教学过程:1. 引入:我通过展示一些图片,如一群鸽子停在巢上,引发学生对鸽巢原理的思考。

2. 讲解:我详细讲解鸽巢原理的概念和应用方法,通过例1和例2的讲解,让学生理解并掌握鸽巢原理的基本原理。

3. 练习:我设计了一些随堂练习题,让学生运用鸽巢原理解决问题,巩固所学知识。

六、板书设计:我在黑板上用粉笔写下鸽巢原理的定义和例题的解题步骤,以便学生跟随和复习。

七、作业设计:我布置了一道有关鸽巢原理的应用题,要求学生独立解决并写出解题过程。

作业题目如下:例题:假设有一个班级有30名学生,现在要将这些学生分配到5个小组中,每个小组至少要有1名学生。

请运用鸽巢原理,找出所有可能的分配方案。

答案:方案1:1个小组有10名学生,其余4个小组各有5名学生;方案2:2个小组有6名学生,其余3个小组各有4名学生;方案3:3个小组有5名学生,其余2个小组各有4名学生;方案4:4个小组有4名学生,另1个小组有6名学生;方案5:5个小组各有3名学生。

人教版,六年级,数学,下册,第5单元,鸽巢问题,例1、例2 、例3,教学设计

人教版,六年级,数学,下册,第5单元,鸽巢问题,例1、例2 、例3,教学设计
课时
1课时
学情分析
通过上节课的学习,学生基本掌握鸽巢原理,这节课主要是运用“鸽巢原理”进行逆向思维来解决问题。教学时,重点在于使学生弄清楚“抽屉”和所分放的物体它们的个数,通过探究形成解决这类问题的一般策略与方法。
教材分析
本例是“抽屉原理”的具体应用,也是运用“抽屉原理”进行逆向思维的一个典型例子。要解决这个问题,可以把两种“颜色”看成两个“抽屉”,“同色”就意味着“同一抽屉”。这样,就可以把“摸球问题”转化成“抽屉问题”。
课件出示例2.让学生读题,理解题意。1.能用例1的方法来探究吗?2.谁能很快得出结论?3.引导学生归纳方法:
1.读题,理解题意。
2.小组合作,用摆一摆或画一画的方法探究。
3.边操作边记录。注意合理分工,积极参与交流。
4.选好代表作全班交流。
5.结合例1的方法来想一想:能不能不一一列举而很快找到至少数。6.小组合作探究:至少数=商+余数,大胆猜一猜。探究出结论:物体数÷抽屉数=商……余数,至少数:商+1。
三维目标
知识与技能:能用鸽巢原理解决简单的实际问题。
过程与方法:通过探究,能运用“鸽巢原理”进行逆向思维,解决问题。
情感态度与价值观:激发学习兴趣,感受数学的魅力。
教学重点:应用“鸽巢原理”解决实际问题。
教学难点:能运用“鸽巢原理”进行逆向演示法、讨论法、练习法、小组合作探究法
课件出示思考过程和方法,肯定学生的答案。
独立思考,举手回答。
小结方法。
使学生学会运用一般性的数学方法来思考问题,发展学生的抽象思维能力。
四、布置
作业
第71页练习十三,第4、5、6题。
课后独立完成。
板书设计
鸽巢问题(例3)
只要摸出的球数比它们的颜色种数多1,就能保证有两个球同色。

人教版数学六年级下册鸽巢问题教案范文(推荐3篇)

人教版数学六年级下册鸽巢问题教案范文(推荐3篇)

人教版数学六年级下册鸽巢问题教案范文(推荐3篇)人教版数学六年级下册鸽巢问题教案范文【第1篇】《鸽巢问题》教学设计教学内容:教材第68-69页例1、例2。

教学目标:1、了解“鸽巢问题”的特点,理解“鸽巢原理”的含义。

使学生用此原理解决简单的实际问题。

2、经历探究“鸽巢原理”的学习过程,体验观察、猜测、验证、推理等活动的学习方法,渗透数形结合的思想。

3、通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。

教学重点:引导学生把具体问题转化成“鸽巢问题”。

教学难点:找出“鸽巢问题”的解决窍门进行反复推理。

教学准备:课件、扑克、小棒、杯子。

教学过程:一、导入师:(出示刘谦照片)同学们认识他吗?最近刘老师也学会了一个魔术,想看我表演吗?请5个同学配合我一下。

一副牌,取出大小王,还剩52张,你们5人每人随意抽一张,我知道至少有2张牌是同花色的。

相信吗?(展示验证,引导初步理解至少)这5个同学是不是我的托呢?再来5名试试!(学生尝试猜,猜后引导理解至少的重要性)师:其实,刚刚的魔术蕴含了一个数学知识--“鸽巢问题”。

今天我们就一起来研究这一类问题。

(板书课题:鸽巢问题)二、探索新知1、板书:鸽(鸽就是鸽子)巢(知道是什么吗?--鸽子的窝)为了方便研究,我们用小棒代替鸽子,用杯子代替巢。

(板书小棒、杯子)2、思考:把4根小棒放进3个杯子里,可以怎样放?一共有几种方法?小组合作摆一摆,注意要有序摆放,小组长要记录好!3、汇报:预设 a.4 0 0 b.3 1 0 c.2 2 0 d.2 1 14、师:同学们看,(引导看每种摆法,圈出2根和2根以上的)无论怎样摆放,总有一个杯子里至少有两根小棒。

(出示发现,齐读)“总有”和“至少”是什么意思?(预设:“总有”一定有、肯定有;“至少”最少。

)5、如果是把5根小棒放进4个杯子里呢?猜一猜,会有怎样的结论呢?(学生猜测:总有一个杯子里至少有2根小棒。

人教版数学六年级下册鸽巢问题教案(推荐3篇)

人教版数学六年级下册鸽巢问题教案(推荐3篇)

人教版数学六年级下册鸽巢问题教案(推荐3篇)人教版数学六年级下册鸽巢问题教案【第1篇】《鸽巢问题(第1课时)》教学设计一、教学目标1.引导学生经历“鸽巢问题”的抽象过程,初步了解“鸽巢原理”并用其解决相关生活中的简单问题。

2.通过猜测、验证、观察、分析等数学活动,提高学生有根据有条理的进行思考和推理的能力。

3.经历从具体到抽象的探究过程,建立数学模型,培养“模型思想”。

4.灵活应用“鸽巢原理”,提高学生解决数学问题的能力和兴趣。

二、教学重点教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。

教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1”。

三、教学准备纸杯、吸管、多媒体课件。

四、教学过程(一)创设情境 揭示课题多媒体演示“二桃杀三士”的成语故事【设计意图】通过问题引发学生思考,激发学生学习的兴趣和求知欲望,为原本枯燥的数学注入了活力,从而提出需要研究的数学问题。

(二)探索新知(1)初步感知。

把3个磁扣放到2个圆圈里,有哪些放法?(学生思考)师:“不管怎么放,总有一个圆圈里至少有2个磁扣”,这句话说得对吗?师:这句话里“总有” “至少”是什么意思?【设计意图】从学生喜欢的游戏入手,设置悬念,激发学生学习的兴趣和求知欲望,为原本枯燥的数学注入了活力,从而提出需要研究的数学问题。

教师:“总有一个圆圈里至少有2个磁扣”,这句话说得对吗?教师:这句话里“总有” “至少”是什么意思?【设计意图】此处设计注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极参与进来。

通过对“总有”“至少”的意思的单独说明,让学生更深入地理解“不管怎么放,总有一个圆圈里至少有2个磁扣”这句话。

(2)逐步深入 初建模型把4根吸管放到3个纸杯里,有哪些放法? 4人为一组动手试一试。

(学生思考—组内交流—汇报)【设计意图】通过操作,将抽象的结论具体化,学生得到了四种全部情况,从而获得了支持这个结论所有的实物图像表征,为后面的“说理”提供了有力的支撑。

人教版数学六年级下册鸽巢问题创新教案(推荐3篇)

人教版数学六年级下册鸽巢问题创新教案(推荐3篇)

人教版数学六年级下册鸽巢问题创新教案(推荐3篇)人教版数学六年级下册鸽巢问题创新教案【第1篇】教学目标1.通过猜测、验证、观察、分析等数学活动,经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢原理”解决简单的实际问题。

渗透“建模”思想。

2.经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。

3.通过“鸽巢原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。

教学重点经历“鸽巢问题”的探究过程,初步了解“鸽巢原理”。

教学难点理解“鸽巢问题”,并对一些简单实际问题加以“模型化”。

教具准备:相关课件相关学具(若干笔和筒)教学过程一、游戏激趣,初步体验。

游戏规则是:请这四位同学从数字1.2.3中任选一个自己喜欢的数字写在手心上,写好后,握紧拳头不要松开,让老师猜。

[设计意图:联系学生的生活实际,激发学习兴趣,使学生积极投入到后面问题的研究中。

]二、操作探究,发现规律。

1.具体操作,感知规律教学例1:4支笔,三个筒,可以怎么放?请同学们运用实物放一放,看有几种摆放方法?(1)学生汇报结果(4,0,0)(3,1,0)(2,2,0)(2,1,1)(2)师生交流摆放的结果(3)小结:不管怎么放,总有一个筒里至少放进了2支笔。

(学情预设:学生可能不会说,“不管怎么放,总有一个筒里至少放进了2支笔。

”)[设计意图:鸽巢问题对于学生来说,比较抽象,特别是“不管怎么放,总有一个筒里至少放进了2支笔。

”这句话的理解。

所以通过具体的操作,枚举所有的情况后,引导学生直接关注到每种分法中数量最多的`筒,理解“总有一个筒里至少放进了2支笔”。

让学生初步经历“数学证明”的过程,训练学生的逻辑思维能力。

]质疑:我们能不能找到一种更为直接的方法,只摆一次,也能得到这个结论的方法呢?2.假设法,用“平均分”来演绎“鸽巢问题”。

1思考,同桌讨论:要怎么放,只放一次,就能得出这样的结论?学生思考——同桌交流——汇报2汇报想法预设生1:我们发现如果每个筒里放1支笔,最多放4支,剩下的1支不管放进哪一个筒里,总有一个筒里至少有2支笔。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级下册数学《数学广角——鸽巢问题》教学设计板书
数学广角——鸽巢问题第1课时鸽巢问题(1)
【教学内容】最简单的鸽巢问题(教材第68页例1和第69页例2)。

【教学目标】 1.理解简单的鸽巢问题及鸽巢问题的一般形式,引导学生采用操作的方法进行枚举及假设法探究“鸽巢问题”。

2.体会数学知识在日常生活中的广泛应用,培养学生的探究意识。

【重点难点】了解简单的鸽巢问题,理解“总有”和“至少”的含义。

【教学准备】实物投影,每组3个文具盒和4枝铅笔。

【情景导入】教师:同学们,你们在一些公共场所或旅游景点见过电脑算命吗?“电脑算命”看起来很深奥,只要你报出自己的出生年月日和性别,一按键,屏幕上就会出现所谓性格、命运的句子。

通过今天的学习,我们掌握了“鸽巢问题”之后,你就不难证明这种“电脑算命”是非常可笑和荒唐的,是不可相信的鬼把戏了。

(板书课题:鸽巢问题) 教师:通过学习,你想解决哪些问题?根据学生回答,教师把学生提出的问题归结为:“鸽巢问题”是怎样的?这里的“鸽巢”是指什么?运用“鸽巢问题”能解决哪些问题?怎样运用“鸽巢问题”解决问题?
【新课讲授】1.教师用投影仪展示例1的问题。

同学们手中都有铅笔和文具盒,现在分小组形式动手操作:把四支铅笔放进三个标有序号的文具盒中,看看能得出什么样的结论。

组织学生分组操作,并在小组中议一议,用铅笔在文具盒里放一放。

教师指名汇报。

学生汇报时会说出:1号文具盒放4枝铅笔,2号、3
号文具盒均放0枝铅笔。

教师:不妨将这种放法记为(4,0,0)。

〔板书:(4,0,0)〕教师提出:(4,0,0)(0,4,0)(0,0,4,)为一种放法。

教师:除了这种放法,还有其他的方法吗?教师再指名汇报。

学生会有(4,0,0)(0,1,3)(2,2,0)(2,1,1)四种不同的方法。

教师板书。

教师:还有不同的放法吗? 教师:通过刚才的操作,你能发现什么?(不管怎么放,总有一个盒子里至少有2枝铅笔。

)教师:“总有”是什么意思?(一定有)教师:“至少”有2枝什么意思?(不少于两只,可能是2枝,也可能是多于2枝)教师:就是不能少于2枝。

(通过操作让学生充分体验感受) 教师进一步引导学生探究:把5枝铅笔放进4个文具盒,总有一个文具盒要放进几枝铅笔?指名学生说一说,并且说一说为什么?学生汇报:要想发现存在着“总有一个盒子里一定至少有2枝”,先平均分,余下1枝,不管放在哪个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。

这样分,只分一次就能确定总有一个盒子至少有几枝笔了? 教师:同意吗?那么把5枝笔放进4个盒子里呢?(可以结合操作,说一说)教师:你发现什么? 学生:铅笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。

巩固练习:教材第“做一做”。

2.教学例2。

①出示题目:把7本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?请同学们小组合作探究。

探究时,可以利用每组桌上的7本书。

活动要求:a.每人限独立思考。

b.把自己的想法和小组同学交流。

c.如果需要动手操作,可以利用每桌上的7本书,要有分
工,并要全面考虑问题。

(谁分铅笔,谁当抽屉,谁记录等)d.在全班交流汇报。

(师巡视了解各种情况) 学生汇报。

哪个小组愿意说说你们的方法?把你们的发现和大家一起分享,我们能不能找到一种适用各种数据的方法呢?请同学们想想。

板书:7本3个2本??余1本(总有一个抽屉里至少有3本书) 8本3个2本??余2本(总有一个抽屉里至少有3本书) 10本3个3本??余1本(总有一个抽屉里至少有4本书) 师:2本、3本、4本是怎么得到的? 生:完成除法算式。

7÷3=2本??1本(商加1) 8÷3=2本??2本(商加1) 10÷3=3本??1本(商加1) 师:观察板书你能发现什么? 学生:“总有一个抽屉里的至少有3本”,只要用“商+1”就可以得到。

师:如果把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书? 学生:“总有一个抽屉里至少有3本”只要用5÷3=1本??2本,用“商+2”就可以了。

学生有可能会说:不同意!先把5本书平均分放到3个抽屉里,每个抽屉里先放1本,还剩2本,这2本书再平均分,不管分到哪两个抽屉里,总有一个抽屉里至少有2本书,不是3本书。

师:到底是“商+1”还是“商+余数”呢?谁的结论对呢?在小组里进行研究、讨论、交流、说理活动。

教师:现在大家都明白了吧?那么怎样才能够确定总有一个抽屉里至少有几个物体呢? 学生回答:如果书的本数是奇数,用书的本数除以抽屉数,再用所得的商加1,就会发现“总有一个抽屉里至少有商加1本书”了。

教师讲解:同学们的这一发现,称为“抽屉原理”,“抽屉原理”又称“鸽笼原理”,下面我们应用这一原理解决问题。

提问:尽量把书平均分给各个抽屉,看每个抽屉能分到多少本书,你们能用什么方式表示这一平均
的过程呢?学生在练习本上列式:7÷3=2??1。

集体订正后提问:这个有余数的除法算式说明了什么问题?生:把7本书平均放进3个抽屉,每个抽屉有两本书,还剩一本,把剩下的一本不管放进哪个抽屉,总有一个抽屉至少放三本书。

③引导学生归纳鸽巢问题的一般规律。

学生讨论。

讨论后,学生明白:不是商加余数2,而是商加1。

因为剩下两本,也可能分别放进两个抽屉里,一个抽屉一本,相当于数的分解(3,3,2)。

所以,总有一个抽屉至少放3本书。

⑥总结归纳鸽巢问题的一般规律。

要把a个物体放进n个抽屉里,如果a÷n=b??c(c≠0),那么一定有一个抽屉至少放(b+1)个物体。

【课堂作业】教材第69页“做一做”。

(1)组织学生在小组中交流解答。

(2)指名学生汇报解答思路及过程。

【课堂小结】通过这节课的学习,你有哪些收获?
【课后作业】完成练习册中本课时的练习。

第1课时鸽巢问题(1)(4,0,0)(0,1,3)(2,2,0)(2,1,1)。

相关文档
最新文档